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Notation We use the standard notation for numeric and stochastic dominance. For
two numeric sequences, {an}n≥1 and {bn}n≥1, an � bn stands for an = O(bn ). For two se-
quences of random variables {an}n≥1 and {bn}n≥1, an �P bn stands for an �P (bn ). For a
random vector V , let V 0 := V − E[V ] be the demeaned vector. Let [N ] := {1, 2, � � � ,N },
[T ] := {1, 2, � � � , T }, and [j] := {1, 2, � � � , d}. Let a∧ b= min{a, b} and a∨ b= max{a, b}.

Matrix and vector norms For a vector v ∈ Rd , denote the �2-norm of v as ‖v‖2 :=√∑d
j=1 v

2
j , the �1-norm of v as ‖v‖1 := ∑d

j=1 |vj|, the �∞-norm of v as ‖v‖∞ :=
max1≤j≤d |vj|, and the �0-“norm” of v as ‖v‖0 := ∑d

j=1 1{vj 	=0}. Denote a unit sphere in
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Rd as Sd−1 = {α ∈ Rd : ‖α‖ = 1}. For a matrix A = (aij ) ∈ Rd×d , let its operator norm
be ‖A‖2 = supα∈Sd−1 ‖Aα‖2, the elementwise norm be ‖A‖∞ = max1≤i,j≤d |aij|, and the
maximal �1-row-norm:

‖A‖1,∞ = max
1≤j≤d

d∑
i=1

|aij|.

Empirical process notation In what follows, we use the standard empirical process no-
tation. For a generic measurable function f : W → R and a generic sample {{Wit }Tt=1}Ni=1,
whereWit ’s take values in W , define the empirical expectation

ENT f (Wit ) = 1
NT

N∑
i=1

T∑
t=1

f (Wit )

and the empirical process:

GNT f (Wit ) = √
NTENT

[
f (Wit ) − EWit f (Wit )

]
.

Appendix A: Tools: Strassen and Berbee couplings. Implications for

cross-fitting

A.1 Strassen’s coupling: Weak and strong form via Dudley–Philipp

Let S be a Polish space and PZ,W be a law on S × S, with marginal laws PZ on S and PW
on S. Let (�, B, P) be a probability space andZ be a random variable on�with values in
S and law L(Z ) = PZ . Assume that (�, B, P) has been extended to carry a random vari-
able U on �, independent of Z, with values in [0, 1] and law U(0, 1). The total variation
norm of a signed measure ν on the Polish space T is defined as

‖ν‖TV = sup
F closed

ν(F ).

The total variation distance between laws P and Q defined on the Polish space T is de-
fined by taking ν = P −Q in the definition above.

We also make use of the following Strassen’s weak coupling result (e.g., Villani (2007,
p. 7)):

min
Z∗,W ∗

{
P
(
Z∗ 	=W ∗) : L

(
Z∗) = PZ , L

(
W ∗) = PW

} = 1
2
‖PZ − PW ‖TV, (A.1)

where minimization is done over space of random variables Z∗ and W ∗ defined on the
probability space (�, B, P). Note that the problem above is the optimal transportation
problem for 0-1 cost; see Villani (2007) for discussion. The above is a special case of
Strassen’s original result; Schwarz (1980) (Theorem 1) provides another proof of (A.1).

We now recall the following result.
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Lemma A.1 (Strong Coupling; Lemma 2.11, Dudley and Philipp (1983)). Let S and T be
Polish spaces andQ a law on S×T , with marginal PZ on S. Let (�, B, P ) be a probability
space andZ be a random variable on�with values in S and law L(Z ) = PZ . Assume that
there is a random variable U on �, independent of Z, with values in a separable metric
space R and law L(U ) on R having no atoms. Then there exists a random variable W on
� with values in T and law L((Z,W )) =Q.

This result is quoted with minor adaptation of notation. This lemma implies the
strong form of Strassen’s weak coupling (A.1) as stated in the following lemma.

Lemma A.2 (Strong Form of Strassen’s Coupling). Given the setup above with a given
random variable Z, there exists a random variable W taking values in S, defined on the
same probability space, and having law L(W ) = PW such that

P(Z 	=W ) = 1
2
‖PZ − PW ‖TV. (A.2)

Proof. Strassen’s weak coupling implies that there is a pair of random variables
(Z∗,W ∗ ) with lawQ and marginals PZ and PW such that

P
(
Z∗ 	=W ∗) = 1

2
‖PZ − PW ‖TV.

Application of the Dudley–Philipp lemma with S = T andU taken to be uniform random
variable implies that for the given Z there is a pairing random variableW , such that law
of (Z,W ) isQ. Therefore,

P(Z 	=W ) = P
(
Z∗ 	=W ∗) = 1

2
‖PZ − PW ‖TV.

A.2 Independence coupling

Consider a special case of the setup above with S = S1 ×S2 and T = S, where S1 and S2 are
Polish spaces, and where Z = (X , Y ) is a pair of random variables such that L(X ) = PX
on S1 and L(Y ) = PY on S2, and L(X , Y ) = PX ,Y .

Lemma A.3 (Strong Coupling With Independence via Strassen–Dudley–Philip). Con-
sider the setup above. We can construct Ỹ and X̃ that are independent of each other with
laws L(X ) = PX and L(Y ) = PY such that

P
{

(X , Y ) 	= (X̃ , Ỹ )
} = 1

2
‖PX ,Y − PX × PY ‖TV.

Proof. In the previous lemma, take Z = (X , Y ) and W = (X̃ , Ỹ ), and note that PW =
PX × PY .
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A.3 Berbee coupling extended

Let (X , Y ) be a pair of random variables taking values in the Polish space S1 × S2 as in
the setup above. Define their coefficient of dependence as

γ(X , Y ) = 1
2
‖PX ,Y − PX × PY ‖TV.

This coefficient vanishes if and only ifX and Y are independent.
The following lemma is a minor extension of Lemma 2.1 of Berbee from real-valued

to Polish-space valued random variables.

Lemma A.4 (Berbee Coupling on Polish Spaces). Let X = (Xi )ni=1 be a collection of ran-
dom variables taking values on the Polish space S = (S1 × · · · × Sn ), and defined on the
same probability space (�, B, P). Define for 1 ≤ i < n,

γ(i) = γ(
Xi, (Xi+1, � � � ,Xn )

)
.

The probability space can be extended so that there exist a collection of random variables
X̃ = (X̃i )ni=1 that are mutually independent, such that each X̃i has the same law as Xi
and

P(X 	= X̃ ) ≤ γ(1) + · · · + γ(n−1).

Proof. Assume that (�, B, P) has been extended to carry a random variable U on �,
independent ofX , with values in [0, 1] and law U(0, 1).

1. Application of strong form of Strassen’s coupling in Lemma A.2 implies that one
can construct X̃ as in the statement of the lemma such that

P(X 	= X̃ ) = 1
2
‖PX − PX̃‖.

2. (Identical to Berbee). To prove the claim of the lemma, we have to estimate the
right hand side. IfX , Y , and Ỹ are random variables, with Y and Ỹ having values in the
same space, then

‖PX ,Y − PX ,Ỹ ‖ ≤ ‖PX ,Y − PX × PY ‖TV + ‖PX × PY − PX × PỸ ‖TV

= 2γ(X , Y ) + ‖PY − PỸ ‖TV.

Applying this rule successively, one obtains

1
2
‖PX1, ���,Xn − PX1 × · · · × PXn‖

≤ γ(1) + ‖PX2, ���,Xn − PX2 × · · · × PXn‖
≤ · · · ≤ γ(1) + · · · + γ(n−1).

Corollary A.1 (Berbee’s Coupling for Panel Data). Let {Xi1,Xi2, � � � ,XiL}Ni=1 be real
random matrices of possibly distinct dimensions. Suppose the sequences (Xi1,Xi2, � � � ,
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XiL ) are independent over i. For each i, (Xi1,Xi2, � � � ,XiL ) is β-mixing whose coefficients
are bounded as

sup
1≤i≤N

sup
1≤l≤L−1

γ
(
(Wi,1, � � � ,Wi,l−1 ), (Wi,l, � � � ,Wi,L )

) ≤ ε. (A.3)

The probability space can be extended with random variables X∗
il distributed as Xil such

thatX∗
il are independent over i, l, and

P
(
Xil 	=X∗

il for some i, l
) ≤N(L− 1)ε. (A.4)

This follows immediately from the union bound and Lemma A.4.

A.4 Applications to cross-fitting

Here, we recall the setup induced by the NLO construction given in the main text. Let
Mk and Mqc

k be two NLO subsets of time indices {1, 2, � � � , T }, for k = 1, � � � ,K. Define
the data blocks

Bk =
N⋃
i=1

Bik, Bik = {Wit }t∈Mk
;

B
qc
k =

N⋃
i=1

B
qc
ik , B

qc
ik = {Wit }t∈Mqc

k
.

(A.5)

By construction, the time periods in Mk and Mqc
k are separated by at least Tk ≥ Tblock :=


T/(K − 1)� time periods.

Lemma A.5 (Approximate Independence of Separated Chunks). Suppose Assump-
tion 4.1 holds with

γ(q) := sup
t̄≤T ,i≤N

γ
(
{Wit }t≤t̄ , {Wit }t≥t̄+q

) ≤ Cκ exp(−κq) (A.6)

and logN/Tblock = o(1). Then there exist random elements B∗
k and Bqc∗k such that (1) B∗

k
and Bk are equal in law, Bqc∗k and Bqc

k are equal in law, (2) B∗
k and Bqc∗k are independent,

and (3) the event

Eberbee := {(
Bk, Bqc

k

) = B∗
k, Bqc∗

k ), for all k= 1, � � � ,K
}

(A.7)

holds with probability 1 − o(1),NT → ∞.

Proof. Invoking Lemma A.3 shows that the required variables exist and obey

P
((
Bk, Bqc

k

) 	= (
B∗
k, Bqc∗

k

)) ≤ γ(
Bk, Bqc

k

) ≤NCκ exp(−κTblock ).

Invoking union bound over the partitions k= 1, 2, � � � ,K gives

P
((
Bk, Bqc

k

) 	= (
B∗
k, Bqc∗

k

)
, for some k= 1, � � � ,K

) ≤KNCκ exp(−κTblock ),

sinceK is finite and logN/Tblock = o(1) givesKNCκ exp(−κTblock ) = o(1).
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Corollary A.2 (Convenient Rate Implications). Consider the setup above. Suppose
there exists a sequence VNT such that for some ψ(B∗

k, Bqc∗
k ) is OP (VNT ) for some mea-

surable function ψ. Then ψ(Bk, Bqc
k ) is OP (VNT ).

Proof of Corollary A.2. Consider any sequence of constants such that �NT → ∞.
Then

P
(
ψ

(
Bk, Bqc

k

)
> �NTVNT

) ≤i P
(
ψ

(
Bk, Bqc

k

)
> �NTVNT ∩ Eberbee

) + P
(
Ecberbee

)
≤ii P

(
ψ

(
B∗
k, Bqc∗

k

)
> �NTVNT

) + P
(
Ecberbee

)
=iii o(1),

where (i) follows from union bound, (ii) holds since ψ(B∗
k, Bqc∗

k ) =ψ(Bk, Bqc
k ) on Eberbee,

and (iii) is assumed in the statement of lemma.

Consider the following setup. We assume all spaces to be separable and complete.
Consider the parameter space T with elements η, typically a space of functions. Con-
sider also a measurable function (the estimation map) bqc �→ η̄(bqc ) that maps WT−q+1

to T . Here, W is the metric space containing realizations of Wit for all i and t. Let
η̂k = η̄(Bqc

k ) denote an estimator constructed on the data Bqc
k . Let b �→ φ(b; η) be an-

other measurable mapping, indexed by η that maps Wq to Rdφ . We assume that the
composition map (b, bqc ) �→φ(b; η̄(bqc )) is measurable.1

Corollary A.3. Suppose there exists a sequence of sets {T̄ N ,T } ⊆ T̄ obeying the condi-
tions as NT → ∞: (A) P(η̂k ∈ T̄ N ,T ) = 1 − o(1) and (B) for any sequence {ηNT } ∈ T̄ N ,T ,
φ(Bk, ηNT ) =OP (VNT ). Then φ(Bk, η̂k ) =OP (VNT ).

Proof of Corollary A.3. Invoke Lemma A.2 with

ψ
(
b, bqc

)
:=φ(

b, η̄
(
bqc

))
1{η̄(bqc )∈T̄ N ,T }.

Union bound implies

P
(
φ(Bk, η̂k ) ≥ �NTVNT

) ≤ P
(
φ(Bk, η̂k ) ≥ �NTVNT ∩ η̂k ∈ T̄ N ,T

) + P(η̂k /∈ T̄ N ,T )

= P
(
ψ

(
Bk, Bqc

k

) ≥ �NTVNT ∩ η̂k ∈ T̄ N ,T
) + P(η̂k /∈ T̄ N ,T )

≤ P
(
ψ

(
Bk, Bqc

k

) ≥ �NTVNT
) + o(1),

where the last inequality holds by Condition A. We have that

P
(
ψ

(
Bk, Bqc

k

) ≥ �NTVNT
) ≤ P

(
ψ

(
B∗
k, Bqc∗

k

) ≥ �NTVNT
) + o(1),

from the previous proof. By Condition B,

P
(
ψ

(
B∗
k, Bqc∗k

)
> �NTVNT | Bqc∗

k

)
= P

(
φ

(
B∗
k, η̄

(
B
qc∗
k

))
1
{
η̄

(
B
qc∗
k

) ∈ T̄N ,T
}
> �NTVNT | Bqc∗

k

) = oP (1).

1Otherwise, can use outer probability measures to work with the bounds below.
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Therefore, using LIE

P
(
ψ

(
B∗
k, Bqc∗

k

) ≥ �NTVNT
) = E

[
P
(
ψ

(
B∗
k, Bqc∗

k

) ≥ �NTVNT |Bqc∗
k

)] = o(1),

where the final conclusion holds by the boundedness (and, therefore, uniform integra-
bility) of the integrand.

Lemma A.6 (Bounds on Cross-Fit Sample Averages). Letw �→A(w, η) be a generic (mea-
surable) matrix-valued function defined on W , indexed by the parameter η ∈ T̄ . Define

BAk(η) := (NTk )−1
N∑
i=1

∑
t∈Mk

EWitA(Wit , η), (A.8)

VAk(η) := (NTk )−1
N∑
i=1

∑
t∈Mk

[
A(Wit , η) − EWitA(Wit , η)

]
. (A.9)

Suppose there exist sequences of constants ζBNT and ζVNT so that as NT → ∞ for each k=
1, � � � ,K:

(1) P(η̂k ∈ T̄ N ,T ) = 1 − o(1).

(2) For any sequence {ηNT } ∈ T̄ N ,T and any norm ||| · |||,∣∣∣∣∣∣BAk(ηNT )
∣∣∣∣∣∣ =O(

ζBNT
)
,

∣∣∣∣∣∣VAk(ηNT )
∣∣∣∣∣∣ �P

(
ζVNT

)
.

Then ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣(NT )−1

N∑
i=1

K∑
k=1

∑
t∈Mk

A(Wit , η̂k )

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ �P

(
ζVNT + ζBNT

)
.

In our case, we will either use ||| · ||| = ‖·‖∞ (sup-norm) or ||| · ||| = ‖·‖2 (operator norm).

Proof of Lemma A.6. We invoke Corollary A.3 with φ(Bk, η) := BAk(η) + VAk(η). The
conditions (A) and (B) are directly assumed in Lemma A.6 as conditions (1) and (2), re-
spectively. Therefore, for each k≤K,∣∣∣∣∣∣BAk(η̂k ) + VAk(η̂k )

∣∣∣∣∣∣ �P
(
ζVNT + ζBNT

)
.

We next note that with probability converging to one,

(NT )−1
N∑
i=1

K∑
k=1

∑
t∈Mk

A(Wit , η̂) = Tk
T

K∑
k=1

[
BAk(η̂k ) + VAk(η̂k )

]
.

Since Tk � T , the claim holds by the triangle inequality and the union bound.

Appendix B: Tools: Tail bounds for maxima of sums for weakly dependent

panels

Here, we collect and develop some useful lemmas, some of which can be of interest.
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B.1 Properties of products of sub-Gaussians

A random variable ξ is (σ2, α)-sub-exponential if

Eeλξ ≤ eλ2σ2/2 a.s. ∀λ : |λ| ≤ α−1. (B.1)

A (σ2, 0)-sub-exponential isσ2-sub-Gaussian. Lemma B.2 states concentration inequal-
ity for a sub-exponential martingale difference sequence (m.d.s.).

Lemma B.1 (Properties of Sub-Gaussian Random Variables). (1) Let σX , σY > 0. If
X is σ2

X-sub-Gaussian and Y is σ2
Y -sub-Gaussian, then X + Y is (σX + σY )2-sub-

Gaussian. (2) Let {Xm}Mm=1 be a sequence of σ2-sub-Gaussian random variables. Then
(2a)

∑M
m=1Xm is (M2σ2 )-sub-Gaussian and (2b) max1≤m≤M Xm �P (σ

√
logd). (3) Fur-

thermore,
∑M
m=1Xm is (Mσ2 )-sub-Gaussian if {Xm}Mm=1 are independent. (4) If Y ∈

[−B, B] a.s., Y is B2-sub-Gaussian. (5) If X is σ2
X-sub-Gaussian conditional on Y , and

Y ∈ [−B, B] a.s., then X · Y is σ2
XB

2-sub-Gaussian. (6) If Xmn are σ̄2-sub-Gaussian for

n = 1, 2, � � � , N̄ (N̄ finite) and m = 1, 2, � � � ,M , then max1≤m≤M
∏N̄
n=1 |Xmn| �P ((2σ̄ )N̄ ×

logN̄/2(MN̄ )).

Proof of Lemma B.1. We prove (1). By Holder inequality, for any p, q in [1, ∞) such
that 1/p+ 1/q= 1,

Eeλ(X+Y ) ≤ (
EeλpX

)1/p(
EeλqY

)1/q ≤ eλ2/2(pσ2
X+qσ2

Y ). (B.2)

Plugging p= (σY +σX )/σX and q= (σY +σX )/σY into (B.2) gives (4.3) with σ2 = (σX +
σY )2. We prove (2a) by induction over M . The statement holds for M = 1. The inductive
step follows from (1) with σX = (M − 1)σ and σY = σ . (2b) is Theorem 1.14 in Rigollet
and Hutter (2017). The statements (3) and (4) are Theorem 1.6 and Lemma 1.8 in Rigollet
and Hutter (2017), respectively. To see (5), observe that E[X | Y ] = 0 a.s. by assumption.
LIE gives

EX ,Y [X ·Y ] = EYE[X | Y ]Y = 0.

Furthermore,

EYE
[
eλXY | Y ] ≤ EYe

λ2σ2Y 2/2 ≤ eλ2σ2B2/2,

which gives the result. (6) Invoking union bound for any t > 0,

P

(
max

1≤m≤M

N̄∏
n=1

|Xmn|> t
)

≤
M∑
m=1

P

(∣∣∣∣∣
N̄∏
n=1

Xmn

∣∣∣∣∣> t
)

≤
M∑
m=1

N̄∑
n=1

P
(|Xmn|> t1/N̄) ≤ 2MN̄e−t2/N̄ /2σ̄2

.
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Taking t := C̄(2σ̄ )N̄ logN̄/2(MN̄ ) and setting C̄ → ∞ makes the R.H.S. above o(1). Con-
clude that

max
1≤m≤M

N̄∏
n=1

|Xmn| �P
(
(2σ̄ )N̄ logN̄/2(MN̄ )

)
.

B.2 Tails bounds for maxima of sums of martingale differences

Lemma B.2 (Martingale Difference Sequences; Theorem 2.19 in Wainwright (2019)).
(1) Let {(ξm,�m )}Mm=1 be an m.d.s. obeying

E
[
eλξm |�m−1

] ≤ eλ2σ2/2 a.s.

for any λ such that |λ| ≤ α−1. Then the sum
∑M
m=1 ξm is (σ2M , α)-sub-exponential and

satisfies concentration inequality

P

(∣∣∣∣∣
M∑
m=1

ξm

∣∣∣∣∣ ≥ t
)

≤
{

2e−t2/(2Mσ2 ), 0 ≤ t ≤Mσ2/α,

2e−t/(2α), t >Mσ2/α.

(2) For each j : 1 ≤ j ≤ d, let {(ξmj ,�m )}Mm=1 be an m.d.s. obeying the conditions above with
the same parameters (σ2, α). Then

P

(∥∥∥∥∥M−1
M∑
m=1

ξm

∥∥∥∥∥
∞
> t

)
≤

{
2elogd−t2M/(2σ2 ), 0 ≤ t ≤ σ2/α,

2elogd−tM/(2α), t > σ2/α.
(B.3)

Proof of Lemma B.2. Lemma B.2 is essentially Theorem 2.19 in Wainwright (2019). Re-
placing ξ by c · ξ in (B.1) shows that c · ξ is (c2σ2, cα)-sub-exponential.

Lemma B.3. Let 1 ≤ i≤N and 1 ≤ t ≤ T be the unit and the time indices. Denote the index
m as

m=m(i, t ) = T (i− 1) + t. (B.4)

Consider a sequence

ξm = VitUit , m= 1, 2, � � � ,M =NT . (B.5)

Under Assumption 4.3,

A {ξm}Mm=1 is a martingale difference sequence with respect to natural filtration:

E[ξm |�m−1] := E[ξm | ξ1, � � � , ξm−1] = 0, ∀m= 1, 2, � � �M .

B Given a large enough constant CV U large enough, there existsNT large enough such
that the maximal norm of the empirical moment vector obeys

P
(‖ENTVitUit‖∞ >CV U

√
logd/NT

) ≤ 2/d = o(1). (B.6)
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Proof of Lemma B.3. By conditional sequential exogeneity (2.4) and independence
over i,

E

[
Uit

∣∣∣ ⋃
t<t ′

Vit ′Uit ′ ,
⋃
j 	=i

{
(Vjt ,Ujt )

T
t=1

}] = 0 ∀i, t.

Therefore, the martingale difference property A holds. Union bound and Assumption 4.3
imply

P
(|Vit,jUit |> t) ≤ P

(|Vit,j|>√
t
) + P

(|Uit |>√
t
) ≤ 2e−t/2σ̄2

.

By Theorem 2.13 in Wainwright (2019), Vit,jUit is (σ2, α)-sub-exponential for some
σ , α > 0 that do not depend on j, N or T . Since the cut-off point σ2/α in (B.3) does
not depend onN , T , for CV U large enough and sample sizeNT ,

t := CV U
√

logd/NT ≤ σ2/α.

The bound follows:

P
(‖ENTVitUit‖∞ >CV U

√
logd/NT

) ≤ 2/d = o(1).

B.3 Tail bounds for maxima of sums of sub-Gaussian products

Lemma B.4 (Tail Bounds for Weakly Dependent Matrices, �∞-Norm). Suppose Assump-
tion 4.1(1) holds. For each j = 1, 2, � � � , d, letφj(Wit ) be centeredσ2-sub-Gaussian random
variable for all i, t where σ = σ(N , T ) and φj(Wit ) can depend onN , T . Then

‖S‖∞ := max
1≤j≤d

∣∣∣∣∣(NT )−1
N∑
i=1

T∑
t=1

φj(Wit )

∣∣∣∣∣ �P σ
√

log(NT ) logd/NT . (B.7)

Remark B.1 (Triangular Arrays). Note that all variables and σ can be indexed by (N , T ),
but we omit the indexing to keep the notation light. Thus, this lemma and all other lem-
mas stated below apply to triangular arrays.

Proof of Lemma B.4. Let q be the block size such that 1 ≤ q ≤ T/2 and let L= [T/2q].
Define the odd blocks

Bi(2l−1) := [Wi,(2l−2)q+1,Wi,(2l−2)q+2, � � � ,Wi,(2l−2)q+q], l= 1, 2, � � � , L, (B.8)

the even blocks

Bi(2l) := [Wi,(2l−1)q+1,Wi,(2l−1)q+2, � � � ,Wi,(2l−1)q+q], l= 1, 2, � � � , L, (B.9)

and the remainder block, which can be empty, as

Bir := [Wi,2Lq+1,Wi,2Lq+2, � � � ,Wi,T ]. (B.10)
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Note that {Bi(2l−1)}Ll=1 obeys (A.3) and {Bi(2l)}Ll=1 obeys (A.3) with ε= γ(q). Let B∗
i(2l−1) be

the Berbee copy of Bi(2l−1). Define the Berbee event

I1 := {
B∗
i(2l−1) = Bi(2l−1) for all i, l

}
.

Likewise, let B∗
i(2l) and I2 be the analogs of B∗

i(2l−1) and I1 for even indices. Define the
blockwise sum

φ
(
B∗
i(2l−1)

)
:=

t=(2l−2)q+q∑
t=(2l−2)q+1

φ
(
W ∗
it

)
, (B.11)

S∗
odd(q) := (NT )−1

N∑
i=1

L∑
l=1

φ
(
B∗
i(2l−1)

)
. (B.12)

Let S∗
even(q) be the analog of S∗

odd(q) for even indices. If T 	= 2Lq, the remainder block is
nonempty, in which case define

φ(Bir ) :=
T∑

t=2Lq+1

φ(Wit ), (B.13)

Srem(q) := (NT )−1
N∑
i=1

φ(Bir ). (B.14)

On the event I1 ∩ I2, the union bound gives

‖S‖∞ ≤ ∥∥S∗
odd(q)

∥∥∞ + ∥∥S∗
even(q)

∥∥∞ + ∥∥Srem(q)
∥∥∞. (B.15)

Thus,

P
(‖S‖∞ ≥ 3t

) ≤ P

(∥∥∥∥∥
N∑
i=1

L∑
l=1

φ
(
B∗
i(2l−1)

)∥∥∥∥∥
∞

≥ t
)

+ P

(∥∥∥∥∥
N∑
i=1

L∑
l=1

φ
(
B∗
i(2l)

)∥∥∥∥∥
∞

≥ t
)

+ P

(∥∥∥∥∥
N∑
i=1

φ(Bir )

∥∥∥∥∥
∞

≥ t
)

+ 2NLγ(q).

For each j, S∗
oddj(q) is (NT )−2(NL)q2σ2 ≤ (q/NT )σ2-sub-Gaussian by Lemma B.1;

similarly, for each j, S∗
evenj(q) is (q/NT )σ2-sub-Gaussian. Note that here the depen-

dency on L is linear and not square, because the Berbee blocks are independent. For
the remainder block, for each j, Sremj(q) is (NT )−2(N )q2σ2 ≤ (q/NT )σ2-sub-Gaussian
since q ≤ T by Lemma B.1, where we use only independence across i. Since S∗

oddj(q)

is (q/NT )σ2-sub-Gaussian for each j, ‖S∗
odd(q)‖∞ �P σ

√
q logd/NT by Lemma B.1(2b).

Likewise, ‖Srem(q)‖∞ �P σ
√
q logd/NT by Lemma B.1(2b). Given the parameter κ in

mixing coefficient (4.1), we set block size q to be

q= ⌊
(2/κ) log(NT )

⌋
. (B.16)
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Invoking the bound (4.1) in Assumption 4.1 gives

P
(
Ic1

) + P
(
Ic2

) ≤ 2N(L− 1)γ(q) ≤ (2NT/q)γ(q)

≤ 2(NT/q)(NT )−2 = o((NT )−1) = o(1), NT → ∞,

which implies (B.7).

The following is an extension/clarification of a useful lemma due to Kock and Tang
(2019).

Lemma B.5 (Concentration of Products Of Sub-Gaussian Random Variables With Inde-
pendent Blocks). Suppose the random variablesZn,m,v,j are uniformly σ̄2

n -sub-Gaussian
as in (4.3) for n= 1, 2, � � � , N̄ , (N̄ ≥ 2 is fixed and finite), m= 1, 2, � � � ,M , v = 1, 2, � � � , V ,
and j = 1, 2, � � � , d. Suppose Zn1,m1,v1,j1 and Zn2,m2,v2,j2 are independent as long as m1 	=
m2 regardless of the values of other subscripts. Then

max
j,v,m

E

∣∣∣∣∣
N̄∏
n=1

Zn,m,v,j

∣∣∣∣∣ ≤CA
N̄∏
n=1

σ̄n,

for some positive constant CA that depends on N̄ and with probability approaching 1,

max
1≤j≤d

∣∣∣∣∣(MV )−1
M∑
m=1

V∑
v=1

(
N̄∏
n=1

Zn,m,v,j − E
N̄∏
n=1

Zn,m,v,j

)∣∣∣∣∣ ≤ CV
√

logN̄+1(dV )/M
N̄∏
n=1

σ̄n,

for some positive constant CV that depends only on N̄ .

Lemma B.6 (Concentration of Products of Sub-Gaussian Random Variables Under Weak
Dependence). Suppose Assumption 4.1(1) holds, and let ϕnj(·) : W → R be a deter-
ministic function. Suppose that ϕnj(Wit ) are uniformly σ̄n-sub-Gaussian as in (4.3) for
n= 1, 2, � � � , N̄ (N̄ ≥ 2 is fixed and finite) and j = 1, 2, � � � , d and any i, t. Then

max
j,i,t

∣∣∣∣∣E
[
N̄∏
n=1

ϕnj(Wit )

]∣∣∣∣∣ ≤ CA
N̄∏
n=1

σ̄n, (B.17)

for some positive constant CA that depends on N̄ and with probability approaching 1,

‖S‖∞ := max
1≤j≤d

∣∣∣∣∣(NT )−1
N∑
i=1

T∑
t=1

[
N̄∏
n=1

ϕnj(Wit ) − E

[
N̄∏
n=1

ϕnj(Wit )

]]∣∣∣∣∣
≤ C̄V

√
logN̄+1(d log(NT )

)
log(NT )/NT

N̄∏
n=1

σ̄n. (B.18)

for some positive constant C̄V that depends only on N̄ .
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Proof of Lemma B.6. Define

φ(Wit ) := {
φj(Wit )

}d
j=1, φj(Wit ) :=

N̄∏
n=1

ϕnj(Wit ).

Let the block size q, the odd blocks, even blocks, and remainder blocks, and events I1

and I2 be as defined in the proof of Lemma B.4. Likewise, let S∗
odd(q) be as in (B.11), that

is,

φ
(
B∗
i(2l−1)

)
:=

t=(2l−2)q+q∑
t=(2l−2)q+1

φ
(
W ∗
it

)
, S∗

odd(q) := (NT )−1
N∑
i=1

L∑
l=1

φ
(
B∗
i(2l−1)

)
,

S∗
even(q) be its analog for the even-numbered blocks, and S∗

rem(q) be as in (B.13). The first
claim (B.17) is immediate from the previous lemma. Lemma B.5 withL≥ 2 andM =NL
and V = q implies that w.p. 1 − o(1),

∥∥S∗
odd(q)

∥∥∞ := (Lq/T )

∥∥∥∥∥(NLq)−1
N∑
i=1

L∑
l=1

{
ϕ

(
B∗
i(2l−1)

) − Eϕ
(
B∗
i(2l−1)

)}∥∥∥∥∥
∞

≤ (Lq/T )CV
(√

logN̄+1(dq)/NL
) ≤i CV

(√
logN̄+1(dq)q/NT

)
,

where (i) follows from L= 
T/2q� ≤ T/2q and L≥ 
T/2q� ≥ T/2q− 1 ≥ T/4q. A similar
bounds holds for S∗

even(q). If Trem 	= 0, Lemma B.5 withM =N and V = Trem ≤ q implies
that w.p. 1 − o(1):

∥∥Srem(q)
∥∥∞ := Trem/T

∥∥∥∥∥(NTrem )−1
N∑
i=1

(
ϕ(Bir ) − Eϕ(Bir )

)∥∥∥∥∥
∞

≤ Trem/TCV
(√

logN̄+1(dTrem )/N
)

≤ q/TCV
(√

logN̄+1(dq)/N
)
.

Plugging q2/NT 2 ≤ q/NT into the R.H.S. above gives the boundCV (
√

logN̄+1(dq)q/NT ).
Let NT be large enough so that L = 
T/2q� ≥ 2 and (2/κ) ≤ log(NT ) so that q ≤
log2(NT ) and dq ≤ (d log(NT ))2. Collecting the bounds gives (B.18). Adding up the
bounds and plugging choice of q = (2/κ) log(NT ) as in (B.16) and noting that L =

T/2q� ≥ 2 for T large enough gives (B.18).

Corollary B.1. Suppose Assumption 4.1(1) holds. Suppose Z1,nit and Z2,nit are d-
vectors obtained as (measurable) transformations of Wit , whose entries are uniformly σ̄2

1
and σ̄2

2 -sub-Gaussian for n= 1, 2, � � � , N̄ . LetUit be uniformly σ̄2-sub-Gaussian and g≥ 0
be a finite power. Then

max
1≤k,j≤d

max
i,t

∣∣∣∣∣E
[
N̄∏
n=1

Z1,nitkZ2,nitjU
2g
it

]∣∣∣∣∣ ≤ CA
(
σ̄1σ̄2σ̄

2g)N̄ , (B.19)
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max
1≤k,j≤d

∣∣∣∣∣(NT )−1
N∑
i=1

T∑
t=1

[
N̄∏
n=1

Z1,nitkZ2,nitjU
2g
it − E

[
N̄∏
n=1

Z1,nitkZ2,nitjU
2g
it

]]∣∣∣∣∣
≤ C̄V

(
σ̄1σ̄2σ̄

2g)N̄(√
log2N̄+2g+1(d2 log(NT )

)
log(NT )/NT

)
. (B.20)

Remark B.2. Suppose Assumptions 4.1 and 4.3 hold. Invoking (B.19) with N̄ = 1 and
Z1,it =Z2,it = Vit implies for some finite σV <∞,

max
it

∥∥EVitV
′
it

∥∥∞ ≤ max
itj

EV 2
itj ≤ σ2

V .

Likewise, Assumption 4.3 implies for some finite σV U <∞,

sup
it

E
[
U2
it | Vit

] ≤ σ2
V U a.s.

B.4 Some technical lemmas

Here, we provide technical extensions of the results in Kock and Tang (2019), keeping
the notation as in the original Kock and Tang (2019) and references therein.

Lemma B.7 (Theorem 2.1 in Fan, Grama, and Liu (2012), Proposition F.1 in Kock and Tang
(2019)). Let α ∈ (0, 1). Assume that (Xi, Fi )ni=1 is a sequence of supermartingale differ-

ences satisfying supi E[e|Xi|
2α

1−α ] ≤ C1 for some constant C1 ∈ (0, ∞). Define Sk := ∑k
i=1Xi.

Then, for all ε > 0,

P
(

max
1≤k≤n

Sk ≥ nε
)

≤ C(α, n, ε)e−(ε/4)2αnα ,

where

C(α, n, ε) := 2 + 35C1

[
1

161−α(nε2)α + 1

nε2

(
3(1 − α)

2α

) 1−α
α

]
.

Lemma B.8 (Proposition F.2 in Kock and Tang (2019)). Let α ∈ (0, 1). Assume that

(Xi, Fi )ni=1 is a sequence of martingale differences satisfying supi E[eD|Xi|
2α

1−α ] ≤ C1 for
some positive constant D, where C1 ≥ 1 can change with the sample size n. Then, for all
ε≥ 1/

√
n,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ nε
)

≤C1A(α)e−K(ε2n)α , K = (
D

1−α
2α /4

)2α
,

where

A=A(α) = 2 + 35
[

1

161−α +
(

3(1 − α)
2α

) 1−α
α

]
.

Lemma B.8 restates Proposition F.2 in Kock and Tang (2019) with explicit constants
in tail bounds.
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Proof. Note that for some positive constantD,

P

(
n∑
i=1

Xi ≥ nε
)

= P

(
n∑
i=1

D
1−α
2α Xi ≥ nD 1−α

2α ε

)
= P

(
n∑
i=1

Yi ≥ nδ
)

,

where Yi :=D 1−α
2α Xi and δ :=D 1−α

2α ε. Now (Yi )ni=1 is a sequence of martingale differences

satisfying supi E[e|Yi|
2α

1−α ] ≤C1. Invoking the preceding theorem, we have

P

(
n∑
i=1

Yi ≥ nδ
)

≤ C(α, n, δ)e−(δ/4)2αnα .

(−Yi )ni=1 is also a sequence of martingale differences satisfying the same exponential
moment condition. Thus,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ nε
)

= P

(∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣ ≥ nδ
)

≤ 2C(α, n, δ)e−(δ/4)2αnα

= 2C
(
α, n,D

1−α
2α ε

)
e−(D

1−α
2α ε/4)2αnα ≤ C1A(α)e−Kε

2αnα ,

where we can select

A=A(α) = 2 + 35
[

1

161−α +
(

3(1 − α)
2α

) 1−α
α

]
andK as defined above.

The following lemma is inspired by Proposition F.3 of Kock and Tang (2019). The
difference is that the constants are made explicit to make the results applicable to arrays;
and part of the proof was replaced by another argument (as we were not able to follow
one step in their proof).2

Lemma B.9. Suppose we have random variables Zl,i,t,j uniformly (K, σ2
l ) > 0 sub-

Gaussian for l = 1, � � � , L (L ≥ 2 fixed), i = 1, � � � ,N , t = 1, � � � , T and j = 1, � � � , p, that
is,

P
(∣∣σ−1

l Zl,t,i,j
∣∣ ≥ ε) ≤K exp

(−ε2),

andZl2,i2,t2,j2 are independent as long as i1 	= i2 regardless of the values of other subscripts.
Then we have that (1)

max
j,t,i

E

∣∣∣∣∣
L∏
l=1

Zl,i,t,j

∣∣∣∣∣ ≤ (
L!(log 2)−1/2(1 +K)1/2) L∏

l=1

σl,

2KT’s proof uses the inequality (x− (y ∧ x))2/L ≤ x2/L − (y ∧ x)2/L, for x > 0 and y > 0. This inequality is
not true (e.g., with x= 10, y = 1, L= 4, the inequality implies 3< 2.163), so we changed the middle part of
the proof; the end result is preserved; none of conclusions in KT are affected.
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and (2) with probability 1 −A′(pT )−1/2,

max
1≤j≤d

∣∣∣∣∣ 1
NT

N∑
i=1

T∑
t=1

(
L∏
l=1

Zl,i,t,j − E

[
L∏
l=1

Zl,i,t,j

])∣∣∣∣∣ ≤M
(√(

log(pT )
)L+1

N

) L∏
l=1

σl,

forM >M ′, and some positive constantsA′ andM ′ that only depend on L andK.

Proof. Hölder’s inequality gives

max
j,t,i

E

∣∣∣∣∣
L∏
l=1

σ−1
l Zl,i,t,j

∣∣∣∣∣ ≤ max
j,t,i

L∏
l=1

(
E
∣∣σ−1
l Zl,i,t,j

∣∣L) 1
L ,

where(
E
∣∣σ−1
l Zl,i,t,j

∣∣L) 1
L ≤L!∥∥σ−1

l Zl,i,t,j
∥∥
ψ1

≤L!(log 2)−1/2
∥∥σ−1

l Zl,i,t,j
∥∥
ψ2

≤L!(log 2)−1/2(1 +K)1/2 =:A,

where the first two inequalities are from van der Vaart and Wellner (1996, page 95) and
the third inequality from Lemma 2.2.1 in van der Vaart and Wellner (1996). Thus,

max
j,t,i

E

∣∣∣∣∣
L∏
l=1

σ−1
l Zl,i,t,j

∣∣∣∣∣ ≤ (
L!(log 2)−1/2(1 +K)1/2) =:A.

This implies the first claim, after multiplying both sides by
∏L
l=1 σl. Let

Xi,t,j =
L∏
l=1

σ−1
l Zl,i,t,j − E

[
L∏
l=1

σ−1
l Zl,i,t,j

]
.

For every ε≥ 0,

P
(|Xi,t,j| ≥ 2ε

) ≤ P

(∣∣∣∣∣
L∏
l=1

σ−1
l Zl,i,t,j

∣∣∣∣∣ ≥ ε
)

+ P

(∣∣∣∣∣E
L∏
l=1

σ−1
l Zl,i,t,j

∣∣∣∣∣ ≥ ε
)

≤
L∑
l=1

P
(
σ−1
l |Zl,i,t,j| ≥ ε1/L) + 1(ε≤A)

≤LKe−ε2/L + 1
(
ε2/L ≤A2/L)

≤LKe−ε2/L + eA2/L
e−ε2/L =K′e−ε2/L

,
(
K′ := (

LK + eA2/L))
.

Let

Xi,j := 1
T

T∑
t=1

(
L∏
l=1

σ−1
l Zl,i,t,j − E

[
L∏
l=1

σ−1
l Zl,i,t,j

])
.
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For every ε≥ 0,

P
(|Xi,j| ≥ 2ε

) ≤ P
(

max
1≤t≤T

|Xi,t,j| ≥ 2ε
)

≤ TK′e−ε2/L
.

Consider some positive constant D < 1, then as van der Vaart and Wellner (1996,
page 96), using Fubini and change of order of integration:

E
[
eD|Xi,j/2|2/L] =

∫
x∈R

∫ |x/2|2/L

0
DeDs dsP(dx) + 1 =

∫ ∞

0
DeDsP

(|Xi,j|> 2sL/2)ds+ 1.

This is further bounded by∫ ∞

0
TK′De(D−1)s ds+ 1 = TK′D

1 −D + 1 ≤ BT ;
(
B := K′D

1 −D + 1
)

.

Then we can use independence across i to invoke the previous Lemma B.8 with α=
1

L+1 and C1 = BT , for ε≥ 1√
N

,

P

(∣∣∣∣∣
N∑
i=1

1
T

T∑
t=1

Xi,t,j

∣∣∣∣∣ ≥ 2Nε

)
≤A′Te−K′′(ε2N )

1
L+1

for positive constantsA′ andK′′ that depend only onK, L, andD.
Setting

ε=
√
M

(
log(pT )

)L+1

N

for someM ≥ 1, we have

P

(
max

1≤j≤p

∣∣∣∣∣
N∑
i=1

1
T

T∑
t=1

Xi,t,j

∣∣∣∣∣ ≥ 2Nε

)
≤ pA′Te−K′′(ε2N )

1
L+1 =A′(pT )1−K′′M 1

L+1 .

Therefore, with probability 1 −A′(pT )1−K′′M 1
L+1 ,

max
j

∣∣∣∣∣ 1
NT

N∑
i=1

T∑
t=1

(Xi,t,j )

∣∣∣∣∣ ≤ 2M
(√(

log(pT )
)L+1

N

)
,

for anyM ≥ 1. SettingM large enough such that

1 −K′′M 1
L+ 1

<−1
2

,

guarantees that the bound holds with probability at most A′(pT )−1/2. The bounds can
be then be restated as in the statement of the theorem.
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Appendix C: Tools: High-dimensional central limit theorems for weakly

dependent data

Let {Xm}Mm=1 be a weakly dependent martingale difference sequence (m.d.s.) with re-
spect to natural filtration. Define its β-mixing coefficient,

γX(q) = sup
m≤M

γ
(
(X1, � � � ,Xm−1,Xm ), (Xm+q,Xm+q+1, � � � )

)
.

The scaled sum

SX =M−1/2
M∑
m=1

Xm

has the variance

�G :=M−1
M∑
m=1

EXmX ′
m. (C.1)

The distribution of the scaled sum over the cubes can be approximated by the Gaussian
distributionN(0, �G ) over the cubes, as shown in the lemma below.

We will introduce the following notation. For some numbers r̄ = r̄NT , q̄ = q̄NT , and
L= 
M/(q̄+ r̄ )�, define Bernstein’s “large” and “small” blocks of size q̄ and r̄:

Pl =
{

(l− 1)(q̄+ r̄ ) + 1, � � � , (l− 1)(q̄+ r̄ ) + q̄}, l= 1, 2, � � � , L,

Ql =
{

(l− 1)(q̄+ r̄ ) + 1 + q̄, � � � , l(q̄+ r̄ )
}

and let

Sl :=
∑
m∈Pl

Xm, Ul :=
∑
m∈Ql

Xm, UL+1 :=
M∑

m=L(q̄+r̄ )+1

Xm.

Denote

�P := (Lq̄)−1
L∑
l=1

ESlS
′
l = (Lq̄)−1

L∑
l=1

∑
m∈Pl

EXmX ′
m (C.2)

and observe that

�G = (Lq̄/M )�P +M−1
L+1∑
l=1

EUlU
′
l .

The following result is useful both in the proof below and also for performing Gaus-
sian inference, where we replaced unknown variance-covariance matrix by an estimated
one.
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Lemma C.1 (Comparison of Distributions). LetX ∼N(0, �X ) and Y ∼N(0, �Y ) be cen-
tered normal d-vectors, and let �XY := ‖�X −�Y ‖∞. Suppose min1≤j≤d(�Y )jj > 0. Then

sup
t≥0

∣∣P(‖X‖∞ ≤ t) − P
(‖Y‖∞ ≤ t)∣∣ ≤ C ′(�XY log2(2d)

)1/2
, (C.3)

where C ′ > 0 depends only on min1≤j≤d(�Y )jj and max1≤j≤d(�Y )jj .

Lemma C.1 follows from Proposition 2.1 in Chernozhukov, Chetverikov, Kato, and
Koike (2019) for vectorsX = (X , −X ) and Y = (Y , −Y ) and

�X =
(
�X −�X

−�X �X

)
, �Y =

(
�Y −�Y

−�Y �Y

)
, ‖�X −�Y ‖∞ = �XY .

Another result is the following anticoncentration property. This result is useful for
showing that linearization errors do not impact the behavior of the key statistics. The
statistics are approximate means, namely averages of some centered influence functions
plus linearization errors.

Lemma C.2 (Anticoncentration). Let X = (X1,X2, � � � ,Xd )′ ∼ N(0, �X ) be a centered
Gaussian random vector in Rd . Assume min1≤j≤d(�X )jj > 0. Then

sup
t∈R

P
(∣∣‖X‖∞ − t∣∣ ≤ ε) ≤ Cε√1 ∨ log(2d/ε), (C.4)

where C > 0 depends on min1≤j≤d(�X )jj and max1≤j≤d(�X )jj .

Lemma C.2 follows from Corollary 1 in Chernozhukov, Chetverikov, and Kato (2015)
withX = (X , −X ).

The following result is a consequence of Theorem E.1 in Chernozhukov, Chetverikov,
and Kato (2019) for martingale difference sequence.

Lemma C.3 (High-Dimensional CLT for Martingale Difference Sequence Under Weak
Dependence). Let {Xm}Mm=1 be a weakly dependent m.d.s. of d-vectors obeying for
DM ≥ 1:

sup
m≤M

‖Xm‖∞ ≤DM a.s.

Suppose there exist constants 0< a1 ≤A1 and 0< c2 < 1/4 such that

a1 ≤ min
1≤j≤d

min
1≤m≤M

VarXmj ≤ max
1≤j≤d

sup
1≤m≤M

VarXmj ≤A1, (C.5)

and let r̄ and q̄ be such that r̄/q̄≤A1M
−c2 log−2 d and

max
{
r̄DM log3/2 d, q̄DM log1/2 d,

√
q̄DM log7/2(dM )

} ≤A1M
1/2−c2 . (C.6)
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Then there exist constants cX , CX > 0 depending only on a1,A1, c2 such that

sup
t≥0

∣∣P(‖SX‖∞ ≤ t) − P
(‖GP‖∞ < t

)∣∣ ≤ 2
M

q̄+ r̄ γX( r̄ ) +CXM−cX , (C.7)

whereGP ∼N(0, �P ) is a centered normal d-vector.

Note that this result uses �P as the variance in the Gaussian approximation. In our
application, we will be using �G in place of �P (i.e., Lemma C.5) so as not to worry about
omitting small blocks. Therefore below, we will provide a sequence of the results that
allow this replacement.

Proof of Lemma C.3. Let

Xm := (Xm, −Xm ), m= 1, 2, � � � ,M

be a sequence of 2d-vectors. Observe that {Xm}Mm=1 is an m.d.s. It obeys

sup
m≤M

‖Xm‖∞ ≤DM , a.s., γX̄(q) = γX(q) ∀q.

By construction, for any integer r,

σ̄2(r ) = max
1≤j≤d

max
I

Var
(
r−1/2

∑
m∈I

Xmj

)
= max

1≤j≤2d
max
I

Var
(
r−1/2

∑
m∈I

Xmj

)
,

σ2(r ) = min
1≤j≤d

min
I

Var
(
r−1/2

∑
m∈I

Xmj

)
= min

1≤j≤2d
min
I

Var
(
r−1/2

∑
m∈I

Xmj

)
,

where maxI and minI are taken over the sets I = {i + 1, i + 2, � � � , i + r} of size r. Theo-
rem E.1 in Chernozhukov, Chetverikov, and Kato (2019) requires

a1 ≤ σ2(q̄) ≤ σ̄2(q̄) ∨ σ̄2( r̄ ) ≤A1. (C.8)

Because {Xm}Mm=1 is an m.d.s.,

Cov(Xm1 ,Xm2 ) = 0 ∈ Rd×d form1 	=m2.

Therefore, for any r and any I = {i+ 1, i+ 2, � � � , i+ r},

a1 ≤ Var
(
r−1/2

∑
m∈I

Xmj

)
= r−1

∑
m∈I

Var(Xmj ) ≤A1, 1 ≤ j ≤ d,

which implies (C.8). All other conditions of Theorem E.1 in Chernozhukov, Chetverikov,
and Kato (2019) are satisfied. Invoking Theorem E.1 in Chernozhukov, Chetverikov, and
Kato (2019) with

T := max
1≤j≤2d

M−1/2
M∑
m=1

Xmj = ‖SX‖∞
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and

GP ∼N(0, �GP )

being a centered normal (2d)-vector with

�GP =
(
�P −�P

−�P �P

)
,

gives (C.7).

Lemma C.4 (Comparison of Distributions, cont.). Consider the setup above with �X =
�G and �Y = �P , where �G and �P are as in (C.2) and (C.1) where

sup
1≤m≤M

∥∥EXmX ′
m

∥∥∞ ≤ sup
1≤m≤M

sup
1≤j≤d

Var(Xmj ) ≤A1.

For some c2 ∈ (0, 1/4), assume that the growth condition holds:

DM logd logM log7/2(dM ) �M1/2−2c2

and log4 d log2M = o(
√
M ). Then the max distance �GP := ‖�G −�P‖∞ obeys(

�GP log2 d
)1/2 �M−c2/2.

Proof of Lemma C.4. Observe that

�G −�P = (Lq̄/M − 1)�P +M−1
L+1∑
l=1

EUlU
′
l .

Since L= 
M/(q̄+ r̄ )�, L≥M/(q̄+ r̄ ) − 1. Therefore,

1 −Lq̄/M ≤ 1 − q̄/(q̄+ r̄ ) + q̄/M = r̄/(q̄+ r̄ ) + q̄/M ≤ r̄/q̄+ q̄/M .

Furthermore, (L+ 1)/M ≤ 2L/M ≤ 2/q̄. The following bound holds:

�GP ≤ (
(1 −Lq̄/M ) + (L+ 1)/M

)
sup

1≤m≤M

∥∥EXmX ′
m

∥∥∞ =O( r̄/q̄∨ q̄/M ∨ 1/q̄).

Taking q̄=Mc2 log2 d log2M and r̄ = (2/κ) logM give

r̄/q̄= (2/κ)M−c2 log−2 d log−1M = o(M−c2 log−2 d
)
,

q̄/M =Mc2−1 log2 d log2M =i o
(
M−c2 log−2 d

)
,

1/q̄=M−c2 log−2 d log−2M = o(M−c2 log−2 d
)
,

where (i) follows from c2 < 1/4 and

log4 d log2M = o(M1−2·1/4) = o(M1−2c2
)
.

Plugging �GP = o(M−c2 log−2 d) into (�GP log2(2d))1/2 gives(
�GP log2(2d)

)1/2 = o(M−c2/2).
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Remark C.1 (Sufficient Growth Condition). If the growth condition holds,

DM logd logM log7/2(dM ) �M1/2−2c2 , (C.9)

then

r̄ = logM , q̄=Mc2 log2 d log2M , (C.10)

obeys (C.6) and r̄/q̄≤A1M
−c2 log−2 d forM large enough.

Proof of Remark C.1. Let M be large enough such that M−c2/2 ≤ A1 and (2/κ) ×
log−1M ≤A1. Then the growth condition

DM logd logM log7/2(dM ) �M1/2−2c2 ≤A1M
1/2−3/2c2

implies the third inequality in (C.6),√
q̄DM log7/2(dM ) ≤A1M

1/2−c2 .

Next, for d ≥ e such that logd ≥ 1, and

M−c2DMq̄ log1/2 d =DM log5/2 d log2M

≤DM log5/2(dM ) logM log(dM ) logd ≤A1M
1/2−3/2c2 .

Multiplying both sides byMc2 gives

DMq̄ log1/2 d ≤A1M
1/2−c2 ,

which coincides with the second inequality in (C.6). Finally,

DMr̄ log3/2 d = (2/κ)DM logM log3/2 d ≤DMq̄ log1/2 d,

as long as (2/κ) ≤ logM , which verifies (C.6). For M large enough, r̄/q̄ = 2/κM−c2 ×
log−2 d log−1M ≤A1.

Lemma C.5 (Summary). Let {Xm}Mm=1 be a weakly dependent m.d.s. of d-vectors obeying
forDM ≥ 1:

sup
m≤M

‖Xm‖∞ ≤DM a.s.

Suppose there exist constants 0< a1 ≤A1 such that

a1 ≤ min
1≤j≤d

min
1≤m≤M

VarXmj ≤ max
1≤j≤d

sup
1≤m≤M

VarXmj ≤A1.

For some constant c2 ∈ (0, 1/4), the growth condition (C.5) holds, namely

DM logd logM log7/2(dM ) �M1/2−2c2 ,
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and log4 d log2M = o(M1/2 ). Then there exist constants cX , CX > 0 depending only on a1,
A1, c2 such that for r̄ = (2/κ logM ) and q̄=Mc2 log2 d log2M ,

sup
t≥0

∣∣P(‖SX‖∞ ≤ t) − P
(‖G�‖∞ < t

)∣∣ � CXM−cX +M−c2/2, (C.11)

whereG� ∼N(0, �G ) is a centered normal d-vector.

Triangular inequality gives

sup
t≥0

∣∣P(‖SX‖∞ ≤ t) − P
(‖G�‖∞ < t

)∣∣ (C.12)

≤ sup
t≥0

∣∣P(‖SX‖∞ ≤ t) − P
(‖GP‖∞ < t

)∣∣ + sup
t≥0

∣∣P(‖GP‖∞ < t
) − P

(‖G�‖∞ < t
)∣∣

� 2
M

q̄+ r̄ γ( r̄ ) +CXM−cX +M−c2/2 = o(M−c2/2 +M−cX )
. (C.13)

Appendix D: Proofs for Section 4

D.1 Bounds on errors for estimatingQ and gradient S

Below, we define the following terms that appear in the analysis of Q̂ and the least
squares gradient S. In what follows, we use the notation defined in the main text heavily,
without further warning.

Define the first-stage approximation error as a function of d(·) and l(·):

Rit(d, l) := li0(Xit ) − li(Xit ) − (
di0(Xit ) − di(Xit )

)′
β0. (D.1)

Define the first-order error terms

ā := ENTVit
(
di0(Xit ) − d̂i(Xit )

) = ENTVit(V̂it − Vit ), (D.2)

m̄= ENTVit
(
li0(Xit ) − l̂i(Xit )

) = ENTVit(
̂̃Yit − Ỹit ), (D.3)

f̄ = ENTUit
(
di0(Xit ) − d̂i(Xit )

) = ENTUit(V̂it − Vit ), (D.4)

ē= ENTVitRit(d̂, l̂) = m̄− ā′β0, (D.5)

the second-order error terms,

b̄= ENT

(
di0(Xit ) − d̂i(Xit )

)(
di0(Xit ) − d̂i(Xit )

)′
, (D.6)

z̄ = ENT

(
di0(Xit ) − d̂i(Xit )

)(
li0(Xit ) − l̂i(Xit )

)
, (D.7)

ḡ= ENT

(
di0(Xit ) − d̂i(Xit )

)
Rit(d̂, l̂) = z̄− b̄′β0. (D.8)

Lemma D.1 (First-Order Terms). Under Assumptions 4.1–4.5, we have that

‖ā‖∞ �P
(
dNT ,∞

√
log(dNT )/NT

)
, (D.9)

‖m̄‖∞ �P
(
lNT ,∞

√
log(dNT )/NT

)
, (D.10)
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‖f̄‖∞ �P
(
dNT ,∞

√
log(dNT )/NT

)
, (D.11)

‖ē‖∞ �P
(√

log(dNT )/NT
(
dNT ,∞‖β0‖1 + lNT ,∞

))
. (D.12)

Proof of Lemma D.1. Define

ζVNT := dNT ,∞
√

log(dNT )/NT , ζBNT = 0,

and theA-function as

A(Wit , η) = Vit
(
di0(Xit ) − di(Xit )

)
.

Define BAk(η) and VAk(η) with η= d as in (A.8)–(A.9).
Consider any η= ηNT ∈DNT in what follows. Since Vit obeys the martingale differ-

ence property by assumption, we have that

E
[
Vit

∣∣∣ ⋃
t ′≤t,t ′∈Mk

(Vit ′ ,Xit ′ )

]
= 0, (D.13)

and it follows that ‖BAk(ηNT )‖∞ = 0. By Assumption 4.3 and Lemma B.1, each entry of
Vit(di0(Xit ) − di(Xit )) is σ̄2d2

NT ,∞-sub-Gaussian. Invoking Lemma B.2 gives∥∥VAk(ηNT )
∥∥∞ �P (σ̄dNT ,∞

√
logd/NTk ) = oP

(
ζVNT

)
since Tk � T (as we keep number of blocks K fixed). By Assumption 4.5, we have that
P(d̂k ∈DNT , ∀k= 1, � � � ,K) → 1. We conclude by Lemma A.6 that (D.9) holds. Repeating
the same argument for

A(Wit , η) = Vit
(
li0(Xit ) − li(Xit )

)
and A(Wit , η) =Uit

(
di0(Xit ) − di(Xit )

)
establishes claims (D.10) and (D.11). Finally, (D.12) holds by definition of ē = m̄− ā′β0

and Holder inequalities.

Lemma D.2 (Second-Order Term). Under Assumptions 4.1–4.5, we have that

‖z̄‖∞ �P
(
dNT lNT + dNT ,∞lNT ,∞

√
(NT )−1 log(NT ) logd

)
, (D.14)

‖b̄‖∞ �P
(
d2
NT + d2

NT ,∞
√

(NT )−1 log(NT ) logd
)
, (D.15)

‖ḡ‖∞ �P
(‖β0‖1d2

NT + dNT lNT

+ (‖β0‖1d2
NT ,∞ + dNT ,∞lNT ,∞

)√
(NT )−1 log(NT ) logd

)
. (D.16)

Proof of Lemma D.2. Define theA-function as

A(Wit , η) = (
di0(Xit ) − di(Xit )

)(
li0(Xit ) − li(Xit )

)
, η= (d, l).

Let BAk(η) and VAk(η) be defined according to (A.8)–(A.9). Let

ζBNT = lNTdNT , ζVNT =
√

l2
NT ,∞d2

NT ,∞ logd logNT/NT .
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For any i and t,m and j, the Cauchy–Schwarz inequality gives

E
[∣∣(di0(Xit ) − di(Xit )

)
m

(
li0(Xit ) − li(Xit )

)∣∣]
≤

√
E
(
di0(Xit ) − di(Xit )

)2
m

E
(
li0(Xit ) − li(Xit )

)2 =:
√
a2
itb

2
it = |ait ||bit |.

Another application of the Cauchy–Schwarz gives

(TkN )−1
∑
i

∑
t∈Mk

|ait ||bit | ≤

√√√√√(TkN )−1
N∑
i=1

∑
t∈Mk

a2
it

√√√√√(TkN )−1
N∑
i=1

∑
t∈Mk

b2
it

≤
√√√√(TkN )−1

N∑
i=1

T∑
t=1

a2
it

√√√√(TkN )−1
N∑
i=1

T∑
t=1

b2
it ≤ dNT lNTT/Tk.

Therefore, ‖BAk(ηNT )‖∞ = O(ζBNT ). Furthermore, each entry of A(Wit , η) is bounded
by dNT ,∞lNT ,∞ and, therefore, is d2

NT ,∞l2
NT ,∞-sub-Gaussian. By Lemma B.4,∥∥VAk(ηNT )

∥∥∞ �P
(
ζVNT

)
,

since Tk � T . Furthermore, by Assumption 4.5, P((d̂k, l̂k ) ∈ DNT × LNT , ∀k =
1, � � � ,K) → 1. We conclude by Lemma A.6 that (D.14) holds. The bound (D.15) fol-
lows from the same argument. Finally, the bound (4.17) follows from the definition
ḡ= z̄− b̄′β0 and Holder inequality and union bounds. We obtain

‖ḡ‖∞ �P
(‖β0‖1

(
d2
NT + d2

NT ,∞
√

(NT )−1 log(NT ) logd
)

+ dNT lNT + dNT ,∞lNT ,∞
√

(NT )−1 log(NT ) logd
)
.

Then we rewrite the bound as in (4.17).

Define

Q̂= ENT V̂it V̂
′
it , Q̃= ENTVitV

′
it , Ŝ := ENT V̂it

(̂̃Yit − V̂ ′
itβ0

)
, S := ENTVitUit

and the following rates:

κNT :=
√

log3(d2 log(NT )
)

log(NT )/NT , (D.17)

qNT := dNT ,∞
√

log(dNT )/NT + d2
NT + d2

NT ,∞
√

log(NT ) log(d)/NT . (D.18)

We will also use the following rates defined in the Section 4 of main text:

ρNT := dNT ,∞
√

log(dNT )/NT + √
log(dNT )/NT

(
dNT ,∞‖β0‖1 + lNT ,∞

) + rNT ,

rNT := ‖β0‖1d2
NT + dNT lNT + (‖β0‖1d2

NT ,∞ + lNT ,∞
)√

(NT )−1 log(NT ) logd.
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Lemma D.3 (Summary of Gram Matrix and Gradient Error Bounds). Suppose Assump-
tions 4.1–4.5 hold. Then the following bounds hold w.p. 1 − o(1):

‖Q̃−Q‖∞ �P o
(
κNT log

(
d2NT

))
, (D.19)

‖Q̃− Q̂‖∞ �P (qNT ) = oP
(
(NT )−1/2), (D.20)

‖Q̂−Q‖∞ �P o
(
κNT log

(
d2NT

))
, (D.21)

‖Ŝ − S‖∞ �P (ρNT ) = oP
(
(NT )−1/2). (D.22)

Proof of Lemma D.3. Decomposing matrix first-stage estimation error gives

Q̂= ENT V̂it V̂
′
it

= ENT

(
Vit +

(
di0(Xit ) − d̂i(Xit )

))(
Vit +

(
di0(Xit ) − d̂i(Xit )

))′

= ENTVitV
′
it

+ENTVit
(
di0(Xit ) − d̂i(Xit )

)′ + (
ENTVit

(
di0(Xit ) − d̂i(Xit )

)′)′

+ENT

(
di0(Xit ) − d̂i(Xit )

)(
di0(Xit ) − d̂i(Xit )

)′

= Q̃+ ā+ ā′ + b̄.

Then, an application of Lemma B.6 with N̄ = 2 gives w.p. 1 − o(1) ‖Q̃ −Q‖∞ ≤ C̄κκNT
for large enough C̄κ. The bounds on ‖ā‖∞ and ‖b̄‖∞ are given in (D.9) and (D.15), re-
spectively. Collecting terms gives the bound (D.20). The (D.21) follows from the triangle
inequality and qNT = oP (κNT ). We can decompose the gradient error Ŝ − S as follows.
Note that ̂̃Yit − Ỹit = Yit − l̂i(Xit ) − (

Yit − li0(Xit )
) = li0(Xit ) − l̂i(Xit ),

V̂it − Vit =Dit − d̂i(Xit ) − (
Dit − di0(Xit )

) = di0(Xit ) − d̂i(Xit ).

The difference of the two equations iŝ̃Yit − Ỹit − (V̂it − Vit )′β0 =Rit(d̂, l̂).

Therefore,̂̃Yit − V̂ ′
itβ0 = (

Ỹit − V ′
itβ0

) + (
(̂̃Yit − Ỹit ) − (V̂it − Vit )′β0

) =Uit +Rit(d̂, l̂). (D.23)

Decompose the gradient:

Ŝ = ENT V̂it
(̂̃Yit − V̂ ′

itβ0
) = ENTVit

(̂̃Yit − V̂ ′
itβ0

) +ENT (V̂it − Vit )
(̂̃Yit − V̂ ′

itβ0
) = Ŝ1 + Ŝ2,

where

Ŝ1 = ENTVitUit +ENTVitRit(d̂, l̂) = S + ē,

Ŝ2 = ENT (di0
(
Xit − d̂i(Xit )

)
Uit +ENT

(
di0(Xit ) − d̂i(Xit )

)
Rit(d̂, l̂) = f̄ + ḡ.

Invoking bounds on ē, f̄ , and ḡ in (D.12)–(D.16) gives the result.
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D.2 Proof of orthogonal lasso rate: Theorem 4.1

D.2.1 Group sparsity notation We use the same notation as Lounici, Pontil, van de
Geer, and Tsybakov (2011). Consider a generic covariate vector of size g · d, where d is
the number of groups and g is the group size. Partition the set of indices {1, 2, � � � , gd}
into d groups of size g:

Jj := {
j, d+ j, � � � , (g− 1)d+ j}, j = 1, 2, � � � , d, |Jj| = g.

For a group index j and a subset of group indices T , and vector � ∈ Rgd , denote

�j = (�m )m∈Jj ∈ Rg, �T = (�m ){m∈Jj ,j∈T } ∈ R|T |·g.

For any � ∈ Rgd , define the group-vector norms

‖�‖2,∞ = max
1≤j≤d

∥∥�j∥∥2, ‖�‖2,1 =
d∑
j=1

∥∥�j∥∥2.

For a symmetric matrixM , define

‖M‖2,∞ = ∥∥M ′∥∥
2,∞ = max

1≤i≤dg
max

1≤j≤d

(∑
k∈Jj

M2
i,k

)1/2

.

Define the group restricted cone as

REG(c̄) :=
{
� ∈ Rgd :

∑
j∈T c

∥∥�j∥∥2 ≤ c̄
∑
j∈T

∥∥�j∥∥2, � 	= 0
}

.

Given a matrixM ∈ Rgd × Rgd , define the restricted group-sparse eigenvalue

κg(M , T , c̄) = min
�∈REG(c̄)

√
s
(
�′M�

)1/2∥∥�T ∥∥
2,1

.

When the group size g is equal to 1, the objects above reduce to the following quantities:

�j = �j , �T = �T = (�m ){m∈T }, ‖M‖2,∞ = ‖M‖∞,

the group restricted cone is regular restricted cone

REG(c̄) = RE(c̄) = {
� ∈ Rd : ‖�T c‖1 ≤ c̄‖�T ‖1, � 	= 0

}
,

and the restricted group-sparse eigenvalue reduces to restricted eigenvalue

κ1(M , T , c̄) = κ(M , T , c̄) = min
�∈RE(c̄)

√
s
(
�′M�

)1/2

‖�T ‖1
.
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Let X̄it ∈ Rgd be a generic covariate (dg)-vector and Ȳit be a generic outcome. Given a
parameter β̄0, decompose

Ȳit = X̄ ′
it β̄0 +Uit .

The least squares loss function is

Q(β̄) := 1/2(NT )−1
N∑
i=1

T∑
t=1

(
Ȳit − X̄ ′

it β̄
)2

.

The group lasso estimator is ̂̄β := arg min
β̄

Q(β̄) + λ‖β̄‖2,1. (D.24)

The least squares gradient is

S(β̄0 ) := ∇β̄0
Q(β̄0 ) = (NT )−1

N∑
i=1

T∑
t=1

(
Ȳit − X̄ ′

it β̄0
)
X̄it ,

and the Hessian is

H(β̄0 ) := (NT )−1
N∑
i=1

T∑
t=1

X̄itX̄
′
it .

Lemma D.4 (Grouped Norm Inequalities). For any two vectors a, b ∈ Rgd , and matrix
M ∈ Rgd × Rgd , the following inequalities hold:∣∣a′b

∣∣ ≤ ‖a‖2,1‖b‖2,∞, (D.25)∣∣v′Mv
∣∣ ≤ √

g‖v‖2
2,1 · ‖M‖2,∞, (D.26)

‖M‖2,∞ ≤ ‖M‖∞
√
g. (D.27)

Proof. For each group j = 1, 2, � � � , d, Cauchy inequality gives∣∣∣∣∑
k∈Jj

akbk

∣∣∣∣ ≤
(∑
k∈Jj

a2
k

)1/2(∑
k∈Jj

b2
k

)1/2

≤ max
1≤j≤d

(∑
k∈Jj

a2
k

)1/2∥∥bj∥∥2 =
(

max
1≤j≤d

∥∥aj∥∥2

)∥∥bj∥∥2,

which implies

∣∣a′b
∣∣ ≤

d∑
j=1

∣∣∣∣∑
k∈Jj

akbk

∣∣∣∣ ≤
(

max
1≤j≤d

∥∥aj∥∥2

) d∑
j=1

∥∥bj∥∥2 = ‖a‖2,∞‖b‖2,1.

For each index i, 1 ≤ i≤ kg, the following bound holds:∣∣∣∣∣
gd∑
k=1

Mi,kvk

∣∣∣∣∣ ≤
d∑
j=1

∣∣∣∣∑
k∈Jj

Mi,kvk

∣∣∣∣ ≤
d∑
j=1

(∑
k∈Jj

M2
i,k

)1/2(∑
k∈Jj

v2
k

)1/2
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≤ max
1≤j≤d

(∑
k∈Jj

M2
i,k

)1/2 d∑
j=1

(∑
k∈Jj

v2
k

)1/2

≤ ‖M‖2,∞‖v‖2,1.

Then

‖Mv‖2,∞ = max
1≤j≤d

∥∥(Mv)j
∥∥

2 = max
1≤j≤d

(∑
i∈Jj

|Mv|2i
)1/2

≤ max
1≤j≤d

(∑
i∈Jj

‖v‖2
2,1‖M‖2

2,∞
)1/2

≤ √
g‖v‖2,1‖M‖2,∞.

Therefore, we obtain (D.26) by combining inequalities above:∣∣v′Mv
∣∣ ≤ ‖v‖2,1‖Mv‖2,∞ ≤ √

g‖M‖2,∞ · ‖v‖2
2,1.

Finally, the bound (D.27) follows from

M2,∞ = max
1≤j≤d

∥∥Mj
∥∥

2 ≤ max
1≤j≤d

√
g
∥∥Mj

∥∥∞

using the fact that ‖v‖2 ≤ √
dim(v)‖v‖∞.

Lemma D.5 (First-Stage Effect on the Curvature). Let M1, M2 ∈ Rgd×gd be two matrices.
Let λMNT := ‖M1 − M2‖∞. On the event κ2

g(M2, T , c̄)> 0, for any � ∈ REG(c̄),∣∣κ2
g(M2, T , c̄) − κ2

g(M1, T , c̄)
∣∣ ≤ λMNT (1 + c̄)2sg. (D.28)

Proof of Lemma D.5. For any � ∈ Rgd , the difference can be bounded as∣∣�′(M1 − M2 )�
∣∣ ≤i √

g‖M1 − M2‖2,∞‖�‖2
2,1 ≤ii gλMNT ‖�‖2

2,1, (D.29)

where (i) follows from (D.26) and (ii) from (D.27). For any � ∈ REG(c̄),

‖�‖2
2,1 ≤ (1 + c̄)2

∥∥�T ∥∥2
2,1 ≤ (1 + c̄)2s

κ2
g(M2, T , c̄)

�′M2�=: γ ·�′M2�. (D.30)

Combining (D.29) and (D.30) give∣∣�′(M1 − M2 )�
∣∣ ≤ (

gλMNTγ
) ·�′M2�. (D.31)

Noting that x≤ |x| gives

�′(M1 − M2 )�≤ ∣∣�′(M1 − M2 )�
∣∣ ≤ (

gλMNTγ
) ·�′M2�,

which implies

�′M1�≤ �′M2�
(
1 + gλMNTγ

)
. (D.32)
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Noting that −x≤ |x| gives

�′(M2 − M1 )�≤ (
gλMNTγ

) · (�′M2�
)

(D.33)

which implies

�′M1�≥ �′M2� · (1 − gλMNTγ
)
. (D.34)

Rearranging (D.32) gives an upper bound on κg(M1, T , c̄):

κg(M1, T , c̄) := min
�∈REG(c̄)

√
s
(
�′M1�

)1/2∥∥�T ∥∥
2,1

≤ min
�∈REG(c̄)

√
s
(
�′M2�

)1/2∥∥�T ∥∥
2,1

√
1 + gλMNTγ

= κg(M2, T , c̄)
√

1 + gλMNTγ.

A lower bound on κg(M1, T , c̄) follows analogously, that is,

κg(M1, T , c̄) ≥ min
�∈REG(c̄)

√
s
(
�′M2�

)1/2∥∥�T ∥∥
2,1

√
1 − gλMNTγ

= κg(M2, T , c̄)
√

1 − gλMNTγ.

Taking the squares of both sides of the inequality and rearranging gives (D.28).

Lemma D.6 (Oracle Inequality for Group Lasso). On the event G1 := {λ≥ c√g‖S(β̄0 )‖∞},

the error vector �= ̂̄β− β̄0 belongs to the restricted set:

� ∈ REG(c̄)

and obeys the bound (
�′H(β̄0 )�

) ≤ 2λc̄
∥∥�T ∥∥

2,1, (D.35)

where c̄ := (c+ 1)/(c− 1).

Proof of Lemma D.6. Assume the event G1 holds throughout, which implies λ ≥
c‖S(β̄0 )‖2,∞. Negahban, Ravikumar, Wainwright, and Yu (2012) establishes

‖β̄0‖2,1 − ‖̂̄β‖2,1 ≤ ∥∥�T ∥∥
2,1 − ∥∥�T c∥∥

2,1, (D.36)

and shows that � ∈ REG(c̄), which implies

‖�‖2,1 ≤ (1 + c̄)
∥∥�T ∥∥

2,1. (D.37)
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Note that ̂̄β solves group lasso minimization problem (D.24), so that

Q(̂̄β) + λ‖̂̄β‖2,1 ≤ Q(β̄0 ) + λ‖β̄0‖2,1.

Expanding the least squares criterion gives

Q(̂̄β) −Q(β̄0 ) = S(β̄0 )′�+ 1/2
(
�′H(β̄0 )�

) ≤ λ(‖β̄0‖2,1 − ‖ ¯̂β‖2,1
)
.

Invoking inequality (D.25) for S(β̄0 )′� gives

1/2
(
�′H(β̄0 )�

) ≤ λ(‖β̄0‖2,1 − ‖ ¯̂β‖2,1
) + ∥∥S(β̄0 )

∥∥
2,∞‖�‖2,1.

Then

1/2
(
�′H(β̄0 )�

) ≤i λ
(∥∥�T ∥∥

2,1 − ∥∥�T c∥∥
2,1

) + λ/c‖�‖2,1

≤ λ∥∥�T ∥∥
2,1 + 0 + λ/c‖�‖2,1

≤ii λ
∥∥�T ∥∥

2,1 + (λ/c)(1 + c̄)
∥∥�T ∥∥

2,1

=iii λc̄
∥∥�T ∥∥

2,1, (D.38)

where (i) follows from (D.36), (ii) from (D.37), and (iii) from

1 + c−1(c̄+ 1) = (
c+ (c+ 1)/(c − 1)

)
/c = (c+ 1)/(c− 1) = c̄.

Since � ∈ REG(c̄), (D.35) follows.

Proof of Theorem 4.1. We invoke Lemma D.6 with the group size g= 1, β̄0 = β0, and
Ūit =Uit +Rit(d̂, l̂). The gradient S(β0 ) = Ŝ, the Hessian is H(β0 ) = Q̂, and the penalty
λ= λβ. Note that δ ∈ RE(c̄) has been established in the proof of Lemma D.6.

Step 1. Union bound implies

P
(
λβ ≤ c√g‖Ŝ‖∞

) ≤ P
(
λβ/2 ≤ c√g‖S‖∞

) + P
(
λβ/2 ≤ c√g‖Ŝ − S‖∞

)
= PS + PŜ−S ≤ o(1) + o(1),

where PS ≤ 2/d = o(1) is given in (B.6) and PŜ−S = o(1) since

‖Ŝ − S‖∞ �P (ρNT ) = oP (
√

logd/NT ).

Step 2. Let M2 := Q = (NT )−1 ∑N
i=1

∑T
t=1 EVitV ′

it and M1 := Q̃ = ENTVitV
′
it . Observe

that

κ2(Q, T , c̄) = min
δ∈RE(c̄)

sδ′Qδ
‖δT ‖2

1

≥ min
δ∈RE(c̄)

smin eig(Q)‖δ‖2
2

‖δT ‖2
1

≥i min eig(Q), (D.39)

where (i) follows from

s‖δ‖2
2 ≥ s‖δT ‖2

2 ≥ ‖δT ‖2
1 ∀δ ∈ Rd .
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The bounds (D.28) and (D.19) imply∣∣κ2(Q̃, T , c̄) − κ2(Q, T , c̄)
∣∣ ≤ s‖Q̃−Q‖∞(1 + c̄)2 �P (sκNT ).

Therefore, the event G2 := {κ2(Q̃, T , c̄)>Cmin/2} holds w.p. 1 − o(1).
Step 3. Invoke Lemma D.5 on the event G2 with M2 := Q̃ and M1 := Q̂. The bound

(D.28) gives ∣∣κ2(Q̂, T , c̄) − κ2(Q̃, T , c̄)
∣∣ ≤ s‖Q̂− Q̂‖∞(1 + c̄)2 �P (sqNT ),

which implies ∣∣κ2(Q̂, T , c̄) − κ2(Q, T , c̄)
∣∣ �P

(
s(qNT + κNT )

)
.

Therefore, the event {κ2(Q̂, T , c̄)>Cmin/2} holds w.p. 1 − o(1). Thus, the event

G3 := s‖Q̂− Q̃‖∞(1 + c̄)2/κ2(Q̂, T , c̄)< 1/2

is well-defined and holds w.p. 1 − o(1).
Step 4. On the event G1 ∩ G2 ∩ G3, invoking (D.34) with M2 = Q̃ and M1 = Q̂ gives

δ′Q̂δ≥ (1/2) · δ′Q̃δ.

Combining inequality above with (D.35) gives

δ′Q̃δ≤ 2δ′Q̂δ≤ 4λβc̄‖δT ‖1 ≤ √
sλβ

4c̄
(
δ′Q̃δ

)1/2

κ(Q̃, T , c̄)
.

Dividing L.H.S. and R.H.S. by (δ′Q̃δ)1/2 give

(
δ′Q̃δ

)1/2 ≤ √
sλβ

4c̄

κ(Q̃, T , c̄)
�P (

√
sλβ )

and

‖δ‖1 ≤ (1 + c̄)‖δT ‖1 ≤ (1 + c̄)

√
s
(
δ′Q̃δ

)1/2

κ(Q̃, T , c̄)
≤ 4(1 + c̄)

sλβc̄

κ2(Q̃, T , c̄)
.

D.3 Proof of Theorem 4.2

In what follows, we use the notation Q−1 = (ω0
ij ) and Q−1

·,j := ω0
j . Define the following

quantities:

sj(λ) := ∥∥1
{∣∣ω0

j

∣∣ ≥ λ}∥∥1, rj(λ) := ∥∥(
ω0
j

)
1
{∣∣ω0

j

∣∣ ≤ λ}∥∥1.

Remark D.1. Assumption 4.6 implies the following bounds:

∥∥Q−1
∥∥

1,∞ = max
1≤j≤d

∥∥ω0
j

∥∥
1 ≤AQ

p∑
j=1

j−aQ ≤AQ
∫ ∞

1
j−aQ dj ≤AQ/(aQ − 1). (D.40)
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Furthermore, ifAQj−aQ ≤ λ, then j ≥ j∗Q := (AQ/λ)1/aQ . This implies

sj(λ) := ∥∥1
{∣∣ω0

j

∣∣ ≥ λ}∥∥1 ≤ ∥∥1
{
AQj

−aQ ≥ λ}∥∥1 ≤
j∗Q∑
j=1

1 = j∗Q = (AQ/λ)1/aQ ,

rj(λ) ≤
∫ ∞

j∗Q
AQj

−aQ dj =AQ
(
j∗Q

)1−aQ

aQ − 1
=AQ (AQ/λ)(1−aQ )/aQ

aQ − 1
= A

1/aQ
Q

(aQ − 1)
λ1−1/aQ .

Proof of Lemma 4.2. Step 0. Suppose Assumptions 4.1–4.6 hold. We claim that the
event

GQ := {‖Q̂−Q‖∞
∥∥Q−1

∥∥
1,∞ ≤ λQ

}
, (D.41)

holds w.p. 1 − o(1). On this event GQ, by definition of �̂, we have

‖�̂‖1,∞ ≤ ∥∥Q−1
∥∥

1,∞, (D.42)

and, therefore, ∥∥�̂CLIME
∥∥

1,∞ ≤ ‖�̂‖1,∞ ≤ ∥∥Q−1
∥∥

1,∞. (D.43)

To show that P(GQ ) = 1 − o(1), decompose

Q̂Q−1 − Id = Q̂Q−1 −QQ−1 = (Q̂−Q)Q−1.

By Lemma D.3 for some C̄κ > 0, w.p. 1 − o(1),

‖Q̂−Q‖∞ ≤ C̄κκNT .

Therefore, w.p. 1 − o(1),∥∥Q̂Q−1 − Id
∥∥∞ ≤ ‖Q̂−Q‖∞

∥∥Q−1
∥∥

1,∞ ≤ C̄κ2κNT
∥∥Q−1

∥∥
1,∞ ≤ λQ (D.44)

as long as CQ ≥ 2C̄κ‖Q−1‖1,∞. Since ‖Q−1‖1,∞ ≤AQ/(aQ− 1), CQ ≥ 2C̄κ‖Q−1‖1,∞ holds
by Assumption 4.6.

Step 1. We establish (4.10). Specifically, we show that, on the event GQ, we have

∥∥�̂CLIME −Q−1
∥∥∞ ≤ ∥∥�̂−Q−1

∥∥∞ ≤ 4AQ
(aQ − 1)

λQ.

The argument repeats the proof of equation (13) in Cai, Liu, and Luo (2011, Theorem 6).
On the event GQ, the bound holds

‖Q�̂− Id‖∞ = ∥∥Q(
�̂−Q−1)∥∥∞

≤ ∥∥(Q− Q̂)
(
�̂−Q−1)∥∥∞ + ∥∥Q̂(

�̂−Q−1)∥∥∞
≤ ‖Q− Q̂‖∞

∥∥�̂−Q−1
∥∥

1,∞ + ‖Q̂�̂− Id‖∞ + ∥∥Id − Q̂Q−1
∥∥∞

≤ ‖Q− Q̂‖∞
(∥∥Q−1

∥∥
1,∞ + ‖�̂‖1,∞

) + λQ + ∥∥Q̂Q−1 − Id
∥∥∞.
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Invoking (D.42) and (D.44) give

‖Q�̂− Id‖∞ ≤ 2‖Q− Q̂‖∞
∥∥Q−1

∥∥
1,∞ + λQ + λQ ≤ 2λQ + 2λQ = 4λQ. (D.45)

PremultiplyingQ�̂− Id byQ−1 and invoking (D.40) give

∥∥�̂−Q−1
∥∥∞ = ∥∥Q−1(Q�̂− Id )

∥∥∞ ≤ ∥∥Q−1
∥∥∞,1‖Q�̂− Id‖∞ ≤ 4

AQ

aQ − 1
λQ.

SinceQ is a symmetric matrix, so isQ−1, and∣∣�̂CLIME
mj −Q−1

mj

∣∣ ≤ max
(∣∣�̂mj −Q−1

mj

∣∣, ∣∣�̂jm −Q−1
jm

∣∣) ≤ ∥∥�̂−Q−1
∥∥∞,

which implies (4.10).
Step 2. We show that (4.11) holds. Specifically, we show that on the event GQ we have

that ∥∥�̂CLIME −Q−1
∥∥

1,∞ ≤ C̄QλQ1−1/aQ ,

for some constant C̄Q that depends on Q. We closely follow the proof of (14), page 605
in Cai, Liu, and Luo (2011). Using their notation, let

tn := ∥∥�̂CLIME −Q−1
∥∥∞, ω0

j :=Q−1
·,j ,

hj := �̂CLIME
·,j −ω0

j , h1
j := (

ω̂ij1
{|ω̂ij| ≥ 2tn

})p
i=1 −ω0

j , h2
j := hj − h1

j .

By definition of CLIME, on the event GG,∥∥ω0
j

∥∥
1 − ∥∥h1

j

∥∥
1 + ∥∥h2

j

∥∥
1 ≤ ∥∥h1

j +ω0
j

∥∥
1 + ∥∥h2

j

∥∥
1

=i
∥∥h2

j + h1
j +ω0

j

∥∥
1 = ∥∥�̂CLIME

·,j
∥∥

1 ≤ ‖�̂·,j‖1 ≤ ∥∥ω0
j

∥∥
1,

where (i) follows from h1
j +ω0

j and h2
j having nonoverlapping support. This implies∥∥hj − h1

j

∥∥
1 := ∥∥h2

j

∥∥
1 ≤ ∥∥h1

j

∥∥
1, ‖hj‖1 ≤ 2

∥∥h1
j

∥∥
1.

Then the following bound holds:

∥∥h1
j

∥∥
1 =

d∑
i=1

∣∣ω̂ij1{|ω̂ij| ≥ 2tn
} −ω0

ij

∣∣
≤

d∑
i=1

∣∣ω0
ij

∣∣1{
ω0
ij ≤ 2tn

} +
d∑
i=1

∣∣ω̂ij1{|ω̂ij| ≥ 2tn
} −ω0

ij1
{∣∣ω0

ij

∣∣ ≥ 2tn
}∣∣

≤ rj(2tn ) + tn
d∑
i=1

1
{|ω̂ij| ≥ 2tn

} +
d∑
i=1

∣∣ω0
ij

∣∣∣∣(1
{|ω̂ij| ≥ 2tn

} − 1
{∣∣ω0

ij

∣∣ ≥ 2tn
})∣∣

≤ rj(2tn ) + tn
d∑
i=1

1
{∣∣ω0

ij

∣∣ ≥ tn
} +

d∑
i=1

∣∣ω0
ij

∣∣I{∣∣∣∣ω0
ij

∣∣ − 2tn
∣∣ ≤ ∣∣ω̂ij −ω0

ij

∣∣}
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≤ rj(2tn ) + tnsj(tn ) +
d∑
i=1

∣∣ω0
ij

∣∣1{
ω0
ij ≤ 3tn

}
≤ rj(2tn ) + tnsj(tn ) + rj(3tn )

≤ C ′
Qt

1−1/aQ
n ,

(
C ′
Q := A

1/aQ
Q

(aQ − 1)

(
21−1/aQ + (aQ − 1) + 31−1/aQ

))
.

Since tn ≤ ‖�̂−Q−1‖∞ from Step 1, we have∥∥(
�̂CLIME −Q−1)′∥∥

1,∞ = ∥∥�̂CLIME −Q−1
∥∥

1,∞ := max
1≤j≤d

‖hj‖1 ≤ C ′
Q

(∥∥�̂−Q−1
∥∥∞

)1−1/aQ

≤ C̄QλQ1−1/aQ ,

where C̄Q = C ′
Q(4AQ/(aQ − 1))1−1/aQ is a constant that depends on Q. Thus, (4.11) fol-

lows.
Step 3. We show (4.12). Specifically, we show that on the event GQ and ‖Q̂−Q‖ ≤ 1

and once λQ ≤ 1, we have that∥∥Id − �̂CLIMEQ̂
∥∥∞ = ∥∥Id − Q̂�̂CLIME

∥∥∞ ≤ C ′
QλQ

1−1/aQ ,

for some constant C ′
Q that depends only onQ. Indeed,∥∥Id − Q̂�̂CLIME

∥∥∞ ≤ ∥∥Id − Q̂Q−1
∥∥∞ + ∥∥Q̂(

Q−1 − �̂CLIME)∥∥∞
≤ ∥∥Id − Q̂Q−1

∥∥∞ + (‖Q‖∞ + 1
)∥∥�̂CLIME −Q−1

∥∥
1,∞

≤ λQ + (‖Q‖∞ + 1
)
C̄Qλ

1−1/aQ
Q ≤ C ′

Qλ
1−1/aQ
Q (D.46)

for example, taking C ′
Q to bound:

(
λ

1−1/aQ
Q + (‖Q‖∞ + 1

)
CQ

) ≤ (
1 + (‖Q‖∞ + 1

)
CQ

) =: C ′
Q.

Lemma D.7 (Linearization in Sup-Norm). Suppose Assumptions 4.1–4.6 hold. Then the
debiased estimator β̂DL is asymptotically linear:

√
NT (β̂DL −β0 ) =Q−1

GNTVitUit +RNT , (D.47)

‖RNT ‖∞ �P λQ1−1/aQ
√
s2 logd+ √

NTρNT = oP (1). (D.48)

Proof of Lemma D.7. Step 1. Recall that

Rit(d, l) := li0(Xit ) − li(Xit ) − (
di0(Xit ) − di(Xit )

)′
β0.

and invoking (D.23), which states that

̂̃Yit − V̂ ′
itβ0 = (

Ỹit − V ′
itβ0

) + (
(̂̃Yit − Ỹit ) − (V̂it − Vit )′β0

) =Uit +Rit(d̂, l̂),
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we can see that ̂̃Yit − V̂ ′
it β̂L = ̂̃Yit − V̂ ′

itβ0 + V̂ ′
it(β0 − β̂L ),

ENT V̂it
(̂̃Yit − V̂ ′

it β̂L
) = ENT V̂it

(
Uit +Rit(d̂, l̂)

) + Q̂(β0 − β̂L ).

Since

β̂DL −β0 = β̂L −β0 + �̂CLIME(
ENT V̂it

(̂̃Yit − V̂ ′
it β̂L

))
we have that

β̂DL −β0 = �̂CLIME(ENT V̂it
(
Uit +Rit(d̂, l̂)

) + �̂CLIMEQ̂(β0 − β̂L ) + β̂L −β0

= �̂CLIME(ENT V̂it
(
Uit +Rit(d̂, l̂)

) + (
Id − �̂CLIMEQ̂

)
(β̂L −β0 )︸ ︷︷ ︸

L3

=Q−1
ENTVitUit +

(
�̂CLIME −Q−1)

ENTVitUit

+ �̂CLIME(ENT
[
V̂it

(
Uit +Rit(d̂, l̂) − VitUit

]) +L3

=Q−1
ENTVitUit +L1 +L2 +L3,

where

L1 = (
�̂CLIME −Q−1)

ENTVitUit ,

L2 = �̂CLIME
ENT

[
VitRit(d̂, l̂) + (V̂it − Vit )

(
Uit +Rit(d̂, l̂)

)]
,

L3 = (
Id − �̂CLIMEQ̂

)
(β̂L −β0 ).

Term L1. The bounds (4.11) and (B.6) imply

‖L1‖∞ ≤ ∥∥�̂CLIME −Q−1
∥∥

1,∞
√
NT‖ENTVitUit‖∞

�P λQ1−1/aQ
√
NT

√
logd/NT = oP (1), (D.49)

because λQ1−1/aQ = o(s−1 log−1/2 d) = o(log−1/2 d) as assumed in (4.11).
Term L2. The bounds (D.43) and the gradient error bound (D.22) imply

‖L2‖∞ ≤ ∥∥�̂CLIME
∥∥∞,1

∥∥√
NTENT

[
VitRit(d̂, l̂) + (V̂it − Vit )

(
Uit +Rit(d̂, l̂)

)]∥∥∞

�P 1
√
NTρNT = o(1),

because
√
NTρNT = o(1) is implied by our assumption Assumptions 4.1–4.5.

Term L3. The conditions (4.12) and (4.8) imply
√
NT‖L3‖∞ = √

NT
∥∥(
Id − �̂CLIMEQ̂

)
(β̂L −β0 )

∥∥∞
≤ √

NT
∥∥Id − �̂CLIMEQ̂

∥∥∞‖β̂L −β0‖1

�P
(
λQ

1−1/aQ
√
NT

√
s2 logd/NT

) = o(1),

where ‖Id − �̂CLIMEQ̂‖∞ �P λQ1−1/aQ = o(s−1 log−1/2 d) as assumed in (4.11).
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Proof of Theorem 4.2. Step 1. Let α ∈ Rd be such that ‖α‖1 =Kα =O(1) and ‖α‖2 = 1.
Lemma D.7 implies

α′(α′�α
)−1/2(√

NT (β̂DL −β0 )
) = α′(α′�α

)−1/2
Q−1

√
NTENTVitUit + oP (1),

where (α′�α)−1/2 =O(1) because

α′�α≥ ¯σ
2α′Q−1α≥ ¯σ

2C−1
max > 0 (D.50)

by the assumptions of the theorem, so that∣∣α′(α′�α
)−1/2

RNT
∣∣ ≤O(1)Kα‖RNT ‖∞ = oP (1). (D.51)

Consider a sequence

ξm(α) := α′Q−1(α′�α
)−1/2

VmUm, m= 1, 2, � � � ,M

with

m=m(i, t ) = T (i− 1) + t, 1 ≤ t ≤ T , 1 ≤ i≤N .

As shown in Corollary B.3, {ξm(α)}Mm=1 is a martingale difference sequence w.r.t. natural
filtration with M =NT . By the law of large numbers in Hansen (2019) and the assumed
Lindeberg condition

1
NT

NT∑
m=1

ξ2
m(α) →p

α′Q−1�Q−1α

α′�α
= 1.

As discussed in McLeish (1974), the Lindeberg condition assumed in the Theo-
rem 4.2 implies conditions (i) and (ii) in Theorem 2.3 of McLeish (1974), which implies
the first part of the theorem:

P
(
α′(α′�α

)−1/2√
NT (β̂DL −β0 ) ≤ t) →�(t ).

By Polya’s theorem, the convergence is uniform in t ∈ R. Since the result holds for any
sequence {α} (indexed by N , T obeying conditions above, the convergence is uniform
over such sequences).

Step 2. LetKα be a finite constant in the statement of the theorem. Thus,

sup
α:‖α‖2≤1,‖α‖1≤Kα

∣∣α′(�̂−�)α
∣∣ ≤K2

α‖�̂−�‖∞ = oP (1)

by assumption. Since min‖α‖2=1 α
′�α≥ ¯σ

2C−1
max, by assumption, we conclude that, for N

and T large enough, the event

GK :=
{

inf
‖α‖2=1,‖α‖1≤Kα

α′�̂α > ¯σ
2C−1

max/2
}

occurs w.p. 1 − o(1). Hence, w.p. 1 − o(1).

αNT − 1 :=
(
α′�α

)1/2(
α′�̂α

)1/2 − 1 (D.52)
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obeys

|αNT − 1| ≤ (
¯σ

2C−1
max/2

)−1
K2
α‖�̂−�‖∞ = oP (1),

which follows from the inequality:∣∣∣∣1 −
√
x√
y

∣∣∣∣ = |√x− √
y|√

y
= |x− y|√

y(
√
x+ √

y )
; x > 0, y > 0.

Then∣∣(αNT − 1)α′(α′�α
)−1/2√

NT (β̂L −β0 )
∣∣ ≤ |αNT − 1|∣∣α′(α′�α

)−1/2√
NT (β̂L −β0 )

∣∣
= op(1)OP (1).

Therefore,

α′(α′�̂α
)−1/2√

NT (β̂DL −β0 ) = α′(α′�α
)−1/2√

NT (β̂L −β0 ) + oP (1).

Then convergence in distribution for the L.H.S. follows by Slutsky’s lemma and Step 1.

D.4 Estimation of �: Proof of Lemma 4.3

Define the following terms:

b̄1 = ENTVitV
′
itU

2
it − �, (D.53)

b̄2 = ENT

(
di0(Xit ) − d̂i(Xit )

)
VitU

2
it , (D.54)

b̄3 = ENT

(
di0(Xit ) − d̂i(Xit )

)(
di0(Xit ) − d̂i(Xit )

)′
U2
it , (D.55)

b̄4 = ENTVitV
′
it

(
Û2
it −U2

it

)
, (D.56)

b̄5 = ENT

(
di0(Xit ) − d̂i(Xit )

)
Vit

(
Û2
it −U2

it

)
, (D.57)

b̄6 = ENT

(
di0(Xit ) − d̂i(Xit )

)(
di0(Xit ) − d̂i(Xit )

)′(
Û2
it −U2

it

)
. (D.58)

The following lemma establishes tail bound on b̄1. Recall that κNT from Lemma D.3
is

κNT :=
√

log3(d2 log(NT )
)

logNT/NT .

Lemma D.8 (Higher-Order Term b̄1). Under Assumptions 4.1–4.5 and 4.7,

‖�‖∞ = max
1≤m,j≤d

∣∣EVitjVitmU2
it

∣∣ =O(1), (D.59)

‖b̄1‖∞ �P
√

log5(d2 log(NT )
)

logNT/NT ≤ κNT log
(
d2NT

) = o(1). (D.60)

Proof. The bounds (D.59) and (D.60) follow from (B.19) and (B.20) withZ1,nit =Z2,nit =
Vit , N̄ = 1, and g= 1.
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Lemma D.9 (Higher-Order Term b̄2). Under Assumptions 4.1–4.5 and 4.7,

‖b̄2‖∞ �P (NT )−1/4. (D.61)

Proof of Lemma D.9. Step 1. For b̄ as in (D.6) and qNT as in (D.18),

P2
1 := max

1≤j≤d
ENT

(
di0(Xit ) − d̂i(Xit )

)2
j
≤ ‖b̄‖∞ �P qNT .

Invoking the convergence requirement (4.14) gives

(
1 +

√
log7(d2 log(NT )

)
log(NT )/NT

)
� 1 + κNT log2(d2NT

)
� 1.

Invoking the bounds (B.19)–(B.20) with Z1,nit = 1 and Z2,nit = Vit and N̄ = 2 and g = 2
give

P2
2 := max

1≤m≤d
ENTV

2
itmU

4
it �P

(
1 +

√
log7(d2 log(NT )

)
log(NT )/NT

)
�P 1.

The Cauchy inequality implies

max
1≤m,j≤d

∣∣ENT ∣∣(di0(Xit ) − d̂i(Xit )
)
j

∣∣∣∣Vitm∣∣U2
it

∣∣
≤ max

1≤j≤d
(
ENT

(
di0(Xit ) − d̂i(Xit )

)2
j

)1/2 max
1≤m≤d

(
ENTV

2
itmU

4
it

)1/2

�P
√
qNT · 1 = oP

(
(NT )−1/4),

where the last bound is established in (D.20).

Lemma D.10 (Higher-Order Term b̄3). Under Assumptions 4.1–4.5 and 4.7,

‖b̄3‖∞ �P o
(
(NT )−1/4). (D.62)

Proof of Lemma D.10. On the event supit |di0(Xit ) − d̂i(Xit )| ≤ dNT ,∞ ≤ 1, which hap-
pens with probability 1 − o(1),

max
1≤m,j≤d

ENT

∣∣(di0(Xit ) − d̂i(Xit )
)
j

∣∣∣∣(di0(Xit ) − d̂i(Xit )
)
m

∣∣U2
it

≤ max
1≤j≤d

ENT

∣∣(di0(Xit ) − d̂i(Xit )
)
j

∣∣U2
it

≤ max
1≤j≤d

(
ENT

(
di0(Xit ) − d̂i(Xit )

)2
j

)1/2(
ENTU

4
it

)1/2

≤
√
P2

1

(
ENTU

4
it

)1/2 �P o
(
(NT )−1/4).

Recall that the first-order estimation error is

Rit(d, l) := li0(Xit ) − li(Xit ) − (
di0(Xit ) − di(Xit )

)′
β0.
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Lemma D.11 (Squared Error). Under Assumptions 4.1–4.5, we have that

ENTR
2
it(d̂, l̂) �P l2

NT + o((NT )−1/2). (D.63)

Proof of Lemma D.11. Step 1. Consider a term z̄ in (D.7) in a special case when

di0(Xit ) := li0(Xit ) · (1, 1), d = 2.

Then z̄ reduces to a 2-vector

z̄ := ENT

(
li0(Xit ) − l̂i(Xit )

)2 · (1, 1),

and

‖z̄‖∞ = ENT

(
li0(Xit ) − l̂i(Xit )

)2
.

Invoking (G.16) with dNT and dNT ,∞ replaced by lNT and lNT ,∞ gives the bound.
Step 2. The following bound holds:

ENTR
2
it(d̂, l̂) ≤ 2ENT

((
di0(Xit ) − d̂i(Xit )

)′
β0

)2 + 2ENT
(
li0(Xit ) − l̂i(Xit )

)2

= 2β′
0b̄β0 + 2ENT

(
li0(Xit ) − l̂i(Xit )

)2

≤ 2‖b̄‖∞‖β0‖2
1 + 2ENT

(
li0(Xit ) − l̂i(Xit )

)2

�P ‖β0‖2
1
(
d2
NT + d2

NT ,∞
√

(NT )−1 log(NT ) logd
) + l2

NT + o((NT )−1/2)
�i
P o

(
(NT )−1/2) + l2

NT + o((NT )−1/2),

where (i) follows combining ‖β0‖1 ≤ C̄β assumed in Assumption 4.5(a) and qNT =
o((NT )−1/2 ), established in (D.20).

Lemma D.12 (Higher-Order Terms b̄4, b̄5, b̄6 With Û2
it −U2

it ). Under Assumptions 4.1–4.7,

6∑
k=4

‖b̄k‖∞ �P
(
(NT )−1/4 + lNT + √

s logd/NT + l2
NT log

(
d2NT

)) =: γNT . (D.64)

Proof of Lemma D.12. Step 1. Decompose

Û2
it −U2

it = (Ûit −Uit +Uit )2 −U2
it = 2Uit(Ûit −Uit ) + (Ûit −Uit )2.

Invoking (D.23) gives

Ûit = ̂̃Yit − V̂ ′
it β̂L = (̂̃Yit − V̂ ′

itβ0
) + (

V̂ ′
itβ0 − V̂ ′

it β̂L
)

=Uit +Rit(d̂, l̂) + V̂ ′
it(β0 − β̂L ).

The Cauchy inequality implies

ENT (Ûit −Uit )2 ≤ 2ENTR
2
it(d̂, l̂) + 2ENT

(
V̂ ′
it(β̂L −β0 )

)2

= 2ENTR
2
it(d̂, l̂) + 2(β̂L −β0 )′Q̂(β̂L −β0 ) =:U1 +U2,
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where U1 �P o(NT )−1/2 + l2
NT in established in Lemma D.11 and U2 �P s logd/NT is

Theorem 4.1.
Step 2. Let C(Wit , η) = (Cmj(Wit , η)) be a d × d matrix. For any coordinates m and j,

decompose

ENTCmj(Wit , η̂)
(
Û2
it −U2

it

)
= 2ENTCmj(Wit , η̂)Uit(Ûit −Uit ) +ENTCmj(Wit , η̂)(Ûit −Uit )2

=: 2D1mj(η̂) +D2mj(η̂).

The Cauchy inequality gives∣∣D1mj(η̂)
∣∣ ≤ (

ENTC
2
mj(Wit , η̂)U2

it

)1/2(
ENT (Ûit −Uit )2)1/2

≤ max
1≤m,j≤d

(
ENTC

2
mj(Wit , η̂)U2

it

)1/2(
ENT (Ûit −Uit )2)1/2

.

The maximal inequality gives∣∣D2mj(η̂)
∣∣ ≤ max

it
max
mj

∣∣Cmj(Wit , η̂)
∣∣ENT (Ûit −Uit )2. (D.65)

Step 3. If one can verify

max
1≤m,j≤d

ENTC
2
mj(Wit , η̂)U2

it �P 1, (D.66)

we have that ∥∥D1(η̂)
∥∥∞ = max

1≤m,j≤d
∣∣D1mj(η̂)

∣∣
≤OP (1) ·OP

(
(NT )−1/4 + lNT + √

s logd/NT
)

�P
(
(NT )−1/4 + lNT + √

s logd/NT
)
.

If one can verify another condition,

max
it

max
mj

|Cmj(Wit , η̂| �P
(
log

(
d2NT

))
, (D.67)

we have that∥∥D2(η̂)
∥∥∞ =OP

(
log

(
d2NT

)) ·OP
(
s logd/NT + l2

NT + (NT )−1/2).

Step 4.1. Take C(Wit , η̂) = VitV
′
it , which corresponds to b̄4 in (D.56). Invoking (B.19)

and (B.20) with Z1,nit = Z2,nit = Vit and N̄ = 2 and g = 1 as well the assumed bound
(4.14) give

max
jk

∣∣ENTV 2
itkV

2
itjU

2
it

∣∣ �P
(
1 + κNT log2(d2NT

))
�P 1,

which verifies (D.66). By Lemma B.1 (6),

max
it

max
mj

|VitkVitj| �P
(
log

(
d2NT

))
,

which verifies (D.67).
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Step 4.2. Take C(Wit , η̂) = Vit(di0(Xit ) − d̂i(Xit )), which corresponds to b̄5 in (D.57).
In what follows, we focus on the event supit |di0(Xit ) − d̂i(Xit )| ≤ dNT ,∞ ≤ 1. Invoking
(B.18) with N̄ = 2 and g= 1 gives

max
1≤m,j≤d

∣∣ENTV 2
itm

(
di0(Xit ) − d̂i(Xit )

)2
j
U2
it

∣∣
�P d2

NT ,∞ max
1≤m≤d

∣∣ENTV 2
itmU

2
it

∣∣
�P dNT ,∞

(
1 +

√
log5(d logNT ) log(NT )/NT

)
= dNT ,∞

(
1 + κNT log(d logNT )

)
) � dNT ,∞.

Likewise,

max
it

max
mj

∣∣C(Wit , η̂)
∣∣ ≤ dNT ,∞ max

it
max

1≤j≤d
|Vitj| �P

(
log

(
d2NT

)
dNT ,∞

)
verifies (D.67).

Step 4.3. TakeC(Wit , η̂) = (di0(Xit )− d̂i(Xit ))(di0(Xit )− d̂i(Xit ))′, which corresponds
to b̄6 in (D.58). On the event supit |di0(Xit ) − d̂i(Xit )| ≤ dNT ,∞ ≤ 1, the condition (D.66)
becomes

max
1≤m,j≤d

ENT

(
di0(Xit ) − d̂i(Xit )

)2
m

(
di0(Xit ) − d̂i(Xit )

)2
j
U2
it ≤ ENTU

2
it �P 1.

Noting that maxit maxmj |C(Wit , η̂)| �P d2
NT ,∞ �P 1 verifies (D.67).

Step 5. (Conclusion). Collecting the bounds and invoking (s ∨ 1)κNT = o(1) gives

o(NT )−1/4 + lNT + √
s logd/NT

+ (
log

(
d2NT

)(
o(NT )−1/2 + l2

NT + s logd/NT
))

� γNT . (D.68)

ForN and T large enough,

log
(
d2NT

)
/(NT )−1/4 ≤ 1,

which implies log(d2NT )(NT )−1/4 = o((NT )−1/4 ). Likewise,

log
(
d2NT

)√
s logd/NT ≤ s

√
log2(d2NT

)
logd/NT ≤ (s ∨ 1)κNT = o(1),

which gives (D.68).

Lemma D.13 (Bound on ‖�̂(β̂L ) − �‖∞). Under Assumptions 4.1–4.5 and 4.7, we have
that ∥∥�̂(β̂L ) − �∥∥∞ �P

(
γNT + κNT log

(
d2NT

)) = op(1). (D.69)
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Proof. Decompose the matrix first-stage error

�̂(β̂L ) − �= ENT V̂it V̂
′
it Û

2
it − �

= ENT V̂it V̂
′
it

(
Û2
it −U2

it

) +ENT

(
V̂it V̂

′
it − VitV ′

it

)
U2
it +ENTVitV

′
itU

2
it − �

= b̄6 + b̄5 + b̄′
5 + b̄4 + b̄3 + b̄2 + b̄′

2 + b̄1.

The bound on b̄1 is given in (D.60), Lemma D.8. The bound on b̄2 is given in (D.61),
Lemma D.9. The bound on b̄3 is given in (D.62), Lemma D.10. The bounds on b̄4 − b̄6 are
given in (D.64), Lemma D.12. Summing the bounds gives (D.69).

Proof of Lemma 4.3. Step 1. Define the following bounds:

�1 := ∥∥�̂CLIME −Q−1
∥∥∞,1

∥∥�̂(β̂L )
∥∥∞

∥∥�̂CLIME
∥∥

1,∞,

�2 := ∥∥Q−1
∥∥∞,1

∥∥�̂(β̂L ) − �∥∥∞
∥∥�̂CLIME

∥∥
1,∞,

�3 := ∥∥�̂CLIME −Q−1
∥∥∞,1‖�‖∞

∥∥Q−1
∥∥

1,∞

and note that∥∥�̂(β̂L ) −�∥∥∞ = ∥∥�̂CLIME�̂(β̂L )�̂CLIME −Q−1�Q−1
∥∥∞ ≤ �1 +�2 +�3.

Step 2. Invoking (D.59) and (D.69) give∥∥�̂(β̂L )
∥∥∞ ≤ ‖�‖∞ + ∥∥�̂(β̂L ) − �∥∥∞ �P 1 + γNT + κNT log

(
d2NT

)
�P 1.

Invoking (D.43) and (D.40) give∥∥�̂CLIME
∥∥

1,∞ ≤ ‖�̂‖1,∞ ≤ ∥∥Q−1
∥∥

1,∞ ≤ (
AQ/(aQ − 1)

)
.

As a result, invoking (4.12) gives

�1 =OP
(
λQ

1−1/aQ
) ·OP (1) ·OP (1).

Likewise,

�2 := ∥∥Q−1
∥∥∞,1

∥∥�̂(β̂L ) − �∥∥∞
∥∥�̂CLIME

∥∥
1,∞ =O(1) ·OP

(
γNT + κNT log

(
d2NT

)) ·OP (1)

�P
(
γNT + κNT log

(
d2NT

))
,

�3 := ∥∥�̂CLIME −Q−1
∥∥∞,1‖�‖∞

∥∥Q−1
∥∥

1,∞ =O(1) ·OP (γNT ) ·OP (1) �P
(
λQ

1−1/aQ
)
.

Collecting the terms give∥∥�̂(β̂L ) −�∥∥∞ = ∥∥�̂CLIME�̂(β̂L )�̂CLIME −Q−1�Q−1
∥∥∞

≤ �1 +�2 +�3

�P λQ1−1/aQ + γNT + κNT log
(
d2NT

) + λQ1−1/aQ .
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D.5 Proof of Theorem 4.3

The proof is divided in several steps. Step 1 outlines the proof. Steps 2–5 establish (4.20).
Steps 6–8 establish (4.22).

Proof. Step 1. (Outline). Let Z ∼N(0, C ) and Ẑ | Ĉ ∼N(0, Ĉ ) be as defined in the Theo-
rem. Define

T�,β := √
NT�

−1/2
jj (β̂DL,j −β0 ), T�̂,β := √

NT�̂
−1/2
jj (β̂DL,j −β0 )

and

T� := �−1/2
jj GNTVitjUit .

Define

O1(t ) := P
(‖T�,β‖∞ < t

) − P
(‖T�‖∞ < t + δ1

)
,

O2(t ) := P
(‖T�‖∞ ≤ t + δ1

) − P
(‖Z‖∞ < t + δ1

)
,

O3(t ) := P
(‖Z‖∞ < t + δ1

) − P
(‖Z‖∞ < t

)
and note that for each t

P
(‖T�,β‖∞ < t

) − P
(‖Z‖∞ < t

) =
3∑
k=1

Ok(t ).

Likewise, define

O4(t ) := P
(‖T�̂,β‖∞ < t

) − P
(‖T�,β‖∞ < t

)
and

O5(t ) := P
(‖Z‖∞ < t

) − P
(‖Ẑ‖∞ < t | Ĉ)

.

Note that for each t,

P
(‖T�̂,β‖∞ < t

) − P
(‖Ẑ‖∞ < t | Ĉ) =O4(t ) +

3∑
k=1

Ok(t ) +O5(t ).

Then (4.20) is equivalent to

sup
t≥0

∣∣P(‖T�,β‖∞ < t
) − P

(‖Z‖∞ < t
)∣∣ → 0 (D.70)

and (4.22) is equivalent to

sup
t≥0

∣∣P(‖T�̂,β‖∞ < t
) − P

(‖Ẑ‖∞ < t | Ĉ)∣∣ →P 0. (D.71)
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Step 2. We show that the elements of diag� are bounded from above and below. By
Assumption 4.3(2), there exists a finite σ̄UV such that maxit E[U2

it | Vit ] ≤ σ̄2
UV a.s. As a

result, Assumption 4.3 gives

0< ¯σ
2 ≤ min

it
E
[
U2
it | Vit

] ≤ max
it

E
[
U2
it | Vit

] ≤ σ̄2
UV <∞ a.s.,

which implies ¯σ
2Q� �� σ̄2

UV Q, and ¯σ
2Q−1 � �� σ̄2

UV Q
−1. As a result,

0< ¯σ
2C−1

max ≤ c� = min
1≤j≤d

�jj ≤C� = max
1≤j≤d

�jj ≤ σ̄2
UV C

−1
min <∞.

Likewise, the elements of (diag�)−1/2 are bounded from above by c−1/2
�

and from below

by C−1/2
�

.

Step 3. We bound supt≥0 |O1(t )| with δ1 = log−1/2 d log−1/2NT . Decomposition (D.47)
implies

‖T�‖∞ − ‖RNT ‖∞ ≤ ‖T�,β‖∞ ≤ ‖T�‖∞ + ‖RNT ‖∞,

and union bound gives

P
(‖T�,β‖∞ < t

) ≤ P
(‖T�‖∞ ≤ t + δ1

) + P
(‖RNT ‖∞ ≥ δ1

)
,

P
(‖T�‖∞ < t

) ≤ P
(‖T�,β‖∞ ≤ t + δ1

) + P
(‖RNT ‖∞ ≥ δ1

)
,

which gives

sup
t≥0

∣∣O1(t )
∣∣ ≤ P

(‖RNT ‖∞ ≥ δ1
) =i o(1), (D.72)

where (i) follows from

‖RNT ‖∞ �P λ
1−1/aQ
Q s log1/2 d+ √

NTρNT = oP
(
log−1/2 d log−1/2NT

)
given in (D.48) and (4.19).

Step 4. We verify the conditions of Lemma C.5 for the m.d.s. with

m=m(i, t ) = T (i− 1) + t, M =NT

and

Xm := (diag�)−1/2VmUm, m= 1, 2, � � � ,M , DM = c−1
�
πV UM .

To verify the condition (C.5), we invoke Assumption 4.8, which gives

Var(Xmj ) = �−1/2
jj EV 2

mjU
2
m�

−1/2
jj ≥ ¯σ

2 min
it

∥∥EVitV
′
it

∥∥∞C
−1
�

=: a1 > 0

and Remark B.2,

Var(Xmj ) = �−1/2
jj EV 2

mjU
2
m�

−1/2
jj ≤ σ̄2 max

it

∥∥EVitV
′
it

∥∥∞c
−1
�

=:A1 <∞.
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By Assumption 4.8,

r̄ := (2/κ) · log(NT ), q̄ := (NT )c2 log2 d log2(NT )

obey (4.18), which implies (C.9). By Lemma C.5, there exist constants c2 ∈ (0, 1/4) and
cX and CX depending on ¯σ , σ̄ , c2, Cmin, Cmax such that

sup
t≥0

∣∣O2(t )
∣∣ = sup

t≥0

∣∣P(‖T�‖∞ ≤ t) − P
(‖Z‖∞ ≤ t)∣∣ � CX(NT )−cX + (NT )−c2/2. (D.73)

Step 4. Bound on supt≥0 |O3(t )|. Invoking Lemma C.2 gives

sup
t≥0

∣∣O3(t )
∣∣

= sup
t≥0

∣∣P(‖Z‖∞ < t + δ1
) − P

(‖Z‖∞ < t
)∣∣

≤ sup
t≥0

∣∣P(‖Z‖∞ < t + δ1
) − P

(‖Z‖∞ < t − δ1
)∣∣

= sup
t≥0

P
(∣∣‖Z‖∞ − t∣∣ ≤ δ1

) ≤ Cδ1
√

1 ∨ log(2d/δ1 ).

Note that the R.H.S. is a nondecreasing function of δ1 in some neighborhood of 0 and
that

√
1 ∨ (x+ y ) ≤ 1 + √

x+ √
y for x, y > 0. Plugging in δ1 = log−1/2 d log−1/2NT gives

sup
t≥0

∣∣O3(t )
∣∣ ≤ C log−1/2 d log−1/2NT

√
1 ∨ (

log(2d) + log
(
log1/2 d log1/2NT

))
� log−1/2NT + log−1/2 d log−1/2NT log1/2 log(NT ) = o(1). (D.74)

Combining (D.72) and (D.73) and (D.74) give (D.70). By a standard calculation, we have
E‖Z‖∞ �

√
log 2d. Invoking Gaussian concentration inequality (see, e.g., Ledoux (2001,

Theorem 7.1), or Comment 4 in Chernozhukov, Chetverikov, and Kato (2015, p. 56)) im-
plies

‖Z‖∞ �P log1/2(2d) + log1/2(NT ).

Since ‖Z‖∞ and ‖T�,β‖∞ converge in distribution to the same limit,

‖T�,β‖∞ �P log1/2(2d) + log1/2(NT ). (D.75)

Step 5.1. We bound supt≥0 |O4(t )|. Take ρj = �
1/2
jj /�̂

1/2
jj and let ρ := (ρ1, ρ2, � � � , ρd )′

be a d-vector. Note that all Euclidean j-vectors ej vectors obey ‖ej‖2 = ‖ej‖1 = 1 and,
therefore, belong to the set in Theorem 4.2 withKα = 1. Let αNT = (α�α)1/2/(α�̂α)1/2 be
as in (D.52). Invoking (D.51) and the bound (4.15) in Lemma 4.3 gives

max
j

|ρj − 1| ≤ sup
α:‖α‖2=‖α‖1=1

|αNT − 1| �P γNT .

In particular, it implies that the even

min
1≤j≤d

ρj > 1/2



Supplementary Material Inference on heterogeneous treatment effects 47

occurs w.p. 1 − o(1). For any ρj > 1/2,∣∣ρ−1
j − 1

∣∣ = |1 − ρj|/|ρj| ≤ 2|ρj − 1|.

Combining the bounds above on the event min1≤j≤d ρj > 1/2 give

max
1≤j≤d

∣∣�̂−1/2
jj /�

−1/2
jj − 1

∣∣ = max
1≤j≤d

∣∣ρ−1
j − 1

∣∣ ≤ 2 max
1≤j≤d

|ρj − 1| �P γNT . (D.76)

Step 5.2. Let v1 · v2 denote (v1 · v2 )j = v1j · v2j for j = 1, 2, � � � , d. Note that

T�̂,β = T�,β · ρ−1,

or, equivalently,

T�̂,β − T�,β = (
ρ−1 − 1

)
T�,β.

Invoking (D.76) and (D.75) give

‖T�̂,β − T�,β‖∞ ≤ max
1≤j≤d

∣∣ρ−1
j − 1

∣∣‖T�,β‖∞ =OP (ζNT ) ·OP
(
log1/2 d+ log1/2NT

) =i oP (1),

where (i) follows from (4.21). Thus, ‖T�̂,β‖∞ and ‖T�,β‖∞ converge to the same limit in
distribution.

Step 6. We bound supt≥0 |O5(t )|. Invoking Lemma C.1 with X ∼ N(0, C )|Ĉ and Y ∼
N(0, C ) and �̂= ‖C − Ĉ‖∞

sup
t≥0

∣∣O5(t )
∣∣ ≤ C ′(�̂ log2(2d)

)1/2
,

where C depends only on the constants defined in Assumptions 4.2 and 4.3. In Step 7,
we show that for ζNT in (4.15),

�̂ := ‖C − Ĉ‖∞ �i
P ζNT =ii oP

(
log−2 d log−1NT

)
, (D.77)

where (i) is verified in Steps 7–8 and (ii) is directly assumed in (4.21).
Step 7. Note that

‖�‖∞ = ∥∥Q−1�Q−1
∥∥∞ ≤ ∥∥Q−1

∥∥∞,1‖�‖∞
∥∥Q−1

∥∥
1,∞ ≤ (

AQ/(aQ − 1)
)2‖�‖∞ =O(1).

As a result,

‖�̂‖∞ ≤ ‖�̂−�‖∞ + ‖�‖∞ �P 1 + γNT �P 1.

Likewise,∥∥(diag�̂)−1/2
∥∥∞,1 = ∥∥(diag�̂)−1/2

∥∥
1,∞ = max

1≤j≤d
�̂

−1/2
jj �P ζNT + c−1/2

�
�P 1.

Step 8. Define

C1 := max
1≤j≤d

∣∣�̂−1/2
jj −�−1/2

jj

∣∣‖�̂‖∞
∥∥(diag �̂)−1/2

∥∥
1,∞,
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C2 := ∥∥(diag�)−1/2
∥∥∞,1‖�̂−�‖∞

∥∥(diag�̂)−1/2
∥∥

1,∞,

C3 := ∥∥(diag�)−1/2
∥∥∞,1‖�‖∞ max

1≤j≤d
∣∣�̂−1/2
jj −�−1/2

jj

∣∣
and note that

‖Ĉ − C‖∞ = ∥∥(diag�̂)−1/2�̂(diag�̂)−1/2 − (diag�)−1/2�(diag�)−1/2
∥∥∞ ≤ C1 +C2 +C3.

Invoking (D.76) and (4.15),

max
1≤j≤d

∣∣�̂−1/2
jj −�−1/2

jj

∣∣ �P ζNT , ‖�̂−�‖∞ �P ζNT

implies that each term Cj is a product of two OP (1) terms and a single OP (ζNT ) term.
Thus, C1 +C2 +C3 �P ζNT verifies (i) in (D.77).

Proof of Lemma 4.4. We invoke Lemma D.6 with V̄it = Dit − di0(Zit ) and ¯̃Yit = Yit −
li0(Zit ) and β̄0 = (β0, ρ0 ) and g= 2. Steps 1, 2, and 3 are established similar to the proof
of Theorem 4.1. Thus, the bounds (4.27) hold for the orthogonal group lasso. As a result,
‖β̂L−β0‖1 ≤ √

s2 logd/NT w.p. 1−o(1). As a result, the debiased orthogonal group lasso
obeys the uniform linearization result (D.47), and Theorems 4.2 and 4.3 hold.

Appendix E: Proofs for Section 5

Proof of Remark 5.1. To prove this, let ‖ · ‖ψ2 denote the Orlizs sub-Gaussian norm
under the probability measure P (see van der Vaart and Wellner (1996)). Then∥∥‖Fit‖

∥∥
ψ2

≤ ∥∥‖�itFi,t−1‖
∥∥
ψ2

+ ∥∥‖QTit‖
∥∥
ψ2

≤ (1 − δ)
∥∥‖Fi,t−1‖

∥∥
ψ2

+A′σ̄2,

whereA′ is a numerical constant. Iterating on this inequality exactly t times we obtain

∥∥‖Fit‖
∥∥
ψ2

≤ (1 − δ)t
∥∥‖Fi,0‖

∥∥
ψ2

+A′
t−1∑
t̄=1

(1 − δ)t̄ σ̄2 ≤A′ σ̄2

1 − δ .

Proof of Remark 5.3. Step 1 shows that pNT ≤ N−1/2(2(Bmax + 1))1/2ζNT ,∞. Step 2
shows that w.p. 1 − o(1),

sup
it

∣∣pi(Xit ) −pi0(Xit )
∣∣ ≤ 2ζNT ,∞.

Step 1. For any δP and ξ ∈ P̄NT ,∥∥δP − δP0
∥∥

2 ≤ ∥∥δP − δP0
∥∥

1 ≤N−1/2ζNT ,∞, (E.1)

‖ξ− ξ0‖2 ≤ ‖ξ− ξ0‖1 ≤ ζNT ,∞. (E.2)

The Cauchy inequality gives(
pi(Xit ) −pi0(Xit )

)2 = (
X ′
it

(
δP − δP0

) + ξi − ξi0
)2 ≤ 2

(
X ′
it

(
δP − δP0

))2 + 2(ξi − ξi0 )2.
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Summing over i= 1, 2, � � � ,N and t = 1, 2, � � � , T give

p2
NT ≤ 2(NT )−1

N∑
i=1

T∑
t=1

E
(
X ′
it

(
δP − δP0

))2 + 2N−1‖ξ− ξ0‖2

≤ 2BmaxN
−1ζ2

NT ,∞ + 2N−1ζ2
NT ,∞.

With probability 1−o(1), max1≤i≤N ,1≤t≤T ‖Xit‖∞ ≤ CX
√

logdXNT for some finiteCX by
Lemma B.1.

Step 2. The following bound holds w.p. 1 − o(1):

sup
it

∣∣pi(Xit ) −pi0(Xit )
∣∣ ≤ sup

it

∣∣X ′
it

(
δP − δP0

)∣∣ + |ξi − ξi0|

≤ sup
it

‖Xit‖∞
∥∥δP − δP0

∥∥
1 + ‖ξ− ξ0‖1

≤ CX
√

log(dXNT )N−1/2ζNT ,∞ + ζNT ,∞
≤ 2ζNT ,∞,

where the last step holds assumingN is large enough and CX
√

log(dXNT )/N ≤ 1.

Proof of Remark 5.5. Step 1 shows that lNT = O(N−1/2(ζNT ,∞ + ζENT ,∞ )). Step 2
shows that w.p. 1 − o(1),

sup
it

∣∣li(Xit ) − li0(Xit )
∣∣ ≤ 2K̄‖β0‖1ζNT ,∞ + 2ζENT ,∞.

Step 1. Decompose

li(Xit ) − li0(Xit ) = (
di(Xit ) − di0(Xit )

)′
β0 +X ′

it

(
δE − δE0

) + ξEi − ξEi0 + di(Xit )′(β−β0 ).

The Cauchy inequality gives(
li(Xit ) − li0(Xit )

)2 ≤ 4
(((
di(Xit ) − di0(Xit )

)′
β0

)2

+ (
X ′
it

(
δE − δE0

))2 + (
ξEi − ξEi0

)2 + (
di(Xit )

′(β−β0 )
)2)

.

Note that di(Xit ) = K(Xit )pi(Xit ) = K(Xit )(X ′
itδ

P + ξi ). Summing over i = 1, 2, � � � ,N
and t = 1, 2, � � � , T give

l2
NT ≤ 4 (NT )−1

N∑
i=1

T∑
t=1

(
δP − δP0

)′
E
[(
K′
itβ0

)2
XitX

′
it

](
δP − δP0

)
︸ ︷︷ ︸

(δP−δP0 )′�D(δP−δP0 )

+ 4(NT )−1
N∑
i=1

T∑
t=1

E
(
X ′
it

(
δE − δE0

))2 + 4N−1
∥∥ξE − ξE0

∥∥2
2

+ 4(NT )−1
N∑
i=1

T∑
t=1

E
∥∥di(Xit )∥∥2

∞‖β−β0‖2
1
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≤ 4
(
BmaxN

−1ζ2
NT ,∞ +BmaxN

−1(ζENT ,∞
)2 +N−1(ζENT ,∞

)2 +B4N
−1(ζENT ,∞

)2)
≤ 4(Bmax + 1 +B4 )N−1(ζENT ,∞

)2 + 4N−1Bmaxζ
2
NT ,∞.

Note that forN , T large enough such that ‖δP‖2
2 ≤ 2‖δP0 ‖2

2 ≤ 2‖δP0 ‖2
1, which is bounded,

B4 = (NT )−1
N∑
i=1

T∑
t=1

E
∥∥di(Xit )∥∥2

∞

≤ K̄2(NT )−1
N∑
i=1

T∑
t=1

E
(
X ′
itδ

P + ξi
)2 ≤ 2K̄2(δP ′

�Xδ
P +N−1‖ξ‖2)

≤ 2K̄2(Bmax
∥∥δP∥∥2

2 +N−1‖ξ‖2
2

)
≤ 4K̄2Bmax

∥∥δP0 ∥∥2
2 + 1.

Step 2. ForN , T large enough, w.p. 1 − o(1),

sup
it

∣∣li(Xit ) − li0(Xit )
∣∣

≤ sup
it

∣∣K′
itβ0

∣∣ sup
it

∣∣pi(Xit ) −pi0(Xit )
∣∣

+ sup
it

‖Xit‖∞
∥∥δE − δE0

∥∥
1 + sup

i

∣∣ξi − ξEi ∣∣
+ sup

it

∥∥K(Xit )
∥∥∞

∣∣X ′
itδ

E
∣∣‖β−β0‖1

≤ 2K̄‖β0‖1ζNT ,∞ + ‖Xit‖∞
(
N−1/2ζENT ,∞ + K̄∥∥δE∥∥

1N
−1/2ζENT ,∞

) + ∥∥ξE − ξE0
∥∥

1

≤ 2K̄‖β0‖1ζNT ,∞ +CX
√

log(dXNT )N−1/2(1 + K̄∥∥δE∥∥
1

)
ζENT ,∞ + ζENT ,∞

≤ 2K̄‖β0‖1ζNT ,∞ + 2ζENT ,∞,

where the last step holds assumingN is large enough and ‖δE‖1 ≤ ‖δE0 ‖1 and

CX
√

log(dXNT )/N
(
1 + 2K̄

∥∥δE0 ∥∥
1

) ≤ 1.

Proof of Remark 5.6. Invoking Remark 5.3 and the bound (5.34) on ζPNT ,∞ in
Lemma 5.1 give

√
NTp2

NT �
√
NTN−1(ζPNT ,∞

)2 �
(
SP

)2
N−1/2T 1/2Tν−1 log3(1−ν)(dX +N )

�
(
SP

)2
N−1/2Tν−1/2 log3(1−ν)(dX +N ) = o(1).

In addition, the bound (5.36) on ζENT ,∞ in Lemma 5.2 gives

√
NTpNT lNT �

√
NTN−1ζPNT ,∞ζ

E
NT ,∞

� SP · SEN−1/2T (ν+νE )/2−1 log3(1−(ν+νE )/2)(dX +N ) = o(1).
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Appendix F: Tools: Tails bounds for empirical rectangular matrices under

weak dependence

Lemma F.1 (Rectangular Matrix Bernstein, Theorem 1.6 in Tropp (2012)). Consider a fi-
nite sequence {�m}Mm=1 of independent, random matrices with dimensions d1 × d2. As-
sume that there exist constants R� and σ� such that

E�m = 0, ‖�m‖ ≤R� a.s. (F.1)

Define

σ2
� = max

(∥∥∥∥∥E
M∑
m=1

�′
m�m

∥∥∥∥∥,

∥∥∥∥∥E
M∑
m=1

�m�
′
m

∥∥∥∥∥
)

. (F.2)

Then, for all t ≥ 0,

P

(∥∥∥∥∥
M∑
m=1

�m

∥∥∥∥∥ ≥ t
)

≤ (d1 + d2 )e−(t2/2(σ2
�

+R�t/3)). (F.3)

Lemma F.2 (Tail Bounds for Weakly Dependent Sums, Operator Norm). Consider the
setup of Lemma B.4 with weakly dependent data {Wit } and matrix-valued functions
{φi(·)}Ni=1 : W → Rd1×d2 . Let q = 
(2/κ) log(NT )� be as in (B.16) and L = 
T/2q�. For
i = 1, 2, � � � ,N and l = 1, 2, � � � , L, let the data blocks Bi(2l−1), Bi2l and Bir be as in (B.8)–
(B.10). Let the full-sized odd-block sums φi(Bi(2l−1) ) be as in (B.11), that is,

φi(Bi(2l−1) ) =
t=(2l−2)q+q∑
t=(2l−2)q+1

φi(Wit ), φi(Bi(2l) ) =
t=(2lq)∑

t=(2l−1)q+1

φi(Wit )

and let φi(B∗
i(2l−1) ) and φi(B∗

i(2l) ) be their Berbee copies. In case T 	= 2Lq, the remainder
block φi(Bir ) as in (B.13), that is,

φi(Bir ) :=
T∑

t=2Lq+1

φi(Wit ).

Suppose that there exist constants R and σ such that the following conditions hold:

Eφi(Wit ) = 0, sup
it

∥∥φi(Wit )∥∥ ≤R a.s. (F.4)

and

max

(∥∥∥∥∥
N∑
i=1

L∑
l=1

Eφi
(
B∗
i(2l)

)′
φi

(
B∗
i(2l)

)∥∥∥∥∥,

∥∥∥∥∥
N∑
i=1

L∑
l=1

Eφi
(
B∗
i(2l)

)
φi

(
B∗
i(2l)

)′
∥∥∥∥∥
)

≤ qNTσ2, (F.5)
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max

(∥∥∥∥∥
N∑
i=1

L∑
l=1

Eφi
(
B∗
i(2l−1)

)′
φi

(
B∗
i(2l−1)

)∥∥∥∥∥,

∥∥∥∥∥
N∑
i=1

L∑
l=1

Eφi
(
B∗
i(2l−1)

)
φi

(
B∗
i(2l−1)

)′
∥∥∥∥∥
)

≤ qNTσ2, (F.6)

max

(∥∥∥∥∥
N∑
i=1

Eφi(Bir )φi(Bir )′
∥∥∥∥∥,

∥∥∥∥∥
N∑
i=1

Eφi(Bir )′φi(Bir )

∥∥∥∥∥
)

≤ qNTσ2. (F.7)

Then, for any t ≥ 0,

P

(∥∥∥∥∥(NT )−1
N∑
i=1

T∑
t=1

φi(Wit )

∥∥∥∥∥ ≥ 3t

)
≤ 3(d1 + d2 )e−t

2NT/2(qσ2+qRt/3) + 2NLγ(q) (F.8)

and under geometric beta-mixing condition (4.1),∥∥∥∥∥ 1
NT

N∑
i=1

T∑
t=1

φi(Wit )

∥∥∥∥∥
�P

1√
NT

(
σ

√
log(NT ) log(d1 + d2 ) + 1√

NT
log(NT )R log(d1 + d2 )

)
. (F.9)

Remark F.1. In what follows, we write φ(Wit ) in place of φi(Wit ), but subsume the de-
pendence on i.

Proof of Lemma F.2. The union bound gives

P

(∥∥∥∥∥
N∑
i=1

T∑
t=1

φ(Wit )

∥∥∥∥∥ ≥ 3t

)

≤ P

(∥∥∥∥∥
N∑
i=1

L∑
l=1

φ
(
B∗
i(2l−1)

)∥∥∥∥∥ ≥ t
)

+ P

(∥∥∥∥∥
N∑
i=1

L∑
l=1

φ
(
B∗
i(2l)

)∥∥∥∥∥ ≥ t
)

+ P

(∥∥∥∥∥
N∑
i=1

φ(Bir )

∥∥∥∥∥ ≥ t
)

+ 2NLγ(q). (F.10)

We first establish the bound for the odd-block sums. Define

m=m(i, l) =L · (i− 1) + l, M =NL, �m :=φ(
B∗
i(2l−1)

)
.

Since φ(B∗
i(2l−1) ) consists of q summands and W ∗

it and Wit have the same marginal dis-
tributions, the bound (F.4) gives∥∥φ(

B∗
i(2l−1)

)∥∥ ≤ qR a.s.,
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which verifies (F.1) with R� = qR. Likewise, (F.5) directly verifies (F.2) with the bound
σ2
�

= qNTσ2. Invoking Lemma F.1 gives

P

(∥∥∥∥∥
N∑
i=1

L∑
l=1

φ
(
B∗
i(2l−1)

)∥∥∥∥∥ ≥ t
)

≤ (d1 + d2 )e−t
2/2(qNTσ2+qRt/3).

A similar bound holds for the even-numbered sums. For the remainder blocks, we take

m= i, M =N , �m =φ(Bir ).

Since the remainder block has at most q elements,∥∥φ(Bir )
∥∥ ≤ qR a.s.

which implies (F.1) with R� = qR. Likewise, (F.7) directly verifies (F.2) with the bound
σ2
�

= qNTσ2. Therefore,

P

(∥∥∥∥∥
N∑
i=1

φ(Bir )

∥∥∥∥∥> t
)

≤ (d1 + d2 )e−t
2/2(qNTσ2+qRt/3).

Invoking union bound (F.10) gives

P

(∥∥∥∥∥
N∑
i=1

T∑
t=1

φ(Wit )

∥∥∥∥∥ ≥ 3t

)
≤ 3(d1 + d2 )e−t

2/2(qNTσ2+qRt/3) + 2NLγ(q).

Plugging t(NT ) in place of t gives and dividing each side byNT gives

P

(∥∥∥∥∥ 1
NT

N∑
i=1

T∑
t=1

φ(Wit )

∥∥∥∥∥ ≥ 3t

)
≤ 3(d1 + d2 )e−t

2(NT )2/2(qNTσ2+qRNTt/3) + 2NLγ(q)

= 3(d1 + d2 )e−t
2NT/2(qσ2+qRt/3) + 2NLγ(q),

which coincides with (F.8). For geometric mixing, taking q as in (B.16) gives NLγ(q) =
o(1). Noting that

3(d1 + d2 )e−t
2NT/2(qσ2+qRt/3)

≤ max
(
3(d1 + d2 )e−(t2NT/4qσ2 ), 3(d1 + d2 )e−(tNT/4qR/3)).

Plugging t = C ′σ
√
q log(d1 + d2 )/NT and taking C ′ large makes the first term in the max

as small as desired. Plugging t = C ′ log(d1 + d2 )qR/NT and taking C ′ large makes the
second terms in the max as small as desired. Therefore,∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

φ(Wit )

∥∥∥∥∥
�P

1√
NT

(
σ

√
log(NT ) log(d1 + d2 ) + 1√

NT
log(NT )R log(d1 + d2 )

)
.
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Lemma F.3. Let γ(X ) : X → Rd1×d2 be a fixed matrix-valued function of a random vec-
torX . Define the functional

φ(X ) = γ(X ) − E
[
γ(X )

]
. (F.11)

Let γ∞
NT and γNT be numeric sequences obeying

sup
it

∥∥γ(Xit )
∥∥ ≤ γ∞

NT a.s., (NT )−1
N∑
i=1

T∑
t=1

E
∥∥γ(Xit )

∥∥2 ≤ γ2
2NT . (F.12)

Then the conditions (F.4) and (F.5)–(F.7) hold with

R= 2γ∞
NT , σ2 = 2γ2

2NT . (F.13)

As a result, the bound (F.9) in Lemma F.2 reduces to∥∥∥∥∥ 1
NT

N∑
i=1

T∑
t=1

φ(Xit )

∥∥∥∥∥
�P

1√
NT

(
γ2NT

√
log(NT ) log(d1 + d2 ) + 1√

NT
log(NT )γ∞

NT log(d1 + d2 )

)
. (F.14)

Proof of Lemma F.3 . Step 1. LetX and X̄ be two random vectors, and γ(X ) and γ(X̄ )
be d1 × d2 matrices. The following inequalities hold:∥∥Eγ(X )γ(X̄ )′

∥∥ ≤i E
∥∥γ(X )γ(X̄ )′

∥∥ ≤ii E
∥∥γ(X )

∥∥∥∥γ(X̄ )′
∥∥

≤iii
√

E
∥∥γ(X )

∥∥2
E
∥∥γ(X̄ )′

∥∥2

≤iv 1/2
(
E
∥∥γ(X )

∥∥2 + E
∥∥γ(X̄ )′

∥∥2) =v 1/2
(
E
∥∥γ(X )

∥∥2 + E
∥∥γ(X̄ )

∥∥2)
, (F.15)

where (i) follows from the convexity of the norm and Jensen’s inequality, (ii) from sub-
multiplicativity of operator norm ‖AB‖ ≤ ‖A‖‖B‖, (iii)–(iv) from Cauchy inequalities
and (v) from ‖A′‖ = ‖A‖. Likewise,∥∥Eγ(X )Eγ(X̄ )′

∥∥ ≤i
∥∥Eγ(X )

∥∥∥∥Eγ(X̄ )′
∥∥

≤ii 1/2
((∥∥Eγ(X )

∥∥)2 + (∥∥Eγ(X̄ )′
∥∥)2)

≤iii 1/2
(
E
∥∥γ(X )

∥∥2 + E
∥∥γ(X̄ )′

∥∥2) =iv 1/2
(
E
∥∥γ(X )

∥∥2 + E
∥∥γ(X̄ )

∥∥2)
, (F.16)

where (i) follows from ‖AB‖ ≤ ‖A‖‖B‖, (ii) from Cauchy inequality, (iii) from the convex-
ity of composition t → t2 and · → ‖ · ‖ and Jensen’s inequality, and (iv) from ‖A′‖ = ‖A‖.
Finally, since the R.H.S. of (F.15) and (F.16) is invariant under transposition, the same
bound holds for the transposed quantities:

max
(∥∥Eγ(X )′γ(X̄ )

∥∥,
∥∥Eγ(X )γ(X̄ )′

∥∥) ≤ 1/2
(
E
∥∥γ(X )

∥∥2 + E
∥∥γ(X̄ )

∥∥2)
,

max
(∥∥Eγ(X )′Eγ(X̄ )

∥∥,
∥∥Eγ(X )Eγ(X̄ )′

∥∥) ≤ 1/2
(
E
∥∥γ(X )

∥∥2 + E
∥∥γ(X̄ )

∥∥2)
.
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Step 2. For φ(X ) = γ(X ) − Eγ(X ),

Eφ(X )φ(X̄ )′ = Eγ(X )γ(X̄ )′ − Eγ(X )Eγ(X̄ )′ − Eγ(X )Eγ(X̄ )′ + Eγ(X )Eγ(X̄ )′

= Eγ(X )γ(X̄ )′ − Eγ(X )Eγ(X̄ )′. (F.17)

Let {Xmz }M ,Z
m,z=1 be a double-indexed sequence. For every value ofm,

(
Z∑
z=1

γ(Xmz )

)(
Z∑
z′=1

γ(Xmz′ )

)′
=

∑
1≤z,z′≤Z

γ(Xmz )γ(Xmz′ )′.

Define

M1 := E
M∑
m=1

(
Z∑
z=1

γ(Xmz )

)(
Z∑
z=1

γ(Xmz′ )

)′
=

M∑
m=1

∑
1≤z,z′≤Z

Eγ(Xmz )γ(Xmz′ )′,

M2 :=
M∑
m=1

(
E

Z∑
z=1

γ(Xmz )

)(
E

Z∑
z=1

γ(Xmz′ )

)′
=

M∑
m=1

∑
1≤z,z′≤Z

Eγ(Xmz )Eγ(Xmz′ )′.

Invoking (F.17) gives

M∑
m=1

E

[
Z∑
z=1

φ(Xmz )

][
Z∑
z=1

φ(Xmz′ )

]′
=M1 −M2.

Step 3. The bound on ‖M1‖ is

‖M1‖ ≤
M∑
m=1

∑
1≤z,z′≤Z

∥∥Eγ(Xmz )γ(Xmz′ )′
∥∥

≤ 1/2
M∑
m=1

Z∑
z=1

Z∑
z′=1

(
E
∥∥γ(Xmz )

∥∥2 + E
∥∥γ(Xmz′ )

∥∥2)

=Z/2

(
M∑
m=1

Z∑
z=1

E
∥∥γ(Xmz )

∥∥2 +
M∑
m=1

Z∑
z′=1

E
∥∥γ(Xmz′ )

∥∥2

)

=Z
M∑
m=1

Z∑
z=1

E
∥∥γ(Xmz )

∥∥2
. (F.18)

Likewise,

‖M2‖ ≤
M∑
m=1

∑
1≤z,z′≤Z

∥∥Eγ(Xmz )Eγ(Xmz′ )′
∥∥
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≤ 1/2
M∑
m=1

Z∑
z=1

Z∑
z′=1

(
E
∥∥γ(Xmz )

∥∥2 + E
∥∥γ(Xmz′ )

∥∥2)

=Z
M∑
m=1

Z∑
z=1

E
∥∥γ(Xmz )

∥∥2
. (F.19)

As a result,

‖M1 −M2‖ ≤ ‖M1‖ + ‖M2‖ ≤ 2Z
M∑
m=1

Z∑
z=1

E
∥∥γ(Xmz )

∥∥2
.

Because the bounds (F.15) and (F.16) are invariant to transpositions of γ(X ) and/or
γ(X̄ ), ∥∥∥∥∥

M∑
m=1

E

[
Z∑
z=1

φ(Xmz )′
][

Z∑
z=1

φ(Xmz′ )

]∥∥∥∥∥ ≤ 2Z
M∑
m=1

Z∑
z=1

E
∥∥γ(Xmz )

∥∥2
. (F.20)

Step 4. We first verify the condition (F.5) for the odd-numbered full-sized blocks. We
note that the L.H.S. of (F.5) is a special case of the L.H.S. of (F.20) with

m=m(i, l) =L · (i− 1) + l, M =NL, Z = q,

Xmz :=Xi,(2l−2)q+z ,

φ(Bi(2l−1) ) =
t=(2l−2)q+q∑
t=(2l−2)q+1

φ(Xit ) =
q∑
z=1

φ(Xmz ).

As a result,∥∥∥∥∥
N∑
i=1

L∑
l=1

Eφ
(
B∗
i(2l−1)

)
φ

(
B∗
i(2l−1)

)′
∥∥∥∥∥ ≤ 2q

N∑
i=1

L∑
l=1

q∑
z=1

E
∥∥γ(

X∗
i(2l−1),z

)∥∥2
(F.21)

= 2q
N∑
i=1

L∑
l=1

q∑
z=1

E
∥∥γ(Xi(2l−1),z )

∥∥2
(F.22)

≤ 2q
N∑
i=1

T∑
t=1

E
∥∥γ(Xit )

∥∥2 = 2qNTγ2
2NT . (F.23)

A similar argument for even-numbered, full-sized blocks and φ(B∗
i(2l) ) =∑t=(2l)q

t=(2l−1)q+1φ(X∗
it ) verifies condition (F.6) of Lemma F.2. Finally, if the remainder block

is nonempty, that is, T − 2Lq 	= 0, invoking (F.20) with

m= i, M =N , Z := T − 2Lq
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and noting that∥∥∥∥∥
N∑
i=1

Eφ(Bir )φ(Bir )′
∥∥∥∥∥ ≤ 2q

N∑
i=1

T−2Lq∑
z=1

E
∥∥γ(Xiz )

∥∥2

≤ 2q
N∑
i=1

T∑
t=1

E
∥∥γ(Xit )

∥∥2 = 2qNTγ2
2NT , (F.24)

which verifies condition (F.7) of Lemma F.2. Finally, the condition (F.4) follows from∥∥φ(
B∗
i(2l−1)

)∥∥ ≤ qR a.s.,
∥∥φ(

B∗
i(2l)

)∥∥ ≤ qR a.s.,
∥∥φ(Bir )

∥∥ ≤ qR,

since each block has at most q summands. Plugging R= 2γ∞
NT and q = 2γ2

2NT into (F.9)
gives (F.14).

Corollaries F.1 and F.2 are special cases of Lemma F.3 with various cases of the γ-
function.

Corollary F.1 (Covariance Matrix Moments). Let ψ(X ) : X → Rd×1 be a fixed-vector
function of a random vectorX . Define

γ(X ) =ψ(X )ψ(X )′ (F.25)

and the φ-function

φ(X ) := γ(X ) − E
[
γ(X )

] =ψ(X )ψ(X )′ − E
[
ψ(X )ψ(X )′

]
.

Let the numeric sequences ψ∞
NT and ψ4NT obey

sup
it

∥∥ψ(Xit )
∥∥ ≤ψ∞

NT a.s., (F.26)

(NT )−1
N∑
i=1

T∑
t=1

E
∥∥ψ(Xit )

∥∥4 ≤ψ4
4NT . (F.27)

Then the bound (F.12) holds with γ∞
NT := (ψ∞

NT )2 and γ2
2NT := ψ4

4NT . As a result, the rate
(F.14) reduces to∥∥∥∥∥(NT )−1

N∑
i=1

T∑
t=1

φ(Xit )

∥∥∥∥∥
�P

√
ψ4

4NT log(NT ) log(2d)/NT + log(NT )
(
ψ∞
NT

)2 log(2d)/NT . (F.28)
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Proof of Corollary F.1. Noting that∥∥γ(Xit )
∥∥∞ ≤ ∥∥ψ(Xit )

∥∥2
∞ ≤ (

ψ∞
NT

)2

and ∥∥γ(Xit )
∥∥2 = ∥∥ψ(Xit )ψ(Xit )

′∥∥2 ≤ ∥∥ψ(Xit )
∥∥2∥∥ψ(Xit )

′∥∥2 = ∥∥ψ(Xit )
∥∥4

.

Therefore,

(NT )−1
N∑
i=1

T∑
t=1

E
∥∥γ(Xit )

∥∥2 ≤ (NT )−1
N∑
i=1

T∑
t=1

E
∥∥ψ(Xit )

∥∥4 ≤ψ4
4NT .

Application of Lemma F.3 yields the result.

Corollary F.2 (Product Moments). Let ψ(X ) : X → Rd×1 be a fixed-vector function of a
random vectorX and ξ(X ) be a random variable. Define

γ(X ) :=ψ(X ) · ξ(X ).

Let the numeric sequences ψ∞
NT , ξ∞

NT , and ψ4NT , ξ4NT obey

sup
it

∥∥ψ(Xit )
∥∥ ≤ ψ∞

NT a.s., sup
it

∣∣ξ(Xit )
∣∣ ≤ ξ∞

NT a.s., (F.29)

(NT )−1
N∑
i=1

T∑
t=1

E
∥∥ψ(Xit )

∥∥4 ≤ ψ4
4NT , (NT )−1

N∑
i=1

T∑
t=1

Eξ4(Xit ) ≤ ξ4
4NT . (F.30)

Then the bound (F.12) holds with

γ∞
NT := (

ψ∞
NT

) · ξ∞
NT , γ2

2NT := 1/2
(
ψ4

4NT + ξ4
4NT

)
.

As a result, the rate (F.14) reduces to∥∥∥∥∥(NT )−1
N∑
i=1

T∑
t=1

φ(Xit )

∥∥∥∥∥ �P
√(
ψ4

4NT + ξ4
4NT

)
log(NT ) log(d+ 1)/NT

+ log(NT )ψ∞
NTξ

∞
NT log(d+ 1)/NT . (F.31)

Proof of Corollary F.2. Noting that∥∥γ(Xit )
∥∥∞ ≤ ∥∥ψ(Xit )

∥∥∞
∣∣ξ(Xit )

∣∣ ≤ψ∞
NTξ

∞
NT

and ∥∥γ(Xit )
∥∥2 = ∥∥ψ(Xit )

∥∥2
ξ2(Xit ).

The Cauchy inequality gives

E
∥∥γ(Xit )

∥∥2 = E
∥∥ψ(Xit )

∥∥2
ξ2(Xit ) ≤ 1/2

(
E
∥∥ψ(Xit )

∥∥4 + Eξ4(Xit )
)
.
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Therefore,

(NT )−1
N∑
i=1

T∑
t=1

E
∥∥γ(Xit )

∥∥2 ≤ (NT )−1

(
N∑
i=1

T∑
t=1

E
∥∥ψ(Xit )

∥∥4 +
N∑
i=1

T∑
t=1

Eξ4(Xit )

)

≤ (
ψ4

4NT + ξ4
4NT

)
/2.

Application of Lemma F.3 yields the result.

Appendix G: Additional results on orthogonal OLS

Assumption G.1 (Tail Bound on Empirical Covariance Matrix in �2 Norm). For some
sequence vNT = o(1), in the regime where d→ ∞, we have that

‖Q̃−Q‖ �P vNT . (G.1)

Remark G.1. Suppose Assumptions 4.1–4.3 hold and supit ‖Vit‖∞ ≤R a.s. and

max
itj

EV 4
itj ≤ σ4

4V .

We invoke Corollary F.1 withψ(Wit ) = Vit andψ∞
NT := √

dR and (F.27) withψ4
4NT = d2σ4

4V .
As a result, the rate bound (F.28) reduces to

vNT =
√
d2 log(2d) log(NT )/NT + dR log(2d) log(NT )/NT .

Further improvement of this rate may be possible under additional structure on Vit ; see,
for example, Theorem 1 and Corollary 3 in Banna, Merlevede, and Youssef (2016).

Let DNT × LNT be a sequence of realization sets such that the following condi-
tions hold. Let dNT , lNT , dNT ,4, lNT ,4 be the numeric sequences obeying the following
bounds:

sup
d∈DNT

(NT )−1
N∑
i=1

T∑
t=1

(
E
∥∥di(Xit ) − di0(Xit )

∥∥2)1/2 ≤ dNT ,

sup
d∈DNT

(NT )−1
N∑
i=1

T∑
t=1

(
E
∥∥di(Xit ) − di0(Xit )

∥∥4)1/4 ≤ dNT ,4,

sup
l∈LNT

(NT )−1
N∑
i=1

T∑
t=1

(
E
(
li(Xit ) − li0(Xit )

)4)1/4 ≤ lNT ,4.

Define the following rates:

r2NT := dNT lNT +
√(

d4
NT ,4 + l4

NT ,4

)
log(NT ) log(d+ 1)

NT

+ √
d log(d+ 1) log(NT )/NT , (G.2)

χNT := d2
NT +

√
d4
NT ,4 log(2d) log(NT )/NT + d log(2d) log(NT )/NT . (G.3)
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Assumption G.2. We suppose that the true parameter vector has bounded �2-norm:

‖β0‖2 ≤ C̄β
for some finite constant C̄β; We suppose that the reduced form estimators obey: l̂(·) ∈LNT
and d̂(·) ∈DNT if such that dNT , dNT ,4, lNT , lNT ,4 decay sufficiently fast:

r2NT +χNT = o((NT )−1/2). (G.4)

Furthermore, the reduced form estimates are bounded as

sup
d∈DNT

∥∥di(Xit )∥∥ ≤ √
dD, sup

l∈LNT

∣∣li(Xit )∣∣ ≤L ∀i.

Theorem G.1 (Orthogonal Least Squares). Suppose Assumptions 4.1–4.3, G.1, and G.2
hold. Then the following statements hold:

1. The orthogonal least squares estimator converges at the rate
√
d/NT :

‖β̂OLS −β0‖2 �P
√
d/NT . (G.5)

2. For any deterministic sequence {α} = {αN ,T } with ‖αN ,T ‖ = 1, the estimator α′β̂OLS

of α′β0 is asymptotically linear:
√
NTα′(β̂OLS −β0 ) = α′Q−1

GNTVitUit + oP (1). (G.6)

3. If the Lindeberg condition holds for eachM > 0,

lim sup
NT→∞

sup
‖α‖2=1

(NT )−1
N∑
i=1

T∑
t=1

E[
(
α′VitUit

)2
1
{∣∣α′VitUit

∣∣>M√
NT

}
] = 0,

then the orthogonal least squares estimator is asymptotically Gaussian:

lim
NT→∞

sup
‖α‖2=1

sup
t∈R

∣∣∣∣P(√
NTα′(β̂OLS −β0 )∥∥α′�

∥∥1/2 < t

)
−�(t )

∣∣∣∣ = 0. (G.7)

Lemma G.1 (First-Order Terms, �2-Norm). Let ā, m̄, f̄ , ē be as in (D.2)–(D.5). Under As-
sumptions 4.1–4.3, the following bounds hold:

‖ā‖ �P (
√
d/NTdNT ), (G.8)

‖m̄‖ �P (
√
d/NT lNT ), (G.9)

‖f̄‖ �P
(
dNT (NT )−1/2), (G.10)

‖ē‖ �P
(√
d/NT (dNT + lNT )

)
. (G.11)

Proof of Lemma G.1. Define

ξVNT := √
d/NTdNT , ξBNT = 0,
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and theA-function as

A(Wit , η) = Vit
(
di0(Xit ) − di(Xit )

)
. (G.12)

Define BAk(η) and VAk(η) with η = d as in (A.8)–(A.9). Consider any η = ηNT ∈ DNT
in what follows. Since Vit obeys the martingale difference property (D.13), it follows that
‖BAk(ηNT )‖ = 0. Furthermore, for any 1 ≤ j, j′ ≤ d,

E
[(
α′Vit

)(
α′V(it ′ )

)(
di0(Xit ) − di(Xit )

)
j

(
di0(Xit ′ ) − di(Xit ′ )

)
j′
] = 0. (G.13)

Combining (G.13) and Assumption 4.3,

E
[∥∥α′VAk(ηNT )

∥∥2]
=i (NTk )−2

N∑
i=1

∑
t∈Mk

d∑
j=1

E
[(
α′Vit

)2(
di0(Xit ) − di(Xit )

)2
j

]

≤ (NTk )−2 sup
d∈DNT

N∑
i=1

∑
t∈Mk

d∑
j=1

E
[
E
[‖Vit‖2|�it ,Xit

](
di0(Xit ) − di(Xit )

)2
j

]

≤ (NTk )−2 sup
d∈DNT

N∑
i=1

T∑
t=1

E
∥∥di0(Xit ) − di(Xit )

∥∥2
dσ2

V

≤ii (d/NTk )σ2
V (T/Tk )d2

NT ,

where (i) follows from (G.13) and (ii) follows from definition of dNT . By Assumption 4.5,
we have that P(d̂k ∈ DNT , ∀k = 1, � � � ,K) → 1. Moreover, since the number of cross-fit
folds is finite, the size Tk of each fold obeys

1 � Tk/T ≤ 1.

We conclude by Lemma A.6 that (G.8) holds. Repeating the same argument for

A(Wit , η) = Vit
(
li0(Xit ) − li(Xit )

)
and A(Wit , η) =Uit

(
di0(Xit ) − di(Xit )

)
establishes claims (G.9) and (G.10). Finally, (D.12) holds by definition of ē = m̄ − ā′β0

and Holder inequalities.

In the lemma below, abusing the notation, we treat li as some generic vector-valued
function.

Lemma G.2 (Second-Order Bias). Let di0(Xit ) be a d1-vector and li0(Xit ) be a d2-vector.
Suppose that

sup
d∈DNT

(NT )−1
N∑
i=1

T∑
t=1

(
E
∥∥di(Xit ) − di0(Xit )

∥∥2)1/2 ≤ dNT ,

sup
l∈DNT

(NT )−1
N∑
i=1

T∑
t=1

(
E
∥∥li(Xit ) − li0(Xit )

∥∥2)1/2 ≤ lNT .
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Consider theA-function as

A(Wit , η) = (
di0(Xit ) − di(Xit )

)(
li0(Xit ) − li(Xit )

)
, η= (d, l) (G.14)

and its bias BAk(η) as in (A.8). Then we have the bias bound:

sup
η∈(DNT ,LNT )

∥∥BAk(η)
∥∥

2 ≤ dNT lNT (T/Tk ).

Proof of Lemma G.2. Take α ∈ Sd−1. Let Xit(α) := α′(di0(Xit ) − di(Xit )) and Yitj :=
(li0(Xit ) − li(Xit ))j and

a2
it =

∥∥di0(Xit ) − di(Xit )
∥∥2

, b2
it =

∥∥li0(Xit ) − li(Xit )
∥∥2 =

d∑
j=1

b2
itj .

Recognize that

α′BAkj(η) = (NTk )−1
N∑
i=1

∑
t∈Mk

Eα′(di0(Xit ) − di(Xit )
)(
li0(Xit ) − li(Xit )

)
j

= (NTk )−1
N∑
i=1

∑
t∈Mk

EXit(α)Yitj .

The Cauchy inequality gives

∣∣EXit(α)Yitj
∣∣ ≤

√
EX2

it(α)EY 2
itj ≤

√
E
∥∥di0(Xit ) − di(Xit )

∥∥2
EY 2

itj =:
√
a2
itb

2
itj .

Summing over i and t and invoking Cauchy inequality give

α′BAkj(η) ≤ (NTk )−1
N∑
i=1

∑
t∈Mk

√
a2
itb

2
itj ≤ (NTk )−1

√√√√√ N∑
i=1

∑
t∈Mk

a2
it

√√√√√ N∑
i=1

∑
t∈Mk

b2
itj ,

∥∥α′BAk(η)
∥∥2 =

d∑
j=1

∣∣α′BAkj(η)
∣∣2 ≤ (NTk )−1

(
N∑
i=1

∑
t∈Mk

a2
it

)
(NTk )−1

(
d∑
j=1

N∑
i=1

∑
t∈Mk

b2
itj

)

≤ (NTk )−1

(
N∑
i=1

T∑
t=1

a2
it

)
(NTk )−1

(
N∑
i=1

T∑
t=1

b2
it

)

≤ l2
NTd2

NT (T/Tk )2.

Next, we invoke Lemmas F.2 and F.3 and Corollaries F.1–F.2 from Appendix F.

Lemma G.3 (Second-Order Covariance Term). Define

ζBNT = d2
NT , ζVNT =

√
d4
NT ,4 log(2d) logNT/NT + dD log(2d) log(NT )/NT .
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Under Assumptions 4.1–4.3, the following bounds hold for the term b̄ defined in (D.6):

‖b̄‖ �P ζBNT + ζVNT = χNT . (G.15)

Proof of Lemma G.3. Define theA-function as

A(Wit , η) = (
di0(Xit ) − di(Xit )

)(
di0(Xit ) − di(Xit )

)′
, η= d = l.

Let BAk(η) and VAk(η) be defined according to (A.8)–(A.9). Invoking Lemma G.2 with
l = d gives ‖BAk(ηNT )‖∞ =O(ζBNT ) for any partition k. Note that

VAk(ηNT ) = (NTk )−1
N∑
i=1

∑
t∈Mk

((
di0(Xit ) − di(Xit )

)(
di0(Xit ) − di(Xit )

)′

− E
[(
di0(Xit ) − di(Xit )

)(
di0(Xit ) − di(Xit )

)′])
=: (NTk )−1

N∑
i=1

∑
t∈Mk

φi(Xit ).

Define

ψi(Xit ) = (
di0(Xit ) − di(Xit )

)
,

γi(Xit ) =ψi(Xit )ψi(Xit )′ =
(
di0(Xit ) − di(Xit )

)(
di0(Xit ) − di(Xit )

)′
,

φi(Xit ) = γi(Xit ) − E
[
γi(Xit )

]
.

Note that ψi(Xit ) = (di0(Xit ) − di(Xit )) obeys the conditions (F.26) and (F.27) with

ψ∞
NT := √

dD, ψNT ,4 := dNT ,4.

As a result, the bound (F.28) reduces to ζVNT for each partition k and T = Tk. Since Tk/T �
1, the bound follows.

Lemma G.4 (Second-Order Covariance Term, cont.). Suppose Assumptions 4.1–4.3 and
G.2 hold. Let z̄ and ḡ be as defined in (D.7) and (D.8). Then

‖z̄‖ �P r2NT , (G.16)

‖ḡ‖ �P r2NT +χNT . (G.17)

Proof of Lemma G.4. Define theA-function as

A(Wit , η) = (
di0(Xit ) − di(Xit )

)(
li0(Xit ) − li(Xit )

)
, η= (d, l).

Let BAk(η) and VAk(η) be defined according to (A.8)–(A.9). Let

ζBNT = dNT lNT ,

ζVNT =
√(

d4
NT ,4 + l4

NT ,4

)
log(NT ) log(d+ 1)

NT
+ √

dD log(2d) log(NT )/NT .
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Invoking Lemma G.2 with d1 = d and d2 = 1 give ‖BAk(ηNT )‖∞ =O(ζBNT ) for any parti-
tion k. Note that

VAk(ηNT ) = (NTk )−1
N∑
i=1

∑
t∈Mk

((
di0(Xit ) − di(Xit )

)(
li0(Xit ) − li(Xit )

)
− E

[(
di0(Xit ) − di(Xit )

)(
li0(Xit ) − li(Xit )

)′])
=: (NTk )−1

N∑
i=1

∑
t∈Mk

φi(Xit ).

Define

ψi(Xit ) = (
di0(Xit ) − di(Xit )

)
, ξi(Xit ) = li0(Xit ) − li(Xit ),

γi(Xit ) =ψi(Xit )ξi(Xit ) = (
di0(Xit ) − di(Xit )

)(
li0(Xit ) − li(Xit )

)
,

φi(Xit ) = γi(Xit ) − E
[
γi(Xit )

]
.

Note that ψi(Xit ) = (di0(Xit ) − di(Xit )) and ξi(Xit ) = li0(Xit ) − li(Xit ) obey the condi-
tions (F.29) and (F.30) with

ψ∞
NT := √

dD, ψNT ,4 := dNT ,4, ξ∞
NT :=L, ξNT ,4 := lNT ,4.

As a result, the bound (F.31) reduces to ζVNT for each partition k and T = Tk. Since Tk/T �
1, the bound (G.16) follows. Recognizing that ḡ= z̄− b̄′β0 and invoking ‖β0‖ ≤ Cβ as in
Assumption G.2 give

‖ḡ‖ ≤ ‖z̄‖ + ‖b̄β0‖ ≤ ‖z̄‖ + ‖b̄‖‖β0‖,

(G.17) follows.

Proof of Theorem G.1. Step 0. Let Rit(d̂, l̂) be as defined in (D.1). Let ā, b̄, ē, f̄ , ḡ be as
defined in (D.2), (D.6), . . . , (D.8). As shown in the proof of Lemma D.3, the Gram matrix
estimation error

Q̂− Q̃= ENT V̂it V̂
′
it −ENTVitV

′
it = ā+ ā′ + b̄

and gradient estimation error

Ŝ − S = ENT V̂it
(
Uit +Rit(d̂, l̂)

) − VitUit ] = ē+ f̄ + ḡ.

We have that

‖Q̂−Q‖ ≤ ‖Q̂− Q̃‖ + ‖Q̃−Q‖ �i
P (χNT + √

d/NTdNT + vNT ) = o(1),

where (i) follows from Lemmas G.1–G.4 and Assumption G.1.Furthermore, by lemmas

‖Ŝ − S‖ = ‖ē+ f̄ + ḡ‖ �P (r2NT +χNT ) = o(1/
√
NT ),

where we used Assumptions 4.1–4.3 and G.2 to conclude that r2NT +χNT = o(1/
√
NT ).
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Step 1. SinceQ is invertible by assumption, Q̂ is also invertible w.p. 1−o(1) by Step 0.
Therefore, we can decompose β̂OLS −β0 as

β̂OLS −β0 = Q̂−1
ENT [V̂it

̂̃Yit ] − Q̂−1Q̂′β0 = Q̂−1
ENT [V̂it

̂̃Yit ] − Q̂−1(
ENT V̂it V̂

′
it

)
β0

= Q̂−1
ENT

[
V̂it

(̂̃Yit − V̂ ′
itβ0

)]
= Q̂−1

ENT

[
V̂it

(
Uit +Rit(d̂, l̂)

)]
= Q̂−1

ENTVitUit + Q̂−1
ENT

[
V̂it

(
Uit +Rit(d̂, l̂)

) − VitUit
]
.

Therefore, the following bound holds by triangle and Holder inequalities:

‖β̂OLS −β0‖ ≤ ∥∥Q̂−1
∥∥‖ENTVitUit‖ + ∥∥Q̂−1

∥∥‖Ŝ − S‖ =:
∥∥Q̂−1

∥∥(L1 +L2 ).

The first term L1 is bounded as

E‖ENTVitUit‖2 =
d∑
j=1

E
(
ENT (Vit )jUit

)2

=i (NT )−2
d∑
j=1

N∑
i=1

T∑
t=1

E
(
(Vit )jUit

)2

≤ (NT )−2
N∑
i=1

T∑
t=1

E‖Vit‖2 sup
it

E
[
U2
it | Vit

]

≤ σ̄2(NT )−1
N∑
i=1

T∑
t=1

trace
(
EVitV

′
it

)
= σ̄2 trace(Q) ≤ii (d/NT )Cmax,

where (i) follows from the m.d.s. property in Lemma B.3, and (ii) from max eig(Q) ≤
Cmax. The Markov inequality gives L1 �P (

√
d/NT ). The second term L2 := ‖Ŝ − S‖ is

oP (1/
√
NT ) by Step 0. Step 0 implies max eig(Q̂−1 )< 2C−1

min w.p. 1 − o(1). Therefore, the
rate bound (G.5) follows.

Step 2. From Step 1,

α′(β̂OLS −β0 ) = α′Q̂−1
ENT

[
V̂it(Uit +Rit(d̂, l̂)

]
= α′Q−1

ENTVitUit

+ α′(Q̂−1 −Q−1)
ENTVitUit + α′Q̂−1[

ENT

[
V̂it(Uit +Rit(d̂, l̂) − VitUit

]]
=: α′Q−1

ENTVitUit + S1(α) + S2(α).

The bound on S1(α) follows:∣∣S1(α)
∣∣ ≤ ∥∥Q̂−1 −Q−1

∥∥‖ENTVitUit‖
≤ ∥∥Q̂−1

∥∥‖Q̂−Q‖∥∥Q−1
∥∥‖ENTVitUit‖
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=OP (1) · oP (1) ·OP (1) ·OP
(
(NT )−1/2) = oP

(
(NT )−1/2),

where OP (·) and oP (·) bounds are established in Steps 0–2. The bound on S2(α) follows
from: ∣∣S2(α)

∣∣ ≤ ‖α‖C−1
min‖Ŝ − S‖ �P (r2NT +χNT ) = oP

(
(NT )−1/2),

where we are using the results of Step 0. As a result,

√
NTα′(β̂OLS −β0 ) = α′Q−1

GNTVitUit + oP (1),

which gives (G.6).
Step 3. The proof of pointwise normality follows similar to Step 1 of the proof of The-

orem 4.2, where the step (D.51) is replaced by∣∣α′(α′�α
)−1/2

RNT
∣∣ ≤ ‖α‖2O(1)‖RNT ‖2 �P

√
NT (r2NT +χNT ) = oP (1).
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