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Notation We use the standard notation for numeric and stochastic dominance. For
two numeric sequences, {a,},>1 and {b,},>1, an < b, stands for a, = O(b,). For two se-
quences of random variables {a,},>1 and {b,},>1, an Sp by, stands for a,, Sp (by,). For a
random vector V, let V9 :=VV — E[)V] be the demeaned vector. Let [N] := {1,2, ..., N},
[T]1:=1{1,2,..., T}, and [j] :={1, 2, ..., d}. Let a A b =min{a, b} and a v b = max{a, b}.

Matrix and vector norms For a vector v € R?, denote the ¢,-norm of v as ||v||2 :=

1/Z?lzl v;f, the ¢;-norm of v as |v|; = Z;izl |vj], the £o-norm of v as [v]e =
maxj <j<q |vj|, and the £o-“norm” of v as ||v[p := Z;’Zl 11y, 203 Denote a unit sphere in
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R? as 471 = {a € R?: ||a|| = 1}. For a matrix 4 = (a;;) € R¥*?, let its operator norm
be || All2 = sup,cge-1 | Aall2, the elementwise norm be || Al = max;<; j<q |a;i|, and the
maximal ¢; -row-norm:

d
14111,00 = max > |ayl.
lsj=d =]

Empirical process notation In what follows, we use the standard empirical process no-
tation. For a generic measurable function f : W — R and a generic sample {{Wit}tT:ﬁfi T
where W;,’s take values in W, define the empirical expectation

N T
1
ENTf(Wit) ==Y Y f(Wir)
NT i=1 r=1

and the empirical process:

GNTf(Wit) =V NTENT[f(Wit) — Ew, f (Wir)].

APPENDIX A: TOOLS: STRASSEN AND BERBEE COUPLINGS. IMPLICATIONS FOR
CROSS-FITTING

A.1 Strassen’s coupling: Weak and strong form via Dudley-Philipp

Let S be a Polish space and Pz be alaw on § x S, with marginal laws Pz on S and Py
on S. Let (), B, P) be a probability space and Z be a random variable on () with values in
S and law £(Z) = Pz. Assume that (), B, P) has been extended to carry a random vari-
able U on (), independent of Z, with values in [0, 1] and law U (0, 1). The total variation
norm of a signed measure v on the Polish space T is defined as

Ivirv="sup w(F).
F closed
The total variation distance between laws P and Q defined on the Polish space T is de-
fined by taking v = P — Q in the definition above.
We also make use of the following Strassen’s weak coupling result (e.g., Villani (2007,
p. 7)):
: * * * 1
min {P(Z* £ W*): L(Z) = Pz, LW*) = Pw} = 5 IPz = Pwllv, (A1)
where minimization is done over space of random variables Z* and W* defined on the
probability space (Q, B, P). Note that the problem above is the optimal transportation
problem for 0-1 cost; see Villani (2007) for discussion. The above is a special case of
Strassen’s original result; Schwarz (1980) (Theorem 1) provides another proof of (A.1).
We now recall the following result.
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LEMMA A.1 (Strong Coupling; Lemma 2.11, Dudley and Philipp (1983)). Let S and T be
Polish spaces and Q a law on S x T, with marginal Pz on S. Let (Q, B, P) be a probability
space and Z be a random variable on Q) with values in S and law L(Z) = Pz. Assume that
there is a random variable U on (), independent of Z, with values in a separable metric
space R and law L(U) on R having no atoms. Then there exists a random variable W on
Q with valuesin T and law L((Z, W)) = Q.

This result is quoted with minor adaptation of notation. This lemma implies the
strong form of Strassen’s weak coupling (A.1) as stated in the following lemma.

Lemma A.2 (Strong Form of Strassen’s Coupling). Given the setup above with a given
random variable Z, there exists a random variable W taking values in S, defined on the
same probability space, and having law L(W) = Py such that

1
P(Z#£W) = E”PZ — Pwltv. (A.2)

Proor. Strassen’s weak coupling implies that there is a pair of random variables
(Z*, W*) with law Q and marginals Pz and Py such that

1
P(Z* #W") =S 1Pz = Pwlv.

Application of the Dudley-Philipp lemma with § = T and U taken to be uniform random
variable implies that for the given Z there is a pairing random variable ¥, such that law
of (Z, W) is Q. Therefore,

1
P(Z#W)=P(Z"#W")=SIPz = Pwlv. O

A.2 Independence coupling

Consider a special case of the setup above with § = S} x S» and T = §, where S; and S are
Polish spaces, and where Z = (X, Y) is a pair of random variables such that £(X) = Px
onS;and L(Y)=Pyon Sy, and L(X,Y)=Pyx,y.

LEmma A.3 (Strong Coupling With Independence via Strassen-Dudley-Philip). Con-
sider the setup above. We can construct Y and X that are independent of each other with

laws L(X) = Px and L(Y) = Py such that

- = 1
P{(X,Y)# (X, Y)} = EHPX,Y — Px x Py||v.

Prookr. In the previous lemma, take Z = (X, Y) and W = (X,Y), and note that Py =
PX X Py. O
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A.3 Berbee coupling extended
Let (X, Y) be a pair of random variables taking values in the Polish space $; x S, as in
the setup above. Define their coefficient of dependence as

1
v(X,Y)= EHPX,Y — Py x Py|1v.

This coefficient vanishes if and only if X and Y are independent.
The following lemma is a minor extension of Lemma 2.1 of Berbee from real-valued
to Polish-space valued random variables.

LemMA A.4 (Berbee Coupling on Polish Spaces). Let X = (X;)__, be a collection of ran-
dom variables taking values on the Polish space S = (S1 x --- x S,,), and defined on the
same probability space (£}, B, P). Define for 1 <i < n,

YD = y(Xi, (Xig1, ..., Xn)).

The probability space can be extended so that there exist a collection of random variables
X = (X, i)i_, that are mutually independent, such that each X; has the same law as X;
and

P(X #X) <y® ... 407D,

Prookr. Assume that (€, B, P) has been extended to carry a random variable U on (),
independent of X, with values in [0, 1] and law U (0, 1).

1. Application of strong form of Strassen’s coupling in Lemma A.2 implies that one
can construct X as in the statement of the lemma such that

~ 1
P(X #X)=IPx — Pxl.

2. (Identical to Berbee). To prove the claim of the lemma, we have to estimate the
right hand side. If X, Y, and Y are random variables, with Y and Y having values in the
same space, then

IPx,y =Py ¢l =IPx,y — Px x Pyltv +IIPx x Py — Px x PyllTv
=2y(X,Y) + [Py — Pyllv.

Applying this rule successively, one obtains

IPx;,.. x, — Px; - xPx,|l

<yW 4 IPx, .x, — Px, x --- x Px,|

<<y D), O

CoRrOLLARY A.1 (Berbee’s Coupling for Panel Data). Let {X;1, X2, ...,XiL}f\;I be real
random matrices of possibly distinct dimensions. Suppose the sequences (X1, Xi2, ...,
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XiL) are independent over i. Foreach i, (Xn, Xi2, - .., XiL) is B-mixing whose coefficients
are bounded as

sup  sup  Y((Wir, ..., Wiim1), Wig, ..., WiL)) <e. (A.3)
1<i<N 1<I<L-1

The probability space can be extended with random variables X, distributed as X;; such
that X l*, are independent over i, |, and

P(Xi # X}, for somei,[) < N(L — 1)e. (A.4)

This follows immediately from the union bound and Lemma A.4.

A.4 Applications to cross-fitting

Here, we recall the setup induced by the NLO construction given in the main text. Let
M. and M} be two NLO subsets of time indices {1,2, ..., T}, for k =1, ..., K. Define
the data blocks
N
Bk=UBik, Bir = {Witttem,;
=1
’ (A.5)
N
qc _ qc qac _ .
B = UBik’ By = {Wlt}te/vtz“
i=1
By construction, the time periods in M and Mzc are separated by atleast Ty, > Tyjock =
LT/(K — 1)] time periods.

LEmma A.5 (Approximate Independence of Separated Chunks). Suppose Assump-
tion 4.1 holds with

Y(@) = sup y({Wikici, Witkinirg) < Cuexp(—kq) (A.6)
i<T,i<N

and log N/ Tyjock = 0(1). Then there exist random elements B and B} such that (1) B}
and By, are equal in law, BZC* and BZC are equal in law, (2) B,’z and BZC* are independent,
and (3) the event

Everbee = {(Bk, B®) = B}, BI™), forallk =1, ..., K]} (A.7)
holds with probability 1 — o(1), NT — oo.
Prook. Invoking Lemma A.3 shows that the required variables exist and obey
P((Bx, BY) # (Bt B)) = ¥(Bk, B() = NCicexp(—«Tplock)-
Invoking union bound over the partitions k =1, 2, ..., K gives
P((Bx, B)) # (B}, B}"), forsome k =1, ..., K) < KNCyexp(—kTplock),

since K is finite and log N / Tyjock = 0(1) gives KN C exp(—kTpiock) = 0(1). O
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CoroLLARY A.2 (Convenient Rate Implications). Consider the setup above. Suppose
there exists a sequence Vit such that for some (B, BZC*) is Op(VnT) for some mea-
surable function . Then (B, B,?C) is Op(VnT).

Proor oF COROLLARY A.2. Consider any sequence of constants such that {y7 — oo.
Then

P((Bx, BZC) > (NTVNT) < P((Bx, B}?C) > INTVNT N Eperbee) + P(Eferbee)
Sii P(lﬂ(Blt’ Bgc*) > ZNTVNT) + P(ggerbee)
—iil (1),

where (i) follows from union bound, (ii) holds since s (B, BZC*) = (B, BZC) on Eqherbees
and (iii) is assumed in the statement of lemma. O

Consider the following setup. We assume all spaces to be separable and complete.
Consider the parameter space 7 with elements 7, typically a space of functions. Con-
sider also a measurable function (the estimation map) b9¢ — 7(b49¢) that maps wT-q+1
to 7. Here, W is the metric space containing realizations of Wj; for all i and ¢. Let

o~ —

Nk = n(BZC) denote an estimator constructed on the data Bgc. Let b +— ¢(b; ) be an-
other measurable mapping, indexed by 7 that maps W9 to R%. We assume that the
composition map (b, b9¢) > ¢(b; 17(h1°)) is measurable.!

COROLLARY A.3. Suppose there exists a sequence of sets {Tn 1} € T obeying the condi-
tionsas NT — oo: (A) P(my € 7_'N,T) =1-0(1) and (B) for any sequence {qnt} € 7_'N,T,
¢ (B, an1) = Op(VNT). Then ¢(By, mi) = Op(VnT).

ProOF OF COROLLARY A.3. Invoke Lemma A.2 with
‘p(b’ ch) = ¢(b’ ﬁ(ch))l{ﬁ(bqf)efN,T}'
Union bound implies
P(b (B, k) = InTVNT) <P(d Bk, M) = EnTVNT Nk € TN, T) + PRIk € TN, T)
=P(4(Br, BY) = tntVNr N1k € TN, 1) + Pk ¢ TN, T)
< P(¢ (B, BZC) > UnTVNT) + 0(1),
where the last inequality holds by Condition A. We have that
P(4(By, BY®) = tnrVnt) < P(¢ (B, BY™) = entVnr) + 0(1),
from the previous proof. By Condition B,
P(y (B}, BI™) > tnrVnt | BY)
= P(o(BL A(BE N A(BL) € Tar) > tweVivr | B) = op(1).

10therwise, can use outer probability measures to work with the bounds below.
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Therefore, using LIE
P(y(Bg, BY) = tnTVnt) = E[P(4(By, BY) = entVaTIBY )] = 0(1),

where the final conclusion holds by the boundedness (and, therefore, uniform integra-
bility) of the integrand. d

LemMmA A.6 (Bounds on Cross-Fit Sample Averages). Let w +— A(w, n) be a generic (mea-
surable) matrix-valued function defined on VV, indexed by the parameter n € T. Define

N

Bax(n):=(NT)™' Y Y Ew, AW, m), (A.8)
i=1te My
N

Va(n):=(NT) ™D Y [AWi, m) — By, AWy, m)]- (A.9)
i=1 te My

Suppose there exist sequences of constants { ﬁT and ng so thatas NT — oo for each k =
1,..., K:

(1) P eTn,1)=1—0(1).

(2) For any sequence {nNT} € 7_‘N,T and any norm || - ||,

| Bak(n)|| = O(&R 1), IVax v | Sp (Ex7)-
Then
N K
'Hwnl SN Y A || <0 g+ ).
i=1 k=1teMy
In our case, we will either use || - || = || - |0 (SUp-norm) or || - || = || - |2 (operator norm).

Proor orF LEMMA A.6. We invoke Corollary A.3 with ¢ (B, 1) := B4 (n) + Vax (7). The
conditions (A) and (B) are directly assumed in Lemma A.6 as conditions (1) and (2), re-
spectively. Therefore, for each k < K,

1B.ax (%) + Var ) ||| Sp (Z}\/]T + 511\3;7)-

We next note that with probability converging to one,

N K K
T ~ ~
(NTYTD 30 AWV i) = 0 3 [Bak(i) + Vax (0]
i=1 k=1teM; k=1
Since Ty =< T, the claim holds by the triangle inequality and the union bound. O

APPENDIX B: TooLs: TAIL BOUNDS FOR MAXIMA OF SUMS FOR WEAKLY DEPENDENT
PANELS

Here, we collect and develop some useful lemmas, some of which can be of interest.
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B.1 Properties of products of sub-Gaussians

Arandom variable £ is (02, a) -sub-exponential if
Ee < eM7%/2 a5 VA: A <a”l. (B.1)

A (o2, 0)-sub-exponential is o-sub-Gaussian. Lemma B.2 states concentration inequal-
ity for a sub-exponential martingale difference sequence (m.d.s.).

Lemma B.1 (Properties of Sub-Gaussian Random Variables). (1) Let ox, oy > 0. If
X is o%-sub-Gaussian and Y is o%-sub-Gaussian, then X + Y is (ox + oy)?-sub-
Gaussian. (2) Let {Xm}%:1 be a sequence of o?-sub-Gaussian random variables. Then
@a) YM_| X, is (M20?)-sub-Gaussian and (2b) max) <<y Xm <p (o/logd). (3) Fur-
thermore, Z%Zl X is (Ma?)-sub-Gaussian if {Xm},}‘,’l’=1 are independent. (4) If Y €
[—B, Bl a.s., Y is B>-sub-Gaussian. (5) If X is 0)2( -sub-Gaussian conditional on Y, and
Y € [-B, Bl a.s., then X - Y is 0% B?-sub-Gaussian. (6) If X, are &2-sub-Gaussian for
n=1,2,...,N (N finite) and m = 1,2, ..., M, then max|<pm<p [[*_; | Xmn| <p ((26)V x
logh2(MN)).

Proor oF LEmMmA B.1. We prove (1). By Holder inequality, for any p, g in [1, o) such
that1/p+1/g=1,

EeAX+Y) < (EeApX)l/P(EeAqY)l/q < N /2(poi+qoy) (B.2)
Plugging p = (oy + ox)/0ox and g = (oy + ox) /oy into (B.2) gives (4.3) with ¢ = (ox +
oy)?. We prove (2a) by induction over M. The statement holds for M = 1. The inductive
step follows from (1) with ox = (M — 1)o and oy = ¢. (2b) is Theorem 1.14 in Rigollet
and Hutter (2017). The statements (3) and (4) are Theorem 1.6 and Lemma 1.8 in Rigollet

and Hutter (2017), respectively. To see (5), observe that E[.X | Y] = 0 a.s. by assumption.
LIE gives

Ex y[X -Y]=EyE[X |Y]Y =0.
Furthermore,
EYE[eAXY | Y] < EYe)\Z(TZYZ/Z < e)\ZUZBZ/Z,

which gives the result. (6) Invoking union bound for any ¢ > 0,

)

M N ] ]
< 3 3 P( Xl > V) <2MNe 2
m=1n=1

N M
P<1§II;1¥M [ Xmnl| > t) = Z P(
n=1 m=1

N
[]Xmn
n=1
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Taking ¢ := C(25)N log"/2(MN) and setting C — oo makes the R.HLS. above o(1). Con-
clude that

N \ 7 N7 -
max [ [ 1Xmnl Sp ((25)Y logV/2(MN)). O

1<m<M
n=1

B.2 Tails bounds for maxima of sums of martingale differences

LemMaA B.2 (Martingale Difference Sequences; Theorem 2.19 in Wainwright (2019)).
(1) Let {(&m, Pm)}M_, be an m.d.s. obeying

E[e)‘fm | D] < A2 g,

for any X such that |A| < a~ L. Then the sum Zf‘,{zl Em is (0°M, a)-sub-exponential and

satisfies concentration inequality
2 2
) {2e—’ /M%) 0 <t < Mo?/a,
>t <

M
P Em| >
(mX::I " 2¢1/(2a) t>M0'2/a.

(2) Foreach j:1<j<d,let{(&{m), CIDm)}%:1 be an m.d.s. obeying the conditions above with
the same parameters (a-z, a). Then

M logd—12M/(202) 2

Z 2e%8 , 0<t<0a,
P(‘ N n - t) B { o7,

m=1 o0

zelogd—tM/(2a)
ProoF oF LEMMA B.2. Lemma B.2 is essentially Theorem 2.19 in Wainwright (2019). Re-
placing £ by c - ¢ in (B.1) shows that c - ¢ is (¢?¢?, ca)-sub-exponential. O

(B.3)

t> 0'2/a.

LEMMAB.3. Letl <i<Nandl <t <T betheunitand thetimeindices. Denote the index
mas

m=m(i,t)=T((H—-1)+1¢. (B.4)
Consider a sequence
ém=ViyUy, m=1,2,...,M=NT. (B.5)
Under Assumption 4.3,
A {En¥M_| is a martingale difference sequence with respect to natural filtration:
Elém | Pm—1]1 :=El&m | &1y ---) Em—11=0, VYm=1,2,...M.

B Given a large enough constant Cyy large enough, there exists NT large enough such
that the maximal norm of the empirical moment vector obeys

P(IEx7VitUitloo > Cyuv/logd/NT) <2/d = o(1). (B.6)
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Proor or LEMmMA B.3. By conditional sequential exogeneity (2.4) and independence
over i,

E|:Uit U VieUir, U{(Vjt» th)tT_l}:| =0 Vir.
t<t' J#I
Therefore, the martingale difference property A holds. Union bound and Assumption 4.3
imply
P(Win, Uil > 1) < P(Wir j| > V1) + P( Uil > V1) <2¢7/7".
By Theorem 2.13 in Wainwright (2019), V, ;U is (02, a)-sub-exponential for some

o, a > 0 that do not depend on j, N or T. Since the cut-off point ¢?/« in (B.3) does
not depend on N, T, for Cy iy large enough and sample size NT,

t:=Cyy/1ogd/NT < o?/a.

The bound follows:

P(IEn7VitUitlloo > Cruv/logd/NT) <2/d = o(1). O

B.3 Tail bounds for maxima of sums of sub-Gaussian products

LeMmmA B.4 (Tail Bounds for Weakly Dependent Matrices, {-Norm). Suppose Assump-
tion4.1(1) holds. Foreach j=1, 2, ..., d, let ¢ (W) be centered o?-sub-Gaussian random
variable for all i, t where o = o(N, T) and ¢ j(W;;) can depend on N, T. Then

N T

o -1 (Wil <
I1Sloo 1= max |(NT) ;‘;d)’(%) <Spoy/log(NT)logd/NT. (B.7)

REMARK B.1 (Triangular Arrays). Note that all variables and o can be indexed by (N, T),
but we omit the indexing to keep the notation light. Thus, this lemma and all other lem-
mas stated below apply to triangular arrays.

ProoFr oF LEMMA B.4. Let g be the block size such that1 < g < T/2 andlet L = [T/2q].
Define the odd blocks

Bii—1) =W, ci-2)g+1, Wi 2i-2)g42) - - - Wi, 21=2)g+¢)» 1=1,2,..., L, (B.8)
the even blocks
Bian =W, 21-1)g+1, Wi, 21-1)g+2> - - -» Wi 21-1)g+4),  1=1,2,..., L, (B.9)
and the remainder block, which can be empty, as

Bir == Wi 2Lq+1, Wi2Lg+2) - -» Wi, T]. (B.10)

)
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Note that {B;2;_1)}-_; obeys (A.3) and {B;(;}- | obeys (A.3) with e = y(q). Let By, be
the Berbee copy of B;»;_1). Define the Berbee event

I = {B;'k(Zl—l) = Bi(z1—1 forall i, 1}.
Likewise, let B;‘(Zl) and 7, be the analogs of B;‘(Zl_ n and Z; for even indices. Define the
blockwise sum
1=(21-2)q+q
d(Bjp_1)) = Z o (W), (B.11)
1=(21-2)q+1
N L
Saa(@) == (NT)™! ZZ(]“)(B?(ZI—I))' (B.12)
i=11[=1

Let Sgyen (q) be the analog of S? , ,(¢) for even indices. If T # 2L g, the remainder block is

nonempty, in which case define

T
b(Bi):= Y. S, (B.13)
t=2Lg+1
N
Srem(q) == (NT)™" Y " b (Bi). (B.14)

i=1

On the event 71 N Z,, the union bound gives

18100 < ||S(>§dd(q)Hoo + ”S:ven(q)”oo + ”Srem(q)”oo' (B.15)
Thus,
N L
P(IISlloe > 31) < P( YD ¢Biay)| = t)
i=1[=1 00

N L

Y- d(Bian)

i=1[=1

N
+P< zt)—i—P( > ¢(Bir)
0o i=1

s (@) 1s (NT)"2(NL)q?0? < (q/NT)o?-sub-Gaussian by Lemma B.1;
similarly, for each j, Seven; (@) is (/N T)o?-sub-Gaussian. Note that here the depen-
dency on L is linear and not square, because the Berbee blocks are independent. For
the remainder block, for each j, Sremj(q) is (NT)™?(N)g?0? < (¢/NT)o?-sub-Gaussian
since ¢ < T by Lemma B.1, where we use only independence across i. Since S7, 4 (@)
is (¢/NT)o?-sub-Gaussian for each j, 157 44(@lloc SP 0y/qlogd/NT by Lemma B.1(2b).
Likewise, [|Srem(q)llcc Sp 0v/qlogd/NT by Lemma B.1(2b). Given the parameter « in
mixing coefficient (4.1), we set block size g to be

> t) +2NLy(q).
o0

For each j, S

q=|(2/k)1og(NT)|. (B.16)
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Invoking the bound (4.1) in Assumption 4.1 gives

P(Z{) + P(Z5) < 2N(L — 1)y(q) < (2NT/q)¥(q)
<2(NT/@)(NT)*=0((NT) ') =0(1), NT — oo,

which implies (B.7). O

The following is an extension/clarification of a useful lemma due to Kock and Tang
(2019).

Lemma B.5 (Concentration of Products Of Sub-Gaussian Random Variables With Inde-
pendent Blocks). Suppose the random variables Z,, ,», ; are uniformly &% -sub-Gaussian
asin (4.3) forn=1,2,...,N, (N > 2 is fixed and finite), m=1,2, ..., M,v=1,2,...,V,
and j=1,2,...,d.Suppose Z, m, v,,j, ANA Zp, m, v, j, are independent as long as my #
my regardless of the values of other subscripts. Then

N N

Hanvj <CA1_[0'n;

n=1

max E
j,v,m

for some positive constant C 4 that depends on N and with probability approaching 1,

V - N
max | (MV)™1 ) Z(]‘[ Znmyv,j — E]‘[anv,) < Cyylog"*t@vy/m[]a
=)= m=1v=1 \n=1 n=1

for some positive constant Cy that depends only on N.

LEMMA B.6 (Concentration of Products of Sub-Gaussian Random Variables Under Weak
Dependence). Suppose Assumption 4.1(1) holds, and let ¢,;(-) : W — R be a deter-
ministic function. Suppose that ¢,j(W;,) are uniformly o,-sub-Gaussian as in (4.3) for
n=1,2,...,N (N > 2 is fixed and finite) and j =1, 2, ..., d and any i, t. Then

N
[1‘[ qon,-%)}
n=1

for some positive constant C 4 that depends on N and with probability approaching 1,

(NT)~ IZZ[];[ Pnj(Wit) — [ﬁ gon,-(%)ﬂ‘

max

N
<C 071, B.17
may < Aﬂon (B.17)

ISlloo := max

i=1 t=1Ln=1 n=1
i _ N
< Cy\/logN "1 (d1og(NT))log(NT)/NT [ [ 6. (B.18)
n=1

for some positive constant Cy that depends only on N.



Supplementary Material Inference on heterogeneous treatment effects 13

ProoF oF LEMMA B.6. Define

N
d
dWir) ={d;(Wid}iy,  jWie =[] enj(Wir).
n=1
Let the block size ¢, the odd blocks, even blocks, and remainder blocks, and events 7;
and 7, be as defined in the proof of Lemma B.4. Likewise, let St aa(@) be asin (B.11), that
is,

t=(21-2)q+q N L
b (Bjy_1)) = Z o(Wi), Sodd (@) = (NT)_lzZ‘f’ i)
t=(21-2)g+1 i=1[=1

Si.en(q) beits analog for the even-numbered blocks, and S}, (¢) be as in (B.13). The first
claim (B.17) is immediate from the previous lemma. Lemma B.5with L >2and M = NL
and V' = g implies that w.p. 1 — o(1),

N L
(NLCI)AZZ Biy_1y) —Ee(Bip 1))}

i=1 =1

IS5aa(@ |l == (Laq/T)

[e.¢]

< (Lg/T)Cy (Iog" ' (dq)/NL) < €y (v 1og™+ (dg)q/NT),

where (i) follows from L = |T/2q] < T/2qand L > |T/2q] > T/2q — 1 > T/4q. A similar

bounds holds for S%,.,(9). If Trem # 0, Lemma B.5 with M = N and V' = Tiem < ¢ implies
thatw.p. 1 —o(1):

N

(NTrem) ™" ) _(¢(Bir) — Be(Bir))
i=1

”Srem(Q) ”OO = Trem/T

o0

< Ttem/TCy (\/lOgN+1(dTrem)/N)
< 0/ TCy (y1og" 1 (dg)/N).

Plugging g>/NT? < q/NT into the R.H.S. above gives the bound CV(\/logNJrl (dq)g/NT).
Let NT be large enough so that L = |T/2¢q] > 2 and (2/«) < log(NT) so that g <
log?(NT) and dq < (dlog(NT))2. Collecting the bounds gives (B.18). Adding up the
bounds and plugging choice of ¢ = (2/k)1log(NT) as in (B.16) and noting that L =
T/2q] > 2 for T large enough gives (B.18). d

CoroLLARY B.1. Suppose Assumption 4.1(1) holds. Suppose Zi ,i; and Zs n;; are d-
vectors obtained as (measurable) transformations of Wj;, whose entries are uniformly &%
and 53 -sub-Gaussian forn=1,2, ..., N. Let U;, be uniformly 5%-sub-Gaussian and g > 0
be a finite power. Then

N
2,
E |:1_[ Zl,nithZ,nitjUitgi|

n=1

max max

X m < Cq(a1320%)", (B.19)
1<k,j<d it
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max
1<k, j<d

N T[N N
— 2 2
(NT)1Y ) [H Zy itk Z2,nii U — E[H Zl,nithZ,nitjU,'tg:|:| '

i=1 t=1Ln=1 n=1

< Gy (r1a252¢)" (\/ log?V+28+1 (@2 og(N T)) log(NT)/NT). (B.20)

REMARK B.2. Suppose Assumptions 4.1 and 4.3 hold. Invoking (B.19) with N =1 and
Zy,it = Z»,i = Vi implies for some finite o < oo,

max| BV V|, < maxEVy; < op.

Likewise, Assumption 4.3 implies for some finite oy < oo,

supE[UZ |Vi] <oy as.
it

B.4 Some technical lemmas

Here, we provide technical extensions of the results in Kock and Tang (2019), keeping
the notation as in the original Kock and Tang (2019) and references therein.

LEMMmA B.7 (Theorem 2.1 in Fan, Grama, and Liu (2012), Proposition E1 in Kock and Tang
(2019)). Let a € (0, 1). Assume that (X;, F;)}_, is a sequence of supermartingale differ-

2a
ences satisfying sup; E[eX1l'"*] < C for some constant C; € (0, ). Define Sy := X, X;.
Then, forall e > 0,

P( max Sj > ne) <Cl(a, n, e)e_(e/“za”a,

1<k<n
where
l-a
1 1 /31—a)\ «
Cla,n, €):=2+35C | —— + —(=—— ,
(e, €) * 1|:161_“(n62)a * n62< 2« ) i|
LEMMA B.8 (Proposition E2 in Kock and Tang (2019)). Let « € (0, 1). Assume that
20
(Xi, Fi)i, is a sequence of martingale differences satisfying sup; E[ePXil =] < ¢ for
some positive constant D, where C) > 1 can change with the sample size n. Then, for all
e>1//n,
n
P( ZXi

i=1

> nE) < ClA(a)e KED" K = (D% 14)%,

where

l1-a
L 1 3(1-a)) @
A_A(a)—2+35|:161a+< o ) ]

Lemma B.8 restates Proposition E2 in Kock and Tang (2019) with explicit constants
in tail bounds.
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Proor. Note that for some positive constant D,

n n n
P(in > ne) = P(ZDEJ‘X,- > nDlZOtae) = P(Z Y; > n8>,
i=1 i=1

i=1

where Y; := D% X ;and 6 := D% . Now (Y3, is a sequence of martingale differences

2a
-

elYil'=*1 < C1. Invoking the preceding theorem, we have

satisfying sup, E[

n
P(Z Yi> n8> < Cla, n, §)e~ 9",

i=1

(—=Y;)?, is also a sequence of martingale differences satisfying the same exponential
moment condition. Thus,

o5 oe) o

n
2_Xi
i=1
l1-a 1-a 2a ,a 20,
=2C(a, n,DTe)e_(D 2 e/ ) A()e KT

n

>

i=1

> nS) <2C(a, n, §)e"¥/H*n"

where we can select

l1-a
a

A= Aa) =2+35[16}a + (3(1 ﬂx))}

2a

and K as defined above. O

The following lemma is inspired by Proposition E3 of Kock and Tang (2019). The
difference is that the constants are made explicit to make the results applicable to arrays;
and part of the proof was replaced by another argument (as we were not able to follow
one step in their proof).2

LemMA B.9. Suppose we have random variables Z,;, ; uniformly (K, crlz) > 0 sub-
Gaussian for 1 =1,...,L (L > 2 fixed),i=1,...,N,t=1,...,Tand j=1,..., p, that
is,

P(|0'lel,t,,~,j| > 8) < Kexp(—ez),

and Zy, ;, 1,,j, are independent as long as iy # i regardless of the values of other subscripts.
Then we have that (1)

maxE
It

L
l_[ Zli,j
I=1

2KT’s proof uses the inequality (x — (y A x))%/L < x?/L — (y A x)%/E, for x > 0 and y > 0. This inequality is
not true (e.g., with x = 10, y =1, L = 4, the inequality implies 3 < 2.163), so we changed the middle part of
the proof; the end result is preserved; none of conclusions in KT are affected.

L
< (L'(log2) ' 2(1+ K)'2) [ T,
=1
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and (2) with probability 1 — A'(pT)~1/2,

B e e o

for M > M’, and some positive constants A" and M’ that only depend on L and K.

max
l<j=d

Proor. Hoélder’s inequality gives

L L ;
[To ' Z1ini| < ???H(EVTI_IZIJJ,AL)Z’
=1 ’

=1

max E
it

= L!(log2)” “2Hffz 'Z1inil,, < Liog2) 21+ K)V2 =: 4,

where the first two inequalities are from van der Vaart and Wellner (1996, page 95) and
the third inequality from Lemma 2.2.1 in van der Vaart and Wellner (1996). Thus,

L

1_[0'1 let]

maxE

: < (L'(log2) (1 + K)!/?) =: A.
], ,l

This implies the first claim, after multiplying both sides by ]_[ZL=1 a;. Let

L L
-1 -1
Xiyf,jzl—[Ul Zl,i,t;j_E|:l—[Ul Zl,i,t,j:|-
=1 =1

>6)+p(

P(o7 1 Zi,j1 = eV/F) + 1(e < 4)

For every € > 0,

)

l_[‘]'[ tht]

=1

1
E]_[a, Zyini| =
=1

(|Xtt]|>25 (

~
Il

1

Ke <" 1 1(e¥/h < 4%/T)

IA

2/L

N

Ke €' 4 A o=t o€ (K':= (LK + eAz/L)).

IA

Let

1 T L L
-T Z(H O—l_lzlrivl)j - E|:1_[ Uz_lzl,i,t,j:|)-
t=1 \/=1 I=1
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For every € > 0,

2/L

P(1X ;| > 2€) < P( max |X;, | > 2e) <TK'e™®
1<t<T

Consider some positive constant D < 1, then as van der Vaart and Wellner (1996,
page 96), using Fubini and change of order of integration:

DIX; :/212/L lx/2/2/E Ds o L
E[e”1 %0 ]= De?* dsP(dx) +1= De™*P(|X; j| > 2s™/%)ds + 1.
xeR 0

This is further bounded by

1-D

o0 TK'D K'D
f TK'DeP=Ds gg+ 1 = o+ 1 < BT; (B = + 1).
0

Then we can use independence across i to invoke the previous Lemma B.8 with a =
1 _ 1
1 and Cl —BT, for e > \/_ﬁ,

{

for positive constants 4" and K” that depend only on K, L, and D.
Setting

N T
Z Xit,j
1

i=1 t=

1
> 2Ne> < A'Te K'(€@N)IHT

\/M(log(pT))LJrl

N

for some M > 1, we have

N T
|55 3 K,

L "
> 2Ne) < pA'Te K" @NET g pT)=K"Mis

Therefore, with probability 1 — A’(pT) XM T,

)L+1

max <2M< M))
N

NTZZ(X”,)

i=1t=1

for any M > 1. Setting M large enough such that

kM 1

L+1 2’
guarantees that the bound holds with probability at most A’(pT)~!/2. The bounds can
be then be restated as in the statement of the theorem. O
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APPENDIX C: TooLS: HIGH-DIMENSIONAL CENTRAL LIMIT THEOREMS FOR WEAKLY
DEPENDENT DATA

Let {Xn}"_, be a weakly dependent martingale difference sequence (m.d.s.) with re-
spect to natural filtration. Define its B-mixing coefficient,

‘)’X(CI) = Sup 7((X1; ey Xm—lr Xm)r (Xm+qr Xm+q+lr .o ))

m<M

The scaled sum
M
Sy =M"1/2 Z Xom
m=1
has the variance

M
Sgi=M"Y EXnX),. (C.1)
m=1

The distribution of the scaled sum over the cubes can be approximated by the Gaussian
distribution N (0, 25) over the cubes, as shown in the lemma below.

We will introduce the following notation. For some numbers 7 = fy7, § = gnT, and
L =|M/(q+7)], define Bernstein’s “large” and “small” blocks of size g and r:

P={-1(@+A+1,....,0d-1D@G+"N+q}, [=12,...,L,
O ={U-D@G+N+1+q,...,[(g+7)}

and let
M
Sl = Z Xm, U[ = Z Xm, UL+1 = Z Xm-
meP; meQ,; m=L(g+7r)+1

Denote

L L

Spi=(Lg) 'Y ESS; =LY > EX,X,, (C.2)

=1 =1 mePI

and observe that
L+1

Sg=(Lg/M)2p+M~' Y EUU,.
=1
The following result is useful both in the proof below and also for performing Gaus-
sian inference, where we replaced unknown variance-covariance matrix by an estimated
one.
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Lemma C.1 (Comparison of Distributions). Let X ~ N(0,2x) and Y ~ N(0, 2y) be cen-
tered normal d-vectors, and let Axy := |Zx — 2y | co. Suppose min; < j4(2y);; > 0. Then

sup|P(IX lloo < 1) = P(IIY | < )| < C'(Axy log?(2d)) ', (C.3)

t>0 -

where C' > 0 depends only on min; <j¢(2y)j; and max; <j<q(Zy)j;.

Lemma C.1 follows from Proposition 2.1 in Chernozhukov, Chetverikov, Kato, and
Koike (2019) for vectors X = (X, —X)and Y = (Y, —Y) and

[ =2x 2 [ 2y 2y s
X_<_2X EX)' Y_<_2Y Ey)’ 2% — vl = Axy.

Another result is the following anticoncentration property. This result is useful for
showing that linearization errors do not impact the behavior of the key statistics. The
statistics are approximate means, namely averages of some centered influence functions
plus linearization errors.

LEMMA C.2 (Anticoncentration). Let X = (X1, X2, ..., X3) ~ N(0,2x) be a centered
Gaussian random vector in R?. Assume min;<j-¢(Zx)jj > 0. Then

supP([I Xlloo — t| < €) < Cey/1 VIog(2d/e), (C.4)
teR

where C > 0 depends on miny <j4(Zx) jj and max; <j<q(Zx) ;.

Lemma C.2 follows from Corollary 1 in Chernozhukov, Chetverikov, and Kato (2015)
with X = (X, —X).

The following result is a consequence of Theorem E.1 in Chernozhukov, Chetverikov,
and Kato (2019) for martingale difference sequence.

Lemma C.3 (High-Dimensional CLT for Martingale Difference Sequence Under Weak
Dependence). Let {X,,}M_, be a weakly dependent m.d.s. of d-vectors obeying for
Dy > 1.

sup [ Xmlleo <Dp a.s.
m<M

Suppose there exist constants 0 < a1 < Ay and 0 < ¢ < 1/4 such that

a1 < min min Var X;,;; < max  sup Vaerijl, (C.5)
1<j<dl<m<M 1§j§d1§m§M

and let ¥ and g be such that 7/ < A\M~2log~% d and

max{7Dy log**d, gDy log'* d, \/gDy log"?(dM)} < Ay M'/*~<2. (C.6)
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Then there exist constants cx, Cx > 0 depending only on ay, A1, ¢ such that

M _ _
sup[P(ISx o = 1) = P(IGrlloo < 1)| =2 yx(P) + CxM <%, .7
t>0

where Gp ~ N (0, 2 p) is a centered normal d-vector.

Note that this result uses 3 p as the variance in the Gaussian approximation. In our
application, we will be using 2, in place of 2 p (i.e., Lemma C.5) so as not to worry about
omitting small blocks. Therefore below, we will provide a sequence of the results that
allow this replacement.

Proor oF LEMMA C.3. Let
Xpi=Xm —Xm), m=12,...,M
be a sequence of 2d-vectors. Observe that {Ym}%zl is an m.d.s. It obeys

sup [ Xmlloo <Dy, as.,  yg(@)=vx(q) Vq.
m<M

By construction, for any integer r,

o%(r) = max maxVar( I/ZZX ): max maxVar(r_l/ZZij)

1<j< 1<j<2 1
=sj=d mel =j=2d mel

o?(r)= min mmVar( 1/22Xm]>— min mmVar(r UzZXm])

1<j<d 1<j<2d
== mel sJ= mel

where max; and min; are taken over thesets I ={i+1,i+2,..., i+ r} of size r. Theo-
rem E.1 in Chernozhukov, Chetverikov, and Kato (2019) requires

a1 < 0%(q) <5°(g) v 0% (F) < A1, (C.8)
Because {Xm} _;isanm.d.s,,
Cov(Xmy, Xmy) =0 € R for my # my.

Therefore, foranyrandany I ={i+1,i+2,...,i+7r},

a) < Var(r‘”2 Zij> =r 1) Var(Xp) <A1, 1<j<d,

mel mel

which implies (C.8). All other conditions of Theorem E.1 in Chernozhukov, Chetverikov,
and Kato (2019) are satisfied. Invoking Theorem E.1 in Chernozhukov, Chetverikov, and
Kato (2019) with

M
T:= max M 1/2 X,.i=|S
max X_j mi = 1Sx Il
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and
Gp~N(0,3¢,)

being a centered normal (2d)-vector with

(S —3p
36p= (_EP Sp ) )
gives (C.7). O

LemmaA C.4 (Comparison of Distributions, cont.). Consider the setup above with 3y =
S and Xy =2 p, where g and 2.p are as in (C.2) and (C.1) where

sup |EX,X,, | < sup sup Var(X,;)<Ai.

1<m=<M 1=m=<M1<j<d
For some cy € (0, 1/4), assume that the growth condition holds:
DyrlogdlogMlog"?(dM) < MY/2—2e
and log* d1log? M = o(~'M). Then the max distance Agp := |56 — 2p |« 0beys
(Agplog?d)'/? S M2,

ProoFr orF LEMMA C.4. Observe that

L+1
Sg—3p=(Lg/M—-1)3p+M 'Y EUU,.
=1

Since L =|M/(qg+7)],L>M/(qg+T7)— 1. Therefore,
1-Lg/M=1-q/(g+7r)+q/M=7/(g+7F)+q/M <F/q+q/M.
Furthermore, (L + 1)/M <2L/M < 2/g. The following bound holds:

Agp < ((L—Lg/M)+(L+1)/M) sup |EX,X,, | =O0G/qvq/Mv1/g).
1<m<M

Taking g = M2 log? dlog? M and 7 = (2/k) log M give
F/g=(2/k)M 2log *dlog™' M = o(M~?log™?d),
g/M =M og? dlog? M =" o(M~%log ™2 d),
1/g=M"log ?dlog? M = o(M~log 2 d),
where (i) follows from ¢; < 1/4 and
log* dlog? M = o(M'~%1/%) = o(M'~22).
Plugging Agp = o(M~2log2 d) into (Agp log®(2d))"/? gives

(AGP 10g2(2d))1/2 =0(M7C2/2)‘ -
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REMARK C.1 (Sufficient Growth Condition). If the growth condition holds,
DyrlogdlogMlog"?(dM) < M1/2=2¢, (C.9)
then
F=logM, g=M*log?dlog’ M, (C.10)
obeys (C.6) and 7/g < A;M~2log~2 d for M large enough.

PrROOF OF REMARK C.1. Let M be large enough such that M~%/2 < 4; and (2/k) x
log~! M < A;. Then the growth condition

Dy logdlog M log”?(dM) < MY/?72¢2 < 4y M1/2=3/2¢2

implies the third inequality in (C.6),
V@D log"?(dM) < AyMY?<2,
Next, for d > e such thatlogd > 1, and
M~Dyglog'’? d = Dy log®? dlog? M
< Dy log®?(dM)log M log(dM ) logd < AyM/?=3/2¢2,
Multiplying both sides by M2 gives
Dyglog'/?d < AyMV/?<,

which coincides with the second inequality in (C.6). Finally,

Dyrlog®?d = (2/k)DylogMlog®? d < Dyglog'/? d,

as long as (2/«) < logM, which verifies (C.6). For M large enough, 7/qg = 2/kM = x
log2dlog™' M < A;. O

LemMa C.5 (Summary). Let {X,,}_, be a weakly dependent m.d.s. of d-vectors obeying
for Dy > 1:

sup | Xmlleo <Dy a.s.
m<M

Suppose there exist constants 0 < ay < A such that

a; < min_min VarX;;; < max sup VarX,; < A;.
l<j<d1=m=<M 1<j=d 1<m<M

For some constant c; € (0, 1/4), the growth condition (C.5) holds, namely

Dy logdlog M log”/?(dM) < MY/2~2¢2,
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and log* dlog? M = o(M/2). Then there exist constants cx, Cx > 0 depending only on a,
A1, ¢ such that for 7 = (2/klog M) and g = M2 log? dlog® M,

sup|P(IISx lloo <) = P(IGslloo < t)| S CxM ™% + M~?/2, (C.11)
t>0

where Gs ~ N (0, X¢) is a centered normal d-vector.

Triangular inequality gives

sup|P([ISx lloo < 7) = P(IGxlloo < 1)] (C.12)

t>0

< suplP(ISx I = 1) = P(1Gplo < 1) |+ 5up|P(IG Pl < 1) = P(IG e <)
t>

t>0

M
< Zﬁy(f) + Cx M™% + M~?/2 = o(M~%2/% + M™¢¥). (C.13)

APPENDIX D: PROOFS FOR SECTION 4
D.1 Bounds on errors for estimating Q and gradient S

Below, we define the following terms that appear in the analysis of O and the least
squares gradient S. In what follows, we use the notation defined in the main text heavily,
without further warning.

Define the first-stage approximation error as a function of d(-) and /(-):

Rir(d, 1) :=lio(Xi) — Li(Xir) — (dio(Xie) — di(Xir)) Bo. (D.1)

Define the first-order error terms

a:=En7Vii(dio(Xi) — ;l\i(Xit)) =EntVi (Vi = Vi), (D.2)
i = En1Vie (lio(Xir) — (X)) = EntVie(Yie — Vi), (D3)
f=En7Ui(dio(Xi) — Zl\i(Xit)) =EntUs(Vie = Vir), (D.4)
¢=EnTVieRi(d, 1) = 10 — @ Bo, (D.5)

the second-order error terms,

b=Ent(dio(Xi) — Zi\i(Xit))(diO(Xit) - gi(Xit))/, (D.6)
2 =En7(dio(Xi) — di(Xi0)) (lio(Xir) — 1i(Xir)), (D.7)
g =En7(dio(Xir) — di(Xi0))Rir(d,1) = 2 — b' Bo. (D.8)

Lemwma D.1 (First-Order Terms). Under Assumptions 4.1-4.5, we have that

@)oo SP (dNT,00v/10g(dNT)/NT), (D.9)
IMllco SP (INT,00v/10g(dNT)/NT), (D.10)
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1fllce P (dNT,00v/10g(dNT)/NT), (D.11)
lelloo <P (V1I0g(dNT)/NT(ANT,00ll Bolll +INT,00))- (D.12)

Proor or LEMMA D.1. Define

(N i=dNT,00v/10g(dNT)/NT, =0,

and the A-function as
AW, m) =Vie(dio(Xir) — di(Xir)).

Define B 4i(n) and V4; (1) with n =d as in (A.8)-(A.9).
Consider any n = nyt € Dyt in what follows. Since V}; obeys the martingale differ-
ence property by assumption, we have that

E[V\ U (Viﬂ,Xm)}o, (D.13)
t<t,t'e My

and it follows that || B 4x (nnT)llcc = 0. By Assumption 4.3 and Lemma B.1, each entry of
Vieldio(Xir) — di(Xi1)) is 3°d5, . -sub-Gaussian. Invoking Lemma B.2 gives

WVar(nnt)| o, SP (GdNT, 00/ l0gd/NT}) = or(N7)

sir;\ce T, < T (as we keep number of blocks K fixed). By Assumption 4.5, we have that
P(dy € Dy7,Vk =1, ..., K) — 1. We conclude by Lemma A.6 that (D.9) holds. Repeating
the same argument for

AW, m) =Vielio(Xir) — 1i(Xi)) and AWy, m) = Uir(dio(Xi) — di(Xir))

establishes claims (D.10) and (D.11). Finally, (D.12) holds by definition of e = m — a@'Bg
and Holder inequalities. O

LeMmmA D.2 (Second-Order Term). Under Assumptions 4.1-4.5, we have that

IZlloo Sp (dnTINT + dNT,oolNT,OO\/(NT)’l log(NT)logd), (D.14)

1Blloc Sp (@7 +dr, oo/ (NT) 1 log(NT) log d), (D.15)

18l <P (I1Bollidi + dnTlnT

+ (1Bol1d% 7, o, + AN T, el T,00) (NT) " og(NT) logd).  (D.16)
Proor or LEMMA D.2. Define the A-function as
AW, m) = (dio(Xi) — di(Xi)) (lio(Xi) — Li(Xin)), m=(d, D).

Let B 45 (n) and V4, (1) be defined according to (A.8)—(A.9). Let

Nr=Wrdnr, (= \/112\,T,00d12\,TVoo logdlogNT/NT.
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For any i and ¢, m and j, the Cauchy-Schwarz inequality gives

E[|(dio(Xir) — di(Xir)),, (Lio(Xir) — Li(Xin))|]

< \/E(diO(Xit) - di(Xit))an(liO(Xit) - li(Xit))z = \/a,g,b,z, = lail|bitl.

Another application of the Cauchy-Schwarz gives

N N
(TN Y bl < [(TN) 1Y Y & (TN 1Y 3 82

i teMy i=1te My, i=1te My

IA

N T N T
(TeN)1Y N a2 |(TkN)~1 Y b2 <dnrInr T/ Tk

i=1 t=1 i=1t=1

Therefore, |Bir(MNT) oo = 0(511\37)- Furthermore, each entry of A(Wj;, n) is bounded

by dn7,00lNT,00 and, therefore, is d%, 15,7 _-sub-Gaussian. By Lemma B.4,

Vakant)| o, Sp (k)

since T, = T. Furthermore, by Assumption 4.5, P((ak,Tk) € Dyt x LyT,Vk =
1,...,K) — 1. We conclude by Lemma A.6 that (D.14) holds. The bound (D.15) fol-
lows from the same argument. Finally, the bound (4.17) follows from the definition
g =z — b'Bo and Holder inequality and union bounds. We obtain

1810 S (180l (@7 + &y ooy (NT) log(NT) log d)

+dy Iy + dnT,oolvT ooy (NT) 1 log(NT) log d).
Then we rewrite the bound as in (4.17). O
Define
0 =EntViV, O=EnrViVi,  S:= ENTI//\it(§it — V. Bo), S:=EnTViiUy

and the following rates:

knt = \/log* (@2 log(NT)) log(NT)/NT, (D.17)

gNT = ANT,00/10g(ANT)/NT + d5, + d5 7 v/ 10g(NT)log(d)/NT.  (D.18)

We will also use the following rates defined in the Section 4 of main text:

pNT i=dNT,00v/10g([ANT)/NT + /1og(dNT)/NT (dnT 00l Boll1 + INT,00) + 7N T

T = | Bolidi 7 + dnTlnT + (”/30”1‘112\/100 + lNT,oo)\/(NT)_l log(NT)logd.
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LeMmA D.3 (Summary of Gram Matrix and Gradient Error Bounds). Suppose Assump-
tions 4.1-4.5 hold. Then the following bounds hold w.p. 1 — o(1):

10 — Qlle <p o(knTlog(d*NT)), (D.19)
10 - Olloo Sp (qnT) = 0p((NT)71/?), (D.20)
10 — Qllss Sp o(knTlog(d*NT)), (D.21)

IS = Slioe <P (pnT) = 0p((NT)V/3). (D.22)

Proofr oF LEMMA D.3. Decomposing matrix first-stage estimation error gives
0 =EnrViiV,
=Ent (Vi + (dio(Xie) = di( Xi0))) (Vie + (dio(Xir) — di( X))
=EntVilV},
+ EntVie(dio(Xir) — Ei(Xit))/ + (En1Vie(dio(Xir) — ‘/i\i(Xiz))/)/
+En7(dio(Xi) — @(Xit))(dio(Xit) - ZZ\i(Xit))/
=0+a+ad +b.
Then, an applicati_on of Lemma B.6 with N =2 giyes w.p. 1 —o(1) ||§ — Olloo < CxKNT
for large enough C. The bounds on ||a||» and ||b|« are given in (D.9) and (D.15), re-
spectively. Collecting terms gives the bound (D.20). The (D.21) follows from the triangle

inequality and gy = op(knT). We can decompose the gradient error S — S as follows.
Note that

~ ~ o~ o~
Yie— Y=Yy —Li(Xit) = (Yie — Lio(Xir)) = Lio(Xir) — [i(Xir),
Vit = Vie = Diy — di(Xiy) — (Di — dio(Xir)) = dio(Xir) — di(Xir).
The difference of the two equations is
~ ~ o~ o~ o~
Yii —Yi — (Vie = Vit)'Bo = Rir(d, 1).
Therefore,
Y=V, Bo=(Yie = ViBo) + (Vi = Yir) = Ve = Vie) Bo) = Ui + Ru(d, ). (D.23)
Decompose the gradient:
o~ —~ = ~ = o~ A -~ -~
S=EnTVie(Yit = V;Bo) =EnTVie(Yie — V,Bo) + EnT (Vi — zt)( it — Vi,Bo) = S1 + 82,
where
S1 =En1ViUic + EnrVieRi(d, ) = S + ¢,
S2 =Ent(dio(Xie — di(Xi0)) Use + En7(dio(Xit) — di( X)) Rir @D=F+g

Invoking bounds on ¢, f, and g in (D.12)-(D.16) gives the result. O
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D.2 Proof of orthogonal lasso rate: Theorem 4.1

D.2.1 Group sparsity notation We use the same notation as Lounici, Pontil, van de
Geer, and Tsybakov (2011). Consider a generic covariate vector of size g - d, where d is
the number of groups and g is the group size. Partition the set of indices {1, 2, ..., gd}
into d groups of size g:

Ji={jd+j....,g=Dd+j}, j=12,...,d,Jjl=g.
For a group index j and a subset of group indices 7, and vector A € R¢¢, denote

For any A € R8¢, define the group-vector norms
18l12,00 = max |A7] 5, 1All2,1 =;||Af||2.

For a symmetric matrix M, define

1/2

— / _ 2
il = = g ()
J

Define the group restricted cone as

REG(C) i= {AeRgd: 3 |8, §EZ||Af\|2,A7é0}.
jeTe jeT

Given a matrix M € R8¢ x R8¢, define the restricted group-sparse eigenvalue

A'MA)Y?
Kg(M, T, 5)2 min_ M
sRedo |aT],

When the group size g is equal to 1, the objects above reduce to the following quantities:
AMN=A, AT =Ar=Amery  IMllz00 =M llc,
the group restricted cone is regular restricted cone
REG() = RE(¢) = {A € R?: [ A7l <&l Arlh, A0},

and the restricted group-sparse eigenvalue reduces to restricted eigenvalue

A'MA)'?
KI(M,T’E)ZK(M)T)E)Z min M
AeRE(®)  [|ATIh
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Let X;; € R84 be a generic covariate (dg)-vector and Y;; be a generic outcome. Given a
parameter S, decompose

Yir = X,Bo + Uiz

The least squares loss function is

N T
QB):==1/2(NT) " Y "> (Vi — X},B

i=1 1=1
The group lasso estimator is
B:= argmﬁin Q(B) + AllBli2,1- (D.24)
The least squares gradient is
) ) N T
S(Bo) :=Vp,2(Bo) =(NT)"" Y > (Vi — X}, o) Xis,

i=1 =1
and the Hessian is
. N T
H(Bo):=(NTY"' Y > XuX],.
i=1 1=1

LEMMA D.4 (Grouped Norm Inequalities). For any two vectors a, b € R8¢, and matrix
M e R8? x R84, the following inequalities hold:

|a'b| < llall2,111B1l2,00, (D.25)
[v'Mv| < JEIvII3 ;- 1M ]l2,00, (D.26)
1M 12,00 < | M [lcon/Z. (D.27)

Proor. Foreachgroup j=1,2,...,d, Cauchy inequality gives

Z ayby

kE]]'

1/2

1/2 / 1/2 )
(X)) (Ter) = max(Xat) el = (max foil,) 15,
kG]j kEJj - kE]]'

which implies

|a’b| Z

j=1

Z apby| <

kelj

d
(max la/],) D187, = lallz 1.

1
<j<d o

For each index i, 1 <i < kg, the following bound holds:

<22Mlkvk Z(ZM >12<1§‘Ui)1/2

Jj=1"keJ; kel;

i,kVk
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172 d 1/2
2 2
§lr£1§1<xd(z Mi,k> Z(Z Uk> < IMll2,00llvll2,1-
== Nker; j=1 “kel;

Then

1/2
_ |, = 2
IMvli2,00 = 112,?22”(1\/1”) l,= lgljagd(i; IMv|,>
]

1/2
2 2
< max (Z ||v||2,1||M||2,oo> < VEIVI2,11MI2,00-
l=j=d iel;
J

Therefore, we obtain (D.26) by combining inequalities above:

2
[V M| < [|vll2,11MVll2,00 < V/EIM 12,00 - V115 1-

Finally, the bound (D.27) follows from

— J i
Ms,c0 = max [M/]], < max /g M']|.,

using the fact that [|v||2 < +/dim(v)||v] co-

29

O

LEmMMA D.5 (First-Stage Effect on the Curvature). Let M1, My € R84*&¢ be two matrices.

Let A}, := My — Mz ||o. On the event K5 (Mz, T, ¢) > 0, for any A € REG(?),

|[K5(Ma, T, €) — k5(M1, T, )| < ANp(1+6)%sg. (D.28)

ProoFr oF LEmMA D.5. Forany A € R84, the difference can be bounded as

|A' (M) — M2)A| <! /ZIM1 — Moz, 0 AN3 1 < gAR11A13 (D.29)

where (i) follows from (D.26) and (ii) from (D.27). For any A € REG(¢),

A2, < (1+ 5)2||AT||2 < ﬂA/MgA =:v-A'MA. (D.30)
v 21T (M, T, )
Combining (D.29) and (D.30) give
|A'(M; — M2)A| < (gAN ) - A'MRA. (D.31)

Noting that x < |x| gives
A'(M; — M2)A < [A'(M; — M2)A| < (gAY77) - A'M24,

which implies

A'M1A < AMaA(1 + gAN 7). (D.32)
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Noting that —x < |x| gives
A'(Mz — M)A < (gAN7y) - (A'M24A) (D.33)
which implies
A'M1A > A'MRA - (1 - gAb ). (D.34)
Rearranging (D.32) gives an upper bound on k¢ (M, 7, ¢):

Js5(AM;4)"

ko(My,7,¢):= m
(M ) screG@) AT

2,1

L SAMeA)
= adeew  [aT],, Ve
=kg(Ma, T, &)/ 1+ g\ v.

Alower bound on k¢ (M, T, ¢) follows analogously, that is,
Ss(AMA) P
M ) ) c > i - T 1 - AM
Kg( 1 T C) = AeglElg(c_‘) ”ATHZ | 8 NT’y

=kg(Ma, T, &)y/1 — gAN v

Taking the squares of both sides of the inequality and rearranging gives (D.28). O

LemMA D.6 (Oracle Inequality for Group Lasso). On the event Gy := {A > cﬁ||S(Bo) lloo},
the error vector A = B — B belongs to the restricted set:

A € REG(c)
and obeys the bound
(AH(Bo)A) <2ae AT, |, (D.35)
wherec¢:=(c+1)/(c—1).

Proor oF LEMMA D.6. Assume the event G; holds throughout, which implies A >
clS(Bo)ll 2,00- Negahban, Ravikumar, Wainwright, and Yu (2012) establishes

1Bollz,1 — 1Bl2,1 < AT,y = [AT . (D.36)
and shows that A € REG(c), which implies

I1All2,1 < (1+8) AT, ;. (D.37)
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Note that E solves group lasso minimization problem (D.24), so that
Q(B) + AllBllz1 < Q(By) + AllBollz,1-
Expanding the least squares criterion gives
Q(B) — Q(Bo) = S(Bo)' A+ 1/2(NH(Bo)A) < A(llBollz,1 — 1Blz,1)-
Invoking inequality (D.25) for S(B0)’A gives
1/2(AH(B0)A) < A(IBollzr — 1Bl2,1) + | S(Bo) |, o 1A l12,1-
Then
1/2(AH(Bo)A) <" A(|AT ], = [AT"[5 1) +A/cll Az,
<AJAT |, + 0+ A/cllAll2

il )‘”ATnz,l +(A/c)(1+0) ||AT||2,1

31

=ae|a], (D.38)

where (i) follows from (D.36), (ii) from (D.37), and (iii) from
l+c G+ =(c+(c+1)/(c—1))/c=(c+1)/(c—1)=C.

Since A € REG(c), (D.35) follows.

O

PROOF OF THEOREM 4.1. We invoke Lemma D.6 with the group size g = 1, 8o = Bo, and

Ui = Uiy + Ry, (E,T). The gradient S(By) = §, the Hessian is #(Bg) = Q\, and the penalty

A = Ag. Note that 6 € RE(¢) has been established in the proof of Lemma D.6.
Step 1. Union bound implies

P(Ag < c/glISllo) < P(Ag/2 < c/&lISlIs0) +P(Ag/2 < c/ZIIS — Slioo)
= Ps+P;_g<o(1)+o(1),

where Pg <2/d = o(1) is given in (B.6) and P5_g = o(1) since

IS = Slloo <p (pnT) = 0p(y/logd/NT).

Step 2. Let My :=Q = (NT)~! Zﬁ\;l Zthl EV;V/, and M; := @ = En7ViV},. Observe

that

= . 5800 . sminei 812
20, 7,8 = min 2205 min Q)01
S€RE(C) || 07|  9€RE(©) 167112

where (i) follows from

s8I = slI8713 > 15713 V6 eRY.

> mineig(Q), (D.39)
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The bounds (D.28) and (D.19) imply
(0, T, &) = *(Q, T, &)| = 510 = Qlloo(1+ &) Sp (skn7)-

Therefore, the event G, := {Kz(é, T, ¢) > Cnin/2} holds w.p. 1 — o(1).
Step 3. Invoke Lemma D.5 on the event G, with M, := Q and M; := Q. The bound
(D.28) gives

K0, T, &) = *(0, T, &)| =510 = Qlloo(1+ &) Sp (sqnT),
which implies
K0, T, &) = k*(Q, T, )| Sp (s(ant + kn1)).
Therefore, the event {KZ(Q T, ¢) > Cpin/2} holds w.p. 1 — o(1). Thus, the event
G3:=5110 = Olloc (1 +8)°/k*(Q, T, &) < 1/2

is well-defined and holds w.p. 1 — o(1).
Step 4. On the event G; N G2 N G3, invoking (D.34) with My = Q and M; = Q gives

8§06 > (1/2)-8'06.
Combining inequality above with (D.35) gives

- . 4(5'08)"*
8’08 <26'06 <4MpclldTl1 < /sAp (909)

K(O, T, 8
Dividing L.H.S. and R.H.S. by (8'05)1/2 give
1535172 4c
0'0Qé <. /sA = < A
(6'08) " = s BT <p (v5Ap)
and
J35(8'08)"* sAge
Si<=(1+0)|é <(l4+c¢)———"—<4(1+c¢)—5————.
181 = (1 + o7l = (14¢) (O T = ( C)Kz(Q,T,E) 0

D.3 Proofof Theorem 4.2

In what follows, we use the notation 0~ = (wg.) and Q:jl = w?. Define the following
quantities:

si(0) = [[1{|w}] = A} |

v = le)|ef] = Al

REMARK D.1. Assumption 4.6 implies the following bounds:
P 00
”Q_l”l,oo: max ”‘”?”1 5AQZj_aQ 5AQ/1 j"edj=Ag/(ag—1). (D.40)

1<j<d
=j= =1
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Furthermore, if 4gj~"¢ < A, then j > j;, := (Ag/A)V/e¢. This implies
Jo

0 =[]0 = A}, = [1{Agi~" = A}, = 31 = jf = (Ag/n) Ve,
j=1

00 -k 1_aQ A A (1—aQ)/(1Q Al/aQ
io ag—1 ap —1 (ap—1)

PRrOOF OF LEMMA 4.2. Step 0. Suppose Assumptions 4.1-4.6 hold. We claim that the
event

Go = {110~ Qllc |07, o < 2o}, (D.41)
holds w.p. 1 — o(1). On this event G, by definition of ﬁ, we have
1001,00 < [ Q7] oor (D.42)

and, therefore,

JOCMEL =190 = 07 - (D.43)
To show that P(Gp) =1 — o(1), decompose
Q0 '-1,=00"'-00"'=(0-00".
By Lemma D.3 for some CK >0,w.p.1—-o0(1),
10 — Qll = Cuknr.
Therefore, w.p. 1 — o(1),
1007 —Iu| . <10 = Qllac|O7' |, o < Cu2knr |07, o <Ao (D44

aslongas Cg > 2C]|Q 7 I1,00- Since |Q7 11,00 < Ag/(ag — 1), Co > 2C,c| Q7 11,00 holds
by Assumption 4.6.
Step 1. We establish (4.10). Specifically, we show that, on the event Gy, we have

R ) N B 449
|QCUME _ o1 < Q-0 1||oofm)‘9'

The argument repeats the proof of equation (13) in Cai, Liu, and Luo (2011, Theorem 6).
On the event Gy, the bound holds

100 — Lyllo = [ Q@ - 07|
<le-2@-0| +le@-oMl,
<10 - Olloc|Q = 07"} o + 100 — Lullos + | 1a — 007"
<10 = Olloo(| Q71 o + 1901,00) + Ao + [ 007" — I .
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Invoking (D.42) and (D.44) give
100 — Iylloo < 210 = Ollos | Q7 oo + Ao + A0 < 240 + 240 = 4Ag. (D.45)

Premultiplying 00— I, by O~! and invoking (D.40) give

~ ~ ~ A
0-07 =07 (00— = [07 | 100 ~ Laloo <4 ~E 0.

Since Q is a symmetric matrix, so is 9!, and

ASE 01| < max([0 - 0

NQm =0l < Q=07

which implies (4.10).
Step 2. We show that (4.11) holds. Specifically, we show that on the event Gy we have
that

||§CLIME _ 1” . CQ/\Ql—l/aQ’

for some constant (:’Q that depends on Q. We closely follow the proof of (14), page 605
in Cai, Liu, and Luo (2011). Using their notation, let

£ HﬁCLIME _ Q—l Hoo’ w? — Q:jl’
hj ZZQE}}IME—Q)?, h]l = (6,-]-1{|25ij| ern})[pzl —w?, h]2 = hl—hjl

By definition of CLIME, on the event G,
A e G PR LA R R R LA B
=3+ hj + o = [N <10, < o],
where (i) follows from hjl. + w? and h]2. having nonoverlapping support. This implies

A e A N

b Wi =2] g -

Then the following bound holds:

d

[7j1y =2 _l@51{1@g1 = 26} - i

i=1

<Z|wz]|1 +Z|wl] |wl]|>2t”}_w 1{|w11|>2t”}|
i=1

d d

<72+t y 1@y = 2t} + Y |0l ||(1{1@4] = 22} — 1{| 0] > 26 })|
i=1 i=1

d

Erj(2ln)+tn2 |>tn +Z|w |I ||w 2tn|<|wl]_wg}
i=1
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d
= rj(ztn) + tnsj(ty) + Z|w2|1{wg = 3tn}
i=1

= rj(2tn) + tusj(tn) + rj(?’tn)
1/a¢
r 1-1/ag I Y 1-1/ag . 1-1/ag
=Cptn , (CQ. @o-1 (2 +(ag—1)+3 )).
Since 1, < || — Q™! from Step 1, we have
~ _ ~ _ ) ™~ _ 1-1/
J(@CHVE — Q1Y = JACHME - 01, = max 1 = o[- 071 )

< CQAle/aQ,

where Cp = Cp(44o/(ag — 1))!~Y4 is a constant that depends on Q. Thus, (4.11) fol-
lows.

Step 3. We show (4.12). Specifically, we show that on the event Gp and |Q — Q| <1
and once Ao < 1, we have that

||1d _ ﬁCLIME’Q‘”oo — ||1d _ ’Q‘QCLIME ”oo < C/Q/\Ql_l/ag’
for some constant C/Q that depends only on Q. Indeed,
|1 — QQHME| | < |l1g— 007!, + |O(Q ™" — Q<HME) |
< [[1a= 007" | . + (1Ql00 + 1) [ QM — 071,
<20+ (I1Qlloc + I)CQAlQ_l/“Q < CQQAIQ_”“Q (D.46)
for example, taking C/Q to bound:

(Ao "“©+(IQlss +1)Co) = (14 (IQllow +1)Co) =: Cp. -

LEMMA D.7 (Linearization in Sup-Norm). Suppose Assumptions 4.1-4.6 hold. Then the
debiased estimator Bpy, is asymptotically linear:

VNT(BpL - Bo) = Q" 'Gn1Vi Uit + Ru, (D.47)
IRNTlloo SP A" 1% /s2logd + VN Tpnt = op(1). (D.48)

Proor oF LEMMA D.7. Step 1. Recall that
Rir(d, 1) == Lio(Xi0) — 1i(Xi0) — (dio(Xir) — di( Xir)) Bo.
and invoking (D.23), which states that

~ o~ ~ ~ ~ o~ o~~~
Yie—V;Bo= (Yie = V;,Bo) + ((Yir — Yir) = Vie = Vi) Bo) = Uis + Rir(d, 1),
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we can see that
~ =) A ~ =5 = o~
Yie =VyBL=Yii—V;Bo+V;;(Bo—BL),
]ENT?it(?it - IZ;EL) = IENTIZ't(Uit + Rit(ayll\)) +0(Bo — BL).-
Since
o~ o~ ~ -~ N o~ o~
BoL — Bo=BL — Bo+ Q“ME(EN Vi (Vi — V,BL))
we have that
BoL — Bo = ﬁCLIME(ENTf/\it(Uit + Ri (E»B) +QCMMEQ (8o — Br) + Br — Bo
= ﬁCLIME(ENTf/\it(Uit + Ri (E»B) + (g — ﬁCLIME@(EL — PBo)

L3

= Q 'En7ViUis + (ﬁCLIME — O YENTV; Ui
+ ﬁCLIME(]ENT[f/\it(Uit + Ris (a,/l\) - VitUiz]) + L3
= QO 'En7ViUis + L1 + L + Ls,
where
Ly = (ﬁCLlME — O YEN7Vii Ui,
Ly= ﬁCLIMEH‘ENT[VizRit(a,/l\) + (Vi — Vie) (Ui + Rit(ayﬁ)],
L3=(I;— ﬁCLIME@(!?L — Bo)-
Term L,. The bounds (4.11) and (B.6) imply
IL1lloo < |[QCHME — 01| VNTIENTVieUitlloo

<p AoV V/NT/logd/NT = op(1), (D.49)

because )\Ql_l/”Q =o(s! log_l/2 d) = o(log_l/2 d) as assumed in (4.11).
Term L,. The bounds (D.43) and the gradient error bound (D.22) imply

IL2lloo < [Q™ME| |VNTEN7[ViRi(d, D) + (Vie = Vi) (Ui + Rir(d,D)] |
SpIVNTpnr =0(1),

because v NTpnT = 0(1) is implied by our assumption Assumptions 4.1-4.5.
Term L3. The conditions (4.12) and (4.8) imply

VNT|Lsllo = VNT||(Ig = Q"™EQ) (BL, - Bo) |,
<VNT| 1, - Q"™EQ| 1L - Bolly

<p (Ao V9%eV/NT,/s2logd/NT) = o(1),

where ||I; — ﬁCLIMEQHOO <p AQI_I/“Q =o(s! log_l/2 d) as assumed in (4.11). O
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PROOF OF THEOREM 4.2. Step 1. Let a € R? be such that ||a|; = K, = O(1) and |2 = 1.
Lemma D.7 implies

o (@Sa) A (VNT(BpL - Bo)) = & (¢'Sa) 2O~ "WNTEN1Vi Uyt + 0p(1),
where (a/>a)~1/2 = O(1) because
a'Sa>g?d Q7 la>g?Crl >0 (D.50)

by the assumptions of the theorem, so that

| (@/Sa) "’ Ryr| < O)Kal Rylloo = 0p(1). (D.51)
Consider a sequence

Em@) = QN (/Sa) VU, m=1,2,..., M
with
m=m(i,)=T{H-1)+t, 1<t<T,1<i<N.

As shown in Corollary B.3, {fm(a)} _; is a martingale difference sequence w.r.t. natural
filtration with M = NT. By the law of large numbers in Hansen (2019) and the assumed
Lindeberg condition

1
2 Q7 ITO 1
—— =1
TZf() 5o
As discussed in McLeish (1974), the Lindeberg condition assumed in the Theo-
rem 4.2 implies conditions (i) and (ii) in Theorem 2.3 of McLeish (1974), which implies
the first part of the theorem:

P(a/<a/2a)il/2 v NT(EDL — Bo) < t) — ®(1).

By Polya’s theorem, the convergence is uniform in ¢ € R. Since the result holds for any
sequence {a} (indexed by N, T obeying conditions above, the convergence is uniform
over such sequences).

Step 2. Let K, be a finite constant in the statement of the theorem. Thus,

sup /S —3)a| < K23 = Slloo = 0p(1)

allal2=1, el <K«

by assumption. Since minq|,=1 «'Sa > g?Cpk,, by assumption, we conclude that, for N
and T large enough, the event

K= { inf oS> (_J'ZCI;éX/Z}
lallz=1, a1 <Ka

occurs w.p. 1 — o(1). Hence, w.p. 1 — o(1).

(a/Ea)l/Z
(a'Sa)
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obeys
lant = 11 = (0% Corin/2) " KEIE = Zlloo = 0p(1),
which follows from the inequality:

ll_ﬁ IWx—vyl _ lx=yl
vy NNV N

x>0,y>0.

Then
|(anT — 1)a/(0/2a)_1/2m(,§L — Bo)| <lantT — 1||a/(a/2a)_1/2«/ﬁ(ﬁl — Bo)|
=0,(1)0p(1).
Therefore,
o (¢'Sa)2V/NT (BoL — o) = o («/'Sa) " *VNT(BL — Bo) + op(L).

Then convergence in distribution for the L.H.S. follows by Slutsky’s lemma and Step 1.

O
D.4 Estimation of 3: Proof of Lemma 4.3
Define the following terms:

by =EnrVilV;,Uj; —T, (D.53)
by =Enr(dio(Xis) — di(Xin)) Vi UZ, (D.54)
bs =Enr(dio(Xir) — di(Xin)) (dio(Xir) — di( X)) U3, (D.55)
by =EnTViV},(U? — U2), (D.56)
bs = Ent(dio(Xir) _di(Xiz))Vit(ﬁizt— Uz), (D.57)
be = En1(dio(Xit) — di(Xin)) (dio(Xir) — di(X:)) (U2 — U2). (D.58)

The following lemma establishes tail bound on b1. Recall that k7 from Lemma D.3
is

k7 i=/log® (d2 log(NT)) log NT/NT.

Lemma D.8 (Higher-Order Term by). Under Assumptions 4.1-4.5 and 4.7,

[N | dnax |EVijiVimUZ| = 0(1), (D.59)

1611l Sp \/10g5(d2 log(NT))logNT/NT < knrlog(d*NT) =o0(1).  (D.60)

Proor. Thebounds (D.59) and (D.60) follow from (B.19) and (B.20) with Zy ;s = Z2, s =
Vi, N=1,and g = 1. 0
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LeMmma D.9 (Higher-Order Term bo). Under Assumptions 4.1-4.5 and 4.7,

1b2lloc Sp (NT) M2, (D.61)
Proor oF LEmMA D.9. Step 1. For b as in (D.6) and gnT asin (D.18),

. ,
P%:= max En7(dio(Xir) — di(Xi1)); < I1blloc SPgNT-
1<j=d Y

Invoking the convergence requirement (4.14) gives

(1+ /log” (% 10g(NT)) log(NT)/NT) S 1 + k7 log? (¢°NT) S 1.

Invoking the bounds (B.19)-(B.20) with Z; ,; = 1 and Z, ,;; = Vj; and N =2 and g=2
give

P3:= max EyxrV3 U} <p( 1+\/log7(d2log(NT))log(NT)/NT) <pl.

1<m<d itm™ it ~
The Cauchy inequality implies

max |ENT|( i0(Xit) — gi(Xit))j||th|Ui%|

1<m

< max (ENT( iO(Xit)_Zi\i(Xit))?)l/z max (En7V U4)1/2
l1<m<d

itm > 1t

1<j<d
Spvant - 1=op((NT)™HY),
where the last bound is established in (D.20). O

Lemma D.10 (Higher-Order Term b3). Under Assumptions 4.1-4.5 and 4.7,
b3l Spo((NT)™I4). (D.62)

ProoFr orF LEMMA D.10. On the event sup;, |djo(Xir) — c/l\,-(Xit)| <dnT,00 <1, which hap-
pens with probability 1 — o(1),

max ]ENT‘( ZO(Xlt)_d(Xlt)) H( lO(Xlt)_d(Xlt)) |U2

1<m,j<d

< max En7|(dio(Xi) — di( X)), |U?
l<j=d !

< max (ENT( 0(Xi) — d; (th)) ) (EnrUR)

1<j<
< JPEENTUS) <p o((NTY1), m

Recall that the first-order estimation error is

Rir(d, 1) 1= lio(Xi) — 1;(Xir) — (dio(Xir) — di(Xir))' Bo.
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LEmMA D.11 (Squared Error). Under Assumptions 4.1-4.5, we have that
EnrR2(d, 1) Sp By + o((NT)™?). (D.63)
Proor oF LEMMA D.11. Step 1. Consider a term Z in (D.7) in a special case when
dio(Xit) :=1lio(Xir) - (1, 1), d=2.
Then z reduces to a 2-vector
z:=En7(lio(Xir) —Ti(Xit))z (1, 1),
and

1Zll0o = En7(lio(Xir) — Li(Xin) .

Invoking (G.16) with dy7 and dy T, replaced by ly7 and 1y7,« gives the bound.
Step 2. The following bound holds:

ENTR,%(&;T) < 2EnT((dio(Xir) — CZ(Xiz))/Bo)Z + 2EnT (Lio(Xir) _Ti(Xit))z
=2BybBo + 2EnT (lio(Xir) —Ti(Xiz))z

< 201l sollBoll? + 2En7 (Lio(Xie) — Li(Xin))

<p 1Bol3(d% 7 + djz\,Tyoo\/(NT)—1 log(NT)logd) + 151 + o((NT)7'/?)
Spo((NDYTV2) + Bip + o(NTYTV?),

where (i) follows combining [|Boll1 < Cs assumed in Assumption 4.5(a) and gn7 =
o((NT)~1/?), established in (D.20). O

LEmMA D.12 (Higher-Order Terms by, bs, bg With ﬁlzt —U?2). Under Assumptions4.1-4.7,

6
D bkl Sp((NT) V4 4 1yr + /slogd/NT + 15,7 10g(d*NT)) =: ynyr.  (D.64)
k=4

Proor oF LEMMA D.12. Step 1. Decompose
U2 — U2 = (Ui — Uy + Uy)? = U2 = 2U;4 (U — Uyy) + (Uye — Uip)?.

Invoking (D.23) gives

o~ ~ =~ ~ = = =~

Un=Yi—V,BL=i—V,;Bo)+ (V;Bo—V,BL)

= Ui+ Rie(d, 1) + 1714(,30 — BL).
The Cauchy inequality implies
~ ~ =~ 2
Ent (Uit — Uir)? < 2ENTR(d, 1) + 2En7 (Vi (BL — Bo))

= 2En7R2(d, 1) +2(BL. — Bo) O(BL — Bo) =: U1 + Uy,
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where U; <p o(NT)"1/? + I3, in established in Lemma D.11 and U, <p slogd/NT is
Theorem 4.1.

Step 2. Let C(Wy;, m) = (Cij(Wir, m)) be a d x d matrix. For any coordinates m and j,
decompose

En7 Conj (Wi, M)(U2 — UZ)
= 2EN7 Conj(Wit, MUit (Ui — Uit) + ENT Conj (Wi, M) (Use — Uy)?
=:2D1mj(M) + D2mj (7).
The Cauchy inequality gives
|D1mj(M)] < (]ENTC,%U'(VVit’ ﬁ)U,-ZI)I/Z(ENT(ﬁn - Utz)z)l/2

~ 1/2 5 1/2
< max(ExrCry (Wi, DUZ)" Enr (T — Uin)?) .

1<m,j<
The maximal inequality gives

|Domj(M)] < mi:;m@na}x}cm;(%, MD|EnT (Ui — Uin)*. (D.65)

Step 3. If one can verify
max EntCh (Wi, DU <p 1, (D.66)

1<m,j<d
we have that

D1, = lsnr;iy;d|D1mj(ﬁ)|

<O0p(1)-Op((NT)""* +1y7 +/slogd/NT)
<p ((NT) V4 4 1yr + /slogd/NT).
If one can verify another condition,

maxmax |Cpnj (Wi, 7] Sp (log(d*NT)), (D.67)
i m

we have that
|D2(%) |, = Op(log(d*NT)) - Op(slogd/NT + 1,7 + (NT)"*/?).

Step 4.1. Take C(W;, m) = V3V, which corresponds to bs in (D.56). Invoking (B.19)

tVip >
and (B.20) with Zj ;s = Z2 nir = Vi; and N =2 and g = 1 as well the assumed bound
(4.14) give
max|EnViy VigUs| Sp (1+ vy log"(¢°NT)) e 1,
which verifies (D.66). By Lemma B.1 (6),

maxmax |V Vigjl Sp (log(d*NT)),
i mj

which verifies (D.67).
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Step 4.2. Take C(Wi, M) = Vis(dio(Xit) — c?i(Xi,)), which corresponds to bs in (D.57).
In what follows, we focus on the event sup;, |dio(Xi:) — di(Xi)| < dNT,00 < 1. Invoking
(B.18) with N =2 and g =1 gives

max [Ex7Vi, (dio(Xi) = di(Xi0)) U7

1=m,j<

2 2 2
Spdyr o, max [Ex7Vi, U
l1<m<d

<pdnToo(l+ \/ log*(dlogNT)log(NT)/NT)

=dNT,00(1 + kn7log(dlogNT))) S ANT,00-
Likewise,

maxmax|C (Wi, )| < dnT,0o max max |Vijl <p (log(d*NT)dnT,)
it mj it 1<j<d

verifies (D.67).

Step 4.3. Take C(Wiy, 1) = (dio(Xir) — di(Xit)) (dio(Xit) — di(X;1))', which corresponds
to bg in (D.58). On the event sup;, |dio(Xi) — dAi(Xi,)| <dnT,00 <1, the condition (D.66)
becomes

max Exr(dio(Xir) — di(Xin)),, (dio(Xir) = di(Xi0)) U5 <EnrUf <p L.

1<m,j< it — it~

Noting that max;; max,,; |C(W;;, 7)| Sp d?\,T’oo <p 1 verifies (D.67).
Step 5. (Conclusion). Collecting the bounds and invoking (s v 1) ky7 = 0(1) gives

o(NT)"Y* +1yr + /slogd/NT

+ (log(@*NT)(o(NT)™V? + 141 + slogd/NT)) < Y- (D.68)
For N and T large enough,
log(d*NT)/(NT) "* <1,

which implies log(d?NT)(NT)~ V4 = o((NT)~Y/4). Likewise,

log(d>NT)/slogd/NT < s\/log?(d2NT)logd/NT < (s v D7 = 0(1),

which gives (D.68). O

LemMA D.13 (Bound on ||f(§L) —I'leo). Under Assumptions 4.1-4.5 and 4.7, we have
that

ITBL) — T, <p (yr + knTlog(d®NT)) = 0,(1). (D.69)
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Proor. Decompose the matrix first-stage error
T(BL) —T =EnrViV,U; -T
=En1 ViV (U7, = U7) +Enr (ViV} = ViVi) Uf + EntVid;

/
it

U2-T
= b + bs + by + by + b3 + ba + by + by

The bound on b is given in (D.60), Lemma D.8. The bound on b, is given in (D.61),
Lemma D.9. The bound on b3 is given in (D.62), Lemma D.10. The bounds on b4 — bg are
given in (D.64), Lemma D.12. Summing the bounds gives (D.69). O

Proor oF LEMMa 4.3. Step 1. Define the following bounds:
31:= [QCME — 07 [TBL) | [0S
32 1= Q7 o ITBL) ~ T JOOE],
T3 = [QOME - 07 LIl O o
and note that
ISBL) — 3|, = |QCMED(BHQMME — 0-1PQ~1| <3 43 + 3a.
Step 2. Invoking (D.59) and (D.69) give
IFBL <Pl + |T(BL) =T, Sp 1+ yn1 + k7 log(d®NT) Sp 1.
Invoking (D.43) and (D.40) give
[QSME], =1 = [07] o = (Ao/(ag = D).
As aresult, invoking (4.12) gives
31 =0p(ro' ). Op(1) - Op(1).
Likewise,
32 := |07 | o1 ITBL) =T LJQS™ME], =0 - Op(yn1 + k7 log(d*NT)) - Op(1)
<p (ynT + kN7 log(d®NT)),
Sg:= [QUME— 07| ITIs | Q7] oo = O() - Op(ynr) - Op(1) Sp (2! V).
Collecting the terms give
”’E‘(B‘L) _ 2“00 _ ”ﬁCLIMEf(EL)ﬁCLIME _ Q—IFQ—I Hoo
<31+32+233
<pAQ Y9 + ynT + knTlog(d?NT) + Ag' 1%, O
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D.5 Proofof Theorem 4.3

The proofis divided in several steps. Step 1 outlines the proof. Steps 2-5 establish (4.20).
Steps 6-8 establish (4.22).

Prookr. Step 1. (Outline). Let Z ~ N (0, C) and 7 | C~ N(O, 5) be as defined in the Theo-
rem. Define

Ty, g :=VNTE;1/2(,§DL,1'—BO), I g:=vNT 1/Z(BDL, Bo)

and
TE = E;UZGNTV,'[J'U,';.
Define
O1(1) :=P(ITs, glloo < 1) =P(II Txllco < £ + 61),
O02(1) :=P(| Tslloo <t +81) = P(I Zlloo <t + 81),
O03() :=P(| Z]loo < t+ 61) = P(I Zlloo < 1)

and note that for each ¢
P(ITs,glloo < 1) = P(I Zlloc < 1) = Zokm

Likewise, define

O04(1) :=P(IT5 glloo < 1) = P(ITs, glloc < 1)
and

05(1) :=P(I Zllo < 1) = P(I Zlloc < 1| C).

Note that for each ¢,

3
P(I Tz glloo < 1) = P(I1Zlloo < 11C) = Oa(t) + Y_ Or (1) + O5(1).
k=1

Then (4.20) is equivalent to

su10)|P(||T2,B||OO <t)=P(IZll <t)| >0 (D.70)
t>

and (4.22) is equivalent to

sug\P(HTiﬁHo@ <1) =P(IZ)les < £|C)| = pO. (D.71)
>
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Step 2. We show that the elements of diag> are bounded from above and below. By
Assumption 4.3(2), there exists a finite 5y such that max; E[U2 | V] < 67, a.s. As a
result, Assumption 4.3 gives

0<g®< m}nE[UiZ, | Vie] < m?xE[Uizt |Vi] <08, <o as.,
] l

which implies ¢2Q <I' < 52,,0, and ¢?2Q7! <3 < &ZZJVQ_I. As aresult,

2 1 1

1

Likewise, the elements of (diagX)~!/? are bounded from above by Cz_ /2 and from below

~1/2
by C; .

Step 3. We bound sup,..o |01 (¢)| with 61 = log~ /2 dlog™'/? NT. Decomposition (D.47)
implies

ITslloe = IRNTlloo < 173, gllcc < I Txllo0 + IRNT lloos
and union bound gives

P(IITs glloo <) <P(ITxlloo <+ 81) + P(IRNTlloo = 81),
P(ITslloo < 1) <P(IT5, glloc <+ 81) + P(IRNTlloo > 81),
which gives

sup|O1 ()| < P(IRnTllso = 81) =" 0(1), (D.72)

t>0
where (i) follows from
IRNTlloo 5P )‘IQ_I/HQSIOgl/Z d+~NTpyt =op(log™/*dlog /> NT)

given in (D.48) and (4.19).
Step 4. We verify the conditions of Lemma C.5 for the m.d.s. with

m=m(i,t)=T(i—-1)+t, M=NT
and
= (diag>) V2V, U, m=1,2,..., M, Dy =c5 .
To verify the condition (C.5), we invoke Assumption 4.8, which gives
Var(X) = 3 PV UL 2 o min|EV V| €t =tan > 0
and Remark B.2,

mj~m

Var(Xp) =3 PEV2UZS VP < G2 max|[EV, V| o5t =t A1 < oo
123
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By Assumption 4.8,
Fi=(2/k)-10g(NT),  §:=(NT)?log?>dlog?(NT)

obey (4.18), which implies (C.9). By Lemma C.5, there exist constants ¢, € (0, 1/4) and
cx and Cx depending on o, &, ¢2, Cpin, Cmax Such that

sup|O2(1)| = sup|P(I Tsllso < 1) = P(I Zlloc < )] SCx(NT) X + (NT)~?/2.  (D.73)
>0 >0

Step 4. Bound on sup,.. |O3(t)|. Invoking Lemma C.2 gives

sup|Os (1)

t>0

=sup[P(IZlloe < £+ 81) = P(1 Zlloo < 1)|
[

< sug|P(||Z||oo <t+81) =PI Zlloo < t—81)]
>

=supP(|[ Z]loc — t| < 81) < C814/1 vlog(2d/51).
>0

Note that the R.H.S. is a nondecreasing function of §; in some neighborhood of 0 and
that \/1V (x+y) <14 x+ /yforx, y>0.Pluggingin 6; = log~ 2 dlog~ Y2 NT gives

sup|03(1)] = Clog™2dlog ™2 NT,/1 v (log(2d) +log(log"? dlog'/* N T))
t>0

<log Y2 NT +log 2 dlog™ 1> NTlog"?log(NT) = o(1). (D.74)
Combining (D.72) and (D.73) and (D.74) give (D.70). By a standard calculation, we have
EllZ|l» < 4/log2d. Invoking Gaussian concentration inequality (see, e.g., Ledoux (2001,

Theorem 7.1), or Comment 4 in Chernozhukov, Chetverikov, and Kato (2015, p. 56)) im-
plies

I1Zlloe Splog!?(2d) +log!/*(NT).
Since || Z]l and || T, gl converge in distribution to the same limit,

ITs, glloc Splog'/?(2d) + log"/*(NT). (D.75)

Step 5.1. We bound sup,..o |O4(?)|. Take p; = E}/Z/gjl-j/z and let p := (p1, p2, ..., pa)’
be a d-vector. Note that all Euclidean j-vectors e; vectors obey |lejl2 = |lejll1 =1 and,
therefore, belong to the set in Theorem 4.2 with K, = 1. Let ay 1 = (a2a)'/?/(a2a)!/? be
asin (D.52). Invoking (D.51) and the bound (4.15) in Lemma 4.3 gives

max|p; — 1| < sup lant — 1| Sp YNT-
J

allefz=llef1=1
In particular, it implies that the even

min p; >1/2
12j2a " /
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occurs w.p. 1 — o(1). For any p; > 1/2,

7t =1 =11 = pjl/Ipjl <2lpj = 1.
Combining the bounds above on the event min; <4 p; > 1/2 give

max |2 Y252 1) = max|prt =1 <2 max |p;— 1 Spynr.  (D.76)
1<j<d"/ 1<j=d

1<]<
Step 5.2. Let vy - v2 denote (v1 - v2)j =vyj-vpj forj=1,2, ..., d. Note that

S -1
TE.B = TE,B P

or, equivalently,
-1
TE,B_TEvBZ(p —I)szﬁ.
Invoking (D.76) and (D.75) give

175, 5 — Ts,lloo < fgj@}dh)j_l —1|ITs, glloc = Op({nT) - Op(log'/? d +10g > NT) = 0p(1),

where (i) follows from (4.21). Thus, ||
distribution.

Step 6. We bound SUP= |O5(1)|. Invoking Lemma C.1 with X ~ N(0,C)|C and Y ~
N(0,C) and A = IC — Clloo

S s loo and || Ts, glloo converge to the same limit in

sup|05(t)] < C/(Alog (2af))1/2
where C depends only on the constants defined in Assumptions 4.2 and 4.3. In Step 7,
we show that for {7 in (4.15),
A:=C—Clloo $b {nT =" 0p(log 2 dlog ! NT), (D.77)

where (i) is verified in Steps 7-8 and (ii) is directly assumed in (4.21).
Step 7. Note that

131 = [Q7ITO7Y L < |07 oo 1 ITls0 Q7Y o = (Ap/(ag = 1)) Tl = O(L).
As aresult,

IZlloo < 1% = Zlloo + 12lloc SP 1+ yNT SP 1.

Likewise,

||(diag§)’1/2||w = | (diag®)~ Y21 _maxE V2<pint+es Sl

Step 8. Define

C) = max |2 V2 =321 oo | (ding ) 712

1<j<d ”1,00’
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Cy 1= | (diagS) V2| _ | IS — Slloo | (dingS) ~1/2

oo,ll ”1,00’

_ B S-1/2 -1/2
= | diag) 2], I¥le max 317 x|

and note that
IC — Clloo = || (diagS)~'/2S(diags) /2 — (diags) /23 (diagS) 2| _ < C1 + C2 + Cs.
Invoking (D.76) and (4.15),

<S-1/2 —-1/2 S
max [321V2 - 32V2 <p vy, 1S - Sleo Sp Nt
1<j<d J] J]

implies that each term C; is a product of two Op(1) terms and a single Op({y7) term.
Thus, C; + C2 + C3 <p {n7 verifies (i) in (D.77). O

PROOF OF LEMMA 4.4. We invoke Lemma D.6 with V;; = D;; — djo(Z;;) and ?i, =Y —
lio(Zi;) and Bo = (Bo, po) and g = 2. Steps 1, 2, and 3 are established similar to the proof
of Theorem 4.1. Thus, the bounds (4.27) hold for the orthogonal group lasso. As a result,
IBL — Boll1 < /52 logd/NT w.p.1—o0(1).As aresult, the debiased orthogonal group lasso
obeys the uniform linearization result (D.47), and Theorems 4.2 and 4.3 hold. O

APPENDIX E: PROOFS FOR SECTION 5

ProOF OF REMARK 5.1. To prove this, let || - ||y, denote the Orlizs sub-Gaussian norm
under the probability measure P (see van der Vaart and Wellner (1996)). Then

[0Fil],, < [IMWaFieall],, + [1QTil],, < (1= &) IF; 1], + 45,

where A4’ is a numerical constant. Iterating on this inequality exactly 7 times we obtain

t—1
[1Fll,, ==& [IFoll,, +4 ) (-8 <A
=1

6_2

1-6 O

PROOF OF REMARK 5.3. Step 1 shows that py7 < N™Y2(2(Bmax + 1))/2{NT,00- Step 2
shows that w.p. 1 — o(1),

sup| pi(Xit) — pio(Xi)| < 2UNT,00-
it

Step 1. For any 8° and ¢ € Pyr,
|57~ 81, = 16" — 8F 1, < N""txre ED
1€ —&oll2 < 11€ = &oll1 < INT, 00 (E.2)

The Cauchy inequality gives

(pi(Xi) — PiO(Xit))z = (X, (8" — 80) + & — §i0)2 <2(X}, (8" - 50P))2 +2(& — &)
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Summingoveri=1,2,...,Nand¢=1,2,..., T give

N T
pir <2(NT) 130 S E(X(87 - 85))° + 2N ¢ - &oll?

i=1 t=1

< 2BmaxN " R7 00 + 2N 7 oo

With probability 1 — o(1), maxj<j<n,1<t<7T | Xitlloo < Cx+/logdx NT for some finite Cx by
Lemma B.1.
Step 2. The following bound holds w.p. 1 — o(1):

sup| pi(Xir) — pio(Xir)| < sup| X[, (8" — 8§)| + 1&i — &l
it it
<sup | Xitlloo | 8" = 85 ||| + 1€ — &olly
it
< Cx/10g(dx NT)N Y2 {N7 00 + {NT, 00

< 2{NT,00)

where the last step holds assuming N is large enough and Cx/log(dxNT)/N <1. O

PROOF OF REMARK 5.5. Step 1 shows that ly7 = O(N"V2({nT,00 + gf,T’oo)). Step 2
shows that w.p. 1 — o(1),

sup|li(Xit) — Lio(Xir)| < 2K Boln&NT, 00 + 24N 7, oo-
it

Step 1. Decompose
Li(Xir) = Lio(Xie) = (di Xi) — dio(Xir)) Bo + X}, (8% — 85) + &F — &l + di( Xin)' (B — Bo)-
The Cauchy inequality gives
(li(Xi) — liO(Xit))z <4(((di(Xi) — diO(Xit))/,BO)z
+ (X7,(85 = 86))" + (¢F — £5)” + (di(Xi) (B — B))").-

Note that d;(X;) = K(Xi1) pi(Xis) = K(X;) (X, 8 + &). Summing over i =1,2,..., N
andr=1,2,..., T give

15, <4(NT)~ IZZ (K/,Bo)* X1 X},](8" — 8F)

i=1t=1

(8P 80y Wp (8P -80)

+ANT) IZZE (X7, (6% = 85))? + 4N~V ¢F — £
i=1 t=1

N T
+4NT) PSS E|di X |18 — Boll}

i=1 t=1
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— — 2 — 2 — 2
< 4(BmaxN ' ({700 + BmaxN ' ({i7,00) + N (ERi7,00) "+ BaN H (ERir,00) )
- 2 -
<4(Bmax+ 1+ B4)N l(gflT,oo) + 4N leaxgjz\/T,oo~
Note that for N, T large enough such that |73 < 28] (13 < 2)|87 |12, which is bounded,

N T
By=(NT)" Y S E|diXin) |2,

i=1 t=1

<RX(NT) 12213 (X;,8" + &)" < 2K* (8" Wx 8" + N7 J¢17)
i=1 t=1

< 2% (Bunax 8" | + N 1£15)
< 4K Bnax | 85 |2 + 1.
Step 2. For N, T large enough, w.p. 1 — o(1),
S‘;PVI'(Xn) — lio(Xif)|
< SIiltp|K§-tBo| stiltplpi(Xit) — pio(Xir)|
+sup 1Xirlloo | 8% — 85, sup|£i - &l
+sliltp||K(X,~t>||oo|X;t6E|||B — Bollx

<2K11BollndNT,00 + I Xitlloo (N V2 (K7 oo + K| 85| NTV2 01 ) + | €5 = €5,
< 2K Boll1¢NT,00 + Cx/10g(dx NT)N (1 + K[ 6% |) EN 700 + ENT 00
<2K||BolléNT, 00 + 2437 o0

where the last step holds assuming N is large enough and |85 |, < |85 (| and
Cx/logdxNT)/N(1+2K 8§ |,) <1. H

PRrOOF OF REMARK 5.6. Invoking Remark 5.3 and the bound (5.34) on g”f\),Too in
Lemma 5.1 give

VNTPRr SVNTNTH (7,00 S (8P NTV2T V2T 0g® =) (dx + N)
In addition, the bound (5.36) on ¢ f,T, « in Lemma 5.2 gives

VNTpNTINT SYNTN R ot oo

SSP ) SENfl/zT(VJrVE)/zfl lOgS(l—(V—H/E)/Z)(dX +N)=o(1). 0
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APPENDIX F: TooLs: TAILS BOUNDS FOR EMPIRICAL RECTANGULAR MATRICES UNDER
WEAK DEPENDENCE

Lemma E1 (Rectangular Matrix Bernstein, Theorem 1.6 in Tropp (2012)). Consider a fi-
nite sequence {Em}]\m/[:1 of independent, random matrices with dimensions di x d». As-
sume that there exist constants R= and o= such that

Define
M
Ué:l‘llﬁX( EZE Eml, Ez:m:/m ) (E2)
m=1
Then, forallt > 0,
M 2 2
P( > Em| = t) < (dy + dp)e” " /RIEHREIED, (E3)
m=1

LEMMA E2 (Tail Bounds for Weakly Dependent Sums, Operator Norm). Consider the
setup of Lemma B.4 with weakly dependent data {W,} and matrix-valued functions
{pi( N, : W — RN*%, Ler g = |(2/k)log(NT)] be as in (B.16) and L = |T/2q|. For
i=12,...,Nandl=1,2,..., L, let the data blocks B;;_1), Bio; and Bj, be as in (B.8)—-
(B.10). Let the full-sized odd-block sums ¢,;(Bji2;—1)) be as in (B.11), that is,

t=(21-2)q+q t=(21q)
biBiai—) = > bi(Wi), bi(Bien)= Y. di(Wi)
t=(2[-2)g+1 t=(21-1)g+1

and let ¢; (BL(ZZ 1)) and ¢,-(B;.k(21)) be their Berbee copies. In case T # 2Lq, the remainder
block ¢;(B;,) as in (B.13), that is,

T
bi(Bir)i= Y biWi).

t=2Lg+1

Suppose that there exist constants R and o such that the following conditions hold:

E¢;(Wi)=0,  sup|d;i(Wi)| <R a.s. (E4)
it

al )

<gNTd?, (E5)

and

Z ZE¢ 1(21 1(21)

i=1[=1

ZZE¢ 1(21) ( 1(21))/

i=1[l=1
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( ZZE¢ 1(21 1) ( (21— 1) ZZE¢ 1(21 1) ( l(21—1)>/ >

i=1 [=1 i=1 I=1
<gNTo?, (E6)

Then, forany t >0,

d

and under geometric beta-mixing condition (4.1),

N
1Y Edi(Bir) di(Bir)

i=1

N
> E¢i(Bir) bi(Bir)

i=1

) <gNTa?. (E7)

N T

(NT)T' DD hi(Wan)

i=1t=1

> 3:) <3(dy +dp)e "NT/200*+aR/3) L ONT v(q)  (E8)

1

1 N T
HN—ZZ i(Wir)
<

S (a\/log(NT) log(dy +d2) + log(NT)Rlog(d; + d2)>. (E9)

1
VNT
REMARK E1. In what follows, we write ¢ (W;;) in place of ¢;(W;;), but subsume the de-

pendence on i.

Proor oF LEMMA E2. The union bound gives
N T
DD W)

P( > St)
i=1 t=1

< P( Z Z ®(Bia_1))

zt)
+P( ii‘?ﬁ(lg;zl)) Zt) +P(

i=1 I=1
We first establish the bound for the odd-block sums. Define

N
> 6B

i=1

> z) +2NLy(q). (E10)

m=m(i,)=L-(i—-1)+I, M=NL,  Eu=0¢(Biy_1)-

Since <;'>(Bl(21 1)) consists of ¢ summands and W;; and W;; have the same marginal dis-
tributions, the bound (E4) gives

|6 (Bj_1) | =aR as.,
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which verifies (E1) with Rz = gR. Likewise, (E5) directly verifies (E2) with the bound
o2 = gNTo?. Invoking Lemma E1 gives

|

A similar bound holds for the even-numbered sums. For the remainder blocks, we take

N L

ZZ‘f’(B?(zl—l))

i=1 /=1

> t) <(d; +d2)e—t2/2(qNTa2+th/3)_

m:i, M:N, Em:¢(Bir)-
Since the remainder block has at most g elements,
|#(Bir)| <qR as.

which implies (E1) with Rz = gR. Likewise, (E7) directly verifies (E2) with the bound
oé = gNTo?. Therefore,

|

Invoking union bound (E10) gives

{

Plugging t(NT) in place of ¢ gives and dividing each side by NT gives
P(

which coincides with (E8). For geometric mixing, taking ¢ as in (B.16) gives NLy(q) =
o(1). Noting that

N
> b(Bi)

i=1

> t) <(di+ dz)e_tz/z(‘INTUZ-ﬁ-th/S).

N T

DY W)

i=1 t=1

> 3t> <3(dy + dp)e™/2UNTT*+aRI3) L aNT v (q).

T

1 N
‘WZZMWM

i=1t=1

> 3t) <3(d; +dz)e—t2(NT)Z/Z(qNTa'z-i-qRNTt/S) +2NLy(q)

=3(dy + dp)e” NT/2ATHARYS) 4 aN Ty (g),

3(d; + dz)e—tzNT/Z(qcrz—i-th/S)

< max(3(d; + dp)e”NT/47%), 3(dy + dy)e” INT/AR/D),

Plugging ¢ = C'a\/qlog(dy + d2)/NT and taking C’ large makes the first term in the max
as small as desired. Plugging ¢ = C'log(d; + d2)gR/NT and taking C’ large makes the
second terms in the max as small as desired. Therefore,

1 N T
‘WZZWW

i=1t=1

1
NT log(NT)Rlog(d; +d2)>. 0

1
< log(NT)log(d1 + d2) +
Pm(” g(NT)log(dy + d2)
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LEMMA E3. Let y(X) : X — RU*% be q fixed matrix-valued function of a random vec-
tor X. Define the functional

¢ (X) =y(X) —E[y(X)]. (E11)
Let 37, and ynT be numeric sequences obeying

N T
suplly(Xi) | < vy as,  (NTYUY. D E|v(Xi)|* < vy (E12)
i i=1 =1

Then the conditions (E4) and (F5)—(E7) hold with
R=2y%r,  o*=2viyr (E13)

As a result, the bound (F9) in Lemma E2 reduces to

1 N T
‘WZZM%)

Proor oF LEMMA E3 . Step 1. Let X and X be two random vectors, and y(X) and y(X)
be d; x d, matrices. The following inequalities hold:

i=1 =1
1 1
<p INT <72NT\/10g(NT) log(dy + d2) + Nithi log(NT)yyrlog(dr + dz))- (E14)

IEy(X)y(X)| <" E[vX)yX) | <TE|yX) || y(X) |

<y O By |
<N 172(E]yO|* + E[y(X) [*) =¥ 1/2(E|y(X) | + E[y(D)[), E15)

where (i) follows from the convexity of the norm and Jensen’s inequality, (ii) from sub-
multiplicativity of operator norm || AB| < || 4|/l B|, (iii)—(iv) from Cauchy inequalities
and (v) from || A’|| = || A|. Likewise,

|EYCOEY(X)Y| <t | Ey(x) || Ey(X)|
=<1 172(([ByC0[)* + ([EvXY])")
<11 72(E [y |* + E|y(X)|*) =V 1/2(E| (0O |* + E[y(X)[), (B16)

where (i) follows from || AB|| < || A||||B||, (ii) from Cauchy inequality, (iii) from the convex-
ity of composition ¢t — > and - — || - | and Jensen’s inequality, and (iv) from || 4’| = || 4]
Finally, since the R.H.S. of (E15) and (E16) is invariant under transposition, the same
bound holds for the transposed quantities:

)

/|

max (|| Ey(X) y(X) |, [Ey(X)y(X)|)) < 172E[vX) | + E|v(X)|),

max(|By(X)Ey(X) |, |[By(X)Ey(X)'|) < 1/2(E|y(X)|* + E|y(X)|?).




Supplementary Material Inference on heterogeneous treatment effects 55

Step 2. For ¢(X) =y(X) — Ey(X),

Ed(X)p(X) =Ey(X)y(X) — Ey(X)Ey(X) — Ey(X)Ey(X) +Ey(X)Ey(X)

=Ey(X)y(X)' — Ey(X)Ey(X)'. (E17)
Let {X, mz}m 7, be a double-indexed sequence. For every value of m,
4 z !
(Z v(sz)> (Z y(sz/)) = Y Y X))y Xz -
z=1 z/=1 1<z,2/<Z
Define

M /Z z M
EZ(Z (sz))(ZY(szf)) =Y Y Ey(Xm)y(Xmz),
m=1 z=1

m=11<z,z2/<Z

M z z M
Z( ZV(sz)) (EZ'Y(sz/)) :Z Z E'Y(sz)E'Y(sz’)/-

=1 z=1 m=11<z,z/<Z

Invoking (E17) gives

$alf s [fone] -

z=1 z=1

Step 3. The bound on || M| is

M
M <> > By (X)) y (X2 |

m=11<z,z2/<Z

M zZ Z

<1723 3 3 (B v(Xn) [* + By (X))

m=1z=1z=1

M Z ) M Z ,
=Z/2<ZZE||7(XW)|| + 3> Ely (X )
m=1z=1 m=1z=1

M Z
=ZZZ |v(Ximo) | (E18)

Likewise,

M
M2l < Z Z ”E'Y(sz)E')’(sz/)/”

m=11<z,z/<Z
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M ZzZ Z

<1/2 Z Z Z(E”'Y(sz)Hz +E||7(sz’)

m=1z=1z=1

)

M Z
=Z Y Y By (E19)
m=1z=1
As aresult,
M Z )
1My — M|l < Myl + IM2]l <2Z ) Y B[ y(Xm2) |~
m=1 z=1

Because the bounds (E15) and (E16) are invariant to transpositions of y(X) and/or
y(X),

M Z
<2Z) Y Ely(Xm)|* (B20)

m=1z=1

M Z V4
E[Z ¢>(sz)’] [Z ¢(sz/)}
1

m= z=1 z=1

Step 4. We first verify the condition (E5) for the odd-numbered full-sized blocks. We
note that the L.H.S. of (E5) is a special case of the L.H.S. of (E20) with

m=m(i,l)=L-(i—1)+], M=NL, Z=gq,

Kmz =X 21-2)q+2>

t=(21-2)q+q q
dBia-1) = Y, dXi) =) ¢(Xpms).
t=(21-2)q+1 z=1

As aresult,

N L ¢
<20 3 3 E|v(Xip )| (E21)

i=1 /=1 z=1

N L ¢
:quZZE||7(Xi(21—1),z)||2 (E22)

i=1I=1 z=1
N T

<2¢y Y B[y(Xi)|* =2qNTyyy.  (E23)
i=1t=1

N L
> E¢(Bjp_1) b (Biaiy)

i=1 /=1

A similar argument for even-numbered, full-sized blocks and qﬁ(B;.*(Zl)) =

Zzg?_ql) g+l ¢ (X};) verifies condition (E6) of Lemma E2. Finally, if the remainder block
is nonempty, thatis, T — 2Lq # 0, invoking (E20) with

m=i, M=N, Z:=T-2Lq
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and noting that
N T—2Lgq

< 2612 Z E||7(Xiz)||2

i=1 z=1

N
Y E¢(Bir) (B

i=1

N T
2
<2¢) Y E[y(Xi)|" =2qNT¥y7 (E24)
i=1t=1
which verifies condition (E7) of Lemma E2. Finally, the condition (E4) follows from

“d’(B;'k(zlfl))“ <gR as, ”‘15(3?(21))” =gR as, l¢Bi)| <qR,

since each block has at most ¢ summands. Plugging R = 2y, and g = 2y3,,, into (E9)
gives (E14). O

Corollaries E1 and E2 are special cases of Lemma E3 with various cases of the vy-
function.

CoRroLLARY E1 (Covariance Matrix Moments). Let s(X) : X — R4*! be a fixed-vector
function of a random vector X . Define

Y(X) = ¢(X)p(X) (E25)
and the ¢-function
$(X) :=y(X) — E[y(X)] = ¢(X)(X) — E[(X)(X)].
Let the numeric sequences sy and 4Nt 0bey

sup||p (X | < v as., (E26)
it
N T A
(NT)™! ZZE”‘“X”)H < iy (E27)
i=1 t=1

Then the bound (E12) holds with vy := ($57)? and v3y 7 = Wiy As a result, the rate
(E14) reduces to

N T
H (NT)'Y > (Xin)

i=1 t=1

<p \/ i 10g(NT)log(2d)/NT +log(NT) (433r) log(2d)/NT.  (E28)
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Proor or CoroLLARY E1. Noting that

lv(Xin| o < w2 < (35r)?

and
ly(Xio|? = [ (Xiw(Xa)' | < |w X | |0 X |* = [ w X |-
Therefore,
N T N T
N Y SB[y [P < WDV S E|u (X | < v
i=1 t=1 i=1 t=1
Application of Lemma E3 yields the result. O

CoRroLLARY E2 (Product Moments). Let s(X) : X — R¥*! be a fixed-vector function of a
random vector X and &¢(X) be a random variable. Define

Y(X) = (X) - §(X).
Let the numeric sequences §3;;, €37, and Yant, EanT Obey
s?tpH Y(Xi)| vy as., s?tp|§(X,»t)] <& as, (E29)
N T

N T
WNTY Y S Elpxao|t <wive NDTUY S B (X < édyp. (E30)

i=1 t=1 i=1 t=1

Then the bound (F12) holds with

vr = () - EXr Yonr =1/2(WanT + EinT)-

As a result, the rate (E14) reduces to

N T
H(NT)‘IZZMXM

i=1t=1

Sp \/(l!/?lNT + gjllNT) log(NT)log(d+1)/NT

+1og(NT)Yréxrlog(d+1)/NT. (E31)
ProoF OoF COrROLLARY E2. Noting that
ly(Xin)|| o, < | (Xin)|| | EXi)| < ¥R €XT

and

ly(Xi | = |w(Xin) | *€ (X
The Cauchy inequality gives

E|ly(Xin)|* =Bl v (Xi) | * & (Xi) < 172(E]p(Xin) |* + B4 (Xin)).
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Therefore,
N T ) N T s N T
(NT)"' Y S E[y(Xan) | S(NT)_I(ZZEI|¢(Xit)!| +ZZE§4(Xﬂ))
i=1t=1 i=1t=1 i=1t=1

< (Winr + Einr) /2.

Application of Lemma E3 yields the result. O

APPENDIX G: ADDITIONAL RESULTS ON ORTHOGONAL OLS
AssumpTION G.1 (Tail Bound on Empirical Covariance Matrix in £, Norm). For some
sequence vNT = 0(1), in the regime where d — oo, we have that

10 — QI <p vNT- G.1)

REMARK G.1. Suppose Assumptions 4.1-4.3 hold and sup;, [|Vi:llcc < R a.s. and

4 _ 4
ngleV”j = Oyy-

We invoke Corollary E1 with s (W;;) =V, and 3, := v/dR and (E27) with ¢}, = d? 0},
As aresult, the rate bound (F28) reduces to

unr = /d?log(2d) log(N'T)/NT + dRlog(2d) log(NT)/NT.

Further improvement of this rate may be possible under additional structure on Vy; see,
for example, Theorem 1 and Corollary 3 in Banna, Merlevede, and Youssef (2016).

Let Dyt x LyT be a sequence of realization sets such that the following condi-
tions hold. Let dy7, In7, dnT,4, InT,4 be the numeric sequences obeying the following
bounds:

N T
sup (NT)™' Y "(B||di(Xir) — dio(Xir) 142 <dwr,
deDyr i=1 t=1

N T
sup (NT)™! ZZ E|di(Xi) — dio(Xir) H4)1/4 <dnr,4,
deDnt i=1 1=1

N T
sup (NT)™! ZZ(E(li(Xit) - liO(Xit))4)1/4 <InT,1.

leLyt i=1 =1

Define the following rates:

(¥ 74 + 147 4) log(NT)log(d + 1)
NT

++/dlog(d +1)log(NT)/NT, (G.2)

ront :=dn7lNT + \/

XNT = dNT + \/dNT 410g(2d)log(NT)/NT + dlog(2d)log(NT)/NT. (G.3)
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AssumpTION G.2. We suppose that the true parameter vector has bounded ¢, -norm:

1Bollz < Cp

for some finite constant Cg; We suppose that the reduced form estimators obey:T(-) €Lyt
and d(-) € Dyt if such thatdyt, dnT,4, InT, INT,4 decay sufficiently fast:

raNT + XNT = 0((NT)™"/?). (G.4)
Furthermore, the reduced form estimates are bounded as

sup |di(Xi)| <vdD,  sup [li(Xi)| <L Vi.

dEDNT lELNT

THEOREM G.1 (Orthogonal Least Squares). Suppose Assumptions 4.1-4.3, G.1, and G.2
hold. Then the following statements hold:

1. The orthogonal least squares estimator converges at the rate \/d/NT:
1Bots — Boll2 Spv/d/NT. (G.5)

2. For any deterministic sequence {a} = {an, T} With |lan, 7| = 1, the estimator Q/EOLS
of & By is asymptotically linear:

VNT (Bois — Bo) = &' Q 'GnrVi Ui + op(1). (G.6)

3. Ifthe Lindeberg condition holds for each M > 0,

N T
limsup sup (NT)~! ZZE[(“/V”U”)ZI{|“/V”U”| >MVNT}1=0,
NT—c0 |lefl2=1 i=1 t=1

then the orthogonal least squares estimator is asymptotically Gaussian:

lim sup sup
NT—00 |a|,=1 teR

P<VNT0/(,§0LS — Bo)
Jo's ]

< t) — @(t)‘ =0. (G.7)

LEmMMA G.1 (First-Order Terms, ¢2-Norm). Let a, m, f , e be as in (D.2)-(D.5). Under As-
sumptions 4.1-4.3, the following bounds hold:

lall <p (Vd/NTdnr), (G.8)
Il <p (Vd/NTly), (G.9)
Ifll Sp (A7 (NT)V2), (G.10)
12l <p (Vd/NT(dnr +1n7). (G.11)

Proor oF LEMMA G.1. Define

Enpi=+vd/NTdyt,  &8:=0,
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and the A-function as
AW, 1) =Vie(dio(Xir) — di(Xir)). (G.12)

Define B 4x (1) and V4, () with n = d as in (A.8)-(A.9). Consider any n = ny1 € DNT
in what follows. Since V;; obeys the martingale difference property (D.13), it follows that
|Bax(nnT)|l = 0. Furthermore, forany 1 < j, j <d,

E[(Ol/Vit) (Ol/V(it/))(diO(Xit) - di(Xit))j(diO(Xit/) - di(Xiz’))j/] =0. (G.13)
Combining (G.13) and Assumption 4.3,

E[| &' Vak(nnT) ||2]

N d
= (NT})™? Z Z ZE[(Q/Vit)Z(diO(Xit) - di(Xit))jz-]

i=1 re My, j=1

<(NT)"2 sup Z 3 ZE [1VielP|ir, Xie](dio(Xie) — di (X))

deDNT =1 te M, j=1

N T
<(NTx)™* sup ZZE“dio(Xit)_di(Xit)“ZdU'Iz/

deDyr i=1 t=1
< (d/NT) o2 (T/Ti)d3 1,

where (i) followsA from (G.13) and (ii) follows from definition of d 7. By Assumption 4.5,
we have that P(d;, € Dy7,Vk =1, ..., K) — 1. Moreover, since the number of cross-fit
folds is finite, the size T} of each fold obeys

1<T/T<1.
We conclude by Lemma A.6 that (G.8) holds. Repeating the same argument for
AW, 1) =Vir(lio(Xi) — 1i( X)) and AW, m) = Ui (dio(Xir) — di(Xir))

establishes claims (G.9) and (G.10). Finally, (D.12) holds by definition of ¢ = m — a’Bg
and Holder inequalities. U

In the lemma below, abusing the notation, we treat /; as some generic vector-valued
function.

LEMMA G.2 (Second-Order Bias). Let d;o(X;;) be a di-vector and l;o(X;;) be a do-vector.
Suppose that

N T
sup (NT)™! ZZ(E”di(Xit) —djo(Xir) ||2)1/2 <dnr,
deDyr i=1 =1

N T
sup (NT)™! ZZ(E”li(Xit) —lio(Xit) ||2)1/2 <Int

leDnT i=1 =1
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Consider the A-function as

AW, m) = (dio(Xi) — di(Xi)) (lio(Xi) — li(Xir)), m=(d, 1) (G.14)
and its bias B 4, (1) as in (A.8). Then we have the bias bound.:

sup  |Bak(m)|, <dnrINT(T/T}).
ne(Dnt,LNT)

PROOF OF LEMMA G.2. Take a € 8471, Let Xj;(a) := & (dio(Xi1) — di(X;;)) and Yij =
(lio(Xir) = 1;( X)) j and

d
a7, = | dio(Xir) — di( Xir) 2 b7 = ||lio(Xir) — li(Xit)”Z = Zbij-
j=1
Recognize that
N
o/Bagj(n) = (NTO ™'Y Y~ Ea/(dio(Xir) — di(Xie)) (lio(Xie) = 1i(Xin))
i=1te My

N
=(NTW)™' )" > EXu(a)Yi.

i=1 te My,

The Cauchy inequality gives

|EXi () Y| < /EXl.zt(a)EYl%jf\/E”d,-o(X,-,)—d,-(Xl.t)”ZEYiztjzz /al?tbl?,j.

Summing over i and ¢ and invoking Cauchy inequality give

N N
@Bagj(m) < (NT)T' Y D~ \JabbZ, < (NT)™' | D D" ad | D D bE,

i=1te My i=1te My, i=1te My
/ 2 4 / 2 -1 al 2 -1 Sl 2
| Bae(m)|” =Y |/ Bai(m)|" < NT)™H D0 D ab JINTOTH oD > b
j=1 i=1te My j=1i=1teM;

N T N T
<(NT)™ (ZZai) (NT)™! (ZZ@
i=1t=1 i=1t=1
< B, d%(T/ Ti)% =

Next, we invoke Lemmas E2 and E3 and Corollaries E1-E2 from Appendix F.

LeMMA G.3 (Second-Order Covariance Term). Define

Br=dr,  r=\dl; 4log(2d) logNT/NT +dDlog(2d)log(NT)/NT.
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Under Assumptions 4.1-4.3, the following bounds hold for the term b defined in (D.6):
16l Sp N7 + Er = XNT- (G.15)
Proor orF LEMMA G.3. Define the A-function as
AW, m) = (dio(Xie) — di(Xi)) (dio(Xit) — di(Xi)), n=d=L.

Let B 44 (n) and V44 (n) be defined according to (A.8)—(A.9). Invoking Lemma G.2 with
I1=dgives |B4r (MNT) loo = 0(§ﬁT) for any partition k. Note that

N
Vak(nnt) = (NT) ™ Z Z ((dio(Xir) — di(Xi)) (dio(Xie) — di(Xir))'
i=1teMy
—E[(dio(Xir) — di( X)) (dio(Xir) — di(Xin))'])
N
= (NT)™' Y D ilXa).
i=1 te My,
Define
¥i(Xir) = (dio(Xip) — di(Xir)),
Yi(Xit) = $i(Xi) i (Xi) = (dio(Xir) — di(Xi0)) (dio(Xir) — di(Xin)),
$i(Xir) = vi(Xir) — E[vi(Xin)].
Note that ¢;(X;;) = (dio(Xi) — di(Xj¢)) obeys the conditions (E26) and (E27) with
Y3 i=dD, YNT,4 ' =dNT 4.

As aresult, the bound (E28) reduces to {ZT for each partition k and T = T}. Since T}, / T <
1, the bound follows. O

LEMMA G.4 (Second-Order Covariance Term, cont.). Suppose Assumptions 4.1-4.3 and
G.2 hold. Let z and g be as defined in (D.7) and (D.8). Then

Izl SpranT, (G.16)
gl SpranT + XNT- (G.17)
Proor or LEMMA G.4. Define the A-function as
AW, m) = (dio(Xie) — di(Xi0)) (lio(Xi) = li(Xi)), m=(d,D).
Let B 4x(7m) and V4 (n) be defined according to (A.8)—(A.9). Let

{8 =dyrlnT,

V (dh74 + 147 4) log(NT) log(d + 1)
Ly = N7

+dDlog(2d)log(NT)/NT.
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Invoking Lemma G.2 with d1 =d and dy = 1 give |B4x (MNT)lloo = 0((1{?”) for any parti-
tion k. Note that

N
Vaknr) = (NT) ™Y Y ((dio(Xir) — di(Xin)) (Lio(Xir) — 1i(Xi))
i=1teM;
— E[(dio(Xir) — di(Xin)) (lio(Xir) — 1i(Xin)'])
N
= (NTk)flz Z i(Xir).
i=1te My
Define

Yi(Xi) = (dio(Xir) — di(Xir)), & Xir) =lio(Xir) — Li(Xir),
Yi(Xie) = ¥i(Xin) €i(Xir) = (dio(Xir) — di( X)) (Lio(Xir) — Li( X)),
¢i(Xi) = vi(Xir) — E[7i(Xin)].

Note that ¢;(X;;) = (dio(Xi:) — di(X;;)) and &;(X;;) = lio(Xi;) — l;(X;;) obey the condi-
tions (E29) and (F30) with

Yo :=~dD, UNT, 4 =dNT,4, Er=1L, EnT,4:=1INT 4.

As aresult, the bound (E31) reduces to {K,T for each partition k and T' = Tj. Since Ty / T =<
1, the bound (G.16) follows. Recognizing that g = z — b’ B¢ and invoking || 8ol < Cg as in
Assumption G.2 give

Igll < IIZIl + I16Boll < IZIl + 1611 Boll,
(G.17) follows. |

ProoF oF THEOREM G.1. Step 0. Let R,-t(zl\,/l\) be as defined in (D.1). Let a, b, ¢, f_, gbeas
defined in (D.2), (D.6), ..., (D.8). As shown in the proof of Lemma D.3, the Gram matrix
estimation error

O—Q=EnNtViV,—BntViV,=a+ad +b
and gradient estimation error
§ =S =EnrVi (Ui + Ri(d, D) = Vi Ui ) =&+ f + .
We have that
10— QI <110 -0l +110 - Il Sp (xwt +Vd/NTdyr +vy7r) = 0(1),
where (i) follows from Lemmas G.1-G.4 and Assumption G.1.Furthermore, by lemmas
IS =Sl =llé+ f + &l Sp r2nt + xnT) = 0(1/VNT),

where we used Assumptions 4.1-4.3 and G.2 to conclude that rony7 + xN7 = 0(1/~/NT).
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Step 1. Since Q is invertible by assumption, QO is also invertible w.p. 1 —o(1) by Step 0.
Therefore, we can decompose Bors — Bo as

Bots — Bo = Q\_IENTU’/\it?it] ~07'0'Bo = Q_IENTU//\&?#] -0 YEnTViV},) Bo
=0 Bnr[Va(Vie— Vo))
= 0 'En7[Vie(Uir + Ru(d, 1)]
= Q0 'EntVieUif + Q_IENT[IZt(Uit + Rit(a;/l\)) —VieUif].
Therefore, the following bound holds by triangle and Holder inequalities:
IBows — Boll < |Q NEN7ViUull + |0 IS = SIl = Q[ (L1 + L2).

The first term L; is bounded as

d
2
EIEn7ViiUitl® =) E(Ent(Vie)jUir)

j=1
d N T

TN 2SS E(0Un)”
j=1i=1 t=1
N T

< (NT)Y2 3D CENVal supE[UF Vi)
i=1 t=1

<a*(NT) ! Z Ztrace(EVi[Vi;)
i=1 =1
= g trace(Q) <" (d/NT)Cmax,
where (i) follows from the m.d.s. property in Lemma B.3, and (ii) from max e1g(Q) <
Cmax- The Markov inequality gives L <p (,/d/N ). The second term L := ||S S| is
op(1/~/NT) by Step 0. Step 0 implies max elg(Q by < 2Cmln w.p. 1 — o(1). Therefore, the
rate bound (G.5) follows.
Step 2. From Step 1,
o (Bos — Bo) = a//Q\_IENT[f/\it(Uit + Rir(g,f)]
= Q 'EnrV;i Ui
+ a/(é_l — O YENTV;iUir + a//Q\_l[ENT[Izt(Uit +Ru(d, 1) - VieUid]]
=1 o/ Q7 'EnTVi Ut + S1(a) + S2(a).

The bound on §; («) follows:

S1(a)| < |07t = Q| IENTVi U
<0710 - el @ IEN Vi Uil
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=0p(1)-0p(1)- Op(1) - Op((NT)"V/?) = 0p((NT)~'7?),

where Op(-) and op(-) bounds are established in Steps 0-2. The bound on S, («) follows
from:

|S2(a)| < Il CL IS = I Sp (rant + xnT) = 0p((NT) V),

min

where we are using the results of Step 0. As a result,
VNTd (Bois — Bo) = &' Q' GnrVieUis + 0p(1),

which gives (G.6).
Step 3. The proof of pointwise normality follows similar to Step 1 of the proof of The-
orem 4.2, where the step (D.51) is replaced by

o («'Sa) T *Ryr| < IO IRnTll2 Sp VNT (ranT + XNT) = 0p(1). 0
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