
Supplementary Material

Supplement to “Specification tests for non-Gaussian maximum
likelihood estimators”

(Quantitative Economics, Vol. 12, No. 3, July 2021, 683–742)

Gabriele Fiorentini
Department of Statistics, Informatics and Applications, Università di Firenze and RCEA

Enrique Sentana
CEMFI

Appendix B: Auxiliary results

Lemma 1. Let θ̂T = arg minθ∈Θ m̄′
T (θ)S̃mT m̄T (θ) denote the GMM estimator of θ over the

parameter space Θ based on the average influence functions m̄T (θ) and weighting ma-
trix S̃mT , and consider a homeomorphic and continuously differentiable transformation
π(·) from the original parameters θ to a new set of parameters π, with rank[∂π ′(θ)/∂θ]
evaluated at θ̂T equal to p= dim(θ). If θ̂T ∈ int(Θ), then

θ̂T = θ(π̂T )�

π̂T = π(θ̂T )�

and

m̄
′
T (π̂T )S̃mT m̄T (π̂T )= m̄′

T (θ̂T )S̃mT m̄T (θ̂T )�

where θ(π) is the inverse mapping such that π[θ(π)] = π, m̄T (π)= m̄T [θ(π)] are the av-
erage influence functions written in terms of π, and π̂T = arg minπ∈Π m̄′

T (π)S̃mT m̄T (π).

Proof. The interior solution assumption implies that the sample first-order condition
characterizing θ̂T is

∂m̄′
T (θ̂T )

∂θ
S̃mT m̄T (θ̂T )= 0� (B1)

while the corresponding condition for π̂T will be

∂m̄′
T (π̂T )

∂π
S̃mT m̄T (π̂T )= ∂θ′(π̂T )

∂π

∂m̄′
T

[
θ(π̂T )

]
∂θ

S̃mT m̄T

[
θ(π̂T )

] = 0 (B2)

by the chain rule for derivatives. Given that rank[∂θ′(π)/∂π] evaluated at π(θ̂T ) is p in
view of our assumption on the rank of the direct Jacobian ∂π ′(θ)/∂θ by virtue of the in-
verse mapping theorem, the above equations imply that θ̂T = θ(π̂T ), whence the other
two results trivially follow.
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This result confirms the numerical invariance of the GMM criterion to
reparametrizations when the weighting matrix remains the same, a condition satisfied
by the most popular choices, including the identity matrix, as well as the unconditional
sample variance of the influence functions and its long-run counterpart when the initial
estimators at which those matrices are evaluated satisfy πi = π(θi). Obviously, in ex-
actly identified contexts, such as the one implicitly arising in maximum likelihood esti-
mation, in which the usual sufficient identification condition rank{E[∂mt (θ0)/∂θ

′]} = p
holds, the weighting matrix becomes irrelevant, at least in large samples, which allows
us to replace the first order conditions (B1) and (B2) by m̄T (θ̂T ) = 0, and m̄T (π̂T ) = 0,
respectively. Aside from this change, the results of the lemma continue to hold.

Lemma 2. Let ς denote a scalar random variable with continuously differentiable density
function h(ς;η) over the possibly infinite domain [a�b], and let m(ς) denote a contin-
uously differentiable function over the same domain such that E[m(ς)|η] = k(η) < ∞.
Then

E
[
∂m(ς)/∂ς|η] = −E[m(ς)∂ lnh(ς;η)/∂ς|η]�

as long as the required expectations are defined and bounded.

Proof. If we differentiate

k(η)=E[m(ς)|η] =
∫ b

a
m(ς)h(ς;η)dς

with respect to ς, we get

0 =
∫ b

a

∂m(ς)

∂ς
h(ς;η)dς+

∫ b

a
m(ς)

∂h(ς;η)
∂ς

dς

=
∫ b

a

∂m(ς)

∂ς
h(ς;η)dς+

∫ b

a
m(ς)h(ς;η)∂ lnh(ς;η)

∂ς
dς�

as required.

Lemma 3. If ε∗
t |It−1;θ0, �0 is i�i�d� D(0� IN��)with density function f (ε∗

t ;�), where �= 0
denotes normality, then

E
{

edt(θ�0)
[
e′
dt(θ��)�e′

rt(θ��)
]|It−1;θ��

} = [
K(0)|0]� (B3)

Proof. We can use the conditional analogue to the generalized information matrix
equality (see, e.g., Newey and McFadden (1994)) to show that

E
{

sθt (θ�0)
[
s′
θt (θ��)� s′

�t (θ��)
]|It−1;θ��

}
= −E

{[
∂sθt (θ�0)
∂θ′

∣∣∣∂sθt (θ�0)
∂�′

]∣∣∣It−1;θ��
}

= −E{[hθθt (θ; 0)|0]|It−1;θ��
} = [

At (φ)|0
]
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irrespective of the conditional distribution of ε∗
t , where we have used the fact that

sθt (θ�0) does not vary with � when regarded as the influence function for θ̃T . Then
the required result follows from the martingale difference nature of both edt(θ0�0) and
et (θ0��0).

Let Kmn be the commutation matrix of orders m and n such that vec(A′
mn) =

Kmn vec(Amn) for any m × n matrix Amn (see, e.g., Magnus and Neudecker (2019)). In
addition, let EN denote theN2 ×N matrix such that vec(Ad)= EN vecd(Ad) for any diag-
onal matrix Ad of order N , where vecd(Ad) places the elements in the main diagonal of
Ad in a column vector (see Magnus (1988)). Finally, let ΔN be the N2 ×N(N − 1) matrix
such that vec(Ao)=ΔN veco(Ao), with the operator veco(Ao) stacking by columns all the
elements of the square, zero-diagonal matrix Ao of order N except those that appear in
its diagonal (see Magnus and Sentana (2020)).

Lemma 4. (
Mss Msr

M′
sr Mrr

)−1

=
(

KNN + Υ ENMsr

M′
srEN Mrr

)−1

=
(
ΔN

[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N 0

0 0

)

+
(

EN 0
0 IN

)(
Mss Msr

M′
sr Mrr

)−1 (
E′
N 0
0 IN

)
� (B4)

where Mss = (IN + E′
NΥ EN) is a diagonal matrix of orderN with typical element mss(�i),

and Mss , Msr , Mrr , Υ , and Msr are defined in Proposition D2.

Proof. Using the partitioned inverse formula, we get

(
Mss Msr

M′
sr Mrr

)−1

=
[
M−1

ss +M−1
ss MsrMrrM′

srM−1
ss −M−1

ss MsrMrr

−MrrM′
srM−1

ss

(
Mrr −M′

srM−1
ss Msr

)−1

]
�

Given that Υ is diagonal, we can use Proposition 7 in Magnus and Sentana (2020),
which yields

M−1
ss = (KNN + Υ )−1 =ΔN

[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N + EN

(
IN + E′

NΥ EN
)−1E′

N

= ΔN
[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N + EN M−1

ss E′
N�

In turn, Theorem 7.4(i) in Magnus (1988) states that KNNEN = EN , which im-
plies that MssEN = (KNN + Υ )EN = (IN2 + Υ )EN = EN(IN + E′

NΥ EN) = ENMss by
virtue of Proposition 3 in Magnus and Sentana (2020). Then, if we premultiply both
sides by M−1

ss = (KNN + Υ )−1, we end up with EN = M−1
ss ENMss , whence we fi-

nally obtain that M−1
ss EN = ENM−1

ss . Thus, M−1
ss Msr = ENM−1

ss Msr , where M−1
ss Msr is

a block diagonal matrix with typical block msr(�i)/mss(�i). Therefore, M′
srM−1

ss Msr =
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M′
srE

′
NM

−1
ss ENMsr = M′

srM
−1
ss Msr will be a block diagonal matrix with typical diag-

onal block m′
sr(�i)msr(�i)/mss(�i). In turn, this implies that Mrr − M′

srM−1
ss Msr =

Mrr − M′
srM

−1
ss Msr is another block diagonal matrix with typical block mrr(�i) −

m′
sr(�i)msr(�i)/mss(�i), so that Mrr = (Mrr − M′

srM
−1
ss Msr)

−1 is also block diagonal.
Moreover, M−1

ss MsrMrr = ENM−1
ss MsrMrr , where M−1

ss MsrMrr is once again block di-
agonal with typical block m−1

ss (�i)msr(�i)[mrr(�i)− m′
sr(�i)msr(�i)/mss(�i)]−1.

If we put all these pieces together, we end up with

(
Mss Msr

M′
sr Mrr

)−1

=
(
M−1

ss + ENM−1
ss MsrMrrM′

srM
−1
ss E′

N −ENM−1
ss MsrMrr

−MrrM′
sr M−1

ss E′
N Mrr

)

=
{
ΔN

[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N + EN

(
M−1
ss + M−1

ss MsrMrr M′
srM

−1
ss

)
E′
N

−MrrM′
sr M−1

ss E′
N

−EN M−1
ss MsrMrr

Mrr

}

=
(
ΔN

[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N 0

0 0

)

+
(

EN 0
0 IN

)(
M−1
ss + M−1

ss MsrMrr M′
srM

−1
ss −M−1

ss MsrMrr

−MrrM′
sr M−1

ss Mrr

)(
E′
N 0
0 IN

)

=
(
ΔN

[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N 0

0 0

)
+

(
EN 0
0 IN

)(
Mss Msr

M′
sr Mrr

)−1 (
E′
N 0
0 IN

)
�

as claimed.

Proposition B1. If model (18) with cross-sectionally independent symmetric structural
shocks generates a covariance stationary process, then:

1. Its information matrix is block diagonal between (τ ′�a′)′ and (c′��′)′.

2. The asymptotic covariance matrix of the restricted and unrestricted ML estimators
of (τ ′�a′)′ will be given by

⎡
⎢⎢⎢⎢⎣

1 μ′ � � � μ′
μ

(
Γ (0)+μμ′) � � �

(
Γ (p− 1)+μμ′)

���
���

� � �
���

μ
(
Γ ′(p− 1)+μμ′) � � �

(
Γ (0)+μμ′)

⎤
⎥⎥⎥⎥⎦

−1

⊗ CM−1
ll C′�

where Γ (p) is the pth autocovariance matrix of yt and Mll is defined in Proposi-
tion D2.
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3. The asymptotic covariance matrices of the restricted and unrestricted ML estimators
of c and � are given by

(IN ⊗ C)M−1
ss

(
IN ⊗ C′) and[(

IN ⊗ C′−1)Mss
(
IN ⊗ C−1) (

IN ⊗ C′−1)Msr

M′
sr

(
IN ⊗ C−1) Mrr

]−1

�

respectively, where Mss , Msr and Mrr are also defined in Proposition D2, and the
rank of the difference between the asymptotic variances of these two estimators of c
isN .

Proof. Given the linear mapping between structural shocks and reduced form inno-
vations, the contribution to the conditional log-likelihood function from observation t
(t = 1� � � � �T ) will be

lt(yt;φ)= − ln |C| + l[ε∗
1t (θ);�1

]+ · · · + l[ε∗
Nt(θ);�N

]
�

where l[ε∗
it(θ);�i] is the univariate log-likelihood function for the ith structural shock

ε∗
it(θ), ε

∗
t (θ)= C−1εt (θ), and εt (θ)= yt −τ −Φ1yt−1 −· · ·−Φpyt−p. To compute the gra-

dient and information matrix, we rely on the expressions in Supplemental Appendix D.3
because the assumed multivariate distribution for ε∗

t (θ) is not elliptically symmetric de-
spite the marginal distributions of its components being symmetric. Given that the con-
ditional mean vector and covariance matrix of (18) are given by

μt (θ) = τ + A1yt−1 + · · · + Apyt−p�

Σt (θ) = CC′�

respectively, straightforward algebra shows that

Zlt (θ) = ∂μ′
t (θ)

∂θ
Σ

−1/2′
t (θ)=

⎛
⎜⎜⎜⎜⎜⎜⎝

IN
yt−1 ⊗ IN

���

yt−p ⊗ IN
0N2×N

⎞
⎟⎟⎟⎟⎟⎟⎠

C−1′�

Zst(θ) = ∂ vec′[Σt (θ)]
∂θ

[
IN ⊗Σ

−1/2′
t (θ)

] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0N×N2

0N2×N2

���

0N2×N2

IN2

⎞
⎟⎟⎟⎟⎟⎟⎠
(
IN ⊗ C−1′)�

which means that the conditional mean and variance parameters are variation-free. This
fact, combined with the symmetry of the Student t and the formulas in Proposition D2,
immediately implies that the information matrix will be block diagonal. Specifically, the
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block of the information matrix corresponding to the N + pN2 conditional mean pa-
rameters (τ�a) will be

E
[
Zlt(θ)MllZ

′
lt(θ)

]

=E

⎡
⎢⎢⎢⎢⎣

1 y′
t−1 � � � y′

t−p
yt−1 yt−1y′

t−1 � � � yt−1y′
t−p

���
���

� � �
���

yt−p yt−py′
t−1 � � � yt−py′

t−p

⎤
⎥⎥⎥⎥⎦⊗ C−1′MllC

−1 (B5)

=

⎡
⎢⎢⎢⎢⎣

1 μ′ � � � μ′
μ Γ (0)+μμ′ � � � Γ (p− 1)+μμ′
���

���
� � �

���

μ Γ ′(p− 1)+μμ′ � � � Γ (0)+μμ′

⎤
⎥⎥⎥⎥⎦⊗ C−1′MllC

−1� (B6)

In turn, the (conditional) information matrix for the unrestricted ML estimators of
theN2 structural shock coefficients c and the shape parameters � will be

(
Zst(θ) 0

0 IN

)(
Mss Msr

M′
sr Mrr

)(
Zst(θ) 0

0 IN

)
�

In this respect, we can use the results in Proposition D2 to prove that

(
Mss Msr

M′
sr Mrr

)
=

(
KNN + Υ ENMsr

M′
srEN Mrr

)
�

Hence, the (conditional) information matrix will be

(
Zst(θ) 0

0 IN

)(
Mss Msr

M′
sr Mrr

)(
Zst(θ) 0

0 IN

)

=
[(

IN ⊗ C′−1)(KNN + Υ )
(
IN ⊗ C−1) (

IN ⊗ C′−1)ENMsr

M′
srEN

(
IN ⊗ C−1) Mrr

]
�

If we then use the expressions in Lemma 4, we can easily show that the inverse of the
information matrix will be[

(IN ⊗ C)
{
ΔN

[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N + ENMssE′

N

}
(IN ⊗ C)

−MrrM′
srM

−1
ss E′

N(IN ⊗ C)

−(IN ⊗ C)ENM−1
ss MsrMrr

Mrr

]
�

where Mss = M−1
ss + M−1

ss MsrMrrM′
srM

−1
ss .
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In contrast, if we assume that the shape parameters are fixed at their true values, the
asymptotic covariance matrix of the restricted ML estimators of c will be

(IN ⊗ C)M−1
ss

(
IN ⊗ C′) = (IN ⊗ C)ΔN

[
Δ′
N(KNN + Υ )ΔN

]−1
Δ′
N

(
IN ⊗ C′)

+ (IN ⊗ C)EN M−1
ss E′

N

(
IN ⊗ C′)�

Therefore, the efficiency loss from simultaneously estimating the shape parameters �

will be

(IN ⊗ C)EN M−1
ss MsrMrrM′

sr M−1
ss E′

N

(
IN ⊗ C′)�

which has rank N rather than N2 because ENM−1
ss MsrMrrM′

srM
−1
ss E′

N is a diagonal ma-
trix of rankN in which the nonzero diagonal elements are

1

ψ2
i m2

ss(�i)
msr(�i)

[
mrr(�i)− m′

sr(�i)msr(�i)

mss(�i)

]−1
m′
sr(�i)�

Finally, note that since the ranks of (IN ⊗ C′−1) and Msr = ENMsr are N2 and N ,
respectively, Sylvester’s rank inequality implies that

rank
[
(IN ⊗ C)ENM−1

ss MsrMrr
] =N�

so that Holly’s (1982) condition for the asymptotic equivalence between the likelihood
ratio and the DWH tests will hold when there is a single shape parameter per structural
shock and msr(�i) �= 0 ∀i, like in the Student t case.

Proposition B2. If model (18) with cross-sectionally independent symmetric structural
shocks generates a covariance stationary process, then the asymptotic covariance matrix
of the Gaussian PML estimators is block diagonal between (τ ′�a′)′ and σ , with the first
block given by

⎡
⎢⎢⎢⎢⎣

1 μ′ � � � μ′
μ Γ (0)+μμ′ � � � Γ (p− 1)+μμ′
���

���
� � �

���

μ Γ ′(p− 1)+μμ′ � � � Γ (0)+μμ′

⎤
⎥⎥⎥⎥⎦

−1

⊗Σ

and the second block by

[
D′
N

(
Σ−1 ⊗Σ−1)DN

]−1D′
N

(
C−1 ⊗ C−1)K(

C−′ ⊗ C−1′)DN

[
D′
N

(
Σ−1 ⊗Σ−1)DN

]−1
�

where DN is the duplication matrix of orderN and K =E[vec(ε∗
t ε

∗
t − IN) vec(ε∗

t ε
∗
t − IN)′]

is theN2 ×N2 matrix of fourth-order moments of the structural shocks.

Proof. The information matrix equality implies that the expected value of the (mi-
nus) Hessian of the Gaussian pseudo log-likelihood usually coincides with the value
of the true information matrix under Gaussianity. Therefore, we could exploit the fact
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that Mll = IN and C−1′MllC−1 = Σ−1 under normality to simplify the expressions we
have already derived for τ and a in Proposition B1. However, the situation is slightly
more complicated for σ because the number of parameters that can be identified by the
Gaussian and non-Gaussian PMLs is different. For that reason, we use the expressions
in Proposition C2 to prove that the bottom block of the (minus) expected value of the
Hessian will be given by

Aσσ = 1
4

D′
N

(
Σ− 1

2 ⊗Σ− 1
2
)
(IN2 + KNN)

(
Σ− 1

2 ′ ⊗Σ− 1
2 ′)DN = 1

2
D′
N

(
Σ−1 ⊗Σ−1)DN

regardless of the choice of square root matrix in view of the properties of the duplication
and commutation matrix in Magnus and Neudecker (2019).

As for the matrix B, which contains the asymptotic variance of the Gaussian scores,
the symmetry of the marginal distributions of the structural shocks together with the
cross-sectional independence across shocks imply that we will also obtain a block di-
agonal expression with the same block for the conditional mean parameters as A. In
contrast, the block for the conditional variance parameters σ will be different. To obtain

it, we can use the expressions in Proposition C2 with C playing the role of Σ
1
2 to exploit

the cross-sectional independence of the structural shocks, which leads to

Bσσ = 1
4

D′
N

(
C−1 ⊗ C−1)K(

C−′ ⊗ C−1′)DN�

where K is equal to KNN plus a a block diagonal matrix in which each of theN blocks is
diagonal of sizeN ×N with the following structure:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0
� � � 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 κii(�i) 0 0 0
0 0 0 0 1 0 0

0 0 0 0 0
� � � 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

In the Student t case, κii(�i)= (νi + 2)/(νi − 4).

Proposition B3. If model (18) with cross-sectionally independent symmetric structural
shocks generates a covariance stationary process, then the scores and information matrix
of σL and ω are given by[

sσL(θ;�)
sω(θ;�)

]
=

[
LN

(
IN ⊗Σ−1′

L

)
(Q ⊗ Q)

∂ vec′(Q)/∂ω · (IN ⊗ Q)

]
est(φ)

and[
LN

(
IN ⊗Σ−1′

L

)
(Q ⊗ Q)

∂ vec′(Q)/∂ω · (IN ⊗ Q)

]
Mss

[(
Q′ ⊗ Q′)(IN ⊗Σ−1

L

)
LN (IN ⊗ Q) · ∂ vec(Q)/∂ω′

]
�
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Proof. As in Proposition 14, the proof builds up on Proposition B1. Specifically, given
that vec(C)= (Q′ ⊗ IN) vec(ΣL)= (Q′ ⊗ IN)L′

N vech(ΣL), straightforward algebra shows
that

∂c
∂σ ′

L

= (
Q′ ⊗ IN

)
L′
N .

Similarly, given that we can also write vec(C)= (IN ⊗ΣL) vec(Q), we will have that

∂c
∂ω′ = (IN ⊗ΣL)

∂ vec(Q)
∂ω′ �

where ∂ vec(Q)/∂ω′ depends on the particular parametrization of orthogonal matrices
chosen (see Magnus, Pijls, and Sentana (2021)). Given that

sc(θ;�)= (
IN ⊗ C−1′)est(φ)�

this direct approach allows us to obtain the scores for σL and ω as[
sσL(θ;�)
sω(θ;�)

]
=

(
∂c′/∂σL
∂c′/∂ω

)
sc(θ;�)=

[
LN(Q ⊗ IN)

∂ vec′(Q)/∂ω · (IN ⊗Σ′
L

)
]
sc(θ;�)�

But since C = ΣLQ so C−1 = Q′Σ−1
L and C−1′ =Σ−1′

L Q, we have that[
LN(Q ⊗ IN)

∂ vec′(Q)/∂ω · (IN ⊗Σ′
L

)
] (

IN ⊗ C−1′) =
[

LN(Q ⊗ IN)
(
IN ⊗Σ−1′

L Q
)

∂ vec′(Q)/∂ω · (IN ⊗Σ′
L

)(
IN ⊗Σ−1′

L Q
)
]

=
[

LN
(
IN ⊗Σ−1′

L

)
(Q ⊗ Q)

∂ vec′(Q)/∂ω · (IN ⊗ Q)

]
�

whence the expression for the scores and information matrix immediately follows. The
dependence of the scores sσL(θ;�) on Q simply reflects the fact that we have defined
ε∗
t (θ) = C−1εt (θ) in terms of the true underlying independent shocks. We explain how

to compute LN(IN ⊗Σ−1′
L ) efficiently at the end of Supplemental Appendix D.1.

To obtain the asymptotic variances of σL, we can alternatively use the following two-
step procedure. First, we go from the structural loading matrix C to Σ. Given that dΣ =
(dC)C′ + C(dC′), it immediately follows that

dvec(Σ) = (C ⊗ IN)dvec(C)+ (IN ⊗ C)dvec
(
C′)

= (C ⊗ IN)dvec(C)+ (IN ⊗ C)KNN dvec(C)= (IN2 + KNN)(C ⊗ IN)dvec(C)�

so that
∂σ

∂c′ = D+
N(IN2 + KNN)(C ⊗ IN)�

where D+
N = (D′

NDN)
−1D′

N is the Moore–Penrose inverse of the duplication matrix (see
Magnus and Neudecker (2019)). Using this Jacobian, the delta method allows us to ob-
tain the asymptotic covariance matrix of the restricted and unrestricted MLEs of the
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reduced form parameters σ , but not their scores because rank(∂σ/∂c′) = N(N + 1)/2,
so we cannot invert it. Then we can go from σ to σL by exploiting expression (D13) in
Supplemental Appendix D.1.

Lemma 5. [(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN | ENΨ−1]−1

=
{
Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ

)[
IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ

)]
ΨE′

N(IN ⊗ J)

}
�

Proof. Let us look at the four blocks of{
Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ

)[
IN2 − ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ

)]
ΨE′

N(IN ⊗ J)

}

×
[(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN ENΨ−1

]
�

The northwestern block is

Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ

)(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN

−Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ

)
ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ

)(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN

=Δ′
NΔN −Δ′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ

)
ENE′

NΔN = IN(N−1)

by virtue of Proposition 4 in Magnus and Sentana (2020). Similarly, the northeastern
block is

Δ′
N(IN ⊗ J)

(
Ψ−1 ⊗Ψ

)
ENΨ−1 −Δ′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ

)
ENE′

N(IN ⊗ J)
(
Ψ−1 ⊗Ψ

)
ENΨ−1

= Δ′
N(IN ⊗ J)ENΨ−1 −Δ′

N(IN ⊗ J)ENE′
N(IN ⊗ J)ENΨ−1 = 0

thanks to Propositions 2 and 3 in Magnus and Sentana (2020), together with the fact that
the diagonal elements of J are normalized to 1. The same propositions also imply that
the southwestern block will be

ΨE′
N(IN ⊗ J)

(
Ψ ⊗Ψ−1)(IN ⊗ J−1)ΔN =ΨE′

NΔN = 0�

while the southeastern one

ΨE′
N(IN ⊗ J)ENΨ−1 = Ψ(IN � J)Ψ−1 = IN�

as claimed.

Appendix C: The special case of spherical distributions

C.1 Some useful distribution results

A spherically symmetric random vector of dimension N , ε•
t , is fully characterized in

Theorem 2.5(iii) of Fang, Kotz, and Ng (1990) as ε•
t = etut , where ut is uniformly dis-
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tributed on the unit sphere surface in R
N , and et is a nonnegative random variable in-

dependent of ut , whose distribution determines the distribution of ε•
t . The variables

et and ut are referred to as the generating variate and the uniform base of the spheri-
cal distribution. Assuming that E(e2

t ) <∞, we can standardize ε•
t by setting E(e2

t )=N ,
so that E(ε•

t ) = 0, V (ε•
t ) = IN . Specifically, if ε•

t is distributed as a standardized mul-
tivariate Student t random vector of dimension N with ν0 degrees of freedom, then
et = √

(ν0 − 2)ζt/ξt , where ζt is a chi-square random variable with N degrees of free-
dom, and ξt is an independent Gamma variate with mean ν0 > 2 and variance 2ν0. If we
further assume that E(e4

t ) <∞, then the coefficient of multivariate excess kurtosis κ0,
which is given byE(e4

t )/[N(N+2)]−1, will also be bounded. For instance, κ0 = 2/(ν0 −4)
in the Student t case with ν0 > 4, and κ0 = 0 under normality. In this respect, note that
since E(e4

t ) ≥ E2(e2
t ) =N2 by the Cauchy–Schwarz inequality, with equality if and only

if et = √
N so that ε•

t is proportional to ut , then κ0 ≥ −2/(N + 2), the minimum value
being achieved in the uniformly distributed case.

Then it is easy to combine the representation of spherical distributions above with
the higher order moments of a multivariate normal vector in Balestra and Holly (1990)
to prove that the third and fourth moments of a spherically symmetric distribution with
V (ε•

t )= IN are given by

E
(
ε•
t ε

•
t
′ ⊗ ε•

t

) = 0� (C1)

E
(
ε•
t ε

•
t
′ ⊗ ε•

t ε
•
t
′) =E[vec

(
ε•
t ε

•
t
′) vec′(ε•

t ε
•
t

)]
= (κ0 + 1)

[
(IN2 + KNN)+ vec(IN) vec′(IN)

]
� (C2)

C.2 Likelihood, score and Hessian for spherically symmetric distributions

Let exp[c(η)+ g(ςt�η)] denote the assumed conditional density of ε∗
t given It−1 and the

shape parameters, where c(η) corresponds to the constant of integration, g(ςt�η) to its
kernel and ςt = ε∗′

t ε
∗
t . Ignoring initial conditions, the log-likelihood function of a sample

of size T for those values of θ for which Σt (θ) has full rank will take the form LT (φ) =∑T
t=1 lt(φ), where lt(φ)= dt(θ)+ c(η)+ g[ςt(θ)�η], dt(θ)= ln |Σ−1/2

t (θ)| is the Jacobian,

ςt(θ)= ε∗′
t (θ)ε

∗
t (θ), ε

∗
t (θ)=Σ

−1/2
t (θ)εt (θ), and εt (θ)= yt −μt (θ).

Let st (φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks,
sθt (φ) and sηt (φ), whose dimensions conform to those of θ and η, respectively. If μt (θ),
Σt (θ), c(η), and g[ςt(θ)�η] are differentiable, then

sηt (φ)= ∂c(η)/∂η+ ∂g[ςt(θ)�η]/∂η = ert(φ)� (C3)

while

sθt (φ)= ∂dt(θ)

∂θ
+ ∂g

[
ςt(θ)�η

]
∂ς

∂ςt(θ)

∂θ
= [

Zlt(θ)�Zst(θ)
][elt (φ)

est(φ)

]
= Zdt(θ)edt(φ)� (C4)

where

∂dt(θ)/∂θ = −Zst(θ) vec(IN)�
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∂ςt(θ)/∂θ = −2
{

Zlt(θ)ε
∗
t (θ)+ Zst(θ) vec

[
ε∗
t (θ)ε

∗′
t (θ)

]}
� (C5)

Zlt (θ) = ∂μ′
t (θ)/∂θ ·Σ−1/2′

t (θ)� (C6)

Zst(θ) = 1
2
∂ vec′[Σt (θ)]/∂θ · [Σ−1/2′

t (θ)⊗Σ
−1/2′
t (θ)

]
� (C7)

elt (θ�η) = δ
[
ςt(θ)�η

] · ε∗
t (θ)� (C8)

est(θ�η) = vec
{
δ
[
ςt(θ)�η

] · ε∗
t (θ)ε

∗′
t (θ)−IN

}
� (C9)

and

δ
[
ςt(θ)�η

] = −2∂g
[
ςt(θ)�η

]
/∂ς (C10)

is a damping factor that reflects the tail-thickness of the distribution assumed for es-
timation purposes. Importantly, while both Zdt(θ) and edt(φ) depend on the specific
choice of square root matrix Σ

1/2
t (θ), sθt (φ) does not, a property that inherits from lt(φ).

As we shall see in Supplemental Appendix D, this result is not generally true for non-
spherical distributions.

Obviously, sθt (θ�0) reduces to the multivariate normal expression in Bollerslev and
Wooldridge (1992), in which case:

edt(θ�0)=
[

elt(θ�0)
est(θ�0)

]
=

{
ε∗
t (θ)

vec
[
ε∗
t (θ)ε

∗′
t (θ)−IN

]
}
� (C11)

Assuming twice differentiability of the different functions involved, we will have that
the Hessian function ht (φ)= ∂st (φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ

′ will be

hθθt (φ) = ∂2dt(θ)

∂θ∂θ′ + ∂2g
[
ςt(θ)�η

]
(∂ς)2

∂ςt(θ)

∂θ

∂ςt(θ)

∂θ′ + ∂g
[
ςt(θ)�η

]
∂ς

∂2ςt(θ)

∂θ∂θ′ � (C12)

hθηt (φ) = ∂ςt(θ)/∂θ · ∂2g
[
ςt(θ)�η

]
/∂ς∂η′� (C13)

hηηt (φ) = ∂2c(η)/∂η∂η′ + ∂2g
[
ςt(θ)�η

]
/∂η∂η′�

where

∂2dt(θ)/∂θ∂θ
′ = 2Zst(θ)Z′

st(θ)

− 1
2
{
vec′[Σ−1

t (θ)
]⊗ Ip

}
∂ vec

{
∂ vec′[Σt (θ)]/∂θ}/∂θ′�

(C14)

∂2ςt(θ)/∂θ∂θ
′ = 2Zlt(θ)Z

′
lt (θ)+ 8Zst(θ)

[
IN ⊗ ε∗

t (θ)ε
∗′
t (θ)

]
Z′
st(θ)

+ 4Zlt (θ)
[
ε∗′
t (θ)⊗ IN

]
Z′
st(θ)+ 4Zst(θ)

[
ε∗
t (θ)⊗ IN

]
Z′
lt(θ)

− 2
[
ε∗′
t (θ)Σ

−1/2′
t (θ)⊗ Ip

]
∂ vec

[
∂μ′

t (θ)/∂θ
]
∂θ′

− {
vec′[Σ−1/2

t (θ)ε∗
t (θ)ε

∗′
t (θ)Σ

−1/2′
t (θ)

]⊗ Ip
}

× ∂ vec
{
∂ vec′[Σt (θ)]/∂θ}/∂θ′�
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Note that ∂ςt(θ)/∂θ, ∂2dt(θ)/∂θ∂θ
′ and ∂2ςt(θ)/∂θ∂θ

′ depend on the dynamic model
specification, while ∂2g(ς�η)/(∂ς)2, ∂2g(ς�η)/∂ς∂η′ and ∂g(ς�η)/∂η∂η′ depend on the
specific spherical distribution assumed for estimation purposes (see Fiorentini, Sen-
tana, and Calzolari (2003) for expressions for δ(ςt�η), c(η), g(ςt�η), and its derivatives in
the multivariate Student t case, Amengual and Sentana (2010) for the Kotz distribution
and discrete scale mixture of normals, and Amengual, Fiorentini, and Sentana (2013) for
polynomial expansions).

C.3 Asymptotic distribution

Given correct specification, the results in Crowder (1976) imply that et(φ) = [e′
dt(φ)�

ert(φ)]′ evaluated at φ0 follows a vector martingale difference, and therefore, the same
is true of the score vector st(φ). His results also imply that, under suitable regularity
conditions, the asymptotic distribution of the joint ML estimator will be

√
T(φ̂T −φ0)→

N[0�I−1(φ0)], where I(φ0)=E[It(φ0)|φ0],
It (φ)= V [

st (φ)|It−1;φ
] = Zt(θ)M(φ)Z′

t (θ)= −E[ht (φ)|It−1;φ
]
�

Zt(θ)=
(

Zdt(θ) 0
0 Iq

)
=

(
Zlt (θ) Zst(θ) 0

0 0 Iq

)
�

(C15)

and M(φ) = V [et (φ)|φ]. In particular, Crowder (1976) required: (i) φ0 is locally iden-
tified and belongs to the interior of the admissible parameter space, which is a com-
pact subset of R

p+q; (ii) the Hessian matrix is nonsingular and continuous through-
out some neighborhood of φ0; (iii) there is uniform convergence to the integrals in-
volved in the computation of the mean vector and covariance matrix of st (φ); and

(iv) −E−1[−T−1 ∑
t ht (φ)]T−1 ∑

t ht (φ)
p→ Ip+q, where E−1[−T−1 ∑

t ht (φ)] is positive
definite on a neighborhood of φ0.

As for θ̃T (η̄), assuming that η̄ coincides with the true value of this parameter vector,
the same arguments imply that

√
T [θ̃T (η̄)− θ0] →N[0�I−1

θθ (φ0)], where Iθθ(φ0) is the
relevant block of the information matrix.

The next proposition, which originally appeared as Proposition 1 in Fiorentini and
Sentana (2007), generalizes Propositions 3 in Lange, Little, and Taylor (1989), 1 in Fioren-
tini, Sentana, and Calzolari (2003) and 5.2 in Hafner and Rombouts (2007), providing
detailed expressions for M(φ) in models with nonzero conditional means.

Proposition C1. If ε∗
t |It−1;φ is i�i�d� s(0� IN�η) with density exp[c(η)+ g(ςt�η)], then

M(η)=
⎛
⎜⎝Mll(η) 0 0

0 Mss(η) Msr(η)

0 M′
sr(η) Mrr(η)

⎞
⎟⎠ � (C16)

Mll(η)= mll(η)IN� (C17)

Mss(η)= mss(η)(IN2 + KNN)+ [
mss(η)− 1

]
vec(IN) vec′(IN)� (C18)

Msr(η)= vec(IN)msr(η)� (C19)
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mll(η)=E
[
δ2(ςt�η)

ςt

N

∣∣∣η] =E
[

2∂δ(ςt�η)
∂ς

ςt

N
+ δ(ςt�η)

∣∣∣η]�
mss(η)= N

N + 2

{
1 + V

[
δ(ςt�η)

ςt

N

∣∣∣η]} = N

N + 2
E

[
2∂δ(ςt�η)

∂ς

(
ςt

N

)2∣∣∣η]+ 1�

msr(η)=E
{[
δ(ςt�η)

ςt

N
− 1

]
e′
rt(φ)

∣∣∣φ}
= −E

[
ςt

N

∂δ(ςt�η)

∂η′
∣∣∣η]�

Proof. For our purposes, it is convenient to rewrite edt(φ0) as

elt (φ0) = δ
[
ςt(θ0)�η0

]
ε∗
t (θ0)= δ(ςt�η0)

√
ςtut �

est(φ0) = vec
{
δ
[
ςt(θ0)�η0

]
ε∗
t (θ0)ε

∗′
t (θ0)− IN

} = vec
[
δ(ςt�η0)ςtutu

′
t − IN

]
�

where ςt and ut are mutually independent for any standardized spherical distribution,
withE(ut )= 0,E(utu′

t )=N−1IN ,E(ςt)=N , andE(ς2
t )=N(N+2)(κ0 +1). Importantly,

we only need to compute unconditional moments because ςt and ut are independent of
zt and It−1 by assumption. Then it easy to see that

E
[
elt(φ)|φ

] =E[δ(ςt�η)√ςt |η] ·E(ut )= 0�

and that

E
[
est(φ)|φ

] = vec
{
E
[
δ(ςt�η0)ςt |η

] ·E(utu′
t

)− IN
} = vec(IN)

{
E
[
δ(ςt�η0)(ςt/N)|η

]− 1
}
�

In this context, we can use expression (2.21) in Fang, Kotz, and Ng (1990) to write the
density function of ςt as

h(ςt;η)= πN/2

Γ (N/2)
ς
N/2−1
t exp

[
c(η)+ g(ςt�η)

]
� (C20)

whence [
δ(ςt�η)(ςt/N)− 1

] = − 2
N

[
1 + ςt · ∂ lnh(ςt;η)/∂ς

]
� (C21)

On this basis, we can use Lemma 2 in Supplemental Appendix B to show that E(ςt) =
N <∞ implies

E
[
ςt · ∂ lnh(ςt;η)/∂ς|η

] = −E[1] = −1�

which in turn implies that

E
[
δ(ςt�η)(ςt/N)− 1|η] = 0 (C22)

in view of (C21). Consequently, E[est(φ)|φ] = 0, as required.
Similarly, we can also show that

E
[
elt (φ)e

′
lt (φ)|φ

] = E
{
δ2(ςt�η)ςtutu′

t |η
} = IN ·E[δ2(ςt�η0)(ςt/N)|η

]
�

E
[
elt(φ)e

′
st(φ)|φ

] = E
{
δ(ςt�η)

√
ςtut vec′[δ(ςt�η)ςtutu′

t − IN
]|η} = 0
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by virtue of (C1), and

E
[
est(φ0)e

′
st(φ0)|φ

] =E{vec
[
δ(ςt�η0)ςtutu

′
t − IN

]
vec′[δ(ςt�η0)ςtutu

′
t − IN

]|η}
=E[δ(ςt�η)ςt |η]2 1

N(N + 2)
[
(IN2 + KNN)+ vec(IN) vec′(IN)

]
− 2E

[
δ(ςt�η)(ςt/N)|η

]
vec(IN) vec′(IN)+ vec(IN) vec′(IN)

= N

(N + 2)
E
[
δ(ςt�η)(ςt/N)|η

]2
(IN2 + KNN)

+
{

N

(N + 2)
E
[
δ(ςt�η)(ςt/N)|η

]2 − 1
}

vec(IN) vec′(IN)]

by virtue of (C2), (C21), and (C22).
Finally, it is clear from (C3) that ert(φ0) will be a function of ςt but not of ut , which

immediately implies that E[elt(φ)e′
rt(φ)|φ] = 0, and that

E
[
est(φ)e′

rt(φ)|φ
] = E

{
vec

[
δ(ςt�η)ςt · utu′

t − IN
]
e′
rt(φ)

}
= vec(IN)E

{[
δ(ςt�η)(ςt/N)− 1

]
e′
rt(φ)

}
�

To obtain the expected value of the Hessian, it is also convenient to write hθθt (φ0) in
(C12) as

− 4Zst(θ0)
[
IN ⊗ {

δ
[
ςt(θ0)�η0

]
ε∗
t (θ0)ε

∗′
t (θ0)− IN

}]
Z′
st(θ0)

+ [
e′
lt(θ0�η0)Σ

−1/2′
t (θ)⊗ Ip

]∂ vec
∂θ′

[
∂μ′

t (θ)

∂θ

]

+ 1
2
{

e′
st(θ0�η0)

[
Σ

−1/2
t (θ0)⊗Σ

−1/2
t (θ0)

]⊗ Ip
}∂ vec
∂θ′

{
∂ vec′[Σt (θ)]

∂θ

}

− 2Zlt(θ0)
[
e′
lt (θ0�η0)⊗ IN

]
Z′
st(θ0)− 2Zst(θ0)

[
elt (θ0�η0)⊗ IN

]
Z′
lt(θ0)

− δ[ςt(θ0)�η0
]
Zlt(θ0)Z

′
lt (θ0)− 2Zst(θ0)Z

′
st(θ0)

− 2∂δ
[
ςt(θ0)�η0

]
∂ς

{
Zlt (θ0)ε

∗
t (θ0)ε

∗′
t (θ0)Z

′
lt (θ0)

+ Zlt(θ0)ε
∗
t (θ0) vec′[ε∗

t (θ0)ε
∗′
t (θ0)

]
Z′
st(θ0)+ Zst(θ0) vec

[
ε∗
t (θ0)ε

∗′
t (θ0)

]
ε∗
t (θ0)Z

′
lt (θ0)

+ Zst(θ0) vec
[
ε∗
t (θ0)ε

∗′
t (θ0)

]
vec′[ε∗

t (θ0)ε
∗′
t (θ0)

]
Z′
st(θ0)

}
�

Clearly, the first four lines have zero conditional expectation, and the same is true of
the sixth line by virtue of (C1). As for the remaining terms, we can write them as

− δ(ςt�η0)Zlt (θ0)Z
′
lt(θ0)− 2∂δ(ςt�η0)/∂ς · Zlt(θ0)ςtutu

′
tZ

′
lt (θ0)

− 2Zst(θ0)Z
′
st(θ0)− 2∂δ(ςt�η0)/∂ς · ς2

t Zst(θ0) vec
(
utu′

t

)
vec′(utu′

t

)
Z′
st(θ0)�
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whose conditional expectation will be

− Zlt(θ0)Z
′
lt (θ0)E

[
δ(ςt;η0)+ 2(ςt/N) · ∂δ(ςt�η0)/∂ς|η0

]− 2Zst(θ0)Z
′
st(θ0)

− Zst(θ0)
2E

[
ς2
t · ∂δ(ςt�η0)/∂ς|η0

]
N(N + 2)

[
(IN2 ⊗ KNN)+ vec(IN) vec′(IN)

]
Z′
st(θ0)�

As for hθηt (φ0), it follows from (C5) and (C13) that we can write it as

{
Zlt (θ0)ε

∗
t (θ0)+ Zst(θ0) vec

[
ε∗
t (θ0)ε

∗′
t (θ0)

]} · ∂δ[ςt(θ0)�η0
]
/∂η′

= [
Zlt (θ)ut

√
ςt + Zst(θ) vec

(
utu′

t

)
ςt
] · ∂δ(ςt�η)/∂η′�

whose conditional expected value will be Zst(θ0) vec(IN)E[(ςt/N) · ∂δ(ςt�η0)/∂η
′|η].

Fiorentini, Sentana, and Calzolari (2003) provided the relevant expressions for the
multivariate standardized Student t, while the expressions for the Kotz distribution and
the DSMN are given in Amengual and Sentana (2010) (The expression for mss(κ) for the
Kotz distribution in Amengual and Sentana (2010) contains a typo. The correct value is
(Nκ+ 2)/[(N + 2)κ+ 2]).

As for I(φ0), while it is relatively straightforward to obtain closed-form expressions
in conditionally homoskedastic, dynamic linear models such as multivariate regressions
or Vars (see, e.g., Amengual and Sentana (2010)), it is virtually impossible to do so in dy-
namic conditionally heteroskedastic models, as one has to resort to numerical or Monte
Carlo integration methods to compute the required expected values (see, e.g., Engle
and Gonzalez-Rivera (1991) and Gonzalez-Rivera and Drost (1999)). Nevertheless, see
Fiorentini and Sentana (2015, 2021) for closed-form expressions in the context of tests
for multivariate or univariate conditional homoskedasticity, respectively.

C.4 Gaussian pseudo maximum likelihood estimators

An important special case of restricted ML estimator arises when η̄ = 0, in which case
θ̃T (0) coincides with the Gaussian PML estimator θ̃T . Unlike what happens with other
values of η̄, θ̃T remains root-T consistent for θ0 under correct specification of μt (θ) and
Σt (θ) even though the true conditional distribution of ε∗

t |It−1;φ0 is neither Gaussian
nor spherical, provided that it has bounded fourth moments. The proof is based on the
fact that in those circumstances, the pseudo log-likelihood score, sθt(θ�0), is also a vec-
tor martingale difference sequence when evaluated at θ0, a property that inherits from
edt(θ�0) in (C11). Importantly, this property is preserved even when the standardized
innovations, ε∗

t , are not stochastically independent of It−1.
The asymptotic distribution of the PML estimator of θ is stated in the following re-

sult, which specializes Proposition 1 in Bollerslev and Wooldridge (1992) to models with
i�i�d� innovations with shape parameters �.

Proposition C2. Assume that the regularity conditions A.1 in Bollerslev and Wooldridge
(1992) are satisfied.
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1. If ε∗
t |It−1; φ is i�i�d� D(0� IN��)with tr[K(�)]<∞, where φ= (θ′��′)′, then

√
T(θ̃T −

θ0)→N[0�Cθθ(θ0�0;φ0)] with

Cθθ(θ�0;φ)= A−1
θθ (θ�0;φ)Bθθ(θ�0;φ)A−1

θθ (θ�0;φ)�
Aθθ(θ�0;φ)= −E[hθθt (θ�0)|φ] =E[Aθθt (θ�0;φ)|φ]

�

Aθθt (θ�0;φ)= −E[hθθt (θ; 0)|It−1;φ
] = Zdt(θ)K(0)Z′

dt(θ)�

Bθθ(θ�0;φ)= V [
sθt (θ�0)|φ] =E[Bθθt (θ�0;φ)|φ]

�

Bθθt (θ�0;φ)= V [
sθt (θ; 0)|It−1;φ

] = Zdt(θ)K(�)Z′
dt(θ)�

and

K(�)= V [
edt(θ�0)|It−1;φ

] =
[

IN Φ(�)

Φ′(�) Υ (�)

]
� (C23)

where

Φ(�)=E[ε∗
t vec′(ε∗

t ε
∗′
t

)|φ]
�

Υ (�)=E[vec
(
ε∗
t ε

∗′
t − IN

)
vec′(ε∗

t ε
∗′
t − IN

)|φ]
depend on the multivariate third- and fourth-order cumulants of ε∗

t , so that Φ(0)=
0 and Υ (0)= (IN2 + KNN) if we use �= 0 to denote normality.

2. If ε∗
t |It−1;φ0 is i�i�d� s(0� IN�η0) with κ0 <∞, then (C23) reduces to

K(κ)=
[

IN 0
0 (κ+ 1)(IN2 + KNN)+ κ vec(IN) vec′(IN)

]
� (C24)

which only depends on the true distribution through the population coefficient of
multivariate excess kurtosis

κ=E(ς2
t |η

)
/
[
N(N + 2)

]− 1� (C25)

Proof. The proof of the first part is based on a straightforward application of Propo-
sition 1 in Bollerslev and Wooldridge (1992) to the i�i�d� case. Since edt(θ0�0) is a vector
martingale difference sequence and sθt (θ0�0)= Zdt(θ0)edt(θ0�0), then to obtain Bt(φ0)

we only need to compute V [edt(θ0�0)|It−1;φ0], which justifies (C23). Further, we will
have that [

elt (θ0�0)
est(θ0�0)

]
=

(
ε∗
t (θ0)

vec
[
ε∗
t (θ0)ε

∗′
t (θ0)− IN

]
)

=
[ √

ςtut
vec

(
ςtutu′

t − IN
)
]

for any spherical distribution, with ςt and ut both mutually and serially independent.
Then (C24) follows from (C1) and (C2). As for At (φ0), we know that its formula, which
is valid regardless of the exact nature of the true conditional distribution, coincides with
the expression for Bt (φ0) under multivariate normality by the (conditional) information
matrix equality.
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C.5 Spherically symmetric semiparametric estimators

As is well known, a single scoring iteration without line searches that started from θ̃T
and some root-T consistent estimator of η, say η̃T , would suffice to yield an estimator
of φ that would be asymptotically equivalent to the full-information ML estimator φ̂T ,
at least up to terms of order Op(T−1/2). Specifically,

(
θ̌T − θ̃T
η̌T − η̃T

)
=

[
Iθθ(φ0) Iθη(φ0)

I ′
θη(φ0) Iηη(φ0)

]−1
1
T

T∑
t=1

[
sθt (θ̃T � η̃T )
sηt (θ̃T � η̃T )

]
�

If we use the partitioned inverse formula, then it is easy to see that

θ̌T − θ̃T = [
Iθθ(φ0)− Iθη(φ0)I−1

ηη(φ0)I ′
θη(φ0)

]−1

× 1
T

T∑
t=1

[
sθt (θ̃T � η̃T )− Iθη(φ0)I−1

ηη(φ0)sηt (θ̃T � η̃T )
]

= Iθθ(φ0)
1
T

T∑
t=1

sθ|ηt (θ̃T � η̃T )�

where

Iθθ(φ0)= [
Iθθ(φ0)− Iθη(φ0)I−1

ηη(φ0)I ′
θη(φ0)

]−1

and

sθ|ηt (θ0�η0)= sθt (θ0�η0)− Iθη(φ0)I−1
ηη(φ0)sηt (θ0�η0) (C26)

is the residual from the unconditional theoretical regression of the score correspond-
ing to θ, sθt (φ0), on the score corresponding to η, sηt (φ0). This residual score is some-
times called the unrestricted parametric efficient score of θ, and its covariance matrix,
P(φ0)= [Iθθ(φ0)]−1, the marginal information matrix of θ, or the unrestricted paramet-
ric efficiency bound.

In the spherically symmetric case, we can easily prove that (C26) and its covariance
matrix reduce to

sθ|ηt (φ0)= Zdt(θ0)edt(φ0)− Ws(φ0) · [ msr(η0)M−1
rr (η0)ert(φ0)

]
(C27)

and

P(φ0)= Iθθ(φ0)− Ws(φ0)W
′
s(φ0) · [msr(η0)M−1

rr (η0)m
′
sr(η0)

]
� (C28)

respectively, where

Ws(φ0)= Zd(θ0)
[
0′� vec′(IN)

]′ =E[Zdt(θ0)|φ0
][

0′� vec′(IN)
]′

=E
{

1
2
∂ vec′[Σt (θ0)

]
∂θ

vec
[
Σ−1
t (θ0)

]∣∣∣φ0

}

=E[Wst(θ0)|φ0
] = −E

[
∂dt(θ0)

∂θ

∣∣∣φ0

]
� (C29)
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It is worth noting that the last summand of (C26) coincides with Zd(φ0) times the
theoretical least squares projection of edt(φ0) on (the linear span of) ert(φ0), which
is conditionally orthogonal to edt(θ0�0) from Proposition 3 of Fiorentini and Sentana
(2007). Such an interpretation immediately suggests alternative estimators of θ that re-
place a parametric assumption on the shape of the distribution of the standardized in-
novations ε∗

t by a more flexible alternative. Specifically, Hodgson and Vorkink (2003),
Hafner and Rombouts (2007) and other authors have suggested spherically symmetric
semiparametric estimators, which allow for any member of the class of spherically sym-
metric distribution. To derive such estimators, these authors replace the linear span of
ert(φ0) by the so-called spherically symmetric tangent set, which is the Hilbert space
generated by all time-invariant functions of ςt(θ0) with bounded second moments
that have zero conditional means and are conditionally orthogonal to edt(θ0�0). The
next proposition, which originally appeared as Proposition 7 in Fiorentini and Sentana
(2007), provides the resulting spherically symmetric semiparametric efficient score and
the corresponding efficiency bound.

Proposition C3. When ε∗
t |It−1, φ is i�i�d� s(0� IN�η) with −2/(N + 2) < κ0 < ∞, the

spherically symmetric semiparametric efficient score is given by

s̊θt(φ0)= sθt(φ0)

− Ws(φ0)

{[
δ
[
ςt(θ0)�η0

]ςt(θ0)

N
− 1

]
− 2
(N + 2)κ0 + 2

[
ςt(θ0)

N
− 1

]}
� (C30)

while the spherically symmetric semiparametric efficiency bound is

S̊(φ0)= Iθθ(φ0)− Ws(φ0)W
′
s(φ0) ·

{[
N + 2
N

mss(η0)− 1
]

− 4
N
[
(N + 2)κ0 + 2

]}� (C31)

Proof. First of all, it is easy to show that for any spherical distribution

e̊dt(θ0�0) = E

[
elt(θ0�0)
est(θ0�0)

∣∣∣ςt;φ0

]
=E

{
ε∗
t (θ0)

vec
[
ε∗
t (θ0)ε

∗′
t (θ0)− IN

]∣∣∣ςt;φ0

}

= E

[ √
ςtut

vec
(
ςtutu′

t − IN
)∣∣∣ςt

]
=

(
ςt

N
− 1

)[
0

vec(IN)

]
� (C32)

and

e̊dt(φ0)=E
[

elt (φ0)

est(φ0)

∣∣∣ςt;φ0

]

=E
{

δ
[
ςt(θ0)�η0

] · ε∗
t (θ0)

vec
[
δ
[
ςt(θ0)�η0

] · ε∗
t (θ0)ε

∗′
t (θ0)− IN

]∣∣∣ςt;φ0

}

=E
{

δ(ςt�η0)
√
ςtut

vec
[
δ(ςt�η0)ςtutu

′
t − IN

]∣∣∣ςt
}

=
[
δ(ςt�η0)

ςt

N
− 1

][
0

vec(IN)

]
� (C33)



20 Fiorentini and Sentana Supplementary Material

where we have used again the fact that E(ut) = 0, E(utu′
t ) = N−1IN , and ςt and ut are

stochastically independent.
In addition, we can use the law of iterated expectations to show that

E
[
e̊dt(φ)e

′
dt(φ)|φ

] =E{E[[e̊dt(φ)e
′
dt(φ)|ςt�φ

]|φ} =E[edt(φ)e̊
′
dt(φ)|φ

]
=E[e̊dt(φ)e̊

′
dt(φ)|φ

]
�

E
[
e̊dt(φ)e

′
dt(θ�0)|φ] =E{E[e̊dt(φ)e

′
dt(θ�0)|ςt�φ

]|φ} =E[edt(φ)e̊
′
dt(θ�0)|φ]

=E[e̊dt(φ)e̊
′
dt(θ�0)|φ]

and

E
[
e̊dt(θ�0)e′

dt(θ�0)|φ] =E[edt(θ�0)e̊′
dt(θ�0)|φ] =E[e̊dt(θ�0)e̊′

dt(θ�0)|φ]
�

Hence, to compute these matrices we simply need three scalar moments.
In this respect, we can use (C25) to show that

E

[(
ςt

N
− 1

)2∣∣∣η] = (N + 2)κ+ 2
N

� (C34)

so that

E
[
e̊dt(θ�0)e′

dt(θ�0)|φ] = (N + 2)κ+ 2
N

(
0 0
0 vec(IN) vec′(IN)

)
= K̊(κ)�

We can also use Lemma 2 in Supplemental Appendix B to show that E(ς2
t )=N(N +

2)(κ+ 1) <∞ implies

E
[
ς2
t · ∂ lnh(ςt;η)/∂ς|η

] = −E[2ςt |η] = −2N�

If we then combine this result with (C21) and (C22), we will have that for any spherically
symmetric distribution

E

{(
ςt

N
− 1

)[
δ(ςt�η0)

ςt

N
− 1

]∣∣∣η} = 2
N
� (C35)

so that

E
[
e̊dt(φ)e

′
dt(θ�0)|φ] = K̊(0)�

which coincides with the value of E[e̊dt(θ�0)e′
dt(θ�0)|φ] under normality.

Finally, Proposition C1 immediately implies that

E

{[
δ(ςt�η0)

ςt

N
− 1

]2∣∣∣η} = N + 2
N

mss(η)− 1� (C36)

Therefore, it trivially follows from the expressions for K̊(0) and K̊(κ0) above that

E
{[

e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)
]
e′
dt(θ�0)|It−1;φ

}
=E{[e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)

]
e̊′
dt(θ�0)|It−1;φ

} = 0
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for any spherically symmetric distribution. In addition, we also know that

E
{[

e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)
]|It−1;φ

} = 0�

Thus, even though [e̊dt(φ0)− K̊(0)K̊+(κ0)e̊dt(θ0�0)] is the residual from the theoretical
regression of e̊dt(φ) on a constant and e̊dt(θ�0), it turns out that the second summand
of (C30) belongs to the restricted tangent set, which is the Hilbert space spanned by all
the time-invariant functions of ς t (θ0) with bounded second moments that have zero
conditional means and are conditionally orthogonal to edt(θ0�0).

Now, if write (C30) as

Zdt(θ)edt(φ)− Zd(φ)e̊dt(φ)+ Zd(φ)K̊(0)K̊+(κ)e̊dt(θ�0)�

then we can use the law of iterated expectations to show that the spherically symmetric
semiparametric efficient score is indeed unconditionally orthogonal to the restricted
tangent set.

Finally, the expression for the semiparametric efficiency bound will be

E
[
s̊θt (φ)s̊′

θt (φ)|φ
]

=E
⎡
⎣
{

Zdt(θ)edt(φ)− Zd(φ)
[
e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)

]}
× {

edt(φ)
′Z′
dt(θ)− [

e̊′
dt(φ)− e̊′

dt(θ�0)K̊+(κ)K̊(0)
]
Z′
d(φ)

}∣∣∣φ
⎤
⎦

=E[Zdt(θ)edt(φ)e
′
dt(φ)Zdt(θ)|φ

]
−E{Zdt(θ)edt(φ)

[
e̊′
dt(φ)− e̊′

dt(θ�0)K̊+(κ)K̊(0)
]
Z′
d(φ)|φ

}
−E{Zd(φ)

[
e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)

]
e′
dt(φ)Z

′
d(φ)|φ

}
+E{Zd(φ)

[
e̊dt(φ)− K̊(0)K̊+(κ)e̊dt(θ�0)

][
e̊′
dt(φ)− e̊′

dt(θ�0)K̊+(κ)K̊(0)
]
Z′
d(φ)|φ

}
= Iθθ(φ0)− Ws(φ0)W

′
s(φ0) ·

{[
N + 2
N

mss(η)− 1
]

− 4
N
[
(N + 2)κ+ 2

]}

by virtue of the law of iterated expectations.

In the case of the univariate Garch-M model (19), we estimate the model parame-
ters using reparametrization 1 in Section 4. Specifically,

Zlt(ϑ)= ∂μt(ϑ)/∂ϑ

ϑ
1/2
i σ◦

t (ϑc)
= 1

ϑ
1/2
i σ◦

t (ϑc)

⎡
⎣σ◦

t (ϑc)
∂δ

∂ϑc
+ δ

2σ◦
t (ϑc)

∂σ◦2
t (ϑc)

∂ϑc
0

⎤
⎦

= 1

ϑ
1/2
i

⎡
⎣ ∂δ

∂ϑc
+ δWst(ϑc)

0

⎤
⎦ �

Zst(ϑ)= ∂σ2
t (ϑ)/∂ϑ

2ϑicσ◦2
t (ϑc)

= 1

2ϑiσ◦2
t (ϑc)

⎡
⎣ϑi ∂σ◦2

t (ϑc)

∂ϑc
σ◦2
t (ϑc)

⎤
⎦ =

⎡
⎣Wst(ϑc)1

2
ϑ−1
i

⎤
⎦ �
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Wst(ϑc)= 1

2σ◦2
t (ϑc)

∂σ◦2
t (ϑc)

∂ϑc

and

ςt(ϑ)= ε∗2
t (ϑ)=ϑ−1

i σ
◦−2
t (ϑc)x

2
t �

On the other hand, we use the natural parametrization of the multivariate market
model in (20), so that θ′ = (a′�b′�ω′), where ω= vech(Ω). Given the Jacobian matrices:

∂μt (θ)

∂
(
a′�b′�ω′) =

(
IN INrMt 0

)
� (C37)

∂ vec
[
Σt (θ)

]
∂
(
a′�b′�ω′) =

(
0 0 DN

)
� (C38)

because ∂ vec(Ω)/∂ vech′(Ω) is the duplication matrix of order N (see Magnus and
Neudecker (2019)), a direct application of (C4) immediately implies that

sat(θ) = Ω−1δ[ςt(θ);η]εt (θ)�
sbt(θ) = Ω−1rmtδ[ςt(θ);η]εt (θ)�

sωt (θ) = 1
2

D′
N

(
Ω−1 ⊗Ω−1) vec

{
δ[ςt(θ);η]εt (θ)ε′

t (θ)−Ω
}
�

where εt (θ)= rt − a − brmt .
The last ingredient we need is

Ws(φ0)=
[

0�0�
1
2

vec′(Ω−1)DN

]′

because

D′
N

(
Ω− 1

2 ′ ⊗Ω− 1
2 ′) vec(IN)= D′

N vec
(
Ω−1)�

In practice, edt(φ) has to be replaced by a semiparametric estimate obtained from
the joint density of ε∗

t . However, the spherical symmetry assumption allows us to obtain
such an estimate from a nonparametric estimate of the univariate density of ςt , h(ςt;η),
avoiding in this way the curse of dimensionality. Specifically, if we use expression (C20),
then we can estimate δ[ςt(θ)�η] nonparametrically by exploiting that

−2∂g
[
ςt(θ)�η

]
∂ς

= −2∂ lnh
[
ςt(θ)�η

]
∂ς

+ N − 2
2

1
ςt(θ)

�

We can compute h[ςt(θ);η] either directly by using a kernel for positive random vari-
ables (see Chen (2000)), or indirectly by using a faster standard Gaussian kernel after
exploiting the Box–Cox-type transformation v = ςk (see Hodgson, Linton, and Vorkink
(2002)). In the second case, the usual change of variable formula yields

p(v;η)= πN/2

kΓ (N/2)
v−1+N/2k exp

[
c(η)+ g(v1/k;η)]�
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whence

g
(
v1/k;η) = lnp(v;η)+

(
1 − N

2k

)
lnv− N

2
ln 2π + lnk− lnΓ (N/2)− c(η)

and

∂g
(
v1/k;η)
∂v1/k

= k∂ ln f (v;η)
∂v

v1−1/k + k−N/2
v1/k

�

We use the second procedure in our Monte Carlo simulations because the distribu-
tion of ςt(θ) becomes more normal-like as N increases, which reduces the advantages
of using kernels for positive variables. Specifically, we use a cubic root transformation
to improve the approximation, with a common bandwidth parameter for both the den-
sity and its first derivative. Given that a proper cross-validation procedure is extremely
costly to implement in a Monte Carlo exercise, we have done some experimentation to
choose the optimal bandwidth by scaling up and down the automatic choices given in
Silverman (1986).

In the univariate case, there is a conceptually simpler alternative that does not re-
quire working with ςt = ε∗2

t . In particular, we can exploit the fact that the density of ε∗
t is

the same as the density of −ε∗
t by assigning to ±ε∗

t the equally weighted average of the
nonparametric density estimates at ε∗

t and −ε∗
t . Likewise, we can compute the equally

weighted average of the absolute value of its derivatives and assign its ± value to ε∗
t and

−ε∗
t , respectively.

Appendix D: The general case of nonspherical distributions

D.1 Likelihood, score, and Hessian for nonspherical distributions

In this section, we assume that, conditional on It−1, ε∗
t is independent and identically

distributed, or ε∗
t |It−1;θ0��0 ∼ i�i�d� D(0� IN��0) for short, where � are some q additional

parameters that determine the shape of the distribution. Importantly, this distribution
could substantially depart from a multivariate normal both in terms of skewness and
kurtosis. Let f (ε∗;�) denote the assumed conditional density of ε∗

t given It−1 and those
shape parameters �, which we assume is well-defined. Let also φ = (θ′��)′ denote the
p+q parameters of interest, which once again we assume variation-free. Ignoring initial
conditions, the log-likelihood function of a sample of size T for those values of θ for
which Σt (θ) has full rank will take the form LT (φ)= ∑T

t=1 lt(φ), where lt(φ)= dt(θ)+
ln f [ε∗

t (θ)��], dt(θ)= ln |Σ−1/2
t (θ)|, ε∗

t (θ)=Σ
−1/2
t (θ)εt (θ), and εt (θ)= yt −μt (θ).

The most common choices of square root matrices are the Cholesky decomposi-
tion, which leads to a lower triangular matrix for a given ordering of yt , or the spectral
decomposition, which yields a symmetric matrix. The choice of square root matrix is
nontrivial because Σ

1/2
t (θ) affects the value of the log-likelihood function and its score

in multivariate nonspherical contexts. In what follows, we rely mostly on the Cholesky
decomposition because it is much faster to compute than the spectral one, especially
when Σt (θ) is time varying. Nevertheless, we also discuss some modifications required
for the spectral decomposition later on.
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Let st (φ) denote the score function ∂lt(φ)/∂φ, and partition it into two blocks,
sθt (φ) and s�t (φ), whose dimensions conform to those of θ and �, respectively. Assum-

ing that μt (θ), Σ
1/2
t (θ) and ln f (ε∗��) are differentiable, it trivially follows that

sθt (θ��)= ∂dt(θ)

∂θ
+ ∂ε′∗

t (θ)

∂θ

∂ ln f
[
ε∗
t (θ);�

]
∂ε∗ �

But since

∂dt(θ)/∂θ = −∂ vec′[Σ1/2
t (θ)

]
∂θ

vec
[
Σ

−1/2′
t (θ)

] = −Zst(θ) vec(IN)

and

∂ε∗
t (θ)

∂θ′ = −Σ
−1/2
t (θ)

∂μt (θ)

∂θ′ − [
ε∗′
t (θ)⊗Σ

−1/2
t (θ)

]∂ vec
[
Σ

1/2
t (θ)

]
∂θ′

= −{
Z′
lt(θ)+ [

ε∗′
t (θ)⊗ IN

]
Z′
st(θ)

}
� (D1)

where

Zlt (θ)= ∂μ′
t (θ)/∂θ ·Σ−1/2′

t (θ)�

Zst(θ)= ∂ vec′[Σ1/2
t (θ)

]
/∂θ · [IN ⊗Σ

−1/2′
t (θ)

]
⎫⎬
⎭ � (D2)

it follows that

sθt (φ) = [
Zlt(θ)�Zst(θ)

][elt (φ)
est(φ)

]
= Zdt(θ)edt(φ)� (D3)

s�t (φ) = ∂ ln f
[
ε∗
t (θ);�

]
/∂� = ert(φ)�

with

edt(φ)=
[

elt (φ)
est(φ)

]
=

[
−∂ ln f

[
ε∗
t (θ);�

]
/∂ε∗

− vec
{

IN + ∂ ln f
[
ε∗
t (θ);�

]
/∂ε∗ · ε∗′

t (θ)
}
]
� (D4)

Similarly, let ht (φ) denote the Hessian function ∂st (φ)/∂φ′ = ∂2lt(φ)/∂φ∂φ
′. As-

suming twice differentiability of the different functions involved, expression (D1) im-
plies that

∂elt (θ��)
∂θ′ = −∂

2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂ε∗′

∂ε∗
t (θ)

∂θ′

= ∂2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂ε∗′

{
Z′
lt(θ)+ [

ε∗′
t (θ)⊗ IN

]
Z′
st(θ)

}
(D5)

because

delt(θ��)= −d{∂ ln f
[
ε∗
t (θ);�

]
/∂ε∗}� (D6)
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In turn,

dest(θ��)= −dvec
[
∂ ln f

[
ε∗
t (θ);�

]
∂ε∗ · ε∗′

t (θ)

]

= −[
ε∗
t (θ)⊗ IN

]
d

{
∂ ln f

[
ε∗
t (θ);�

]
∂ε∗

}
−

{
IN ⊗ ∂ ln f

[
ε∗
t (θ);�

]
∂ε∗

}
dε∗

t (θ) (D7)

implies that

∂est(φ)
∂θ′ = ∂est(θ��)

∂θ′
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t (θ)⊗ IN

]∂2 ln f
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t (θ);�
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∂ε∗∂ε∗′
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t (θ)

∂θ′ −
{

IN ⊗ ∂ ln f
[
ε∗
t (θ);�

]
∂ε∗

}
∂ε∗
t (θ)

∂θ′

=
{[

ε∗
t (θ)⊗ IN

]∂2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂ε∗′ +

[
IN ⊗ ∂ ln f

[
ε∗
t (θ);�

]
∂ε∗

]}

× {
Z′
lt (θ)+ [

ε′∗
t (θ)⊗ IN

]
Z′
st(θ)

}
� (D8)

Finally, (D6) and (D7) trivially imply that

∂2elt(θ��)
∂θ∂�′ = −∂

2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂�′ �

∂2est(θ��)
∂θ∂�′ = −[

ε∗
t (θ)⊗ IN

]∂2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂�′ �

Using these results, we can easily obtained the required expressions for

hθθt (φ) = Zlt (θ)
∂elt (φ)
∂θ′ + Zst(θ)

∂est(φ)
∂θ′

+ [
e′
lt (φ)⊗ Ip

]∂ vec
[
Zlt(θ)

]
∂θ′ + [

e′
st(φ)⊗ Ip

]∂ vec
[
Zst(θ)

]
∂θ′ � (D9)

hθ�t (φ) = Zlt (θ)∂elt (φ)/∂�
′ + Zst(θ)∂est(φ)/∂�′� (D10)

h��t (φ) = ∂2 ln f
[
ε∗
t (θ);�

]
/∂�∂�′�

In this respect, note that since (D6) and (D7) also imply that

∂elt (θ��)/∂�
′ = −∂2 ln f

[
ε∗
t (θ);�

]
/∂ε∗∂�′� (D11)

∂est(θ��)/∂�′ = −[
ε∗
t (θ)⊗ IN

]
∂2 ln f

[
ε∗
t (θ);�

]
/∂ε∗∂�′� (D12)

respectively, it is clear that

Zlt(θ)
∂elt (θ��)
∂�′ + Zst(θ)

∂est(θ��)
∂�′ = −{

Zlt (θ)+ Zst(θ)
[
ε∗
t (θ)⊗ IN

]}∂2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂�′

= ∂ε′∗
t (θ)

∂θ

∂2 ln f
(
ε∗
t (θ);�

)
∂ε∗∂�′ �
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so both ways of computing hθ�t (φ) indeed coincide.

Importantly, while Zlt(θ), Zst(θ), ∂ vec[Zlt(θ)]/∂θ′, and ∂ vec[Zst(θ)]/∂θ′ depend on

the dynamic model specification, the first and second derivatives of ln f (ε∗;�) depend

on the specific distribution assumed for estimation purposes.

For the standard (i.e., lower triangular) Cholesky decomposition of Σt (θ), we will

have that

dvec(Σt )= [(
Σ

1/2
t ⊗ IN

)+ (
IN ⊗Σ

1/2
t

)
KNN

]
dvec

(
Σ

1/2
t

)
�

Unfortunately, this transformation is singular, which means that we must find an

analogous transformation between the corresponding dvech′ s. In this sense, we can

write the previous expression as

dvech(Σt )= [
LN

(
Σ

1/2
t ⊗ IN

)
L′
N + LN

(
IN ⊗Σ

1/2
t

)
KNNL′

N

]
dvech

(
Σ

1/2
t

)
� (D13)

where LN is the elimination matrix (see Magnus (1988)). We can then use the results in

Chapter 5 of Magnus (1988) to show that the above mapping will be lower triangular

of full rank as long as Σ
1/2
t has full rank, which means that we can readily obtain the

Jacobian matrix of vech(Σ1/2
t ) from the Jacobian matrix of vech(Σt).

In the case of the symmetric square root matrix, the analogous transformation would

be

dvech(Σt )= [
D+
N

(
Σ

1/2
t ⊗ IN

)
DN + D+

N

(
IN ⊗Σ

1/2
t

)
DN

]
dvech

(
Σ

1/2
t

)
�

From a numerical point of view, the calculation of both LN(Σ
1/2
t ⊗ IN)L′

N and

LN(IN ⊗Σ
1/2
t )KNNL′

N is straightforward. Specifically, given that LN vec(A)= vech(A) for

any square matrix A, the effect of premultiplying by the 1
2N(N + 1) × N2 matrix LN is

to eliminate rows N + 1, 2N + 1 and 2N + 2, 3N + 1, 3N + 2 and 3N + 3, etc. Similarly,

given that LNKNN vec(A)= vech(A′), the effect of postmultiplying by KNNL′
N is to delete

all columns but those in positions 1�N + 1�2N + 1� � � � �N + 2�2N + 2� � � � �N + 3�2N +
3� � � � �N2.

Let Ft be the transpose of the inverse of LN(Σ
1/2
t ⊗ IN)L′

N + LN(IN ⊗ Σ
1/2
t )KNNL′

N ,

which will be upper triangular. The fastest way to compute

∂ vec′[Σ1/2
t (θ)

]
∂θ

[
IN ⊗Σ

−1/2
t (θ)

] = 1
2
∂ vech′[Σt (θ)]

∂θ
FtLN

(
IN ⊗Σ

−1/2
t

)
(D14)

is as follows:

1. From the expression for ∂ vec′[Σt (θ)]/∂θ, we can readily obtain ∂ vech′[Σt (θ)]/∂θ by

simply avoiding the computation of the duplicated columns;

2. Then we postmultiply the resulting matrix by Ft ;
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3. Next, we construct the matrix

LN
(
IN ⊗Σ

1/2
t

) = LN

⎛
⎜⎜⎜⎜⎝
Σ

−1/2
t 0 · · · 0

0 Σ
−1/2
t · · · 0

���
���

� � �
���

0 0 · · · Σ
−1/2
t

⎞
⎟⎟⎟⎟⎠

by eliminating the first row from the second block, the first two rows from the third
block, . . . , and all the rows but the last one from the last block;

4. Finally, we premultiply the resulting matrix by ∂ vech′[Σt (θ)]/∂θ · Ft .

D.2 Asymptotic distribution

Propositions 10.1, 13, C2.1, and D3 already deal explicitly with the general case, so there
is no need to generalize them. In turn, Propositions 6, 7, 8, 9, and their proofs continue to
be valid if we change η by �. The same happens to Proposition 5, provided we erase the
row and columns corresponding to θ̊T and its influence function s̊θt (φ). On the other
hand, Propositions 10.2, 11, 12, C2.2, and C3 are specific to the spherically symmet-
ric case. Therefore, the only proposition that really requires a proper generalization is
Proposition C1.

Proposition D1. If ε∗
t |It−1;φ is i�i�d� D(0� IN��) with density f (ε∗��), then

It (φ) = Zt(θ)M(�)Z′
t (θ)�

Zt(θ) =
(

Zdt(θ) 0
0 Iq

)
=

(
Zlt(θ) Zst(θ) 0

0 0 Iq

)
�

and

M(�)=
[
Mdd(�) Mdr(�)

M′
dr(�) Mrr(�)

]
=

⎡
⎢⎣Mll(�) Mls(�) Mlr(�)

M′
ls(�) Mss(�) Msr(�)

M′
lr(�) M′

sr(�) Mrr(�)

⎤
⎥⎦ �

with

Mll(�)= V [
elt(φ)|φ

] =E[∂2 ln f
(
ε∗
t ;�

)
/∂ε∗∂ε∗′|�]�

Mls(�)=E[elt (φ)est(φ)
′|φ] =E[∂2 ln f

(
ε∗
t ;�

)
/∂ε∗∂ε∗′ · (ε′∗

t ⊗ IN
)|�]�

Mss(�)= V [
est(φ)|φ

] =E[(ε∗
t ⊗ IN

) · ∂2 ln f
(
ε∗
t ;�

)
/∂ε∗∂ε∗′ · (ε∗′

t ⊗ IN
)|�]− KNN�

Mlr(�)=E[elt (φ)e
′
rt(φ)|φ

] = −E[∂2 ln f
(
ε∗
t ;�

)
/∂ε∗∂�′|�]�

Msr(�)=E[est(φ)e′
rt(φ)|φ

] = −E[(ε∗
t ⊗ IN

)
∂2 ln f

(
ε∗
t ;�

)
/∂ε∗∂�′|�]�

and

Mrr(�)= V [
ert(φ)|φ

] = −E[∂2 ln f
(
ε∗
t ;�

)
/∂�∂�′|φ]

�
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Proof. Since the distribution of ε∗
t given It−1 is assumed to be i�i�d�, then it is easy to see

from (D3) that et(φ)= [e′
dt(φ)�e′

rt(φ)]′ will inherit the martingale difference property of
the score st(φ0). As a result, the conditional information matrix will be given by

[
Zlt (θ) Zst(θ) 0

0 0 Iq

]⎡⎣Mll(�) Mls(�) Mlr(�)
M′

ls(�) Mss(�) Msr(�)
M′

lr(�) M′
sr(�) Mrr(�)

⎤
⎦
⎡
⎣Z′

lt (θ) 0
Z′
st(θ) 0

0 Iq

⎤
⎦

=
[

Zlt (θ)Mll(�)Z
′
lt (θ)+ Zst(θ)M′

ls(�)Z
′
lt (θ)+ Zlt (θ)Mls(�)Z

′
st(θ)+ Zst(θ)Mss(�)Z′

st(θ)
M′

lr(�)Z
′
lt (θ)+M′

sr(�)Z
′
st(θ)

Zlt (θ)Mlr(�)+ Zst(θ)Msr(�)
Mrr(�)

]
�

where ⎡
⎢⎣Mll(�) Mls(�) Mlr(�)

M′
ls(�) Mss(�) Msr(�)

M′
lr(�) M′

sr(�) Mrr(�)

⎤
⎥⎦ = V

⎡
⎢⎣elt(θ��)

est(θ��)
ert(θ��)

∣∣∣∣∣θ��
⎤
⎥⎦ �

which confirms the variance of the score part of the proposition.
As for the expected value of the Hessian expressions, it is easy to see that

E
[
hθθt (φ)|zt� It−1;φ

] = Zlt (θ)E
[
∂elt (θ��)
∂θ′

∣∣∣zt� It−1;φ
]

+ Zst(θ)E
[
∂est(θ��)
∂θ′

∣∣∣zt� It−1;φ
]

because

E
[
elt (θ��)|zt� It−1;φ

] = −E[∂ ln f
[
ε∗
t (θ);�

]
/∂ε∗|zt� It−1;φ

] = 0 (D15)

and

E
[
est(θ��)|zt� It−1;φ

] = −E[vec
{

IN+∂ ln f
[
ε∗
t (θ);�

]
/∂ε∗ ·ε∗

t (θ)
}|zt� It−1;φ

] = 0� (D16)

Expression (D5) then leads to

E

[
∂elt (θ��)
∂θ′

∣∣∣zt� It−1;φ
]

=E
[
∂2 ln f

[
ε∗
t (θ);�

]
∂ε∗∂ε∗′

{
Z′
lt (θ)+ [

ε′∗
t (θ)⊗ IN

]
Z′
st(θ)

}∣∣∣zt� It−1;φ
]

=E
[
∂2 ln f

[
ε∗
t (θ);�

]
∂ε∗∂ε∗′

∣∣∣φ]
Z′
lt(θ)+E

[
∂2 ln f

[
ε∗
t (θ);�

]
∂ε∗∂ε∗′

[
ε′∗
t (θ)⊗ IN

]∣∣∣φ]
Z′
st(θ)�

Likewise, equation (D8) leads to

E

[
∂est(θ��)
∂θ′

∣∣∣zt� It−1;φ
]

=E
[{[

ε∗
t (θ)⊗ IN

]∂2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂ε∗′ +

[
IN ⊗ ∂ ln f

[
ε∗
t (θ);�

]
∂ε∗

]}
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× {
Z′
lt(θ)+ [

ε′∗
t (θ)⊗ IN

]
Z′
st(θ)

}∣∣∣zt� It−1;φ
]

=E
[[
ε∗
t (θ)⊗ IN

]∂2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂ε∗′

∣∣∣φ]
Z′
lt(θ)

+E
[[
ε∗
t (θ)⊗ IN

]∂2 ln f
[
ε∗
t (θ);�

]
∂ε∗∂ε∗′

[
ε′∗
t (θ)⊗ IN

]∣∣∣zt� It−1;φ
]

Z′
st(θ)− KNNZ′

st(θ)

because of (D15) and (D16), which in turn implies

E

{[
IN ⊗ ∂ ln f

[
ε∗
t (θ);�

]
∂ε∗

][
ε′∗
t (θ)⊗ IN

]∣∣∣zt� It−1;φ
}

= KNNE
{

KNN

[
IN ⊗ ∂ ln f

[
ε∗
t (θ);�

]
∂ε∗

][
ε′∗
t (θ)⊗ IN

]∣∣∣zt� It−1;φ
}

= KNNE
{[
∂ ln f

[
ε∗
t (θ);�

]
∂ε∗ ⊗ IN

][
ε′∗
t (θ)⊗ IN

]∣∣∣zt� It−1;φ
}

= KNNE
{[
∂ ln f

[
ε∗
t (θ);�

]
∂ε∗ ε′∗

t (θ)⊗ IN

]∣∣∣zt� It−1;φ
}

= −KNN

in view of Theorem 3.1 in Magnus (1988).
As a result, the information matrix equality implies that

Mll(�) = E
{
∂2 ln f

[
ε∗
t (θ);�

]
/∂ε∗∂ε∗′|φ}

�

Mls(�) = E
{
∂2 ln f

[
ε∗
t (θ);�

]
/∂ε∗∂ε∗′ · [ε′∗

t (θ)⊗ IN
]|φ}

�

Mss(�) = E
{[
ε∗
t (θ)⊗ IN

]
∂2 ln f

[
ε∗
t (θ);�

]
/∂ε∗∂ε∗′ · [ε′∗

t (θ)⊗ IN
]|φ}− KNN�

Similarly, equation (D10) implies that

E
[
hθ�t (φ)|zt� It−1;φ

] =E[Zlt (θ)∂elt (θ��)/∂�
′ + Zst(θ)∂est(θ��)/∂�′|zt� It−1;φ

]
�

But then the information matrix equality together with equations (D11) and (D12) imply
that

E
[
∂elt(θ��)/∂�

′|zt� It−1;φ
] = −E{∂2 ln f

[
ε∗
t (θ);�

]
/∂ε∗∂�′|φ} = Mlr(�)�

E
[
∂est(θ��)/∂�′|zt� It−1;φ

] = −E{[ε∗
t (θ)⊗ IN

]
∂2 ln f

[
ε∗
t (θ);�

]
/∂ε∗∂�′|φ} = Msr(�)�

Finally, the information matrix equality also implies that

Mrr(�)= −E{∂2 ln f
[
ε∗
t (θ);�

]
/∂�∂�′|φ}

�

as required.

D.3 Cross-sectionally independent disturbances

Let us now specialize the results in the previous two subsections for the case in which
the disturbances are cross-sectionally independent. For simplicity of notation, though,
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we maintain that their univariate distributions belong to the same family. Specifically,
we assume that the conditional density of ε∗

t given It−1 and the shape parameters � can
be factorized as

ln f
[
ε∗
t (θ)��

] =
N∑
i=1

ln f
[
ε∗
it(θ)��i

]
�

where ε∗
t (θ) = [ε∗

1t (θ)� � � � � ε
∗
Nt(θ)]′ and � = (�1� � � � ��N), with dim(�i) = qi and∑N

i=1 qi = q.
The main simplification in the expressions for the scores result from the fact that

elt(φ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂f
[
ε∗

1t (θ);�1
]

∂ε∗
1

���

−∂f
[
ε∗
Nt(θ);�N

]
∂ε∗
N

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
�

est(φ)= − vec

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + ∂ ln f
[
ε∗

1t (θ);�1
]

∂ε∗
1

ε∗
1t (θ) � � �

∂ ln f
[
ε∗

1t (θ);�1
]

∂ε∗
1

ε∗
Nt(θ)

���
� � �

���

∂ ln f
[
ε∗
Nt(θ);�N

]
∂ε∗
N

ε∗
1t (θ) � � � 1 + ∂ ln f

[
ε∗
Nt(θ);�N

]
∂ε∗
N

ε∗
Nt(θ)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

and

ert(φ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ ln f
[
ε∗

1t (θ);�1
]

∂�1
���

∂ ln f
[
ε∗
Nt(θ);�N

]
∂�N

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
�

so that the derivatives involved correspond to the underlying univariate densities.
When any of the N distributions is symmetric, then these expressions simplify fur-

ther as

−∂f
(
ε∗
it;�i

)
∂ε∗
i

= δ(ε∗2
it ;�i

)
ε∗
it �

Additional simplifications in the expressions for the Hessian arise because
∂2 ln f [ε∗

t (θ);�]/∂ε∗∂ε∗′, ∂2 ln f [ε∗
t (θ);�]/∂ε∗∂�′ and ∂2 ln f [ε∗

t (θ);�]/∂�∂�′ are (block)
diagonal matrices with representative elements ∂2 ln f [ε∗

it (θ);�i]/∂ε∗
i ∂ε

∗
i ,

∂2 ln f [ε∗
it(θ);�i]/∂ε∗

i ∂�
′
i and ∂2 ln f [ε∗

it (θ);�i]/∂�i∂�′
i, respectively.

As for the information matrix, Proposition D1 simplifies to the following.

Proposition D2. If ε∗
t |It−1;φ is i�i�d� D(0� IN��)with density f (ε∗��)= ∏N

i=1 f (ε
∗
it ��i),

then the information matrix will be given by a special case of Proposition D1 in which
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Mll will be a diagonal matrix of orderN with typical element

mll(�i)= V
[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

∣∣∣�]�
Mls = MlsE′

N , where Mls also a diagonal matrix of orderN with typical element

mls(�i)= cov
[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

�
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

ε∗
it

∣∣∣�]�
Mss is the sum of the commutation matrix KNN and a block diagonal matrix Υ of or-
der N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the
following structure:

Υ i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mll(�1) 0 0 0 0 0 0

0
� � � 0 0 0 0 0

0 0 mll(�i−1) 0 0 0 0
0 0 0 mss(�i)− 1 0 0 0
0 0 0 0 mll(�i+1) 0 0

0 0 0 0 0
� � � 0

0 0 0 0 0 0 mll(�N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

where

mss(�i)= V
[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

ε∗
it

∣∣∣�]�
Mlr is anN × q block diagonal matrix with typical diagonal block of size 1 × qi,

mlr(�i)= − cov
[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

�
∂ ln f

(
ε∗
it;�i

)
∂�i

∣∣∣�]�
Msr = ENMsr , where Msr another block diagonal matrix of orderN×qwith typical block
of size 1 × qi,

msr(�i)= cov
[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

ε∗
it �
∂ ln f

(
ε∗
it;�i

)
∂�i

∣∣∣�]�
and Mrr is an q× q block diagonal matrix with typical block of size qi × qi,

mrr(�i)= V
[
∂ ln f

(
ε∗
it;�i

)
∂�i

∣∣∣�i
]
�

Proof. The expression for Mll follows trivially from the fact that

cov
[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

�
∂ ln f

(
ε∗
jt;�j

)
∂ε∗
j

∣∣∣�] = 0

for i �= j because of the cross-sectional independence of the shocks.
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The same property also implies that Mls = MlsE′
N because for i �= j �= k,

E

[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

∂ ln f
(
ε∗
jt;�j

)
∂ε∗
j

ε∗
it

∣∣∣�] = 0 since E
[
∂ ln f

(
ε∗
jt;�i

)
∂ε∗
j

∣∣∣�] = 0�

E

[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

∂ ln f
(
ε∗
it;�i

)
∂ε∗
i

ε∗
jt

∣∣∣�] = 0 since E
(
ε∗
jt |�

) = 0�

E

[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

(
∂ ln f

(
ε∗
jt;�j

)
∂ε∗
j

ε∗
jt + 1

)∣∣∣�] = 0 since E
[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

∣∣∣�] = 0

and

E

[
∂ ln f

(
ε∗
it;�i

)
∂ε∗
i

∂ ln f
(
ε∗
jt;�j

)
∂ε∗
j

ε∗
kt

∣∣∣�] = 0 since E
(
ε∗
kt |�

) = 0�

The expression for Mss is slightly more involved. First, most but not all the off-
diagonal terms will be 0. Specifically, when i �= j,

E

[(
∂ ln f

(
ε∗
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However,
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In contrast, the diagonal terms, which can only take two forms, are different from 0.
Specifically, they will be either
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As a result, we can write Mss = KNN + Υ .



Supplementary Material Specification tests for non-Gaussian ML estimators 33

The cross-sectional independence of the shocks also implies the block diagonal
structure of Mlr and Mrr , as well as the fact that Msr = ENMsr . As expected, the same
expressions are obtained by taking the expected value of the (minus) Hessian.

When one of the univariate distributions is symmetric, then mls(�i) = mlr(�i) = 0.
One popular example will be the univariate standardized Student t distribution with
ν = η−1 degrees of freedom, which is such that
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Here,
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In addition,

mll(�i) = νi(νi + 1)
(νi − 2)(νi + 3)
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i

(νi − 2)(νi + 1)(νi + 3)

and

mrr(�i)= ν4
i

4

[
ψ′

(
νi
2

)
−ψ′

(
νi + 1

2

)]
− ν4

i (νi − 3)(νi + 4)

2(νi − 2)2(νi + 1)(νi + 3)
�

where ψ′(x)= ∂2 lnΓ (x)/∂x2 is the so-called tri-gamma function (Abramowitz and Ste-
gun (1964)), which reduce to 1, 1, 0, and 3/2, respectively, under normality (see Fioren-
tini, Sentana, and Calzolari (2003)). As a result, when all shocks are in fact Gaussian,
Mss = KNN + IN2 , which confirms that not all elements of C can be identified with
a Gaussian log-likelihood function because rank(KNN + IN2) = N(N + 1)/2 (see Sec-
tion 4 in Magnus and Sentana (2020) for a general expression for the eigenvalues of
(KNN + Υ )).
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D.4 Semiparametric estimators

In Supplemental Appendix C.5, we interpreted the last summand of (C26) as Zd(φ0)

times the theoretical least squares projection of edt(φ0) on (the linear span of) ert(φ0),
which is conditionally orthogonal to edt(θ0�0) from Proposition 3 in Fiorentini and Sen-
tana (2007). Such an interpretation allowed Gonzalez-Rivera and Drost (1999) to replace
a parametric assumption on the shape of the distribution of the standardized innova-
tions ε∗

t by a fully nonparametric alternative. Specifically, in a univariate context they
replaced the linear span of ert(φ0) by the so-called unrestricted tangent set, which is
the Hilbert space generated by all the time-invariant functions of ε∗

t with bounded sec-
ond moments that have zero conditional means and are conditionally orthogonal to
edt(θ0�0). The next proposition, which originally appeared as Proposition 6 in Fioren-
tini and Sentana (2007), describes the resulting semiparametric efficient score and the
corresponding efficiency bound for multivariate conditionally heteroskedastic models
whose conditionally mean is not identically zero.

Proposition D3. If ε∗
t |It−1;θ, ρ is i�i�d� D(0� IN�ρ)with density function f (ε∗

t ;ρ), where
ρ denotes the possibly infinite dimensional vector of shape parameters and ρ = 0 normal-
ity, and both its Fisher information matrix for location and scale,

Mdd(θ�ρ)= V [
edt(θ��)|It−1;θ�ρ

]
= V

{[
elt(θ�ρ)
est(θ�ρ)

]∣∣∣θ�ρ
}

= V
{[

−∂ ln f
[
ε∗
t (θ);ρ

]
/∂ε∗

− vec
{

IN + ∂ ln f
[
ε∗
t (θ);ρ

]
/∂ε∗ · ε∗′

t (θ)
}
] ∣∣∣θ�ρ

}

and the matrix of third- and fourth-order central moments K(ρ) in (C23) are bounded,
then the semiparametric efficient score will be given by

s̈θt (φ)= sθt (φ)− Zd(θ�ρ)
[
edt(θ�ρ)−K(0)K+(ρ)edt(θ�0)

]
� (D17)

while the semiparametric efficiency bound is

S̈(φ)= Iθθ(θ�ρ)− Zd(θ�ρ)
[
Mdd(θ�ρ)−K(0)K+(ρ)K(0)

]
Z′
d(θ�ρ)� (D18)

where + denotes Moore–Penrose inverses and Iθθ(θ�ρ)=E[Zdt(θ)Mdd(θ�ρ)Z′
dt(θ)|θ�ρ].

Proof. It trivially follows from expressions (B3) and (C23) in Supplemental Appen-
dices B and C, respectively, that

E
{[

edt(θ��)−K(0)K+(�)edt(θ�0)
]
e′
dt(θ�0)|It−1;θ��

} = 0

for any distribution. In addition, we also know that

E
{[

edt(θ��)−K(0)K+(�)edt(θ�0)
]|It−1;θ��

} = 0�
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Hence, the second summand of (D17), which can be interpreted as Zd(φ0) times the
residual from the theoretical regression of edt(φ0) on a constant and edt(θ0�0), belongs
to the unrestricted tangent set, which is the Hilbert space spanned by all the time-
invariant functions of ε∗

t with zero conditional means and bounded second moments
that are conditionally orthogonal to edt(θ0�0).

Now, if we write (D17) as

[
Zdt(θ)− Zd(θ��)

]
edt(θ��)+ Zd(θ��)K(0)K+(�)edt(θ�0)�

then we can use the law of iterated expectations to show that the semiparametric
efficient score (D17) evaluated at the true parameter values will be unconditionally
orthogonal to the unrestricted tangent set because so is edt(θ0�0), and E[Zdt(θ) −
Zd(θ��)|θ��] = 0.

Finally, the expression for the semiparametric efficiency bound will be

E
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by virtue of (C23), (B3), and the law of iterated expectations.

In the case of the univariate Garch-M model (19), we estimate the model parame-
ters using reparametrization 2 in Section 4. Specifically, expressions (D2) and (D4) be-
come
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and
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Then, a direct application of (D3) yields
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On the other hand, we use again the natural parametrization of the multivariate mar-
ket model in (20). As a result, the Jacobian matrix (C37) in Supplemental Appendix C
remains relevant, so that

sat(θ) = −Ω−1/2∂ ln f
[
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t (θ);ρ

]
/∂ε∗�

sbt(θ) = −Ω−1/2rmt∂ ln f
[
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where Ω1/2 is a matrix square root of Ω.
If we choose the Cholesky decomposition, we can use expression (D14) to obtain
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where F is the transpose of the inverse of LN(Ω
1/2 ⊗ IN)L′

N + LN(IN ⊗Ω1/2)KNNL′
N .
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Finally, it is worth noting that it is possible to avoid the use of explicit Moore–Penrose
generalized inverses in the computation of the correction by exploiting the fact that
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Nevertheless, f (ε∗
t ;ρ) has to be replaced by a nonparametric estimator, which in-

creasingly suffers from the curse of dimensionality as the cross-sectional dimension
N increases. In line with the usual practice, we employ a standard multivariate Gaus-
sian kernel. Once again, we have done some experimentation to choose optimal band-
widths by scaling up and down the automatic choices given in Silverman (1986) because
a proper cross-validation procedure is extremely costly to implement in a Monte Carlo
exercise whenN = 3.

Appendix E: Other results

E.1 Standardized two component mixtures of multivariate normals

Consider the following mixture of two multivariate normals:

εt ∼
{
N(μ1�Σ1) with probability λ�

N(μ2�Σ2) with probability 1 − λ�

Let dt denote a Bernoulli variable which takes the value 1 with probability λ and 0
with probability 1 − λ. As is well known, the unconditional mean vector and covariance
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matrix of the observed variables are

E(εt ) = E
[
E(εt |dt)

] = λμ1 + (1 − λ)μ2�

V (εt ) = V
[
E(εt |dt)

]+E[V (εt |dt)] = λ(1 − λ)(μ1 −μ2)(μ1 −μ2)
′ + λΣ1 + (1 − λ)Σ2�

Therefore, this random vector will be standardized if and only if

λμ1 + (1 − λ)μ2 = 0�

λ(1 − λ)(μ1 −μ2)(μ1 −μ2)
′ + λΣ1 + (1 − λ)Σ2 = I�

Let us initially assume thatμ1 =μ2 = 0 but that the mixture is not degenerate, so that
λ �= 0�1. Let Σ1LΣ

′
1L and Σ2LΣ

′
2L denote the Cholesky decompositions of the covariance

matrices of the two components. Then we can write

λΣ1 + (1 − λ)Σ2 =Σ1L
[
λIN + (1 − λ)Σ−1

1LΣ2LΣ
′
2LΣ

−1′
1L

]
Σ′

1L =Σ1L
(
λIN + KLK′

L

)
Σ′

1L�

where KL = √
1 − λΣ−1

1LΣ2L remains a lower triangular matrix. Given that IN = e1e1 +
· · · + eNeN , where ei is the ith vector of the canonical basis, the Cholesky decomposi-
tion of λIN + KLK′

L, say JLJ′
L, can be computed by means of N rank-one updates that

sequentially add
√
λei

√
λe′

i for i = 1� � � � �N . The special form of those vectors can be
efficiently combined with the usual rank-one update algorithms to speed up this pro-
cess (see, e.g., Sentana (1999) and the references therein). In any case, the elements
of JL will be functions of λ and the N(N + 1)/2 elements in KL. If we then choose
Σ1L = J−1

L , we will guarantee that λΣ1 + (1 − λ)Σ2 = IN . Therefore, we can achieve a
standardized two-component mixture of two multivariate normals with 0 means by
drawing with probability λ one random variable from a distribution with covariance ma-
trix J−1′

L J−1
L , and with probability 1 − λ from another distribution with covariance matrix

(1 − λ)−1KLK′
L.

Let us now turn to the case in which the means of the components are no longer 0.
The zero unconditional mean condition is equivalent to μ1 = (1 − λ)δ and μ2 = −λδ,
so that δ measures the difference between the two means. Thus, the unconditional co-
variance matrix will be λ(1 − λ)δδ′ + IN after imposing the restrictions on Σ1 and Σ2 in
the previous paragraph. Once again, the Cholesky decomposition of this matrix is very
easy to obtain because it can be regarded as a positive rank-one update of the identity
matrix, whose decomposition is trivial.

Thus, we can parametrize a standardized mixture of two multivariate normals,
which usually involves 2N mean parameters, 2N(N + 1)/2 covariance parameters and
one mixing parameter, in terms of λ�the N mean difference parameters in δ and the
N(N + 1)/2 relative variance parameters in KL, the remaining N mean parameters and
N(N + 1)/2 covariance ones freed up to target any unconditional mean vector and co-
variance matrix.

Mencía and Sentana (2009) explained how to standardize Bernoulli location-scale
mixtures of normals, which are a special case of the two component mixtures we have
just discussed in which Σ2 = κΣ1. Straightforward algebra confirms that the standard-
ization procedure described above simplifies to the one they provide in their Proposi-
tion 1.
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E.2 Noncausal ARMA models

Consider the following Ar(2) process:

(1 − α1L)(1 − α2L)xt = μ+ ξt� (E1)

where ξt is a possibly non-Gaussian i�i�d� sequence, α1�α2 ∈R, |α1|< 1, |α2|> 1 but α2 �=
α−1

1 . Higher order process with possibly complex roots can be handled analogously, but
the algebra gets messier. Brockwell and Davis (1987) showed that xt can be written as
the following doubly infinite Ma process

xt = −α−1
2 μ

(1 − α1)
(
1 − α−1

2

)
− (
� � �+ α−2

2 L−3 + α−1
2 L−2 +L−1 + α1 + α2

1L+ α3
1L

2 + α4
1L

3 + · · · ) ξt

α2 − α1
�

which they called mixed causal/noncausal because xt effectively depends on past,
present, and future values of the underlying innovations. Nevertheless, by looking at the
spectral density of xt they also showed that this process has the following purely causal
Ar(2) representation:

(1 − α1L)
(
1 − α−1

2 L
)
xt = ν+ ut� (E2)

where ut is a white noise but not necessarily serially independent sequence, with vari-
ance σ2

u = α−2
2 σ2

ξ and ν = −α−1
2 μ. Thus, the situation is entirely analogous to the well

known multiple invertible and noninvertible representations of Ma processes.
Breidt, Davis, Lh, and Rosenblatt (1991) showed that a non-Gaussian log-likelihood

function based on the assumption that the distribution of ξt is i�i�d� with 0 mean and
finite variance σ2

ξ will be able to consistently estimate the values of the two autoregres-
sive roots that appear in (E1) as well as the true drift and variance of the innovations. In
contrast, a Gaussian log-likelihood function, which effectively exploits the information
in the spectral density of xt , can only consistently estimate the parameters in (E2).

At first sight, it might appear that one cannot apply the procedures we have devel-
oped in the paper to assess the adequacy of the non-Gaussian distribution chosen for
the purposes of estimating the “structural” parameters because the Gaussian pseudo
log-likelihood cannot consistently estimate them. However, under correct specification,
the non-Gaussian log-likelihood function will also estimate α1, α−1

2 , −α−1
2 μ and α−2

2 σ2
ξ

consistently. Therefore, one can easily develop a DWH specification test to check the va-
lidity of the distributional assumption for ξt by comparing the non-Gaussian coefficient
estimators of those “reduced form” parameters with the Gaussian ones. The score ver-
sions of those tests that we discussed in Section 2.1 are also straightforward. As we have
argued in Section 3.7, power gains may be obtained by focusing on ν and σ2

u.

E.3 Additional Monte Carlo results

In this section, we look at the sampling distribution of the estimators we used in Sec-
tion 4 to compute the DWH tests of the univariate Garch-M model and the multivariate
market model.
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Table 1S. Univariate GARCH-M: parameter estimators.

Parameter β γ δ, ϕim ϑi, ϕic η= 1/ν
True value 0�85 0�1 0�05 1�0

Student t12 RML 0�8467 0�0960 0�0506 1�0404 0�0833
(0�0375) (0�0348) (0�0314) (0�4132)

UML 0�8467 0�0959 0�0507 1�0397 0�0815
(0�0376) (0�0350) (0�0315) (0�4125) (0�0276)

PML 0�8464 0�0956 0�0508 1�0420
(0�0392) (0�0363) (0�0324) (0�4331)

Student t8 RML 0�8467 0�0956 0�0505 1�0137 0�0833
(0�0383) (0�0344) (0�0315) (0�3986)

UML 0�8468 0�0959 0�0504 1�0392 0�1232
(0�0381) (0�0343) (0�0314) (0�4077) (0�0276)

PML 0�8460 0�0955 0�0504 1�0439
(0�0423) (0�0384) (0�0333) (0�4539)

GC(0�3�2) RML 0�8461 0�0955 0�0506 0�8706 0�0833
(0�0437) (0�0383) (0�0278) (0�3817)

UML 0�8470 0�0967 0�0502 1�3990 0�3604
(0�0371) (0�0338) (0�0254) (0�5748) (0�0264)

PML 0�8460 0�0956 0�0506 1�0425
(0�0429) (0�0377) (0�0327) (0�4476)

GC(−0�9�3�2) RML 0�8460 0�0956 0�1117 0�8601 0�0833
(0�0436) (0�0386) (0�0358) (0�3848)

UML 0�8475 0�0970 0�1723 1�5853 0�3865
(0�0356) (0�0321) (0�0380) (0�6728) (0�0265)

PML 0�8459 0�0956 0�0511 1�0453
(0�0431) (0�0381) (0�0326) (0�4626)

Note: Monte Carlo medians and (interquartile ranges) of RML (Student t-based maximum likelihood with 12 degrees of
freedom), UML (unrestricted Student t-based maximum likelihood), and PML (Gaussian pseudo maximum likelihood) esti-
mators. GC (Gram-Charlier expansion). Sample length = 2000. Replications = 20,000.

Univariate GARCH-M Table 1S displays the Monte Carlo medians and interquartile
ranges of the estimators. The results broadly confirm the theoretical predictions in terms
of bias and relative efficiency. It is worth noticing that the bias of the restricted (un-
restricted) Student t maximum likelihood estimators of the scale parameter is negative
(positive) when the log-likelihood is misspecified, which suggests that our tests will have
good power for pairwise comparisons involving this parameter, at least for the distribu-
tions considered in the exercise. In turn, the location parameter estimators are biased
only when the true distribution is asymmetric.

Multivariate market model Table 2S displays the Monte Carlo medians and interquar-
tile ranges of the estimators for several representative parameters in addition to the
global scale parameter ϑi = |Ω|1/N . Specifically, we exploit the exchangeability of our
design to pool the results of all the elements of the vectors of intercepts a and slopes
b, and the “vectors” of residual covariance parameters vecd(Ω◦), vecl(Ω◦), vecd(Ω) and
vecl(Ω). Once again, the results are in line with the theoretical predictions. Moreover,
the biases of the restricted and unrestricted Student t maximum likelihood estimators
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Table 2S. Multivariate market model: parameter estimators.

Parameter a b ϑi ω◦
ii ω◦

ij ωii ωij η= 1/ν
True value 0�112 1 2�8917 1�0845 0�3253 3�136 0�9408

Student t12 RML 0�1124 0�9989 2�8702 1�0872 0�3262 3�1215 0�9355 0�0833
(0�1040) (0�1173) (0�1696) (0�0808) (0�0705) (0�2955) (0�2115)

UML 0�1123 0�9989 2�8674 1�0872 0�3262 3�1176 0�9347 0�0810
(0�1041) (0�1174) (0�1815) (0�0808) (0�0706) (0�3043) (0�2117) (0�0280)

PML 0�1124 0�9998 2�8646 1�0873 0�3262 3�1147 0�9341
(0�1066) (0�1213) (0�1807) (0�0849) (0�0738) (0�3125) (0�2200)

Student t8 RML 0�1127 0�9989 2�7652 1�0874 0�3259 3�0077 0�9008 0�0833
(0�1015) (0�1148) (0�1763) (0�0832) (0�0723) (0�2980) (0�2078)

UML 0�1126 0�9989 2�8683 1�0875 0�3259 3�1211 0�9352 0�1233
(0�1013) (0�1144) (0�2088) (0�0831) (0�0718) (0�3301) (0�2171) (0�0304)

PML 0�1126 0�9988 2�8618 1�0877 0�3259 3�1129 0�9318
(0�1075) (0�1219) (0�2085) (0�0927) (0�0803) (0�3649) (0�2391)

DSMN(0�2�0�1) RML 0�1123 0�9995 2�0600 1�0882 0�3264 2�2402 0�6705 0�0833
(0�0803) (0�0912) (0�1989) (0�0975) (0�0853) (0�2945) (0�1886)

UML 0�1125 0�9997 3�5341 1�0878 0�3262 3�8521 1�1545 0�3474
(0�0775) (0�0874) (0�8393) (0�0877) (0�0765) (0�9692) (0�3848) (0�0372)

PML 0�1119 1�0000 2�8483 1�0907 0�3266 3�1071 0�9280
(0�1071) (0�1202) (0�3197) (0�1241) (0�1077) (0�4966) (0�3275)

DLSMN(0�2�0�1�0�5) RML −0�0003 1�0004 2�0275 1�0829 0�3140 2�1962 0�6351 0�0833
(0�0830) (0�0891) (0�1984) (0�0991) (0�0868) (0�2980) (0�1900)

UML −0�0576 1�0006 3�7270 1�0753 0�2986 4�0177 1�1141 0�3616
(0�0831) (0�0854) (0�9916) (0�0880) (0�0763) (1�1239) (0�4204) (0�0373)

PML 0�1119 1�0010 2�8485 1�0908 0�3271 3�1067 0�9295
(0�1065) (0�1204) (0�3152) (0�1252) (0�1097) (0�4948) (0�3306)

Note: Monte Carlo medians and (interquartile ranges) of RML (Student t-based maximum likelihood with 12 degrees of
freedom), UML (unrestricted Student t-based maximum likelihood), and PML (Gaussian pseudo maximum likelihood) estima-
tors. DSMN (discrete scale mixture of two normals), DLSMN (discrete location-scale mixture of two normals). Sample length =
500. Replications = 20,000.

of the global scale parameter have opposite signs, as in the univariate case. Finally, the
location parameters are only biased in the asymmetric distribution simulations. There-
fore, we expect tests that involve the intercepts to increase power in that case, but to
result in a waste of degrees of freedom otherwise.
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