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Appendix A: Aggregation of the farm production function

Here, we verify that the main predictions of the farm-level model in Section 1 aggregate
to the collection of farmers within each county. We observe county-level crop yield:

yct =

N∑
i=1

Yit

N∑
i=1

Cit

(A1)

for county c at time t, where Yit and Cit are output and acreage of farm i, respectively.
Assume that KDDit is common to farms within counties (as is true for existing weather
measures), giving KDDit = KDDct ∀i in c. Thus, the county-level sensitivity to KDDct is
an average of the farm-level sensitivities weighted by the size of the farm in terms of land
and other inputs:
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Since s < 0, Cit > 0, and Iit > 0 for all i and t, we can verify that the county sensitivity
to harsh temperature β2ct is strictly concave in KDDct , just as β2it is strictly concave in
KDDit :
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and the similarity to a log-linear function is also maintained. Thus, the two main predic-
tions of the theoretical model carry over to the county-level (even if farm-level produc-
tion functions cannot be aggregated into a “representative producer”).

Appendix B: Bias in fixed effects regressions under slope heterogeneity

In this appendix, we demonstrate how adaptation leads to bias in conventional esti-
mates of crop yield equations. As we showed in Section 1, the use of adaptation tech-
niques will generate heterogeneity in the parameter β2 that captures sensitivity to high
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temperatures in equation (5), versions of which have been estimated in several prior
papers in the literature. This heterogeneity may arise in both the i and t dimensions.
We can capture this heterogeneity by generalizing the conventional specification (5) as
follows:

yit = ci + τt +β1GDDit +β2itKDDit +β3PRECit +β4PREC2
it + εit� (B1)

where, for identification, we impose the additive structure:

β2it = β2 + λi + θt� (B2)

Note that this specification allows for unit and time fixed effects in the sensitivity of crop
yield to temperature, as well as unit and time fixed effects in the intercept.

To see the bias of a conventional fixed effects estimator—with fixed effects only in
the intercepts—in a context where adaptation generates slope heterogeneity, we first
simplify (B1) by excluding precipitation and stacking the variables:

yit = ci + τt + z′
itβit + εit� (B3)

where z′
it = (GDDit �KDDit) and βit = (β1�β2it )

′ = (β1�β2 + λ2i + γ2t )
′. Consider a two-

way within transformation of (B3) to remove the fixed effects in the intercept term:

ỹit = z̃′
itβ+ vit� (B4)

where ỹit = yit −N−1 ∑N
i=1 yit −T−1 ∑T

t=1 yit +NT−1 ∑N
i=1

∑T
t=1 yit is the two-way within

transformation of yit , and similarly for z̃it , β = (β1�β2)
′, and vit is defined as

vit = z̃′
itλi + z̃′

itθt + ε̃it � (B5)

where z̃′
itλi = z′

itλi −N−1 ∑N
i=1 z

′
itλi −T−1 ∑T

t=1 z
′
itλi +NT−1 ∑N

i=1
∑T

t=1 z
′
itλi is the two-

way within transformation of z′
itθi, similarly for z̃′

itθt , λi = (0�λi)′, and θt = (0� θt)′.
The FE-OLS estimate of β will be
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Expanding on ỹit and simplifying yields
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where Q−1
zz�NT = ( 1

NT

∑N
i=1

∑T
t=1 z̃it z̃

′
it)

−1. If zit is not independent to λi and θt , then the
two bias terms generated by the slope heterogeneity will not vanish as the sample size
increases, and the fixed effects estimator will be inconsistent.
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There is every reason to believe that the KDDit component of zit is not independent
of λi and θt . The theoretical model presented in Section 1 predicts a positive relationship
between the two, which will result in the standard FE-OLS estimator overestimating (i.e.,
estimates closer to zero in this case) the average sensitivity to harsh temperatures β2.
This is intuitive as farmers who experience hotter temperatures in their region or time
period have more incentive to adopt adaptation techniques. Indeed, Butler and Huybers
(2013) provided evidence that the estimate of β2 for an individual county is significantly
positively correlated with its relative experience of heat. A key aim of our paper is to
more precisely ascertain the nature of the relationship between KDDit and β2it , and to
use this information to help predict the impact of climate change and how it may be
mitigated by adaptation.

Appendix C: “Brute force” OLS estimation and

its computational requirements

In principle, we could estimate the βit parameters in equation (12) by what we call
“brute force” OLS. That is, run OLS on a model that includes: (i) dummy variables for
each i and t, and (ii) a complete set of interaction terms between the regressors and the
i and t dummies (to capture unit/time fixed effects in slopes). Specifically, we have

yit = β′xit +
N∑
j=2

(
x′
itdij

)′
γj +

T∑
j=2

(
x′
itdtj

)′
δj + uit� (C1)

where dij = 1 if i = j and 0 otherwise, and similarly for dtj . Here, γj and δj are (K + 1)× 1
vectors of coefficients to be estimated. After estimating β, γ = (γ1�γ2� � � � �γN), and δ =
(δ1�δ2� � � � �δT ) through OLS, it is possible to form β̂it = β̂+ γ̂ i + δ̂t . These are consistent
and asymptotically efficient estimates of the βit given the usual OLS assumptions.1

To clarify the computational burden of this procedure, write (C1) in matrix form:

Y
NT×1

= Z
NT×R

Ξ
R×1

+ U
NT×1

� (C2)

where R = (K + 1)(N + T − 1) is the number of regressors, including interactions, while
Ξ
R×1

= (β�γ�δ)′, Z
NT×R

= (X�X ◦ Di=1� � � � �X ◦ Di=N�X ◦ Dt=1� � � � �X ◦ Dt=T ), X
NT×(K+1)

is

the stacked set of regressors, ◦ is the Hadarmard product, Di=j

NT×(K+1)
is a set of stacked

dummy variables for each regressor that is 1 when i = j and 0 otherwise, and similarly
Dt=j

NT×(K+1)
is a set of stacked dummy variables for each regressor that is 1 when t = j and

0 otherwise. The OLS estimator is Ξ̂ = (Z′Z)−1Z′Y .
Note that Z′Z in equation (C2) is a matrix of rank R = (K+1)(N+T −1). To calculate

the OLS estimator, a computer must be able to hold (Z′Z) in memory, and then calculate

1See Hsiao (1975, Section 7) for more details. Note that identification of the separate components (β,
γ i , δt ) is achieved here via the location normalization γ1 = 0, δ1 = 0. Other normalizations are of course
possible.



Supplementary Material Climate change and U.S. agriculture 5

Table C1. Memory requirements to hold Z.

N T K Z in GB

500 200 5 3�36
1000 200 8 17�29
3000 300 15 380�28

(Z′Z)−1 or otherwise solve the linear system (Z′Z)Ξ̂ = Z′Y . The memory and/or time

requirements for these computations render a “brute force” OLS approach infeasible

in large panels. For example, in our case we have R = (4 + 1)(2209 + 65 − 1) = 11,365
regressors, making the “brute force” OLS approach quite impractical.

Table C1 gives examples of space required to hold Z in memory (in gigabytes), while

Figure C1 reports computation times for MO-OLS vs. “brute force” OLS in Stata. The re-

sults in Figure C1 are based on simulated data (Appendix D). We fix K = 4 and T = 65
as in our corn yield data, and vary N . Figure C1 shows how computation time increases

rapidly with N for “brute force” OLS, while increasing slowly with N for MO-OLS. Be-

yond N = 950 it is no longer possible to run the regression in Stata due to memory limi-

tations.2

Extrapolating from Figure C1, we estimate that, for a panel of the size used in our

corn yield application (N = 2209), the “brute force” OLS approach, if it were feasible in

terms of memory, would require 76 minutes. In contrast, MO-OLS requires roughly 90
seconds.

Figure C1. Computation time of MO-OLS and brute force OLS. Note: The data generating pro-
cess for this example simulates (5) with K = 4 and T = 65.

2At N = 950 “brute force” OLS requires roughly 13 minutes while MO-OLS requires roughly 30 seconds.
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Appendix D: Monte Carlo simulations

Here, we examine the finite sample performance of the MO-OLS estimator proposed
in Section 2.3. We conduct Monte Carlo simulations based on environments character-
ized by multidimensional slope heterogeneity, with fixed effects in both intercepts and
slopes. We study MO-OLS estimates of both the observation-level coefficients βit and
the mean coefficient vector β̄. For the mean, we also report results using three tradi-
tional panel data estimators: one-way and two-way fixed effects and mean group OLS
(“MG-OLS”).

We consider two alternative data generating processes. In each case, the dependent
variable is generated by

yit = cit + ρityit−1 +βitxit + εit� (D1)

where i = 1�2� � � � �N and t = −10� � � � �0�1� � � � �T . We set yi�−11 = 0 and discard the first
10 observations for each unit i prior to estimation. The fixed effects in the intercept are
generated by cit = 1 + fi + ft where fi ∼ ft ∼N(0�0�353), and the idiosyncratic errors are
generated as εit ∼N(0�1). In both scenarios, we generate the heterogeneous coefficient
on the covariate x as βit = β + λi + θt where β = 1 and λi ∼ N(0�0�353), and we gener-
ate the heterogeneous autoregressive coefficient as ρit = ρ + δi + φt , where ρ = 0�5 and
δi ∼N(0�0�104). We will consider two scenarios with different specifications of the time
effects θt and φt , as we discuss in detail below.

The regressor x is generated by

xit = 0�5xit−1 + α1cit + α2(ρit +βit)+ eit � (D2)

The parameter α1 governs the correlation between the intercepts cit and the regressor,
while α2 governs the correlation between the slope coefficients ρit and βit and the re-
gressor. In both scenarios, we set α1 = α2 = 1 and eit ∼ N(0�1).

Finally, consider the time effects. These are of central importance, as a key advantage
of MO-OLS is that it can accommodate time effects while MG-OLS in general cannot.
We consider two scenarios: In the first, we set θt ∼ N(0�0�353) and φt ∼ N(0�0�104), so
aggregate time effects are stochastic and correlated with the regressors (as α2 �= 0). In
the second scenario, the aggregate time effects are constant except for a jump half-way
through the sample period:

φt =
{

−0�104 if t < T/2�

0�104 if t ≥ T/2�
θt =

{
−0�353 if t < T/2�

0�353 if t ≥ T/2�

In our Monte Carlo analysis, we consider panels that are small relative to the county-
level yield dataset we analyze in the main text. In fact, they are small enough that the
‘brute force’ OLS approach is feasible. But we do not report the OLS results as they are
equivalent to the MO-OLS results. Recall that MO-OLS generates approximately identi-
cal results to “brute force” OLS if the number of terms L in the Cauchy sequence (20) is
sufficiently large. We specify that the summation terminates when a tolerance of 1�0E-6
is achieved for the maximum change in β̂it from l to l+ 1, and we report for each exper-
iment the mean and standard deviation of the L required for convergence.
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Table D1. Simulation results—Scenario 1.

(N = 50�T )

Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for ρ̄
True values 0�500 0�500 0�500 0�500 0�501 0�025 0�022 0�020 0�018 0�016

Pooled OLS
One-way FE 0�412 0�450 0�462 0�477 0�491 0�146 0�116 0�104 0�085 0�067
Two-way FE 0�597 0�629 0�639 0�653 0�664 0�098 0�085 0�078 0�068 0�063

MG-OLS 0�356 0�393 0�407 0�420 0�434 0�138 0�107 0�094 0�075 0�055
MO-OLS 0�474 0�485 0�490 0�493 0�497 0�030 0�024 0�022 0�019 0�017

Results for β̄
True values 0�998 1�003 1�000 0�998 1�002 0�082 0�071 0�066 0�059 0�056

Pooled OLS
One-way FE 2�381 2�370 2�343 2�325 2�327 0�465 0�361 0�304 0�250 0�194
Two-way FE 0�949 0�932 0�920 0�906 0�900 0�109 0�095 0�083 0�073 0�066

MG-OLS 2�541 2�492 2�452 2�421 2�410 0�493 0�372 0�312 0�255 0�191
MO-OLS 1�010 1�010 1�007 1�002 1�004 0�087 0�075 0�069 0�061 0�057

Iterations (L) 356 335 325 320 313 82 62 56 47 39

Note: 1000 Monte Carlo Simulations with N = 50 and varied T .

For each scenario, we report results from 1000 Monte Carlo replications. In each case,
the average βit over all Monte Carlo repetitions (β̄) is approximately 1�0, while the aver-
age ρit (ρ̄) is approximately 0�5 (with slight deviations due to sampling variation).

Consider first the results for the first scenario, the DGP with stochastic time effects in
slopes. Table D1 reports results for the estimates of the mean slope parameters β̄ and ρ̄.
We set the number of cross-sectional units N to 50 in all experiments. We vary T from
30 to 200, as it is primarily T that affects performance due to the O(T−1) Hurwicz bias.
The left panel reports the mean of the estimates (across the Monte Carlo replications)
obtained using all four estimators under consideration, while the right panel lists the
empirical standard deviations of the estimates.3

The results in Table D1 show that ignoring the time heterogeneity in the slope coef-
ficients can have dramatic implications for statistical inference. Both the one-way and
two-way FE estimators and MG-OLS exhibit serious biases for the mean slope and au-
toregressive coefficients. These biases are not eliminated by increasing T from 30 to 200.
In contrast, the bias in the MO-OLS estimates of the mean slope parameter β̄ is neg-
ligible in all cases. The MO-OLS estimates of the mean autoregressive parameter ρ̄ are
slightly downward biased when T = 30, but the bias becomes negligible as T increases
(removing the Hurwicz bias). The empirical standard deviations in the right side of the
panel show that the MO-OLS estimates of the mean coefficients are also much more
efficient.

3The true mean slope coefficients vary between simulated samples (because they depend on random
variables). So the right panel also reports the empirical standard deviation of the true mean coefficients.
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Table D2. Simulation results for θ̂it—Scenario 1.

(N�T) 30 50 100 200 350

Results for ρ̂it

Mean Bias −0�025 −0�014 −0�007 −0�004 −0�002

Abs. Bias
Mean 0�038 0�025 0�015 0�010 0�007
Std. Dev. 0�027 0�018 0�011 0�007 0�005

Corr. with ρit 0�970 0�985 0�994 0�997 0�998
Corr. with yit−1

True 0�129 0�133 0�132 0�135 0�135
Estimated 0�135 0�138 0�135 0�136 0�135

Results for β̂it

Mean bias 0�013 0�007 0�004 0�002 0�001

Abs. bias
Mean 0�188 0�136 0�091 0�063 0�047
Std. Dev. 0�142 0�103 0�069 0�048 0�036

Corr. with βit 0�903 0�945 0�975 0�988 0�991
Corr. with xit

True 0�446 0�446 0�452 0�453 0�453
Estimated 0�403 0�423 0�441 0�448 0�450

Note: 1000 Monte Carlo Simulations with varied N and T .

Next, we evaluate the MO-OLS estimates of the observation level slope coefficients
βit and ρit , estimated using (20). Here, we let (N�T) grow together, as this is required
for consistency of the β̂it . We report the results in Table D2, which shows the mean bias,
the mean and standard deviation of the absolute bias, the correlation of the estimates
with the true values, and the true and estimated correlation of the estimates with the
covariates.

The bias of each (i� t)-level estimate is defined as Bit = S−1 ∑S
s=1(β̂its − βits) where

S = 1000, and similarly for ρit . The mean bias averages this over all observations (i� t). As
we see in Table D2, the mean bias is small even when (N�T) = 30, and quickly vanishes
as (N�T) increase. Of course, this is just another way of expressing our previous result
from Table D1 that the bias in estimates of the mean coefficients β̄ and ρ̄ is small. When
(N�T) = 30 the mean absolute bias is 0�038 (or 7�6%) for the ρit estimates, and 0�188
(or 18�8%) for the βit . Both the mean absolute bias and its standard deviation decline
rapidly as (N�T) increase.

Impressively, we see that corr(ρ̂it � ρit) = 0�97 even when (N�T) = 30. And we have
that corr(β̂it �βit) = 0�90 when (N�T) = 30, and this increases to 0�975 when (N�T) =
100. Finally, the estimates capture the correlations between the slope coefficients and
the covariates (i.e., corr(βit� xit) and corr(ρit� yi�t−1)) very accurately, even when (N�T) =
30.

Now we turn to the results for the second scenario, the DGP where the aggregate time
effects that enter the slope coefficients are constant except for a jump half-way through
the sample. These results are presented in Tables D3 and D4. The one-way and two-way
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Table D3. Simulation results—Scenario 2.

(N = 50�T )

Mean Std. Dev.

30 50 70 100 200 30 50 70 100 200

Results for ρ̄
True Values 0�499 0�500 0�501 0�500 0�499 0�016 0�016 0�015 0�015 0�015

Pooled OLS
One-way FE 0�950 0�956 0�961 0�963 0�967 0�017 0�012 0�012 0�011 0�009
Two-way FE 0�991 0�983 0�982 0�981 0�981 0�020 0�015 0�014 0�013 0�011

MG-OLS 0�920 0�930 0�936 0�941 0�947 0�016 0�010 0�008 0�006 0�004
MO-OLS 0�461 0�478 0�484 0�488 0�493 0�023 0�020 0�018 0�018 0�016

Results for β̄
True values 0�999 0�999 0�998 0�998 1�003 0�051 0�051 0�051 0�049 0�049

Pooled OLS
One-way FE 1�310 1�098 0�992 0�919 0�829 0�213 0�150 0�128 0�107 0�080
Two-way FE 0�784 0�755 0�740 0�727 0�718 0�069 0�055 0�050 0�042 0�039

MG-OLS 1�571 1�309 1�186 1�094 0�978 0�221 0�156 0�117 0�089 0�058
MO-OLS 1�010 1�008 1�006 1�003 1�006 0�059 0�054 0�054 0�050 0�050

Iterations (L) 820 839 881 905 932 232 214 222 210 214

Note: 1000 Monte Carlo Simulations with N = 50 and varied T .

Table D4. Simulation results for θ̂it—Scenario 2.

(N�T) 30 50 100 200 350

Results for ρ̂it

Mean bias −0�039 −0�022 −0�011 −0�006 −0�003

Abs. bias
Mean 0�044 0�026 0�014 0�008 0�006
Std. Dev. 0�028 0�019 0�011 0�007 0�005

Corr. with ρit 0�980 0�991 0�996 0�998 0�999

Corr. with yit−1
True 0�420 0�428 0�430 0�432 0�434
Estimated 0�421 0�430 0�431 0�432 0�434

Results for β̂it

Mean bias 0�013 0�009 0�006 0�003 0�002

Abs. bias
Mean 0�194 0�139 0�094 0�065 0�048
Std. Dev. 0�147 0�105 0�071 0�049 0�037

Corr. with βit 0�899 0�944 0�973 0�987 0�993

Corr. with xit
True 0�606 0�616 0�619 0�624 0�625
Estimated 0�542 0�580 0�602 0�616 0�620

Note: 1000 Monte Carlo Simulations with varied N and T .
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fixed effects and MG-OLS estimators all exhibit severe biases in this case. The estimates
of ρ̄ are in all cases biased upward very severely, implying the process is close to a unit
root when in fact ρ̄ is approximately one-half. All three estimators also generate severely
biased estimates of β̄. In contrast, the MO-OLS estimates of ρ̄ are just slightly downward
biased when T = 30, as we would expect given the Hurwicz bias, but this bias vanishes
quickly as T increases. And there is no evidence of bias in the MO-OLS estimates of β̄,
even when T = 30. Turning to an evaluation of the observation (i� t)-level estimates in
Table D4, we see the results are very similar to those in Table D2. For example, when
(N�T) = 50 we have that corr(ρ̂it � ρit)= 0�99 and corr(β̂it �βit) = 0�94.

In summary, the Monte Carlo results show that, in panel data with both spatial and
time fixed effects in both intercept and slopes, the MO-OLS estimator does a good job
of uncovering both the mean and observation-level coefficients, even in relatively small
samples. It achieves this even when the slope heterogeneity is correlated with the re-
gressors, and whether time effects are randomly or deterministically generated. We also
find that conventional fixed effects and MG-OLS estimators are severely biased and in-
consistent in the same contexts.

Appendix E: Understanding identification in MO-OLS relative to FE-OLS

In panel data models with unit and time fixed effects in the intercept (i.e., two-way fixed
effects), it is simple to demonstrate that the slope parameters are identified from id-
iosyncratic variation in the regressors associated with particular {i� t} pairs. In our ap-
plication, this implies that the model identifies a relationship between yield and tem-
perature from idiosyncratic variation in local weather—variation that is distinct from
county-specific climate variation or longer term temperature trends.4 This leads to the
common interpretation that two-way fixed effects identifies “short-run” relationships.

Here, we demonstrate that this result does not carry over to panel data models con-
taining two dimensions of fixed effects in both the intercept and slope parameters. In-
stead, we show that MO-OLS is capable of identifying slope heterogeneity that is driven
by long-term climatic differences between counties, or from time-specific shocks that
are common across all counties (e.g., a heatwave). This point is important, as the results
in our paper rely on the fact that we are identifying long-term adaptations by the farmer
that are driven by spatial variation in climate and/or temperature trends over time, and
not simply responses to idiosyncratic local weather shocks.

Consider the following panel data model:

yit = ci + τt +βxit + eit� (E1)

where ci and τt are fixed effects in the intercept. This model can be estimated (in prin-
ciple) by running an OLS regression that includes dummies for each unit i and time
period t. Simple algebra shows this is equivalent to estimating the following regression
by OLS:

ỹit = βx̃it + ẽit � (E2)

4For instance, if a hot county experiences hotter or cooler temperature than usual in a given year that is
also above or below the temperature shock experienced by the entire country in that given year.
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where ỹit = yit −N−1 ∑N
i=1 yit −T−1 ∑T

t=1 yit +NT−1 ∑N
i=1

∑T
t=1 yit is the two-way within

transformation, and likewise for x̃it and ẽit . It is this equivalence that leads to the result
that β in the two-way fixed effects model is identified from shocks to xit that are distinct
from county-specific or time-specific variation in the regressors.

In contrast, consider a model with multidimensional slope heterogeneity:

yit = ci + τt +βitxit + eit� (E3)

where βit = β+ λi + θt . In this case, it can be shown that ỹit becomes

ỹit = βx̃it + ẽit + λixit + θtxit −N−1

(
N∑
i=1

λixit + θt

N∑
i=1

xit

)

− T−1

(
T∑
t=1

θtxit + λi

T∑
t=1

xit

)
+NT−1

(
N∑
i=1

T∑
t=1

λixit +
N∑
i=1

T∑
t=1

θtxit

)
�

Correlations between the slope heterogeneity and the regressors prevent this from being
simplified to a regression on transformed data ỹit = βit x̃it + ẽit where the ẽit satisfy OLS
assumptions. Thus, the βit are not identified from idiosyncratic variation in the regres-
sors.

In fact, as Figures 2 and 4 in the main text clearly show, in our application the MO-
OLS estimates capture variation in the KDD coefficients across counties that is system-
atically related to their long-run differences in KDD levels, as well as trends in the mean
KDD coefficient over time. To gain intuition for how coefficients are identified in MO-
OLS, it is useful to consider the case where xit follows a permanent/transitory structure,
as in

xit = δi +ηt + ξit� (E4)

where δi, ηt , and ξit are mutually independent, and ξit is independent over both i and t.
To simplify exposition, consider the case where E(ci) = E(τt) = β = E(λi) = E(θt) =
E(δi)= E(ηt) =E(ξit) = 0. Then the conditional expectations of yit become

E[yit |ci� δi] ≡E(ȳi) = ci + λiδi�

E[yit |τt�ηt] ≡E(ȳt) = τt + θtηt�

where ȳi = T−1 ∑T
t=1 yit and ȳt = N−1 ∑N

i=1 yit . Thus, the unit-specific slope heterogene-
ity parameter λi is the effect of the unit-specific component of the regressor δi on E(ȳi),
while the time-specific slope heterogeneity parameter θt is the effect of the time-specific
shock to the regressor ηt on E(ȳt). In other words, the unit-specific slope parameter λi is
identified from the cross-unit variation in the regressor (the δi), while the time-specific
parameter θi is identified from the common over-time variation in the regressor (the ηt ).

In our application, the assumption that xit (i.e., weather variables) follow a perma-
nent transitory structure is not unrealistic. Table E1 presents the results of a series of
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Table E1. Analyzing the dependence of KDDit and GDDit .

KDDit GDDit

Regression Results (1) (2) (3) (1) (2) (3)

Dep. var.: KDDit or GDDit

Lagged dep. var. 0�106 0�164
(0�021) (0�027)

R2 0�748 0�851 0�852 0�944 0�980 0�981

County dummies Yes Yes Yes Yes Yes Yes
Time dummies No Yes Yes No Yes Yes

Dep. var.: Time dummies
Lagged time dummy 0�183 0�089 0�067 −0�045

(0�126) (0�126) (0�127) (0�129)

Time trend −0�138 −0�096 0�404 0�518
(0�119) (0�120) (0�629) (0�642)

R2 0�063 0�022 0�012 0�012

Note: This table presents OLS parameter estimates for regressions of KDDit and GDDit on their lag and a series of county
and time dummies, as well as regressions of those estimated time dummies on their lag and a linear time trend. Standard errors
are in parentheses, and are clustered at the state level in the panel data regressions.

regressions of KDDit and GDDit on county and time effects and lagged dependent vari-
ables. The table presents regression results from three different models: model (1) in-
cludes only county dummies, model (2) includes county and time dummies, and finally
model (3) includes both sets of dummy variables and the lagged temperature variable.

The results show that the vast majority of variation in the temperature variables can
be explained by unit-specific and time-specific components. The R2 of the regressions
with county and time dummies is 0�85 for KDDit and 0�98 for GDDit . Moreover, the
results for model (3) reveal that there is very little serial dependence in local weather
shocks (i.e., ξit in (E4)). The estimated AR coefficients are 0�11 for KDDit and 0�16 for
GDDit , and their inclusion into the model adds almost nothing to the R2.

We also find little evidence for serial dependence in the time-specific aggregate tem-
perature shocks. The bottom half of Table E1 presents regressions of the time dummies
estimated in models (2) and (3) on their lag and a linear time trend. The estimated coeffi-
cients from this exercise are statistically insignificant. These results support the decom-
position of our temperature variables into a permanent transitory structure, and also
suggest that farmers would find it very difficult to project either local weather shocks or
time-specific weather shocks when planning their sowing or adaptation behavior.

Given the permanent/transitory structure is reasonably accurate, we expect that in
our application the county-specific component of the KDD coefficient will pick up the
extent to which sensitivity to high temperature is lower in counties with higher mean
KDD levels, while the time-specific component will pick up how sensitivity to high tem-
perature shocks (common across counties) has varied over time. This is exactly what we
see in Figures 2 and 4 in the main text.
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Appendix F: Projections of GDDit and KDDit

This appendix describes the climate models’ projections of annual KDD and GDD in the
corn-growing regions of the U.S., as well as their variability across climate models and
RCP scenarios. Figure F1 presents the average (over counties) projection of KDD across
the ensemble of models for the three RCPs, where the solid line is the average projection
and the shaded areas are the 80% (1�28 standard deviation) prediction intervals.

Over the historical period (1950–2015) mean KDD has decreased slightly, due to mild
recent weather. The mean annual KDD level across all years/counties in the historical
data is 41. In the optimistic RCP26 scenario (green) the ensemble average prediction
is that KDD will increase slowly until 2050, when its projected mean (across models)
reaches 69. It then plateaus, and is 70 in 2100, or 75% above the historical mean.

Under the RCP45 scenario (orange), mean KDD continues to grow until about 2080,
and only then does it plateau. The projected mean of KDD (across models) reaches 82 in
2050, which is double the historical mean, and increases to 115 in 2100, which is almost
triple the historical mean. But there is great disagreement between climate models, with
some predicting more modest changes.

Finally, in the “business as usual” RCP85 scenario (purple) mean KDD increases to
107 by 2050 and an extraordinary 306 in 2100 (almost eight times the historical mean).
Despite wide prediction intervals, every model predicts sharp increases relative to his-
torical experience.

Figure F2 presents the distribution of KDD across counties. The recent historical pe-
riod of 2010–2015 is plotted, as well as projections for the distribution of KDD under the

Figure F1. Projected KDDit by representative concentration pathway. Note: This graph
presents projections of KDD (averaged over counties and weighted by corn acreage) across three
RCPs, where the solid line is the average projection across 19 CMIP5 climate models, and the
shaded areas are the 80 percent prediction intervals.
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Figure F2. Density of KDDit across counties by scenario. Note: This graph presents the density
of KDD across counties over the 2010–2015 historical period, and compares it with three projec-
tions by RCP scenario and averaged across the 19 CMIP5 climate models.

three RCP scenarios for both 2050 (left) and 2080 (right). As we already noted, the mean

of KDD in the historical data is 41. Here, we see that most of the mass of the county/year

observations is between 0 and 100, but there is considerable mass in the 100 to 250 range,

and nonnegligible mass up to about 400. Only 33 historical observations exceed 400.

For 2050, both the RCP 4.5 and RCP 8.5 scenarios have much less mass in the distri-

bution below a KDD of 50, relative to the historical period. Conversely, there is a sharp in-

crease in the incidence of KDD between 50 and 400, after which the density approaches

zero. For example, in the historical data only 2% of county/year observations have KDD

over 200. But the average frequencies (across models) of KDD > 200 in 2050 are 10%,

21%, and 23% under the RCP 2.6, 4.5, and 8.5 scenarios, respectively. However, while the

mass of the distribution shifts substantially to the right, the vast majority of observa-

tions remain within the support of the historical distribution (i.e., below 400). This gives

us some confidence in using our models to forecast out to 2050 under all three RCP sce-

narios.

The densities at 2080 reveal a much larger range of outcomes across the RCP scenar-

ios. The distributions of outcomes under RCP 2.6 is almost identical in 2080 and 2050,

because under this scenario warming ceases after 2050. But under RCP 4.5, the distribu-

tion of KDD flattens considerably between 2050 and 2080, with much more mass in the

100 to 400 range. Nevertheless, the density still goes to zero quickly above 400. Thus, the

majority of observations remain within the range of the historical data.
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Under RCP 8.5, however, the change in the distribution is far more dramatic. The
mode increases to about 150, and there is now considerable mass above 400.5 Thus, fore-
casting climate change impacts as far out as 2080 under the RCP 8.5 scenario requires
extrapolation beyond the historical data for many of the county/year observations.

Recall that the log-linear heat sensitivity curve that we estimate, reported in Figure 4,
implies substantial scope for adaptation as KDD increases from 0 to 100, but the curve
becomes much flatter at higher levels of KDD. It is very flat indeed by the time KDD
reaches 400, and, as we have very little historical data above that level, our projections
assume KDD sensitivity is unchanging at higher KDD levels.

Figure F3 presents projections for GDD. Mean annual GDD is about 3450 in the his-
torical period. It is predicted to plateau at about 3600 in the RCP26 scenario, or more in
the RCP45 and RCP85 scenarios. Thus, the climate models predict that KDD and GDD
will both increase in the absence of emissions reductions. As a result, the increase of
KDD in cooler corn-growing regions is mitigated by the increase in GDD. The effect of
climate change on yields that we project in these regions will be the net balance between
the negative effect of higher KDD and the positive effect of higher GDD.

Figure F3. Projected GDDit by representative concentration pathway. Note: This graph
presents projections of GDD (averaged over counties and weighted by corn acreage) across three
RCPs, where the solid line is the average projection across 19 CMIP5 climate models, and the
shaded areas are the 80% prediction intervals.

5Under the RCP 2.6 and 4.5 scenarios, the unweighted mean levels of KDD in 2080 are 91 and 129, and
the average frequencies (across models) of KDD > 200 in 2080 are 12% and 22%, respectively. But under
the RCP 8.5 scenario, the unweighted mean level of KDD in 2080 is 246, and the average frequency (across
models) of KDD > 200 is a staggering 57%.



16 Keane and Neal Supplementary Material

Appendix G: Projecting corn yield with technical change

Here, we report projections of corn yield that incorporate projected technical progress.
In the main text, we reported predicted changes in yield that account for adaptation to
high temperatures, but that hold other aspects of technology fixed. We have a firm his-
torical basis for predicting adaptation, based on comparing historical production func-
tion parameters for hot versus cold counties and time periods. But projecting more gen-
eral forms of technical changed into the future is a more speculative exercise. (Indeed,
the published research that projects effects of future climate change on yields has gen-
erally avoided projecting technical progress, instead making yield projections holding
technology fixed).

The econometric models in the main text do provide estimates of technological
progress over the 1950–2015 period. In the FE-OLS models, neutral technical progress is
captured by the time fixed effect, while in the MO-OLS model technology is more com-
plex, as it may alter the time fixed effect or the time effects in the slope coefficients for
the temperature and precipitation inputs. Accordingly, we can attempt to extrapolate
trends in these time effects into the future to project future technical progress.

Of course, our sample period of 1950 to 2015 saw dramatic improvements in agri-
cultural technology from the spread of machines including tractors, cutters, harvesters,
planters and trucks, commercial fertilizer, insect and weed-resistant hybrid seeds, com-
puters and satellite technology, and genetic modification. It may be too optimistic to
assume that advances in agricultural technology can continue at such an impressive
pace through 2100, but that is in effect what we do here by extrapolating these historical
trends.

Here, we focus on the MO-OLS model, and project both the fixed effect and the co-
efficient on GDDit into the future using a VAR(1) system of two equations. We assume
that time effects in the KDDit coefficient are already captured by our adaptation process,
and we ignore time effects in the PRECit coefficients because we find no significant time
trends on these coefficients in the historical data.

An important issue in specifying the VAR is nature of the time trends. As equation (8)
is for log yield, we rule out using trends in t or t2 as this permits exponential yield growth
in levels. Accordingly, we consider two specifications for the trend terms: The first is to
include just log(t), which we call the “pessimistic” scenario of technical progress. The
second is to include both log(t) and

√
log(t), which we call the “optimistic” scenario. This

is because a negative coefficient on
√

log(t) allows diminishing returns to technology to
set in more slowly than when using log(t) alone. It is our intent to present both these
scenarios of future technology, without commenting on their likelihood. To conserve on
space, we do not present the estimates of the VAR models.6 We note, however, that the
‘optimistic’ model had the best in-sample fit of several models we examined. Of course,
this does not necessarily make it preferable for out-of-sample projections.

Table G1 presents the results of our projection exercise broken down by technol-
ogy scenario, adaptation scenario, and RCP scenario. Results are reported in bushels per

6Note that we do not include any structural breaks in this VAR model, in contrast to our analysis of the
KDDit coefficient in Table 3, as we found no consistent evidence for their existence.
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Table G1. The effects of climate change on corn yield (MO-OLS).

Pessimistic Tech Growth Optimistic Tech Growth

Year No Adapt. Adapt. No Adapt. Adapt.

RCP85
2030 159 (142�177) 158 (145�171) 164 (146�181) 162 (149�175)
2050 148 (114�182) 162 (142�181) 162 (128�196) 178 (159�197)
2080 110 (62�158) 160 (134�185) 139 (84�195) 206 (179�232)
2100 73 (25�121) 149 (121�176) 103 (42�164) 217 (189�245)

RCP45
2030 163 (142�185) 159 (146�173) 168 (147�189) 164 (150�178)
2050 165 (136�195) 170 (152�189) 179 (149�209) 185 (165�204)
2080 165 (125�206) 184 (162�206) 196 (156�235) 220 (201�239)
2100 180 (128�233) 201 (172�229) 222 (169�276) 251 (224�278)

RCP26
2030 158 (140�176) 156 (145�168) 163 (145�181) 161 (150�172)
2050 176 (154�197) 176 (164�188) 188 (168�208) 189 (179�200)
2080 207 (181�233) 206 (189�222) 233 (208�258) 233 (215�251)
2100 221 (183�259) 222 (198�247) 259 (221�298) 262 (235�289)

Note: Results are expressed in terms of actual crop yield in bushels per acre. Each num-
ber represents a model average over nineteen climate models, while the numbers in brack-
ets represents the 80% prediction interval of that ensemble average.

acre. We present mean projections across 19 climate models, as well as an 80% predic-
tion interval, at four points in time. Figures G1 to G2 present some key results visually.

Turning to our projections, consider first the worst case scenario of pessimistic tech-
nology growth and no adaptation. As we see in Table G1, in the RCP85 scenario the mean
projection is a catastrophic drop in corn yield from roughly 160 bushels per acre today
to 73 in 2100. With adaptation yield stagnates and is slightly lower in 2100 than today.

It is important to understand that a stagnation of yield would itself be a catastrophic
outcome. As we see in Figure G1 historical corn yield tripled from roughly 50 in the 1950s
to roughly 150 in 2015, so rapid growth was the norm for the past 65 years. Furthermore,
Figure G1 plots historical world population along with the median projection from the
United Nations Population Division 2017 Revision. Note that U.S. corn yields closely
track world population growth from 1950 to 2015, as population also roughly tripled
from 2�5 to 7�3 billion. The U.S. provides more than a third of the world’s corn exports, so
a stagnation of U.S. yields would have a devastating effect on world supply (particularly
as it will coincide with yield dropping globally from the effects of climate change).

Next consider the RCP26 scenario of ambitious emissions reductions, while contin-
uing to maintain the pessimistic technology scenario. As we see in Table G1, the mean
projected yield in 2100 is 221 or 222, depending on whether we include adaptation.7 But
as we see in Figure G1, yield growth in this scenario is not nearly as rapid as population
growth.

7Adaptation makes little difference for the mean projection in this case, because temperature increases
are moderate. But it does reduce variance.
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Figure G1. Effect of climate change on corn yield with pessimistic tech growth and no adap-
tation. Note: This graph presents projections of corn yield by RCP emission scenario using the
MO-OLS model where future adaptation is not modelled and technology is projected using a
VAR(1) with a log(t) trend term. The solid lines are the average projection across nineteen
CMIP5 climate models, and the shaded areas are the 80% prediction intervals.

Figure G2. The effect of climate change on corn yield with optimistic tech growth and adap-
tation. Note: This graph presents projections of corn yield by RCP emission scenario using the
MO-OLS model where future adaptation is not modelled and technology is projected using a
VAR(1) with log(t) and

√
log(t) as trend terms. The solid lines are the average projection across

nineteen CMIP5 climate models, and the shaded areas are the 80% prediction intervals.
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If we turn to the “optimistic” technology assumption, we see in Table G2 that yield
projections increase rather substantially under all scenarios. In fact, the mean pre-
diction under RCP85 of a 217 yield in 2100 is similar to the prediction under pes-
simistic technology and RCP26. Thus, being “optimistic” about technology while as-
suming “business as usual” emissions leads to similar predictions as being “pessimistic”
about technology while assuming “ambitious” emissions reductions. Importantly, how-
ever, yield in either case falls well short of keeping pace with population growth.

Finally, consider the best case scenario of optimistic technology growth and ambi-
tious emissions reductions (RCP26). As we see in Figure G2, the mean projected yield
in 2100 is 259 or 262, depending on whether we include adaptation. This is roughly
what is necessary for yields to increase at a rate that is commensurate with population
growth. Even here however, the 80% prediction interval extends down to 235, which is
well short of keeping pace with population growth. Thus, even in a best case scenario,
climate change creates an environment of considerable risk with respect to U.S. agricul-
tural yields.

Appendix H: Model and projection results for soybeans

The case of soybeans offers an interesting comparison to corn. This is the second largest
U.S. crop, and both its geographic distribution and growing characteristics are different.
Here, we apply the same econometric and projection methods as in the main text, except
with soybean yield as the dependent variable.

Table H1 presents the FE-OLS results, in the same format as Table 1 for corn. While
the KDD coefficients are again negative and highly significant, we find that soybeans
are less sensitive to high temperatures than corn. The model in column (3) includes the
nonlinear term to capture adaptation. The coefficient on this nonlinear term is positive
and statistically significant. This indicates, as it did with corn, that there is heterogeneity
in the marginal effect of KDDit and it has a positive correlation with the level of KDDit .

Table H2 presents the MO-OLS estimates. The mean KDD coefficeint is −0�0055,
which is about 25% larger in absolute magnitude that the conventional FE-OLS esti-
mate in Table H1 column (2). So we again find that FE-OLS understates the effect of high
temperature, due to the downward bias in the presence of parameter heterogeneity (see
Appendix B). But the bias is much smaller than we found for corn. This is because the
standard deviation of the KDD coefficient (0�0037) is smaller here. Figure H1 illustrates
this, as the 90/10 percentile range of the KDD coefficients cover a narrower range than
they did for corn. This is evidence for comparatively little historical adaptation between
counties. This finding is intuitive given the greater success in developing corn hybrids
that are more resistant to heat.

The time trend of aggregate adaptation in Figure H1 is somewhat difficult to inter-
pret due to the significant degree of random fluctuation in the median KDD coefficient
between years. Fitting a linear trend to the median coefficient over time resulted in an
extremely small positive trend, and an unreported structural break test could not reject
the null hypothesis of no structural trend break.
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Table H1. FE-OLS estimates of the impacts of temperature
on soybean yields.

Specification (1) (2) (3)

GDD 0�0005 0�0005 0�0006
(0�0001) (0�0000) (0�0001)

KDD −0�0046 −0�0044 −0�0106
(0�0003) (0�0002) (0�0019)

ln(KDD) ∗ KDD − KDD 0�0012
(0�0004)

Precipitation 0�0013 0�0013 0�0013
(0�0002) (0�0002) (0�0002)

Precipitation2 (×1000) −0�0009 −0�0008 −0�0009
(0�0001) (0�0001) (0�0001)

Constant 0�7754 0�9413 0�5169
(0�2925) (0�2265) (0�3227)

Fixed Effects Cty, Yr Cty, State-Yr Cty, Yr
Obs. 88,101 88,101 88,101
R2 0�77 0�73 0�77

Note: Results exclude counties west of the 100th Meridian. The sample pe-
riod is 1950–2015, and N = 1684. Models (1)–(3) differ by type of fixed effects
and whether the adaptation variable is included. Standard errors are reported in
parentheses, and are clustered at the state level.

Figure H2 plots the average values of β̂2it and KDDit for each county. The correlation
between β̂2it and KDDit is 0�25, which is weaker than for corn, yet still positive. We fit a
log-linear curve to these points to obtain the function we use to model adaptation.

Table H2. Mean-observation estimates of the impacts of temperature on U.S. soy yields.

Mean
Weighted

Mean Median
Standard
Deviation

10th
Percentile

90th
Percentile

GDD 0�0004 0�0004 0�0004 0�0005 −0�0001 0�0010
(0�0000)

KDD −0�0055 −0�0048 −0�0049 0�0037 −0�0096 −0�0014
(0�0002)

Precipitation 0�0018 0�0017 0�0015 0�0025 −0�0009 0�0048
(0�0001)

Precipitation2 (×1000) −0�0014 −1�4e-06 1�2e-06 2�1e-06 −3�8e-06 6�2e-07
(0�0001)

Constant 1�5510 1�6671 1�6375 1�9314 −0�8738 3�6623
(0�1319)

Obs. 88,101
R2 0�84

Note: Results exclude counties west of the 100th Meridian. The sample period is 1950–2015. Standard errors are reported
in parentheses.
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Figure H1. Distribution of KDD Slope Coefficients across Time and Counties for U.S. Soy. Note:
The black line plots the median KDD coefficient from the MO-OLS model in Table H2. The dark
(light) grey areas represent the 25th to 75th, and 10th to 90th percentiles, respectively.

Figure H3 compares the log-linear relationships that are obtained using the FE-OLS
and MO-OLS models. As with corn, the relationship derived from MO-OLS sits comfort-
ably within the 95% confidence interval for the FE-OLS relationship, indicating that they

Figure H2. Relationship between β̂2it and KDDit for U.S. Soybeans. Note: This graph is
a scatter plot of a random 3% subsample of the coefficients on KDD from the MO-OLS
model (see Table H2) against KDDit itself. The fitted line was obtained from the regression
β̂2it = α1 +α2 ln(KDDit ). The estimates are α1 = −0�0089 and α2 = 0�0010 and the 95% confidence
interval is shaded.
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Figure H3. Comparison of Log-Linear relationships derived under MO-OLS and FE-OLS for
Soybeans. Note: This graph compares the fitted log-linear relationships between β̂2it and KDDit

obtained from (i) the county/time specific coefficients estimated with MO-OLS (see Figure H2)
versus (ii) the FE-OLS regression results with adaptation, presented in Table H1, column (3).

are not significantly different from each other. But in contrast to what we find for corn,
the MO-OLS relationship here implies less sensitivity to KDDit at every level of KDDit .
We can use these results to project soybean yield into the future under climate change.

Turning to the projections, Table H3 presents a summary of the main results for soy-
bean yield with and without adaptation. The format is identical to Table 4 in the text.
Without emissions reductions or adaptation, both econometric models predict large re-
ductions in yield. In 2100, according to the MO-OLS model, the ensemble average is a
51% reduction in yield (with an 80% prediction interval of 34% to 69%). The FE-OLS
results are very similar. The results under the RCP45 and RCP26 scenarios indicate that
emissions reductions are very effective at reducing the impact of climate change on soy-
bean yields, particularly in RCP26 where the prediction interval covers the possibility of
no damage over the entire projection horizon.

Figure H4 shows the trajectory of soybean yield under the three RCP scenarios, based
on the MO-OLS estimates with no further adaptation. The RCP85 scenario diverges from
RCP45 and RCP26 around 2035, leading to a decline in soybean yield of roughly 50 per-
cent (ensemble average) by 2100. The prediction intervals for both the RCP85 and RCP45
scenarios are quite large, especially in the latter half of the century, indicating that the
climate models offer varied predictions of growing conditions under these two emis-
sion pathways. Meanwhile, as we see in Table H3, the two econometric models give very
similar projections across all three RCP scenarios with no adaptation.

We now turn to the projections that incorporate predicted future adaptation. The
results are reported in Table H3, right columns, and Figure H5. Similar to the case of
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Table H3. Effects of climate change on U.S. soybean yield (pct change).

Year
Conventional

FE-OLS

MO-OLS
w/o future
adaptation

FE-OLS
with

adaptation

MO-OLS
with future
adaptation

RCP85
2030 −04 (−11�04) −04 (−11�04) −04 (−12�05) −03 (−10�04)
2050 −15 (−28�−02) −15 (−27�−03) −15 (−28�00) −12 (−22�−03)
2080 −36 (−54�−19) −35 (−51�−20) −33 (−49�−18) −28 (−40�−15)
2100 −54 (−74�−35) −51 (−69�−34) −48 (−65�−32) −41 (−55�−26)

RCP45
2030 −02 (−12�08) −02 (−10�07) −02 (−13�09) −02 (−09�06)
2050 −09 (−21�03) −09 (−20�02) −09 (−21�03) −08 (−17�01)
2080 −17 (−29�−05) −17 (−28�−05) −17 (−28�−05) −14 (−23�−05)
2100 −17 (−31�−03) −17 (−30�−03) −16 (−30�00) −13 (−24�−03)

RCP26
2030 −05 (−14�03) −04 (−12�03) −06 (−14�03) −04 (−10�02)
2050 −07 (−15�01) −06 (−14�02) −07 (−15�01) −05 (−12�01)
2080 −05 (−14�03) −05 (−13�03) −06 (−15�03) −05 (−12�02)
2100 −07 (−17�03) −07 (−17�04) −08 (−18�03) −06 (−14�03)

Note: Results are expressed in terms of percentage change from the 2006–2015 historical weighted average crop yield. Each
number represents the ensemble average over nineteen climate models, while the numbers in brackets are the the 80% (1�28
standard deviation) prediction interval.

Figure H4. The effect of climate change on soy yield by RCP (MO-OLS with no future adapta-
tion). Note: This graph presents projections of the percentage change in soybean yield (relative
to the 2006–2015 historical average) for three RCPs, where the solid line is the average projection
across nineteen CMIP5 climate models, and the shaded areas are the 80% prediction intervals.
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Figure H5. The effect of climate change on soybean yield by RCP (MO-OLS with future adapta-
tion). Note: This graph presents projections of the percentage change in soybean yield (relative
to the 2006–2015 historical average) for three RCPs, where the solid line is the average projection
across nineteen CMIP5 climate models, and the shaded areas are the 80% prediction intervals.

corn yield, the MO-OLS model gives a more optimistic projection than FE-OLS of the
effectiveness of adaptation at averting future yield damage. Nevertheless, both the FE-
OLS and MO-OLS estimates imply that adaptation will do much less to mitigate yield
losses for soybeans than for corn. This is intuitive as we find much less heterogeneity
in the slope coefficient on KDD for soybeans than we found for corn. Consider first the
RCP85 scenario. The MO-OLS model predicts that adaptation will cause the decline in
corn yield in 2100 to drop from 51% to 41%. Recall that for corn the yield losses were
70% without adaptation and 36% with adaptation. Thus, in the soybean case, we have
both a smaller baseline drop in yield, but also a smaller benefit from adaptation. The
FE-OLS model predicts that adaptation will reduce the loss in yield only slightly to 48%
in 2100. Of course, the benefits of adaptation become even smaller under the RCP45 and
RCP26 scenarios.

Lastly, Table H4 examines the effectiveness of adaptation and alternative emissions
reduction scenarios as ways to avert damage from climate change over the whole projec-

Table H4. Proportion of climate change damage averted for soybeans (pct).

Estimator RCP85 + Adapt. RCP45 RCP45 + Adapt. RCP26

MO-OLS 17 (13�22) 60 (36�85) 64 (42�86) 78 (53�103)
FE-OLS 06 (−1�14) 58 (34�82)

Note: Figures are the % reduction in damage relative to the RCP85 scenario with no adaptation using
the MO-OLS model.
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tion horizon. To construct the percent of damage averted we use the same methodology
that we used to construct Table 5 in the main text. The results suggest that adaptation
can avert only a small proportion of the total damage, between 13% and 22% accord-
ing to MO-OLS and −1% to 14% according to FE-OLS. In contrast, shifting from the
RCP85 to the RCP45 emissions path offers significantly more damage mitigation, with
between 36 to 85% of the damage averted. The RCP26 path averts more damage still,
with between half to all of the total damage being averted. It is clear, relative to the re-
sults for corn, that the potential for adaptation is far lower for soybeans, while emissions
reductions are more effective. Thus, emissions reductions are clearly essential to prevent
significant harm to soybean yields.

Reference

Butler, E. and P. Huybers (2013), “Adaptation of US maize to temperature variations.”
Nature Climate Change, 3, 68–72. [4]

Hsiao, C. (1975), “Some estimation methods for a random coefficient model.” Econo-
metrica, 43, 305–325. [4]

Co-editor Christopher Taber handled this manuscript.

Manuscript received 27 March, 2019; final version accepted 18 April, 2020; available on-
line 15 May, 2020.

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%2B%3C1%3ASTCCAU%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/ButlerHuybers&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%2B%3C1%3ASTCCAU%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/Hsiao&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%2B%3C1%3ASTCCAU%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/ButlerHuybers&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%2B%3C1%3ASTCCAU%3E2.0.CO%3B2-A
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/Hsiao&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%2B%3C1%3ASTCCAU%3E2.0.CO%3B2-A

	Appendix A: Aggregation of the farm production function
	Appendix B: Bias in ﬁxed effects regressions under slope heterogeneity
	Appendix C: "Brute force" OLS estimation and its computational requirements
	Appendix D: Monte Carlo simulations
	Appendix E: Understanding identiﬁcation in MO-OLS relative to FE-OLS
	Appendix F: Projections of GDDit and KDDit
	Appendix G: Projecting corn yield with technical change
	Appendix H: Model and projection results for soybeans
	References

