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Deconvolution from two order statistics

JoonHwan Cho
Department of Economics, Binghamton University

Yao Luo
Department of Economics, University of Toronto

Ruli Xiao
Department of Economics, Indiana University

Economic data are often contaminated by measurement errors and truncated by
ranking. This paper shows that the classical measurement error model with inde-
pendent and additive measurement errors is identified nonparametrically using
only two order statistics of repeated measurements. The identification result con-
firms a hypothesis by Athey and Haile (2002) for a symmetric ascending auction
model with unobserved heterogeneity. Extensions allow for heterogeneous mea-
surement errors, broadening the applicability to additional empirical settings, in-
cluding asymmetric auctions and wage offer models. We adapt an existing simu-
lated sieve estimator and illustrate its performance in finite samples.
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1. Introduction

We consider the classical measurement error model with repeated measurements:

Xj = ξ+ εj , j ∈ {1, � � � , n},

where the latent variable of interest ξ is measured n times with i.i.d. measurement er-
rors (εj )j=1, ���,n that are independent of ξ. The identification result under such a model
is well established when at least two repeated measurements are observed, and known
as Kotlarski’s lemma. The result has been widely applied in econometrics since its intro-
duction by Li and Vuong (1998).1 In practice, the researcher may observe only a subset of
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order statistics of the measurements, that is, (X(j) )j∈J , where X(j) is the jth smallest or-
der statistic from a sample of size n and J ⊂ {1, � � � , n}. This paper shows the underlying
probability distributions of the latent variable and the measurement errors are identi-
fied from the joint distribution of the ordered measurements (X(j) )j∈J .

The problem took its shape in Athey and Haile (2002) as a nonparametric identifi-
cation problem in ascending auctions, which has particular relevance in auctions with
electronic bidding. They conjecture that the model consists of enough structure to at-
tain point identification using two order statistics. However, the question has been long-
standing for two decades.2 Importantly, the standard approach using Kotlarski’s lemma
fails because of dependence in the order statistics of measurement errors. Further, as
Athey and Haile (2002) point out, the attempt to difference out the latent variable and
exploit the spacing distribution is shown to be insufficient for point identification. This
is evidenced by Rossberg’s (1972) counterexample.

While the literature has documented the increasing importance of unobserved het-
erogeneity in auctions,3 the lack of identification results in the existing literature has
hindered allowance for such heterogeneity in the classical fashion, unless relying on ad-
ditional external variations in the data.4 We fill this important gap by showing that the
underlying distributions are identified with only data on two order statistics, which need
not be consecutive or extreme, without relying on extra variations.

We propose a new identification strategy that exploits both features in Kotlarski
(1967) and Rossberg (1972). In particular, we make use of within independence of the
latent variable and the additively separable measurement errors as in Kotlarski (1967)
to derive that the model imposes an additional restriction beyond the spacing of order
statistics.5 More precisely, we find that if two measurement error distributions both ra-
tionalize the observed distribution of the ordered measurements, then the joint distribu-
tions of spacing and cross-sum are identical.6 Exploiting the structure of order statistics
and commonly seen conditions (a support or tail restriction), we show that the spacing
in conjunction with this additional restriction is indeed sufficient to point identify the
underlying distribution using any two order statistics. The latent variable distribution is
subsequently identified by a standard deconvolution argument.

We extend our main result to the setting where measurement errors are independent
but nonidentically distributed (i.n.i.d.). We show that the underlying distributions are
identified when two order statistics are observed, provided some measurement errors

2Some positive findings are made recently in the finite mixture context; see Mbakop (2017) using five
order statistics, Luo and Xiao (2023) using two and an instrument, and Luo, Sang, and Xiao (2021) using
three. However, these papers do not tackle the original conjecture in the spirit of Kotlarski’s lemma.

3For example, see Aradillas-López, Gandhi, and Quint (2013), Krasnokutskaya (2011), and Li, Perrigne,
and Vuong (2000).

4For example, Hernández, Quint, and Turansick (2020) use variation in the number of bidders across
auctions. Freyberger and Larsen (2022) circumvent the issue of dependence between order statistics using
observed reserve prices, rendering the identification problem classical.

5The term spacing usually refers to the difference between two consecutive order statistics. Here, we use
it more broadly as the difference between any two order statistics.

6The term cross-sum refers to the sum of two order statistics of two independent random samples from
distinct underlying parent distributions.
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are known to be identically distributed and the data consist of group identities of high
order statistics. The result applies to asymmetric ascending auctions, where only high-
order dropout bids are recorded, and asymmetric first-price auctions and wage offer
settings, where consecutive and extreme order statistics are observed.

The outline of the paper is as follows. Section 2 introduces two motivating exam-
ples and Section 3 presents the identification results. To complement the identification
result, in Section 4 we adapt Bierens and Song’s (2012) simulated sieve estimator to con-
sistently estimate the unknown distributions. Section 5 concludes.

2. Motivating examples

To motivate the identification problem, we introduce two examples: an ascending auc-
tion model with auction-specific unobserved heterogeneity and a model of wage offers
where wage is determined by worker-specific labor productivity. Throughout the paper,
we focus only on unobserved heterogeneity since adding exogenous covariates does not
require novel considerations.

Example 2.1 (Ascending auction). Consider an ascending auction with one indivisible
good and n bidders. Each bidder’s valuation for the item is determined by a set of item
features—summarized and denoted by ξ ∈R—and a private value component εj that is
independent of ξ and across bidders. The valuation of bidder j is given by Xj = ξ + εj .
Note that the valuation of each bidder can be cast as a measurement of the value ξ with
measurement error εj ; see, for example, Athey and Haile (2002).

In an ascending auction, the price rises until only one bidder remains. Suppose the
auctioneer records prices P1 ≤ P2 ≤ · · · at which bidders drop out. Assuming that the
bidders play the dominant strategy of remaining in the auction until the price reaches
their valuations, the dropout bids reveal the ordered valuations of the bidders, that is,
Pj = X(j). Importantly, the highest valuation X(n) is never observed since the auction
ends when the price reaches Pn−1 = X(n−1), and the bidder with the highest valuation
wins. Therefore, in an ascending auction, we observe only an incomplete set of order
statistics on bidders’ valuations. For example, Kim and Lee (2014) observe at least the
three highest dropout prices in ascending used-car auctions; see also Larsen (2021)
for used-car auctions in the U.S. Data on timber auctions by the U.S. Forest Service—
analyzed in a number of empirical papers, for example, Haile and Tamer (2003), Athey,
Levin, and Seira (2011), and Aradillas-López, Gandhi, and Quint (2013) to name a few—
records at most top twelve bids regardless of the number of bidders.

Both the distributions of ξ and εj are of interest in an empirical analysis of auctions.
For example, the counterfactual expected revenue to the auctioneer under a hypotheti-
cal auction rule requires the knowledge of both distributions.

Example 2.2 (Wage offer determination). Consider a simple wage offer modelXj = ξ+
wj + εj where Xj is the jth (log-)wage offer an individual receives. Xj is assumed to be
composed of the worker’s productivity ξ, the wage rate wj , and measurement error εj
(on, e.g., labor productivity) associated with the offer. It is assumed that the period in
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consideration is relatively short such that the worker’s productivity remains unchanged,
but the worker may receive multiple offers; see Guo (2021).

Data from the Survey of Consumer Expectations (SCE) Labor Market Survey records
salary-related responses of up to three best job offers received by labor market partici-
pants within the last 4 months. In this setting, the researcher observesX(n), � � � ,X(n−k+1)

where k= min{3, n} and n is the number of offers received. The identification results in
the current paper show that the distributions Fξ and Fwj+εj are nonparametrically iden-
tified.

3. The model and main results

In this section, we first formalize the i.i.d. framework considered throughout the paper
and provide sufficient conditions to identify the latent variable and measurement error
distributions. In Section 3.3, we consider i.n.i.d. measurement errors.

3.1 The setup

We begin by stating the sampling process.

Assumption 3.1 (Sampling process). For each 1 ≤ j ≤ n,Xj := ξ+εj , where the random
variable ξ is independent of the random vector (ε1, � � � , εn ).7

The researcher observes (X(r ),X(s) ), the rth and sth order statistics from n obser-
vations, where r, s, and n are known and 1 ≤ r < s ≤ n. That is, while the total number
of measurements is known, one only observes two measurements of known ranks. In
this section, we identify the unknown distributions of ξ and (ε1, � � � , εn ) using FX(r,s) , the
joint distribution of (X(r ),X(s) ), which is estimable from a random sample of the two
order statistics.

For the benchmark case, we make the following distributional assumptions.

Assumption 3.2 (i.i.d. errors).

(a) ε1, � � � , εn are i.i.d. with a common distribution Fε on R.

(b) Fε is absolutely continuous with a probability density function fε that is light-
tailed, that is, for some C > 0, fε(ε) =O(e−C|ε| ) as |ε| → ∞.

The tail condition in Assumption 3.2(b) is trivially satisfied when the support is
bounded. If the support is unbounded on either side, the assumption restricts the tail
of the density function to decay at an exponential rate.8 The same assumption is found
in Evdokimov and White (2012). Alternatively, as in Kotlarski (1967) and Miller (1970), we
may assume Fε has a characteristic function (ch.f.) that is either (a.e.-)nonvanishing or

7The identification results herein also applies to a setting with multiplicatively separable measurement
error by taking logs when ξ and εj ’s are positive, as in Example 2.2.

8Throughout the paper, we use the term “light-tailed” to refer to densities with exponentially decaying
tails as stated in the assumption.
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analytic. Assumption 3.2(b) is a sufficient condition for the ch.f. of Fε to be analytic. To
our knowledge, there exists no result regarding its implication on the joint ch.f. of order
statistics, the property we need for our identification results. Lemma A.1 in Appendix A
shows that the joint ch.f. of the order statistics (ε(r ), ε(s) ) (and thus its marginals) is also
analytic under this assumption.

In addition to Assumption 3.2, we further restrict the support of the measurement
errors as follows. For any distribution F on R, let S(F ) ⊆R denote its support.9

Assumption 3.3 (Support condition). The measurement errors are bounded from below,
which is normalized to zero, that is, infS(Fε ) = 0.

Two aspects are worth mentioning regarding the above assumption. First, we require
the measurement error to be bounded at one end; nevertheless, we allow the support to
be possibly unbounded from above.10 We do not assume the upper bound of the support
is known nor assume any additional structure on the support, for example, connected-
ness. Second, as is typical with measurement error models, the underlying distributions
are identified only up to location. Although one may alternatively normalize the mean
and have an unknown but finite lower bound, normalizing the lower bound turns out to
be more convenient for our identification argument. Our identification strategy heavily
utilizes the condition that one boundary of the support of Fε is finite. On the other hand,
the distribution of ξ is left completely unspecified.

The support restriction is nonrestrictive in many applications. The literature on
games with incomplete information typically assumes bounded support of agent types
(Athey (2001)), such as bidder valuation in empirical auctions (Guerre, Perrigne, and
Vuong (2000), Athey and Haile (2007)), private costs of exerting efforts in contest games
(Huang and He (2021)), and private information about variable costs in Cournot games
(Aryal and Zincenko (2021)). Observed wage offers are also bounded below by a positive
constant in job search models (Burdett and Mortensen (1998), Guo (2021)), for example,
when there is a reservation wage or a minimum wage that is nonbinding for the popu-
lation of interest.

3.2 Nonparametric identification

Throughout the section, we treat the observable joint distribution FX(r,s) as known (i.e.,
as a datum), and show that the distribution Fξ of the latent variable ξ and Fε are iden-
tified under the aforementioned assumptions. The bulk of our identification result is
concerned with showing that there is a unique measurement error distribution that ra-
tionalizes the observed distribution FX(r,s) . Then the latent variable distribution is iden-
tified by a standard deconvolution argument. To focus on identifying the measurement

9The support of F is defined as the smallest closed set K ⊆ R such that PF (K) = 1, where PF is the Borel
probability measure induced by F . Thus, the density f (x) may be zero for some values x ∈ K, including
points on the boundary of K.

10The results herein apply to the case when only the upper bound is finite, for example, S(Fε ) = (−∞, 0],
by considering (X ′

(r′ ),X ′
(s′ ) ) = (−X(s), −X(r ) ) where r′ = n− s+ 1 and s′ = n− r + 1.
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error distribution, we first isolate the empirical content about the measurement er-
rors.11 In Lemma 3.1 below, we do so by exploiting the multiplicative structure of the
ch.f. of a sum of independent random variables.

In the following lemmas, let η1, � � � , ηn be n i.i.d. copies of η ∈ R and let (η(r ), η(s) )
be order statistics. ψη(r,s) and ψη(r ) denote the joint and marginal ch.f., respectively.

Lemma 3.1. Suppose the sampling process is as described in Assumption 3.1 and the mea-
surement errors satisfy Assumption 3.2. If F (on R) is a data-consistent measurement error
distribution,12 then

ψX(r,s) (tr , ts )

ψX(j ) (tr + ts )
= ψη(r,s) (tr , ts )

ψη(j ) (tr + ts )
, for all (tr , ts ) ∈ B0, j ∈ {r, s}, (1)

where η ∼ F and B0 is an open ball in R
2 centered at zero. Further, F induces a unique

data-consistent latent variable distribution.

Suppose F andG are two measurement error distributions that are data-consistent.
Lemma 3.1 states that the order statistics (η(r ), η(s) ) from the parent distribution F and
(η′

(r ), η′
(s) ) from the parent distributionGmust have the same ratio of joint and marginal

ch.f.s.
To obtain identification, it remains to show that such a measurement error distribu-

tion is unique, that is, F =G. Lemma 3.1 implies that any two data-consistent measure-
ment error distributions must satisfy

ψη(r,s) (tr , ts )ψη′
(j )

(tr + ts ) =ψη′
(r,s)

(tr , ts )ψη(j ) (tr + ts ), j ∈ {r, s}, (2)

for all (tr , ts ) ∈ B0. In fact, the equality extends to all of R2 because all ch.f.s in (2) are
analytic.13 Finally, noticing that the ch.f. of the sum of two independent random vectors
is multiplicatively separable, the following lemma establishes necessary conditions for
any two data-consistent measurement error distributions.

Lemma 3.2. Let η(r ) and η(s) be two order statistics of a random sample of size n from
F , and η′

(r ) and η′
(s) be two order statistics of a random sample of size n from G, where

(η(r ), η(s) ) and (η′
(r ), η′

(s) ) are independent. Under Assumptions 3.1, if F andG (on R) are

11In the existing literature that expands on Kotlarski (1967), the prevalent identification strategy is to
begin with identifying the distribution of the latent variable. Nonetheless, alternative strategies that be-
gin with identifying the measurement error distribution exist in the classical repeated measurement error
setting; see, for example, Hall and Yao (2003) and Evdokimov and White (2012).

12We say a pair of distribution functions (Gξ ,Gε ) rationalizes the data, or is data-consistent, if ξ′ ∼Gξ
and (ε′

j )j=1, ���,n ∼ ×n
j=1Gε, independent of ξ′, implies (ξ′ + ε′

(r ), ξ′ + ε′
(s) ) =d (X(r ),X(s) ). We say Gξ (resp.,

Gε) is data-consistent if (Gξ ,Gε ) is data-consistent for some Gε (resp.,Gξ).
13Lemma A.1 shows that order statistics from light-tailed parent densities have analytic joint (and thus

marginal) ch.f. Since the product of two analytic functions is also analytic, (2) shows that two analytic func-
tions coincide on an open ball B0 in R

2, which implies they coincide everywhere. Thus, Assumption 3.2(b)
plays a crucial role in pinning down the entire distribution based only on the information of the ch.f. about
the origin.
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two data-consistent measurement error distributions that admit light-tailed densities,14

then

Z1j :=
(
η′

(j) +η(r )

η′
(j) +η(s)

)
d=

(
η(j) +η′

(r )
η(j) +η′

(s)

)
=:Z2j , j ∈ {r, s}. (3)

The lemma shows that if F and G are two data-consistent measurement error dis-
tributions, then the two surrogate measurement error models in (3) are observation-
ally equivalent, where Z1j is order statistics of measurements of η′

(j) with errors ηi’s
from parent distribution F and Z2j is order statistics of measurements of η(j) with er-
rors η′

i’s from parent distribution G. As stated below in Corollary 3.1, the lemma has
an important implication: F and G not only have the same spacing distributions (i.e.,
η(s) − η(r ) =d η

′
(s) − η′

(r )) but also have the same distributions for what we call cross-
sums (i.e., η′

(s) +η(r ) =d η(s) +η′
(r )). The latter information is not exploited in the classi-

cal setting; however, it turns out to be relevant information for identification when only
order statistics of measurements are observed.

Because bothZ1r andZ2r involve three order statistics from two potentially different
parent distributions F and G, it appears difficult to show directly from Lemma 3.2 that
F and G are the same. A reasonable attempt to tackle the problem would be to explore
features of Z1r and Z2r that depend on the parent distributions in a simple manner. Un-
der the support condition in Assumption 3.3, we show that the distributions of Z1r and
Z2r depend on only one parent distribution upon conditioning on an extreme event.15

Thus, the joint distribution of the cross-sum and spacing together with Assumption 3.3
provide information that is sufficient to claim any two data-consistent measurement
error distributions are the same, that is, Fε is identified.

Lemma 3.3. Let η(r ), η(s), η′
(r ), and η′

(s) be as specified in Lemma 3.2. If measurement
error distributions F and G admit light-tailed densities and infS(F ) = infS(G) = 0, we
have, for all c ∈R,

lim
δ↓0

P
(
η′

(r ) +η(s) ≤ c|η′
(r ) +η(r ) ≤ δ) = Fs−r:n−r(c), (4)

lim
δ↓0

P
(
η(r ) +η′

(s) ≤ c|η(r ) +η′
(r ) ≤ δ) =Gs−r:n−r(c), (5)

where Fs−r:n−r (resp., Gs−r:n−r ) denotes the distribution of the (s− r )th order statistic of a
random sample of size n− r from F (resp.,G).

For the sake of intuition, consider a simple variant of (4) that conditions on the event
{η′

(r ) +η(r ) = 0}, assuming the conditioning is well-defined.16 This event is equivalent to

14Cf. Assumption 3.2(b) and footnote 8.
15The identification argument here and below investigates the implications of the condition Z1r =d Z2r

only.Z1s =d Z2s in (3) is the relevant condition to exploit under the assumption, in place of Assumption 3.3,
that the measurement error is bounded from above (cf. footnote 10).

16The event {η′
(r ) +η(r ) = 0} may not be well-defined as it occurs with zero probability. In particular, the

event {η(r ) = 0} always has zero density unless r = 1, that is, the minimum order statistic. Further, if f (0) = 0
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that where both η′
(r ) = 0 and η(r ) = 0, which simplifies the conditional distribution to

P(η(s) ≤ c|η(r ) = 0). Standard arguments in order statistics (cf. Theorem 2.4.2 in Arnold,
Balakrishnan, and Nagaraja (2008)) suggest that this conditional distribution has a sim-
ple form:

P(η(s) ≤ c|η(r ) = 0) = Fs−r:n−r(c).

In words, this equality says that the conditional distribution of the sth order statistic
when r observations take the lowest possible value is the same as the distribution of the
(s− r )th order statistic obtained from a sample of size n− r.

Lemmas 3.1–3.3 show that if F andG are both data-consistent, then the conditional
distributions (4) and (5) must be equal, that is, for all c ∈R,

Fs−r:n−r(c) =Gs−r:n−r(c).

As the distribution of an order statistic uniquely identifies the parent distribution, we
can conclude that F =G.17 We formally state the main identification result for the i.i.d.
case.

Theorem 3.1. Under Assumption 3.1, if the measurement errors satisfy Assumptions 3.2
and 3.3, both Fξ and Fε are identified.

A discussion on Rossberg’s (1972) counterexample Athey and Haile (1972) point out that
exploiting the distribution of spacing between two order statistics is insufficient to point
identify their parent distribution. Their discussion relies on a counterexample by Ross-
berg (1972). A straightforward corollary to Lemma 3.2 highlights the model restrictions
we exploit in addition to the spacing.

Corollary 3.1. Under the same assumptions as in Lemma 3.2, if F andG are two data-
consistent measurement error distributions that admit light-tailed densities, then(

η(s) −η(r )

η′
(r ) +η(s)

)
d=

(
η′

(s) −η′
(r )

η(r ) +η′
(s)

)
and

(
η(s) −η(r )

η(r ) +η′
(s)

)
d=

(
η′

(s) −η′
(r )

η′
(r ) +η(s)

)
.

If F andG are two data-consistent measurement error distributions, then they have
the same spacing and cross-sum distributions. In the classical setting, the difference
(i.e., spacing) between two independent measurement errors identifies the underlying
measurement error distribution (cf. Hall and Yao (2003)). However, in the current con-
text, the spacing between two order statistics of measurement errors is insufficient to

where f is the density of η, even the minimum order statistic has zero density at η(r ) = 0. In Lemma 3.3,
we make rigorous the intuitive claim provided here by considering the limiting argument as in (4) and (5),
which is well-defined.

17The one-to-one mapping between the distribution of an order statistic and the parent distribution is a
standard result; for example, see David and Nagaraja (2003), page 10, (2.1.5). The mapping in (2.1.5) is an
invertible map of the c.d.f. F because p �→ Ip(a, b) is strictly monotone.
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identify the underlying (parent) distribution as evidenced by Rossberg’s (1972)’s coun-
terexample. The additional information we incorporate in order to obtain identifica-
tion lies in the cross-sums, a condition which emerges from exploiting the within in-
dependence between the latent variable and measurement errors when we take the ra-
tio of ch.f.s. Combining the information contained in spacing as investigated by Ross-
berg (1972) and the information contained in within independence as investigated by
Kotlarski (1967) thus delivers the current identification result. The difference between
Rossberg’s (1972) nonidentification result and our identification result is explained in
more detail in Appendix B.

3.3 Extensions of the identification result

We extend our identification result to the case of independent but nonidentically dis-
tributed (i.n.i.d.) measurement errors. To motivate the extension to the problem, we ex-
pand on Example 2.1 by introducing bidder asymmetry and discuss additional features
available in some auction data.

Example 3.1 (Asymmetric auction). In empirical auctions, bidders are said to be asym-
metric if the bidders’ private values ε1, � � � , εn have different marginal (or parent, in the
case of order statistics) distributions. Such asymmetry arises naturally in procurement
auctions, where contractors differ in cost efficiency and productivity (see, e.g., Flam-
bard and Perrigne (2006)), and in timber auctions, where mills have the manufacturing
capacity and loggers do not (see, e.g., Athey, Levin, and Seira (2011)).18

In order to identify bidder-specific valuation distributions, bidder identities must
be observable. Fortunately, the auctioneer often publishes such identities despite some
bids being missing; see, for example, Athey, Levin, and Seira (2011). Another common
practice in the asymmetric auction literature is grouping bidders by commonly known
bidder types, such as mills and loggers in Athey, Levin, and Seira (2011) and strong and
weak bidders in Luo, Perrigne, and Vuong (2018), which leads to more tractable the-
ory and empirics. Such grouping uses additional information about the bidders, typi-
cally available as a public record, such as bidders’ manufacturing capacity in a timber
auction and pre-qualified contractors’ experience in Department of Transportation pro-
curement auctions.

In this section, we first show that any two order statistics suffice to point identify
the underlying distributions when there are a relatively small degree of heterogeneity in
measurement errors and some membership information about them. In particular, as
a cost of relaxing the homogeneity assumption, we require observing membership in-
formation about measurement errors that correspond to high order statistics (for ranks
above r). We then discuss the implication of the result for measurement errors that are
completely heterogeneous.

18In a wage offer setting, as in Example 2.2, employers may value the same productivity differently, which
may result in heterogeneous measurement errors.
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Assumption 3.4 (i.n.i.d. errors).

(a) ε1, � � � , εn are independent with distributions Fε1 , � � � , Fεn on R, respectively.

(b) For each j ∈ {1, � � � , n}, Fεj admits a probability density function fεj that is light-

tailed, that is, fεj (ε) =O(e−Cj |ε| ) as |ε| → ∞ for some Cj > 0.

(c) For each j ∈ {1, � � � , n}, infS(Fεj ) = 0.

Assumption 3.4(c) assumes both finite and common support lower bound across
distinct measurement error distributions, the latter of which holds trivially in the i.i.d.
case. Note that apart from the lower boundary, the supports may differ (cf. Corollary 3.2).
The following assumption records any prior information on the different types of mea-
surement errors, including an additional support condition.

Assumption 3.5 (Group structure). There exists a partition g1, � � � , gp of {1, � � � , n} such
that εj =d εk if j, k ∈ gq for some q ∈ {1, � � � , p}. In addition, the measurement errors
ε1, � � � , εn have common support.

Assumption 3.5 posits there are at most p distinct measurement error distributions.
The case p = 1 corresponds to the i.i.d. case in Section 3.2; and p = n corresponds to
the case with no prior information on homogeneity. We do not preclude the possibility
that two groups gq and gq′ have the same distribution beyond the researcher’s knowl-
edge. For example, the extreme case p = n subsumes the i.i.d. setting as a special case.
Assumption 3.5 implicitly assumes that the group structure is held constant across ob-
servations. In an application to auctions, the assumption may be imposed by restricting
to auctions with the same composition of bidder types when all bidder types of partic-
ipants are available in the data set. In such a case, the analysis should be interpreted
conditionally on the bidder composition.

The common support assumption is a sufficient condition to guarantee that all mea-
surement error distributions are identified on the entirety of their support. Otherwise,
some distributions may be identified only on a strict subset of their support, as we high-
light in a discussion below. Let R(j) = {q :X(j) =Xk for some k ∈ gq} be the group iden-
tity of the jth order statistic.19

Theorem 3.2. Suppose Assumptions 3.1, 3.4, and 3.5 hold. Further, suppose two order
statistics and the group identities of high order statistics (X(r ),X(s), R(r+1), � � � , R(n) ) are
observed. If there exists a group gq with at least n − r members, both Fξ and (Fεj : j =
1, � � � , n) are identified.

Note that the identification result does not require the researcher to observe the
group identity R(r ) of the rth order statistic or those of lower order statistics. A heuristic
explanation is provided in a discussion below. Theorem 3.2 has an important implica-
tion when the measurement errors are left completely heterogeneous, that is, p= n. In

19Under Assumption 3.4(b), R(j) is singleton with probability 1. Thus, we abuse notation and use R(j) to
denote both the set and the a.s. unique element in {1, � � � , p}.
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particular, the theorem implies that the observed order statistics should be consecutive
and extreme because there is no group of a larger size, that is, n− r = 1.20

Corollary 3.2. Suppose Assumptions 3.1 and 3.4 hold, and (X(n−1),X(n), R(n) ) are ob-
served. Both Fξ and (Fεj : j = 1, � � � , n) are identified.

So, as to appreciate the additional conditions assumed in Theorem 3.2, we first il-
lustrate the identification strategy in the setting of Corollary 3.2, which delivers a sim-
pler argument. Suppose results similar to Lemmas 3.1–3.3 hold in the i.n.i.d. case, in the
sense that two sets of data-consistent measurement error distributions (Fj : j = 1, � � � , n)
and (Gj : j = 1, � � � , n) must satisfy

P(η(n) ≤ c|η(n−1) = 0) = P
(
η′

(n) ≤ c|η′
(n−1) = 0

)
, (6)

for every constant c. Had the measurement errors been i.i.d., (6) corresponds the equiv-
alence of two parent distributions. In the i.n.i.d. case, the top order statistic may arise
from any of the parent distributions. Intuition suggests that this should be a mixture of
measurement errors from different parent distributions. Since the mixing weights de-
pend on (Fj : j = 1, � � � , n), it appears formidable to show its equivalence with (Gj : j =
1, � � � , n) from (6) without additional assumptions. Alternatively, suppose—as we for-
mally show in the proof of Theorem 3.2—data-consistency implies a condition similar
to (6) conditional on the member index of the highest order statistic. Heuristically speak-
ing, because the index is known, say j, the conditional distribution simplifies to the jth
marginal distribution (i.e., a mixture with trivial weights). Thus,Fj =Gj and the jth mea-
surement error distribution is identified. Under the assumption of a common support
lower bound, each measurement error has a nonzero chance of being the largest, which
implies all nmeasurement error distributions are identified.

Corollary 3.2 does not grant identification of an ascending auction model when the
data on dropout bids is incomplete; for example, see Freyberger and Larsen (2022).
Nonetheless, a group structure as in Theorem 3.2 is commonly present in the empirical
auction literature. Since Theorem 3.2 does not rely on observing extreme or consecutive
order statistics, the result may be applicable even if the bid data is incomplete.

To illustrate the identification strategy in the setting of Theorem 3.2, suppose out
of n= 4 measurements, one observes (X(2),X(3), R(3), R(4) ) and it is known a priori that
two of the measurement errors have a common distribution (call it group 1 and the other
groups 2 and 3). By conditioning on the event that {R(3) =R(4) = 1}, we can homogenize
the conditional distribution of the third order statistic of measurement errors condi-
tional on the second order statistic taking the smallest possible value, which allows us
to identify the measurement error distribution for group 1. This rests on (i) being able to
observe the group identities and (ii) group 1 being large enough to condition on such an
event. Provided the measurement errors have a common support, the remaining group

20The support condition in Assumption 3.5 plays no role in this corollary because the observed order
statistics are the largest among all measurement errors.
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distributions can be identified sequentially. For example, the group-2 distribution can
be identified by conditioning on {R(3) = 2, R(4) = 1}.21

Remark 3.1. Corollary 3.2 has natural applications in first-price auctions and wage of-
fer settings, where consecutive and extreme order statistics are common and identities
are observed. For instance, the Washington State Department of Transportation archives
three apparent low bids and bidder identities of 6 months or older online. FDIC auction
data contain the winning and second-highest bids and the associated identities (Allen,
Clark, Hickman, and Richert (2023)). U.S. Forest Service timber auctions only record up
to top twelve bids and bidder identities regardless of the number of bidders. Lastly, data
from the Survey of Consumer Expectations (SCE) Labor Market Survey records salary-
related responses on the three best offers for those who received more than three offers
within the last 4 months.

Remark 3.2. If all dropout bids are observed, Corollary 3.2 is applicable to ascending
auctions. Specifically, if private values have a common upper bound, that is, supS(Fεj ) =
ε <+∞, the lowest order statistics (X(1),X(2) ) identify the underlying distributions.

4. Nonparametric estimation

We propose a simulated sieve estimator under the i.i.d. measurement error framework,
which can be easily modified for the i.n.i.d. case, albeit with the curse of dimensionality.
The procedure, motivated by the sieve estimator in Bierens and Song (2012), estimates
the distribution functions of the latent variable and of the measurement error simulta-
neously.22 For a general survey of the method of sieves, see Chen (2007).

4.1 A simulated sieve estimator

We follow closely the development in Bierens (2008) to specify the parameter space and
its sieve space. It has the advantage that we can incorporate prior information on the
support without having to choose different orthogonal bases. This is an attractive fea-
ture for our purpose because, unlike the latent variable ξ, the measurement errors are
restricted to be nonnegative-valued. The sieve space is constructed using only Legendre
polynomials instead of using, for example, Hermite polynomials for the latent variable
and Laguerre polynomials for the measurement errors.

The construction of the sieve space begins with the observation that any absolutely
continuous c.d.f. F on R can be expressed as F(·) = (H ◦G)(·) where H is an absolutely

21If one measurement error has larger support than another, the distribution may not be fully identified.
If group-1 measurement errors have support [0, 1] but group 2 has support [0, 2], regardless of whether
one conditions on {R(3) = 1, R(4) = 2} or {R(3) = 2, R(4) = 1}, the third order statistic only has support [0, 1].
Thus, group-2 measurement error distribution is not identified on (1, 2].

22The two-sample approach in Carroll, Chen, and Hu (2010) does not apply to our setting in which one
latent variable is measured with correlated measurement errors.
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continuous c.d.f. on [0, 1] andG is an absolutely continuous c.d.f. that is strictly increas-
ing on S(F ). Equivalently,

F(·) =
∫ G(·)

0
h(u)du=

∫ G(·)

0
π2(u)du, (7)

where h= π2 is the density ofH andπ is a Borel-measurable square-integrable function
on [0, 1]. Thus, for example, with a fixed G with support S(G) = [0, ∞), a large enough
set P of Borel-measurable square-integrable functions maps via (7) to a large enough set
of distribution functions with support contained in [0, ∞).

The sieve space is constructed by using orthonormal polynomials to approximate π.
Bierens (2008) considers the following compact set of square-integrable functions:

P :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
π(·) =

1 +
∞∑

=1

δ
ρ
(·)√√√√1 +
∞∑

=1

δ2



: |δ
| ≤ c

1 + √

 ln


, 
= 1, 2, � � �

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (8)

for some large constant c > 0, where ρk, defined on [0, 1], is a recentered and rescaled
Legendre polynomial of order k: if 
k is a Legendre polynomial of order k on [−1, 1],
then ρk(u) := √

2k+ 1
k(2u − 1) for u ∈ [0, 1] (see Section 2.2 in Bierens (2008)). This
implicitly defines a compact parameter space F for the unknown c.d.f. F by (7) for some
fixedG and π ∈ P . The sieve {Fk}k is constructed by truncating the series in (8) at order
k. Since we estimate two distribution functions Fξ and Fε, we consider a product sieve

space {Fξk ×Fεk }k for two choices ofG, denotedGξ andGε.
As Bierens (2008) notes, the c.d.f.G not only restricts the support but also acts as an

initial guess of the unknown c.d.f.23 With prior information on the shape of the distribu-
tion functions, an educated initial guess helps reduce the approximation error resulting
from low-order sieve spaces. Without any prior information, one clearly cannot expect
any a priori advantage to choosing a particular distribution. In light of the often-used
standard, Hermite, and Laguerre polynomial sieves, it may be reasonable to choose a
uniform distribution if the support is known to be contained in a bounded interval, a
normal distribution if one is agnostic about the support, and an exponential distribu-
tion if the support is known to be contained in [0, ∞).

We consider a sieve extremum estimator that minimizes the average (squared) con-
trast between two empirical ch.f.s: one based on the factual sample and the other based
on simulated draws. The population criterion function is devised as follows. For any

23The flexibility of choosing a base distributionG in Bierens (2008) is more a norm than an exception in
nonparametric methods using orthogonal bases. The standard polynomial sieve on the unit interval may be
seen to have the uniform distribution as an initial guess. The Hermite and Laguerre polynomial sieves take
normal and exponential distributions as initial guesses, respectively. While these “initial guesses” are deter-
mined naturally by the weight function associated with the orthogonal bases, the construction in Bierens
(2008) allows for an explicit choice by the researcher.
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candidate pair of distribution functions F = (Fξ, Fε ), let

X(r,s)(F ) = (
X(r )(F ),X(s)(F )

)
:= (

ξ(Fξ ) + ε(r )(Fε ), ξ(Fξ ) + ε(s)(Fε )
)
,

where ξ(Fξ ) is a random draw from Fξ and ε(j)(Fε ) is the jth order statistic of n i.i.d.

draws from Fε. For any t = (tr , ts ) ∈ R
2, let ϕ(t; F ) := Eeit

�X(r,s)(F ) denote its ch.f. where
the expectation is induced by the (n+ 1) uniform draws in the simulation process de-
scribed below. We consider the following population criterion function:

Q(F ) := 1

4κ2

∫
1
{
t ∈ (−κ, κ)2}∣∣ψX(r,s) (t ) −ϕ(t; F )

∣∣2
dt, (9)

where κ > 0 is a tuning parameter that determines the integration region. In place of the
box weight 1{(tr , ts ) ∈ (−κ, κ)2}, one may also consider a smooth weight. We choose the
former because it has a closed-form expression for the empirical criterion function (see
Appendix C).24 We define a simulated sieve extremum estimator:

F̂N := (F̂ξ,N , F̂ε,N ) ∈ arg min
F∈Fξ

kN
×Fε

kN

Q̂N (F ), (10)

where {kN } is an arbitrary sequence of positive integers such that kN → ∞ and Q̂N (F )
is the empirical criterion function with the empirical ch.f. ψ̂N and the simulated ch.f.
ϕ̂N (·; F ) in place of ψX(r,s:n) and ϕ(·; F ), respectively. ϕ̂N (·; F ) is constructed from N re-
peated draws of (n + 1) uniform random variables (V ,U1, � � � ,Un ) and computing the
inverse transformX(j)(Fk ) = F−1

ξ,k(V ) + F−1
ε,k(U(j) ) for j ∈ {r, s}.

We show that the estimator is consistent under the following set of assumptions.

Assumption 4.1 (Consistency).

(a) {(X(r ),i,X(s),i )}i=1, ���,N areN i.i.d. realizations of (X(r ),X(s) ), where (X(r ),X(s) ) has
a bounded support.

(b) Gξ and Gε are known absolutely continuous c.d.f.s with support on R and [0, ∞),
respectively.

(c) Given Gξ and Gε in part (b), the pair of true underlying distributions (Fξ, Fε ) is in

the closure of
⋃
kF

ξ
k ×Fεk .

(d) {(Vi,U1,i, � � � ,Un,i )}i=1, ���,N are N i.i.d. draws from U(0, 1)n+1, independent of the
sampling process.

The support restriction in Assumption 4.1(a) is a sufficient condition to ensure that
the measurement errors have light tails. Despite being restrictive, this appears to be the

24While a data-driven choice of κ (as well as the polynomial order kN in Theorem 4.1 below) may be of
interest, we do not explore its possibility here.
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most straightforward assumption to impose on the observables to guarantee identifica-
tion.25 Note that the researcher does not have to know a priori the true support of the
observables, nor the implied bounded supports for Fξ and Fε.

Assumption 4.1(b) restricts the support of the base distribution for Fε to be in line
with the normalization in Assumption 3.2(b). Assumption 4.1(c) is a standard assump-
tion that the model is correctly specified. Assumption 4.1(d) specifies the simulation
process. Note that the random draws (Vi,Uj,i )j,i are obtained once and not repeatedly
drawn across different candidate parameter values Fξ,k and Fε,k in order to ensure that
the criterion function is continuous with respect to the parameter.

Theorem 4.1. Let κ > 0 and let {kN }N be any sequence of positive integers such that
kN → ∞. Under Assumptions 3.1–3.3 and 4.1, the estimator in (10) is strongly uniformly
consistent, that is,

max
{‖F̂ξ,N − Fξ‖∞, ‖F̂ε,N − Fε‖∞

} a.s.−→ 0.

Steps for implementing the estimator is described in Appendix C and its finite sam-
ple performance is illustrated below. As is standard in nonparametric estimation, the
choice of the sieve order kN affects the approximation bias and variance of the estima-
tor. An information-criterion-based approach analogous to that found in Bierens and
Song (2012) may be used to choose the sieve order kN , although the procedure may be
computationally intensive. With larger κ, the estimator is expected to perform better as
it accounts for more discrepancy between the two ch.f.s. There appears to be no theoret-
ical reason to restrict κ except to ensure that the criterion function is well-defined, but
limited simulation suggests the aggregation may come with larger variance. We do not
have a useful criterion, but in light of the discussion, one may consider minimizing Q̂N
over κ as well as F with a large upper bound on the parameter space for κ. From simu-
lation studies, we find that the estimator is less sensitive to the choice of κ as long as κ
is not too small. So, we set κ= 1 as its baseline value in this paper, as is done in Bierens
and Song (2012), and explore its properties in a separate paper. We also leave inference
procedures for future research.26

25Note that as remarked in Section 3, one may consider alternatives to Assumption 3.2(b), for example,
(a.e.-)nonvanishing or analytic ch.f.s, and still achieve the same identification result. Thus, one may also
consider estimating the ch.f.s over a space of analytic functions and then estimate the densities via inverse
Fourier transform. Clearly, various other estimation methods can be considered. For example, one may
consider a sequential approach where one estimates the measurement error distribution via (1) in the first
stage and then estimate the latent variable distribution using nonparametric deconvolution in the second
stage. Alternatively, one may consider estimating the densities via a sieve maximum likelihood. We consider
the proposed simulated sieve extremum estimator as it both allows to estimate the underlying distributions
simultaneously and admits a closed-form objective function.

26Valid inference procedures exist in similar settings, for example, with independent measurement er-
rors (Kato, Sasaki, and Ura (2021)) or order statistics without unobserved heterogeneity (Menzel and Mor-
ganti (2013)). A common feature they tackle is a certain lack of continuity in the inverse problems. Similar
irregularity concerns may have to be addressed here.
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4.2 Monte Carlo evidence

To illustrate the performance of the proposed estimator, we conduct a simple Monte
Carlo experiment. We begin by describing the data generating process (DGP). For ob-
servation i, the variable of interest ξi is measured n = 3 times with i.i.d. measurement
errors ε1,i, � � � , ε3,i. The measurement is constructed as Xj,i = ξi + εj,i. We assume that
only two order statistics of ranks r = 1 and s = 2 remain. That is, only X(1),i and X(2),i

are recorded. We repeat the process to obtain N pairs of observations. The experi-
ment is replicated R = 500 times to obtain 500 random samples of size N of the form
{x(r )

(1),i, x
(r )
(2),i}i=1, ���,N .

For the distributions of ξi and εj,i, we set up a design that resembles Hernández,
Quint, and Turansick’s (2020) application on eBay Motors auctions. Specifically, we use
their estimated distributions of unobserved heterogeneity (Fξ in our set-up) and private
values (Fε in our set-up) to calibrate the DGP for our simulation exercise. To construct
these two distributions, we approximate the estimates in Figure 4 of Hernández, Quint,
and Turansick (2020) with a sieve of order 6, which resulted in almost identical distribu-
tions to those in the original article.

We then simulate data from the DGP and investigate finite-sample performance of
our estimator. We consider sample sizes N = 1000, 2000, and 4000 with k= 4, 5, and 6,
respectively. Note that by construction, there is no sieve approximation error whenN =
4000, that is, any estimation error is associated only with sampling error. Furthermore,
we set the bandwidth κ = 1, 3.14, and 5, and the base distribution Gξ = N (0, 1/4) for
ξ and Gε = N (2, 1)+ for ε, where N (2, 1)+ denotes the truncated normal between 0
and ∞.

We present the estimation results for Fξ and Fε with κ= 1 in Figure 1. Simulation re-
sults with κ= 3.14 and 5 are similar and are presented in Figures 4 and 5 in Appendix C.
The true distribution functions are shown in black. We also plot some randomly selected
estimates along with some box plots that illustrate the pointwise sampling error of F̂ξ
and F̂ε at various evaluation points. The figure suggests that the estimator performs rea-
sonably well under all three sample sizes, and the performance improves with larger
sample size. Although the choice of κ does not seem to affect the behavior of the es-
timator in any ill-behaved manner, there appear to be larger pointwise variance when
κ= 3.14 and 5 relative to the case when κ= 1.

5. Conclusion

This paper shows that distributions of the latent variable and measurement errors are
identified nonparametrically under mild assumptions when two or more order statis-
tics are recorded from repeated measurements with independent errors, providing a
positive answer to the hypothesis in Athey and Haile (2002) for an ascending auction
with unobserved heterogeneity. Our results are also applicable to other applications
with unobserved heterogeneity when order statistics are observed, survey data on wage
offers being a notable example. More examples include repeated experiments with type
II censoring, such as in reliability testing, where consecutive low-order failure times are
recorded, and estimating the effects and damages of collusion in auctions, a setting in
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Figure 1. Monte Carlo simulation results (κ= 1). Panel 1 displays results for Fξ and Panel 2 for
Fε. Subpanels (a), (b), and (c) correspond to sample sizesN = 1000, 2000, and 4000, respectively.

which Asker (2010) emphasizes the importance of accounting for unobserved hetero-
geneity. Relatedly, the identification result may be applied to extend the framework in
Marmer, Shneyerov, and Kaplan (2017) for testing collusion in ascending auctions.

Appendix A: Proofs

A.1 Supplementary results

Lemma A.1. Let (ε(r ), ε(s) ) be rth and sth order statistics from ε1, � � � , εn, which are in-
dependent with distributions Fε1 , � � � , Fεn . If every Fεj has a density function fεj that is

light-tailed (i.e., for some Cj > 0, fεj (ε) = O(e−Cj |ε| ) as |ε| → ∞), then the ch.f. of order
statistics ψε(r,s) : R2 →C is (jointly) analytic.

Proof of Lemma A.1. Let C0 <min1≤j≤n Cj be a positive constant and define � = {z =
(zr , zs ) ∈ C

2 : |�zj| < C0, j ∈ {r, s}}, an open set in C
2, where �zj denotes the imaginary

part of zj . Consider

ψ∗
ε(r,s)

: z ∈� �→
∫
R2
eiz

�ε dFε(r,s) (ε).

To show that ψε(r,s) is analytic on R
2, it suffices to show that ψ∗

ε(r,s)
is analytic on the

open set � (since R
2 ⊂�). By Hartogs’ theorem on separate analyticity (cf. Hörmander

(1973), Theorem 2.2.8), it suffices to show that ψ∗
ε(r,s)

is separately analytic on a strip
{zr ∈ C : |�zr |<C0} for any fixed value of zs , and vice versa on a strip for zs for any fixed
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value of zr . The remainder of the proof shows that ψ∗
ε(r,s)

is (1) indeed well-defined on �
and (2) separately analytic with respect to each variable.

For any complex vector z ∈ C
d , let �z ∈ R

d denote the real part of the vector and
�z ∈ R

d the imaginary part. To show that ψ∗
ε(r,s)

is well-defined on �, it suffices to show

that
∫
R2 e−�z�εfε(r,s) (ε)dε <∞ for any z ∈� since

ψ∗
ε(r,s)

(z) =
∫
R2
e−�z�εei�z�εfε(r,s) (ε)dε.

From the definition of the joint density fε(r,s) (see, e.g., (5.2.8) in David and Nagaraja
(2003)), there exists a positive constantKn,r,s such that for every ε= (εr , εs ) ∈ R

2,

fε(r,s) (ε) ≤Kn,r,s

∑
1≤k,
≤n

fεk(εr )fε
(εs ),

where by assumption, fεk(ε) = O(e−Ck|ε| ) as |ε| → ∞ for every k. Hence, it follows from
the fact |�zr |<C0 and |�zs|<C0 in � that∫

R2
e−�z�εfε(r,s) (ε)dε≤Kn,r,s

∑
1≤k,
≤n

∫
R2
e−�zrεr fεk(εr )e−�zsεs fε
(εs )dε <∞,

which concludes that ψ∗
ε(r,s)

is well-defined on �.
Now we show that ψ∗

ε(r,s)
(·, zs ) is analytic on �r = {zr ∈ C : |�zr | < C0} for every zs

in the domain. By Theorem 5.2 in Stein and Shakarchi (2010), it suffices to construct a
sequence of analytic functions {ψ∗

m}m that converges uniformly to ψ∗
ε(r,s)

(·, zs ) in every
compact subset of �r . We show that the sequence

ψ∗
m(zr ) =

∫
[−m,m]2

ei(zrεr+zsεs ) dFε(r,s) (ε)

satisfies the criteria above. Since the region of integration is bounded, it follows from the
dominated convergence theorem that for everym,

ψ∗
m(zr ) =

∫
[−m,m]2

∞∑

=0

(
iz�ε

)


! dFε(r,s) (ε) =

∞∑

=0

∫
[−m,m]2

(
iz�ε

)


! dFε(r,s) (ε)

is entire on the complex plane, and thus analytic on �r ⊂C. Further,∣∣ψ∗
ε(r,s)

(zr , zs ) −ψ∗
m(zr )

∣∣ ≤
∫
R2\[−m,m]2

∣∣eiz�ε∣∣dFε(r,s) (ε)

=
∫
R2\[−m,m]2

e−�z�ε dFε(r,s) (ε)

≤Kn,r,s

∑
1≤k,
≤n

∫
R2\[−m,m]2

e−�z�εfεk(εr )fε
(εs )dε

≤Kn,r,s

∑
1≤k,
≤n

∫
R×(R\[−m,m])

e−�z�εfεk(εr )fε
(εs )dε
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+Kn,r,s

∑
1≤k,
≤n

∫
(R\[−m,m])×R

e−�z�εfεk(εr )fε
(εs )dε.

Since fεk(εr ) = O(e−Ck|εr | ) for every k by assumption and |�zr | < C0, for any compact
subsetD⊂�r , we have

sup
zr∈D

Kk(zr ) := sup
zr∈D

∫
R

e−�zrεr fεk(εr )dεr ≤
∫
R

esupzr∈D|�zr |εr fεk(εr )dεr <∞.

In addition, form sufficiently large (independent of zr ), there exists a constantK
,0 such
that ∫

R×(R\[−m,m])
e−�z�εfεk(εr )fε
(εs )dε

≤Kk(zr )K0

∫
R\[−m,m]

e−C0|εs |−�zsεs dεs.

=Kk(zr )K0

(∫ −m

−∞
e−(C0−�zs )|εs | dεs +

∫ ∞

m
e−(C0+�zs )|εs | dεs

)
−→ 0,

asm→ ∞. Similarly, we have∫
(R\[−m,m])×R

e−�z�εfεk(εr )fε
(εs )dε≤K
(zr )Kk,0

∫
R\[−m,m]

e−C0|εr |−�zrεr dεr ,

where asm→ ∞,

sup
zr∈D

∫
R\[−m,m]

e−C0|εr |−�zrεr dεr −→ 0.

Therefore, we conclude that {ψ∗
m}m converges uniformly to ψ∗

ε(r,s)
(·, zs ) on any compact

subset of �r for any fixed zs in the domain. Therefore, ψ∗
ε(r,s)

(·, zs ) is analytic on �r . An
analogous proof shows that ψ∗

ε(r,s)
(zr , ·) is analytic on �s = {zs ∈ C : |�zs| < C0} for any

fixed zr in the domain.
This concludes the proof thatψε(r,s) is (jointly) analytic on�= {z = (zr , zs ) ∈C

2 : zr ∈
�r , zs ∈�s}.

Lemma A.2. Suppose the measurement errors satisfy Assumption 3.2(a) and 3.3. Define,
for every εs ∈ R and εr > 0,

Fε(s|r ) (εs; εr ) = Fε(r,s) (εr , εs )

Fε(r ) (εr )
.

Then limεr↓0 Fε(s|r ) (·; εr ) = Fεs−r:n−r (·), where the latter denotes the distribution of the (s −
r )th order statistic of a random sample of size n− r from Fε.

Proof. When εs ≤ 0, clearly limεr↓0 Fε(s|r ) (εs; εr ) = Fεs−r:n−r (εs ) = 0 by Assumption 3.3.
Thus, fix any εs > 0 and consider small enough εr such that εs > εr ↓ 0.
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It follows from standard results (e.g., see (2.1.3) and (2.2.4) in David and Nagaraja
(2003)) that the joint and marginal distribution functions may be expressed as

Fε(s|r ) (εs; εr ) =

n∑
k=s

k∑
j=r
Cnj,k−j,n−kFε(εr )j

(
Fε(εs ) − Fε(εr )

)k−j(
1 − Fε(εs )

)n−k
n∑

=r

Cn
 Fε(εr )

(
1 − Fε(εr )

)n−
 ,

where Cnj,k−j,n−k and Cn
 are multinomial and binomial coefficients, respectively. Ob-
serve that

Fε(s|r ) (εs; εr ) =

n∑
j=r

n∑
k=max(s,j)

Cnj,k−j,n−kFε(εr )j
(
Fε(εs ) − Fε(εr )

)k−j(
1 − Fε(εs )

)n−k
n∑

=r

Cn
 Fε(εr )

(
1 − Fε(εr )

)n−

=

n∑
j=r

Cnj Fε(εr )j
(
1 − Fε(εr )

)n−j
n∑

=r

Cn
 Fε(εr )

(
1 − Fε(εr )

)n−

×

n∑
k=max(s,j)

C
n−j
k−j

(
Fε(εs ) − Fε(εr )

1 − Fε(εr )

)k−j(1 − Fε(εs )
1 − Fε(εr )

)n−k

=
n∑
j=r

Cnj Fε(εr )j
(
1 − Fε(εr )

)n−j
n∑

=r

Cn
 Fε(εr )

(
1 − Fε(εr )

)n−

×

n−j∑
k=max(s−j,0)

C
n−j
k

(
Fε(εs ) − Fε(εr )

1 − Fε(εr )

)k(1 − Fε(εs )
1 − Fε(εr )

)n−j−k
.

As εr ↓ 0, the weight component vanishes for all but j = r, that is,

Cnj Fε(εr )j
(
1 − Fε(εr )

)n−j
n∑

=r

Cn
 Fε(εr )

(
1 − Fε(εr )

)n−
 =
(

n∑

=r

Cn

Cnj

(
Fε(εr )

1 − Fε(εr )

)
−j)−1

=
( n−j∑

=r−j

Cn
+j
Cnj

(
Fε(εr )

1 − Fε(εr )

)
)−1

−→
{

1 if j = r,
0 if j �= r.
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This implies that for any εs > 0,

lim
εr↓0

Fε(s|r ) (εs; εr ) =
n−r∑
k=s−r

Cn−rk Fε(εs )k
(
1 − Fε(εs )

)n−r−k = Fεs−r:n−r (εs ).

Therefore, we conclude that limεr↓0 Fε(s|r ) (·; εr ) = Fεs−r:n−r (·) on R.

Remark A.1. The conditional distribution Fε(s|r ) (εs; εr ) is well-defined for any εr > 0
since Fε(r ) (εr )> 0 under the support normalization in Assumption 3.3, but Fε(r ) (0) = 0.
Lemma A.2 allows one to define Fε(s|r ) (·; 0) by a continuous extension from above.

Suppose there exists a known group structure for the measurement errors as in
Assumption 3.5 and let nq denote the size of group q. Without loss of generality, let
(ε1, � � � , εn ) be ordered such that the first n1 random variables are from group 1, next n2

random variables from group 2, etc. Further, without loss of generality, let g1 be a group
with at least (n− r ) members, that is, n1 ≥ n− r. LetR(j) = {q :X(j) =Xk for some k ∈ gq}
be the group identity of the jth order statistic. We abuse notation and use R(j) to denote
both the set and the a.s. unique element in {1, � � � , p}. Further, let Eq denote the event
where the top (n− r ) order statistics are all from group 1 except for the sth order statistic,
which belongs to group q (where it may be that q= 1), that is,

Eq = {R(r+1) = 1, � � � , R(s−1) = 1, R(s) = q, R(s+1) = 1, � � � , R(n) = 1}.

In the following two lemmas, we derive the distribution of order statistics conditional
on the event E1 and Eq (q �= 1), respectively.

Lemma A.3. Let (ε(r ), ε(s) ) be order statistics from an independent but nonidentically dis-
tributed sample (ε1, � � � , εn ) ∼ ×n

j=1Fεj . Let ζ be the maximum of {εn−r+1, � � � , εn}. Then

P(ε(r ) ≤ εr , ε(s) ≤ εs|E1 )

∝
n∑
k=s

k∑
j=r
Cn1
j−r,k−j,n−kEζ

(
1{ζ ≤ εr }

(
Fε1 (εr ) − Fε1 (ζ )

)j−r)
× (
Fε1 (εs ) − Fε1 (εr )

)k−j(
1 − Fε1 (εs )

)n−k
,

and

P(ε(r ) ≤ εr |E1 ) ∝
n∑
j=r
Cn1
j−r,n−jEζ

(
1{ζ ≤ εr }

(
Fε1 (εr ) − Fε1 (ζ )

)j−r)(
1 − Fε1 (εr )

)n−j
.

Proof. Note that

{ε(r ) ≤ εr , ε(s) ≤ εs, E1} =
n⋃
k=s

k⋃
j=r

{ε(j) ≤ εr , ε(j+1) > εr , ε(k) ≤ εs , ε(k+1) > εs , E1}.
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Let Sj,k be a collection of reordered vectors of (1, � � � , n) where σ = (σ1, � � � , σn ) ∈ Sj,k

uniquely partitions {1, � � � , n} in the sense that

{1, � � � , n} = {σ1, � � � , σr } ∪ {σr+1, � � � , σj } ∪ {σj+1, � � � , σk} ∪ {σk+1, � � � , σn},

and σ
 ∈ g1 for all 
 ≥ r + 1. In words, σ divides group 1 into four, where three of them
consist solely of group 1, and the first r coordinates of σ collect remaining members of
group 1, if any, along with all other groups. We will use this partition to assign group-1
measurement errors in a way that (1) all top (n − r ) order statistics belong to group 1,
and (2) the three sets of these order statistics divide the group-1 measurement errors
into the ranges (−∞, εr ], (εr , εs], and (εs , ∞), respectively. The remaining members of
group 1 and all other groups are then associated with the lowest r order statistics. More
precisely, we have

{ε(r ) ≤ εr , ε(s) ≤ εs, E1}

=
n⋃
k=s

k⋃
j=r

⋃
σ∈Sj,k

{
εσ(r ) ≤ εr , εσ(r ) < ε

j
r+1 ≤ εr , εr < εkj+1 ≤ εs , εs < εnk+1

}
,

where εσ(r ) = max1≤j≤r εσj and εm
 is a shorthand for εσ
 , � � � , εσm . Denote by Eσ(r ) the
expectation with respect to εσ(r ) . It follows that

P(ε(r ) ≤ εr , ε(s) ≤ εs, E1 )

=
n∑
k=s

k∑
j=r

∑
σ∈Sj,k

Eσ(r )P
(
εσ(r ) ≤ εr , εσ(r ) < ε

j
r+1 ≤ εr , εr < εkj+1 ≤ εs, εs < εnk+1|εσ(r )

)

=
n∑
k=s

k∑
j=r

∑
σ∈Sj,k

Eσ(r )

(
1{εσ(r ) ≤ εr }

(
Fε1 (εr ) − Fε1 (εσ(r ) )

)j−r
× (
Fε1 (εs ) − Fε1 (εr )

)k−j(
1 − Fε1 (εs )

)n−k)
=

n∑
k=s

k∑
j=r
Cn1
j−r,k−j,n−kEσ(r )

(
1{εσ(r ) ≤ εr }

(
Fε1 (εr ) − Fε1 (εσ(r ) )

)j−r)
× (
Fε1 (εs ) − Fε1 (εr )

)k−j(
1 − Fε1 (εs )

)n−k
,

where Cn1
j−r,k−j,n−k = n1!/[(n1 − (n− r ))!(j− r )!(k− j)!(n−k)!] is the multinomial coeffi-

cient equal to the size of Sj,k (the number of ways to classify members of group 1 to four
sets that partition {1, � � � , n}). The last equality holds because the distribution of εσ(r ) is
invariant with respect to σ . This proves the original statement for the joint distribution
in the lemma since ζ =d εσ(r ) . This is because {εn−r+1, � � � , εn} consists of all measure-
ment errors except (n − r ) members from group 1, as is the definition of εσ(r ) for any
σ ∈ Sj,k.
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An analogous derivation shows that

P(ε(r ) ≤ εr , E1 ) =
n∑
j=r
Cn1
j−r,n−jEσ(r )

(
1{εσ(r ) ≤ εr }

(
Fε1 (εr ) − Fε1 (εσ(r ) )

)j−r)
× (

1 − Fε1 (εr )
)n−j

.

Lemma A.4. Let (ε(r ), ε(s) ) be order statistics from an independent but nonidentically dis-
tributed sample (ε1, � � � , εn ) ∼ ×n

j=1Fεj . If q �= 1, form ∈ gq and ζ = (ζr , ζs ) where ζr is the
maximum of {εn−r , � � � , εn}\{εm} and ζs = εm,

P(ε(r ) ≤ εr , ε(s) ≤ εs|Eq )

∝
n∑
k=s

s−1∑
j=r
nqC

n1
j−r,s−j−1,k−s,n−kEζ

(
1{ζr ≤ εr < ζs ≤ εs}

(
Fε1 (εr ) − Fε1 (ζr )

)j−r
× (
Fε1 (ζs ) − Fε1 (εr )

)s−j−1(
Fε1 (εs ) − Fε1 (ζs )

)k−s)(
1 − Fε1 (εs )

)n−k
+

n∑
k=s

k∑
j=s
nqC

n1
s−r−1,j−s,k−j,n−kEζ

(
1{ζr ≤ ζs ≤ εr }

(
Fε1 (ζs ) − Fε1 (ζr )

)s−r−1

× (
Fε1 (εr ) − Fε1 (ζs )

)j−s)(
Fε1 (εs ) − Fε1 (εr )

)k−j(
1 − Fε1 (εs )

)n−k
,

and

P(ε(r ) ≤ εr |Eq )

∝
s−1∑
j=r
nqC

n1
j−r,s−j−1,n−sEζ

(
1{ζr ≤ εr < ζs }

(
Fε1 (εr ) − Fε1 (ζr )

)j−r
× (
Fε1 (ζs ) − Fε1 (εr )

)s−j−1(
1 − Fε1 (ζs )

)n−s)
+

n∑
j=s
nqC

n1
s−r−1,j−s,n−jEζ

(
1{ζr ≤ ζs ≤ εr }

(
Fε1 (ζs ) − Fε1 (ζr )

)s−r−1

× (
Fε1 (εr ) − Fε1 (ζs )

)j−s)(
1 − Fε1 (εr )

)n−j
.

Proof. Note that

{ε(r ) ≤ εr , ε(s) ≤ εs , Eq} =
n⋃
k=s

k⋃
j=r

{ε(j) ≤ εr , ε(j+1) > εr , ε(k) ≤ εs , ε(k+1) > εs , Eq}

=
(

n⋃
k=s

s−1⋃
j=r

{ε(j) ≤ εr , ε(j+1) > εr , ε(k) ≤ εs , ε(k+1) > εs , Eq}

)

∪
(

n⋃
k=s

k⋃
j=s

{ε(j) ≤ εr , ε(j+1) > εr , ε(k) ≤ εs , ε(k+1) > εs , Eq}

)
.
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The set is partitioned into two parts where ε(s) > εr (in the first part of the partition)

and where ε(s) ≤ εr (in the second part of the partition). We partition the event into

two different events because, as will be evident in the derivations below, the functional

form for the probability of these events differs depending on the location of ε(s) relative

to εr .

For j < s, let S1
j,k be a collection of reordered vectors of (1, � � � , n) where each vector

σ ∈ S
1
j,k uniquely partition {1, � � � , n} in the sense that

{1, � � � , n} = {σ
}r
=1 ∪ {σ
}
j

=r+1 ∪ {σ
}s−1


=j+1 ∪ {σs } ∪ {σ
}k
=s+1 ∪ {σ
}n
=k+1,

where σs ∈ gq and σ
 ∈ g1 for all 
≥ r + 1 such that 
 �= s. We use σ ∈ S
1
j,k to divide group

1 such that all top (n − r ) order statistics except for the sth belong to group 1 and are

in the ranges (−∞, εr ], (εr , εσs ] (εσs , εs], and (εs , ∞), respectively; the sth order statistic

εσs is in (εr , εs] (because j < s ≤ k); and the remaining members are associated with the

lowest r order statistics.

Similarly, for j ≥ s, let S
2
j,k be a collection of reordered vectors of (1, � � � , n) where

each vector σ ∈ S
2
j,k uniquely partition {1, � � � , n} in the sense that

{1, � � � , n} = {σ
}r
=1 ∪ {σ
}s−1

=r+1 ∪ {σs } ∪ {σ
}

j

=s+1 ∪ {σ
}k
=j+1 ∪ {σ
}n
=k+1,

where σs ∈ gq and σ
 ∈ g1 for all 
≥ r + 1 such that 
 �= s. We use σ ∈ S
2
j,k to divide group

1 such that all top (n − r ) order statistics except for the sth belong to group 1 and are

in the ranges (−∞, εσs ], (εσs , εr ] (εr , εs], and (εs , ∞), respectively; the sth order statistic

εσs is in (−∞, εr ] (because s ≤ j); and the remaining members are associated with the

lowest r order statistics.

It follows that

{ε(r ) ≤ εr , ε(s) ≤ εs , Eq}

=
(

n⋃
k=s

s−1⋃
j=r

⋃
σ∈S1

j,k

{
εσ(r ) ≤ εr , εσ(r ) < ε

j
r+1 ≤ εr , εr < εs−1

j+1 ≤ εσs ,

εr < εσs ≤ εs , εσs ≤ εks+1 ≤ εs , εs < εnk+1

})

∪
(

n⋃
k=s

k⋃
j=s

⋃
σ∈S2

j,k

{
εσ(r ) ≤ εσs , εσ(r ) < ε

s−1
r+1 ≤ εσs , εσs ≤ εr ,

εσs < ε
j
s+1 ≤ εr , εr < εkj+1 ≤ εs , εs < εnk+1

})
,
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where εσ(r ) = max1≤j≤r εσj and εm
 is a shorthand for εσ
 , � � � , εσm . Denote by Eσ(r ),s the
expectation with respect to (εσ(r ) , εσs ). Then we have

P(ε(r ) ≤ εr , ε(s) ≤ εs , Eq )

=
n∑
k=s

s−1∑
j=r

∑
σ∈S1

j,k

Eσ(r ),s

(
1{εσ(r ) ≤ εr < εσs ≤ εs}

(
Fε1 (εr ) − Fε1 (εσ(r ) )

)j−r
× (
Fε1 (εσs ) − Fε1 (εr )

)s−j−1(
Fε1 (εs ) − Fε1 (εσs )

)k−s(
1 − Fε1 (εs )

)n−k)
+

n∑
k=s

k∑
j=s

∑
σ∈S2

j,k

Eσ(r ),s

(
1{εσ(r ) ≤ εσs ≤ εr }

(
Fε1 (εσs ) − Fε1 (εσ(r ) )

)s−r−1

× (
Fε1 (εr ) − Fε1 (εσs )

)j−s(
Fε1 (εs ) − Fε1 (εr )

)k−j(
1 − Fε1 (εs )

)n−k)
=

n∑
k=s

s−1∑
j=r
nqC

n1
j−r,s−j−1,k−s,n−kEσ(r ),s

(
1{εσ(r ) ≤ εr < εσs ≤ εs}

(
Fε1 (εr ) − Fε1 (εσ(r ) )

)j−r
× (
Fε1 (εσs ) − Fε1 (εr )

)s−j−1(
Fε1 (εs ) − Fε1 (εσs )

)k−s)(
1 − Fε1 (εs )

)n−k
+

n∑
k=s

k∑
j=s
nqC

n1
s−r−1,j−s,k−j,n−k

×Eσ(r ),s

(
1{εσ(r ) ≤ εσs ≤ εr }

(
Fε1 (εσs ) − Fε1 (εσ(r ) )

)s−r−1

× (
Fε1 (εr ) − Fε1 (εσs )

)j−s)(
Fε1 (εs ) − Fε1 (εr )

)k−j(
1 − Fε1 (εs )

)n−k
.

The last equality holds because the distribution of (εσ(r ) , εσs ) is invariant with respect
to σ . This proves the original statement for the joint distribution in the lemma since
ζr =d εσ(r ) because {εn−r , � � � , εn}\{εm} consists of all measurement errors except r mem-
bers from group 1 and 1 member from group q—as is the definition of εσ(r ) —and
ζs =d εm ∼ Fq.

An analogous derivation shows that

P(ε(r ) ≤ εr , Eq )

=
s−1∑
j=r
nqC

n1
j−r,s−j−1,n−sEσ(r ),s

(
1{εσ(r ) ≤ εr < εσs }

(
Fε1 (εr ) − Fε1 (εσ(r ) )

)j−r
× (
Fε1 (εσs ) − Fε1 (εr )

)s−j−1(
1 − Fε1 (εσs )

)n−s)
+

n∑
j=s
nqC

n1
s−r−1,j−s,n−jEσ(r ),s

(
1{εσ(r ) ≤ εσs ≤ εr }

(
Fε1 (εσs ) − Fε1 (εσ(r ) )

)s−r−1

× (
Fε1 (εr ) − Fε1 (εσs )

)j−s)(
1 − Fε1 (εr )

)n−j
.
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A.2 Proofs of main results

Proof of Lemma 3.1. Let F be a data-consistent measurement error distribution sat-
isfying Assumption 3.2 and η ∼ F . We first prove the second part of the lemma. Note
that the distribution of the jth order statistic η(j) is uniquely determined by F , and by
independence,

ψξ(t; F ) =ψX(j ) (t )/ψη(j ) (t ), for all t ∈R,

for any j ∈ {r, s}, where ψξ(t; F ) is the induced latent variable distribution implied by F .
Since ψη(j ) is analytic (Lemma A.1), it has isolated real zeros. Thus, by the continuity of
ψξ(·; F ), the equality is defined by the continuous extension at t0 wheneverψη(j ) (t0 ) = 0.

Now consider the first part of the lemma and note that because ξ is independent of
the measurement errors, we have

ψX(r,s) (tr , ts ) =ψξ(tr + ts; F )ψη(r,s) (tr , ts ),

and likewise for the marginal ch.f. Since ψξ(·; F ) is a ch.f., there exists tξ > 0 such that
ψξ(t; F ) �= 0 for all t ∈ (−tξ, tξ ). Similarly, there exists tη > 0 such that ψη(j ) (t ) �= 0 for all
t ∈ (−tη, tη ). Pick any positive t0 ≤ min(tξ, tη ) and let B0 be an open ball around zero
contained in {(tr , ts ) ∈ R

2 : |tr + ts| < t0}. Thus, ψξ(tr + ts; F ) �= 0 and ψη(j ) (tr + ts ) �= 0 for
all (tr , ts ) ∈ B0. Then, on B0, we have

ψX(r,s) (tr , ts )

ψX(j ) (tr + ts )
= ψξ(tr + ts; F )ψη(r,s) (tr , ts )

ψξ(tr + ts; F )ψη(j ) (tr + ts )
= ψη(r,s) (tr , ts )

ψη(j ) (tr + ts )
.

This concludes the proof.

Proof of Lemma 3.2. By Lemma 3.1, if the distribution functions F and G are data-
consistent, then

ψη(r,s) (tr , ts )ψη′
(j )

(tr + ts ) =ψη′
(r,s)

(tr , ts )ψη(j ) (tr + ts ), (11)

for j ∈ {r, s} and for all (tr , ts ) ∈ B0. Observe that the two products in (11) are ch.f.s of Z1j

and Z2j , respectively. By Lemma A.1, all ch.f.s in (11) are analytic. Since the product of
two analytic functions is also analytic, the equality of ch.f.s on B0 implies their equality
on all of R2. Hence, if F and G are both data-consistent, then the condition in (3) holds
for j ∈ {r, s}.

Proof of Lemma 3.3. We only prove the equality in (4) as the proof for (5) is analogous.
Let F(j) and f(j) (resp.,G(j) and g(j)) denote the marginal distribution and density func-
tion of the jth order statistic of a random sample of size n from F (resp.,G), respectively.
Also, we denote the joint distribution and density functions of order statistics from F by
F(r,s) and f(r,s). Further, for any yr ≥ 0, define F(s|r )(·; yr ) to be the distribution of the sth
order statistic conditional on the cumulative event that the rth order statistic η(r ) ≤ yr as
in Lemma A.2.
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For c ≤ 0, the equality in (4) is an obvious consequence of the normalization in As-
sumption 3.3. Fix any c > 0 and consider a small enough δ such that c > δ ↓ 0. The con-
ditional probability in (4) is a weighted average of the conditional distribution F(s|r ):

P
(
η′

(r ) +η(s) ≤ c|η(r ) +η′
(r ) ≤ δ) = P

(
η(r ) +η′

(r ) ≤ δ, η(s) +η′
(r ) ≤ c)

P
(
η(r ) +η′

(r ) ≤ δ)

=

∫ δ

0
F(r,s)(δ− x, c− x)g(r )(x)dx∫ δ

0
F(r )(δ− x)g(r )(x)dx

=
∫ δ

0

F(r )(δ− x)g(r )(x)∫ δ

0
F(r )(δ− x)g(r )(x)dx

F(s|r )(c− x; δ− x)dx.

Note that since F is absolutely continuous by Assumption 3.2, F(s|r )(ys; ·) is continuous
on (0, ∞) for every ys ∈ R. Further, by the definition of F(s|r )(ys; 0) as in Lemma A.2, we
conclude that F(s|r )(ys; ·) is continuous on [0, ∞) for every ys ∈R. Likewise, for every yr ∈
[0, ∞), F(s|r )(·; yr ) is continuous. Finally, it follows from the monotonicity of F(s|r )(·; yr )
for every yr ∈ [0, ∞) that the function F(s|r )(·; ·) is (jointly) continuous on R× [0, ∞) (see,
e.g., Kruse and Deely (1969)).

Therefore, it follows that as δ ↓ 0,∫ δ

0

F(r )(δ− x)g(r )(x)∫ δ

0
F(r )(δ− x)g(r )(x)dx

F(s|r )(c− x; δ− x)dx

≤ F(s|r )(c; δ) +
∫ δ

0

F(r )(δ− x)g(r )(x)∫ δ

0
F(r )(δ− x)g(r )(x)dx

∣∣F(s|r )(c− x; δ− x) − F(s|r )(c; δ)
∣∣dx

≤ F(s|r )(c; δ) +
∫ δ

0

F(r )(δ− x)g(r )(x)∫ δ

0
F(r )(δ− x)g(r )(x)dx

sup
0≤x≤δ

∣∣F(s|r )(c− x; δ− x) − F(s|r )(c; δ)
∣∣dx

= F(s|r )(c; δ) + sup
0≤x≤δ

∣∣F(s|r )(c− x; δ− x) − F(s|r )(c; δ)
∣∣

−→ F(s|r )(c; 0),

The convergence of the upper bound is due to the (joint) continuity of F(s|r )(·; ·).
A similar derivation for the lower bound shows that the lower bound approaches the

same limit. By the squeeze theorem and Lemma A.2, we conclude that for any c > 0,

P
(
η′

(r ) +η(s) ≤ c|η(r ) +η′
(r ) ≤ δ) −→ F(s|r )(c; 0) = Fs−r:n−r(c).

Thus, we conclude that the statement of the lemma holds for all c ∈R.
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Proof of Theorem 3.1. Lemmas 3.2 and 3.3 imply that any two data-consistent mea-
surement errors satisfying Assumptions 3.2 and 3.3 must have the same distribution of
order statistics:

Fs−r:n−r =Gs−r:n−r .
It then follows from the one-to-one mapping between the distribution of an order statis-
tic and the parent distribution (see, e.g., David and Nagaraja (2003), p. 10, (2.1.5)) that
F =G, that is, the measurement error distribution Fε = F =G is identified. Therefore,
by Lemma 3.1, the latent variable distribution Fξ is also identified.

Proof of Corollary 3.1. The result follows directly from (3) in Lemma 3.2. Applying
linear transformations Tr : (z1, z2 ) �→ (z2 − z1, z2 ) and Ts : (z1, z2 ) �→ (z2 − z1, z1 ) to (3)
for j ∈ {r, s}, respectively, shows that(

η(s) −η(r )

η′
(r ) +η(s)

)
d=

(
η′

(s) −η′
(r )

η(r ) +η′
(s)

)
and

(
η(s) −η(r )

η(r ) +η′
(s)

)
d=

(
η′

(s) −η′
(r )

η′
(r ) +η(s)

)
.

Proof of Theorem 3.2. Without loss of generality, let g1 be a group with at least n− r
members. For any q ∈ {1, � � � , p} (see Assumption 3.5), let Eq denote the event where the
top n − r order statistics are all from group 1 except for the sth order statistic, which
belong to group q (where it may be that q= 1), that is,

Eq = {R(r+1) = 1, � � � , R(s−1) = 1, R(s) = q, R(s+1) = 1, � � � , R(n) = 1}. (12)

The identification proof proceeds in three steps. First, we claim that the distribution
Fεj for j ∈ g1—the distribution of a group with many members—is identified. Then we
show that Fεj for j ∈ gq is identified for each q �= 1. Finally, Fξ is identified by a standard
deconvolution argument.

Step 1. For notational simplicity, suppose 1 ∈ g1. A close inspection of the proof of
Lemmas 3.1 and 3.2 reveals that the necessary condition (3) does not rely on the hypoth-
esis that the measurement errors are identically distributed. Therefore, we can make
use of a similar argument as in the proof of Lemmas 3.1 and 3.2, provided the ch.f. of
(ε(r ), ε(s) ) is analytic in the i.n.i.d. setting. Indeed, Lemma A.1 confirms f(r,s)(·, ·; E1 ) is
analytic. Therefore, analogous to the proof of Lemmas 3.1 and 3.2 but conditional on
the event E1, two data-consistent measurement errors η = (η1, � � � , ηn ) ∼ ×n

j=1Fj and
η′ = (η′

1, � � � , η′
n ) ∼ ×n

j=1Gj satisfying Assumption 3.4 must have the same joint distri-
bution of sums: (

η′
(j) +η(r )

η′
(j) +η(s)

)
d=

(
η(j) +η′

(r )
η(j) +η′

(s)

)
|Eη1 ∩Eη′

1 , j ∈ {r, s},

where Eη1 , as in (12), denotes the event that identifies the group association of order

statistics that originate from the random vector η; and likewise for Eη
′

1 . Consider the
left-hand side with j = r. Following a similar derivation as in the proof of Lemma 3.3, for
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any c ∈R, we have

P
(
η′

(r ) +η(s) ≤ c|η(r ) +η′
(r ) ≤ δ, Eη1 ∩Eη′

1

)
≤ Fs−r:n−r(c) + sup

0≤x≤δ

∣∣F(s|r )
(
c− x; δ− x, Eη1

) − Fs−r:n−r(c)
∣∣,

whereFs−r:n−r is the distribution of the (s−r )th order statistic of a random sample of size
n− r from the parent distribution F1. To show that the limit of the left-hand side as δ ↓ 0
is indeed Fs−r:n−r(c), it suffices to show, in combination with a similar lower bound, that
F(s|r )(·; ·, Eη1 ) is continuous and limδ↓0 F(s|r )(c; δ, Eη1 ) = Fs−r:n−r(c). Following the same
proof as in Lemma A.2 using the expressions in Lemma A.3, we show that

lim
δ↓0

F(s|r )
(
c; δ, Eη1

) =
n∑
k=s

Cn−rk−rF1(c)k−r(1 − F1(c)
)n−k

,

for every c ∈ R. The right-hand side equals Fs−r:n−r(c). As in the proof of Lemma 3.3,
the continuity of F(s|r )(·; ·, Eη1 ) on R × [0, ∞) follows by elementwise continuity of
F(s|r )(·; ·, Eη1 ) and monotonicity of F(s|r )(·; εr , Eη1 ) for every εr ∈ [0, ∞) (cf. Kruse and
Deely (1969)). Therefore, we conclude that for any c ∈R,

lim
δ↓0

P
(
η′

(r ) +η(s) ≤ c|η(r ) +η′
(r ) ≤ δ, Eη1 ∩Eη′

1

) = Fs−r:n−r(c).

A similar derivation for the right-hand side shows that

lim
δ↓0

P
(
η(r ) +η′

(s) ≤ c|η(r ) +η′
(r ) ≤ δ, Eη1 ∩Eη′

1

) =
n∑
k=s

Cn−rk−rG1(c)k−r(1 −G1(c)
)n−k

=:Gs−r:n−r(c),

for every c. Therefore, we conclude that Fs−r:n−r = Gs−r:n−r , and thus F1 = G1, that is,
the distribution for group 1 (a group with large size) is identified.

Step 2. For notational simplicity, suppose q ∈ gq. A sequence of arguments analo-
gous to Step 1 remains to hold conditional on the event Eq for any q �= 1. Therefore, it
suffices to show that the equality

lim
δ↓0

F(s|r )
(
c; δ, Eηq

) = lim
δ↓0

G(s|r )
(
c; δ, Eη

′
q

)
, for all c ∈R, (13)

implies that Fq =Gq, where

F(s|r )
(
c; δ, Eηq

) = P
(
η(s) ≤ c|η(r ) ≤ δ, Eηq

)
,

and G(s|r )(·; ·, Eη′
q ) is defined similarly. Following the same proof as in Lemma A.2 using

the expression in Lemma A.4, one can show that

F(s|r )
(
c; 0, Eηq

)
:= lim

δ↓0
F(s|r )

(
c; δ, Eηq

)
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=
n∑
k=s

Cn−sk−s
Eζs 1{ζs ≤ c}F1(ζs )s−r−1(F1(c) − F1(ζs )

)k−s(
1 − F1(c)

)n−k
EζsF1(ζs )s−r−1(1 − F1(ζs )

)n−s , (14)

where ζs ∼ Fq, the group-q distribution. Differentiating (14) with respect to c, the density
function is given by

f(s|r )
(
c; 0, Eηq

) = n− s
EζsF1(ζs )s−r−1(1 − F1(ζs )

)n−s F1(c)s−r−1(1 − F1(c)
)n−s

fq(c)

∝ F1(c)s−r−1(1 − F1(c)
)n−s

fq(c),

for almost all c ∈R. Similarly, the density g(s|r )(·; 0, Eη
′

q ) is given by

g(s|r )
(
c; 0, Eηq

) = n− s
Eζ′

s
F1

(
ζ′
s

)s−r−1(
1 − F1

(
ζ′
s

))n−s F1(c)s−r−1(1 − F1(c)
)n−s

gq(c)

∝ F1(c)s−r−1(1 − F1(c)
)n−s

gq(c),

for almost all c ∈ R, where ζ′
s ∼Gq. Since (13) implies f(s|r )(·; 0, Eηq ) = g(s|r )(·; 0, Eηq ) a.e.

and F1(c)s−r−1(1 − F1(c))n−s > 0 for all c in the interior of the support of Fq (common
support assumption in Assumption 3.5), we conclude from the above expression of the
densities that fq = gq a.e., and thus Fq =Gq for all q �= 1. Therefore, the distributions for
all measurement error groups are identified.

Step 3. Since Fε1 , � � � , Fεn are identified, so is the ch.f. ψε(j ) . It follows that the ch.f.
ψξ =ψX(j )/ψε(j ) is identified, where ψξ(t ) is defined by the continuous extension when-
ever ψε(j ) (t ) = 0. It is well-defined since ψε(j ) is analytic, and hence has isolated zeros.
Thus, Fξ is identified.

Proof of Corollary 3.2. When s = n and r = n− 1, the proof of Theorem 3.2 reveals
that

f(s|r )
(
c; 0, Eηq

) ∝ fq(c), g(s|r )
(
c; 0, Eηq

) ∝ gq(c).

Since (13) implies f(s|r )(·; 0, Eηq ) = g(s|r )(·; 0, Eηq ) a.e., this implies that fq = gq a.e. Note
that in constrast to the proof of Theorem 3.2, the result does not rely on a common
support assumption because the conditional densities above depend only on fq and
gq.

Proof of Theorem 4.1. It follows from Theorem 3 in Bierens (2008) that the sieve
{Hk}k is dense in H = {h ∈ π2 : π ∈ P }. This implies that {Fk}k := {Fξk × Fεk }k is dense
in F := Fξ ×Fε where

Fξ =
{
F(·) =

∫ Gξ(·)

0
h(u)du : h ∈ H

}
, Fε =

{
F(·) =

∫ Gε(·)

0
h(u)du : h ∈ H

}
,

Fξk =
{
F(·) =

∫ Gξ(·)

0
h(u)du : h ∈ Hk

}
, Fεk =

{
F(·) =

∫ Gε(·)

0
h(u)du : h ∈ Hk

}
.
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We endow F with the supremum norm ‖·‖∞. Further, because F is compact, it suffices
to show that (1) Q(·) is continuous on F , (2) Q(·) has a unique minimizer on F , and (3)
the following uniform a.s. convergence holds:

sup
F∈F

∣∣Q̂N (F ) −Q(F )
∣∣ a.s.−→ 0.

See Gallant (1987) or Gallant and Nychka (1987). A proof of each of (1)–(3) follows.
(1) Given a complex number z ∈ C, let �(z) and �(z) denote the real and imaginary

part, respectively. Let Fk = (Fξ,k, Fε,k ) ∈ F such that Fk → F ∈ F . Consider∣∣Q(F ) −Q(Fk )
∣∣

= 1

4κ2

∣∣∣∣∫
(−κ,κ)2

�{
ψX(r,s) (t ) −ϕ(t; F )

}2 + �{
ψX(r,s) (t ) −ϕ(t; F )

}2
dt

−
∫

(−κ,κ)2
�{
ψX(r,s) (t ) −ϕ(t; Fk )

}2 + �{
ψX(r,s) (t ) −ϕ(t; Fk )

}2
dt

∣∣∣∣
= 1

4κ2

∣∣∣∣∫
(−κ,κ)2

�{
2ψX(r,s) (t ) −ϕ(t; F ) −ϕ(t; Fk )

}�{
ϕ(t; F ) −ϕ(t; Fk )

}
+ �{

2ψX(r,s) (t ) −ϕ(t; F ) −ϕ(t; Fk )
}�{

ϕ(t; F ) −ϕ(t; Fk )
}
dt

∣∣∣∣
≤ 1

4κ2

∫
(−κ,κ)2

∣∣�{
2ψX(r,s) (t ) −ϕ(t; F ) −ϕ(t; Fk )

}∣∣∣∣�{
ϕ(t; F ) −ϕ(t; Fk )

}∣∣
+ ∣∣�{

2ψX(r,s) (t ) −ϕ(t; F ) −ϕ(t; Fk )
}∣∣∣∣�{

ϕ(t; F ) −ϕ(t; Fk )
}∣∣dt

≤ 1

κ2

∫
(−κ,κ)2

∣∣�{
ϕ(t; F ) −ϕ(t; Fk )

}∣∣ + ∣∣�{
ϕ(t; F ) −ϕ(t; Fk )

}∣∣dt
≤

√
2

κ2

∫
(−κ,κ)2

∣∣ϕ(t; F ) −ϕ(t; Fk )
∣∣dt

≤ 4
√

2 sup
t∈(−κ,κ)2

∣∣ϕ(t; F ) −ϕ(t; Fk )
∣∣.

Therefore, to show |Q(F ) −Q(Fk )| → 0, it suffices to show that(
ξ(Fξ,k ), ε1(Fε,k ), � � � , εn(Fε,k )

) a.s.−→ (
ξ(Fξ ), ε1(Fε ), � � � , εn(Fε )

)
,

as this implies a.s. convergence of (ξ(Fξ,k ), ε(r )(Fε,k ), ε(s)(Fε,k )) to (ξ(Fξ ), ε(r )(Fε ),
ε(s)(Fε )), and thus uniform convergence of ϕ(t; Fk ) to ϕ(t; F ) on any compact set. For
each k, letHk denote the c.d.f. such that Fξ,k(·) =Hk(Gξ(·)). Fξ,k → Fξ impliesHk →H

where Fξ(·) =H(Gξ(·)). Therefore, since G−1
ξ and H−1 are monotone, and hence have

at most countable discontinuity points, we conclude that V -a.s.,

lim
k→∞

ξ(Fξ,k ) = lim
k→∞

F−1
ξ,k(V ) = lim

k→∞
G−1
ξ

(
H−1
k (V )

) =G−1
ξ

(
H−1(V )

) = F−1
ξ (V ) = ξ(Fξ ).

Similarly, we have limk→∞ εj(Fε,k ) = εj(Fε ), Uj–a.s. We thus conclude that Q(·) is con-
tinuous on F .
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(2) Existence of F = (Fξ, Fε ) ∈ F satisfying Q(F ) = 0 is obvious from Assump-
tion 3.4(b). Uniqueness of the minimizer follows from Theorem 3.1.

(3) Note that we have

sup
F∈F

∣∣Q̂N (F ) −Q(F )
∣∣

= sup
F∈F

1

4κ2

∣∣∣∣∫
(−κ,κ)2

�{
ψ̂N (t ) − ϕ̂N (t; F )

}2 + �{
ψ̂N (t ) − ϕ̂N (t; F )

}2
dt

−
∫

(−κ,κ)2
�{
ψX(r,s) (t ) −ϕ(t; F )

}2 + �{
ψX(r,s) (t ) −ϕ(t; F )

}2
dt

∣∣∣∣
= sup
F∈F

1

4κ2

∣∣∣∣∫
(−κ,κ)2

�{
ψ̂N (t ) − ϕ̂N (t; F ) +ψX(r,s) (t ) −ϕ(t; F )

}
× �{(

ψ̂N (t ) −ψX(r,s) (t )
) − (

ϕ̂N (t; F ) −ϕ(t; F )
)}

+ �{
ψ̂N (t ) − ϕ̂N (t; F ) +ψX(r,s) (t ) −ϕ(t; F )

}
× �{(

ψ̂N (t ) −ψX(r,s) (t )
) − (

ϕ̂N (t; F ) −ϕ(t; F )
)}
dt

∣∣∣∣
≤ sup
F∈F

1

κ2

∫
(−κ,κ)2

∣∣�{(
ψ̂N (t ) −ψX(r,s) (t )

) − �(
ϕ̂N (t; F ) −ϕ(t; F )

)}∣∣
+ ∣∣�{(

ψ̂N (t ) −ψX(r,s) (t )
) − �(

ϕ̂N (t; F ) −ϕ(t; F )
)}∣∣dt

≤ sup
F∈F

2

κ2

∫
(−κ,κ)2

∣∣ψ̂N (t ) −ψX(r,s) (t )
∣∣ + ∣∣ϕ̂N (t; F ) −ϕ(t; F )

∣∣dt
≤ 2

κ2

∫
(−κ,κ)2

∣∣ψ̂N (t ) −ψX(r,s) (t )
∣∣dt + 2

κ2

∫
(−κ,κ)2

sup
F∈F

∣∣ϕ̂N (t; F ) −ϕ(t; F )
∣∣dt.

Recall ch.f.s are bounded uniformly by 1. Since ψ̂N →a.s. ψX(r,s) pointwise on R
2, the first

integral on the right-hand side a.s. vanishes asymptotically. It remains to be shown that
ϕ̂N (t; ·) →a.s. ϕ(t; ·) uniformly in F . the supremum in the last integral vanishes point-
wise on (−κ, κ)2. Since, by definition∣∣ϕ̂N (t; F ) −ϕ(t; F )

∣∣
= ∣∣ENeit�X(F ) −Eeit

�X(F )
∣∣

≤ ∣∣EN cos
(
t�X(F )

) −E cos
(
t�X(F )

)∣∣ + ∣∣EN sin
(
t�X(F )

) −E sin
(
t�X(F )

)∣∣,
where both terms are bounded, we conclude from the Borel–Cantelli lemma and Ho-
effding’s inequality that∣∣ϕ̂N (t; F ) −ϕ(t; F )

∣∣ a.s.−→ 0, for all F ∈ F . (15)

We complete the proof by establishing its strong stochastic equicontinuity. Note that
a.s. continuity of (ξ(F ), ε1(F ), � � � , εn(F )) in part (1) of the proof implies a.s. continuity
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ofX(F ). Thus, for any η> 0, there exists δ > 0 such that

d
(
F , F ′) = max

{∥∥Fξ − F ′
ξ

∥∥∞,
∥∥Fε − F ′

ε

∥∥∞
}
< δ

implies, a.s. ∣∣cos
(
t�X(F )

) − cos
(
t�X

(
F ′))∣∣<η/4,∣∣sin

(
t�X(F )

) − sin
(
t�X

(
F ′))∣∣<η/4.

Therefore,

sup
d(F ,F ′ )<δ

∣∣(ϕ̂N (t; F ) −ϕ(t; F )
) − (

ϕ̂N
(
t; F ′) −ϕ(t; F ′))∣∣

= sup
d(F ,F ′ )<δ

∣∣(ENeit�X(F ) −Eeit
�X(F )) − (

ENe
it�X(F ′ ) −Eeit

�X(F ′ ))∣∣
≤ sup
d(F ,F ′ )<δ

∣∣(ENeit�X(F ) −ENe
it�X(F ′ )) − (

Eeit
�X(F ) −Eeit

�X(F ′ ))∣∣
≤ EN sup

d(F ,F ′ )<δ

(∣∣cos
(
t�X(F )

) − cos
(
t�X

(
F ′))∣∣

+ ∣∣sin
(
t�X(F )

) − sin
(
t�X

(
F ′))∣∣)

+E sup
d(F ,F ′ )<δ

(∣∣cos
(
t�X(F )

) − cos
(
t�X

(
F ′))∣∣

+ ∣∣sin
(
t�X(F )

) − sin
(
t�X

(
F ′))∣∣)

<η.

Since the inequality holds for all N , we conclude by strong stochastic equicontinuity
that the a.s. convergence in (15) holds uniformly on F .

Appendix B: Rossberg’s counterexample

One natural approach towards investigating the identification problem of the measure-
ment error distribution is to exploit the spacing between two order statistics: X(s) −
X(r ) = ε(s) −ε(r ). However, without additional restrictions, knowledge of the spacing dis-
tribution is not sufficient to identify Fε. A constructive example is provided by Rossberg
(1972). Specifically, suppose ε1 and ε2 are i.i.d. standard exponential random variables.
Then the spacing ε(2) − ε(1) is a standard exponential random variable. Rossberg (1972)
shows there are infinitely many parent distributions that deliver a standard exponential
spacing distribution, one of them being

G(x) = 1 − e−x[1 +π−2(1 − cos 2πx)
]
,

with support S(G) = [0, ∞).
However, our Corollary 3.1 requires that, for Rossberg’s distributionG to be observa-

tionally equivalent to the true exponential distribution, the distributions of cross-sums
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Figure 2. An illustration of the departure of the ratio of ch.f.s of second and first Rossberg order
statistics (red dotted line) from that of the measurement (observed) order statistics (black line).
The ratio of ch.f.s of true measurement error (exponential) order statistics (blue dashed line)
aligns with that of the measurement order statistics.

of order statistics must be the same in addition to their spacing distributions. This addi-
tional constraint on the distribution of cross-sum that is absent in Rossberg (1972) arises
from our model setup, in particular, from the within independence between the la-
tent variable of interest, ξ, and the measurement errors. Whereas the empirical content
comes from the random vector (X(1),X(2) ) in our context, the spacing is the only—and
complete—empirical content available in the setting of Rossberg (1972). As discussed
in Section 3.2, the independence assumption allows us to exploit the ratio of ch.f.s in a
tractable manner despite the dependence between measurement errors of the observed
order statistics.

Figure 2 compares the ratios of ch.f.s of order statistics.27 In order to make the mi-
nor departures clear, we forfeit the three-dimensional display of the ratios of ch.f.s in
(1). The ratios are evaluated at ψX(1,2) (0, t )/ψX(1) (t ) =ψX(2) (t )/ψX(1) (t ), and the real and
imaginary parts are displayed separately. The ratios for the observations (X(1),X(2) ) and
the true measurement errors (ε(1), ε(2) ) from the standard exponential distribution co-
incide. However, the ratio for G begins to depart substantially when |t| > 1, indicat-
ing that G cannot rationalize the observed data. Consequently, in Figure 3, while the
spacing distributions for the exponential and Rossberg’s random variables overlap, the
cross-sum distributions differ over nontrivial regions. This connection between ratios of
ch.f.s and probability distributions of spacings and cross-sums is established in Corol-
lary 3.1.

27Due to the lack of analytical tractability of the ratio for Rossberg’s distribution, all functions are approx-
imated by Monte Carlo integration with N = 108 pairs of random draws. To pin down the specification of
Xj = ξ+ εj , random quantity ξ is drawn from the standard normal distribution. The same draws are used
to plot the distribution functions in Figure 3.
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Figure 3. An illustration of the dissimilarity between the probability distributions of cross–
sums of two exponential and Rossberg order statistics (Figure 3b). Consistent with Rossberg
(1972), the probability distributions of exponential and Rossberg spacings are aligned (Fig-
ure 3a).

Appendix C: Implementation of the estimator

This section provides a closed form for the empirical criterion function and describes
how the estimation procedure is implemented in practice to calculate the estimator pro-
posed in Section 4. Additional simulation results are also reported. While it is left implicit
in the main text whether the vectorized form of an element is a column or row vector,
it is made clear here. For instance, x = (x1, � � � , xn ) is a row vector of length n and x� a
column vector.

C.1 Closed form for the criterion function

The simulated sieve estimator minimizes the empirical analogue of (9). By simulating
the model-implied ch.f. ϕ, we avoid having to numerically integrate the criterion func-
tion over (−κ, κ)2. Precisely, the empirical criterion function Q̂N (·) has the following
closed form:

Q̂N (FkN ; κ) = 2
N

+ 2

N2

N∑
i>j

q(Xi −Xj ) + 2

N2

N∑
i>j

q
(
Xi(FkN ) −Xj(FkN )

)

− 2

N2

N∑
i,j

q
(
Xi −Xj(FkN )

)
, (16)

where Xi = (X(r ),i,X(s),i )� is the ith observation, Xi(FkN ) is the ith simulated col-
umn vector given c.d.f.s Fξ,kN and Fε,kN , to be made precise below (see also Assump-
tion 3.4(d)), and q(x, y ) = sin(κx) sin(κy )/(κ2xy ), defined everywhere by the continuous
extension. The above closed form is straightforward to derive using the identity eix =
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cos(x)+ i sin(x) and two trigonometric identities, cos(x−y ) = cos(x) cos(y )+sin(x) sin(y )
and 2 sin(x) sin(y ) = cos(x− y ) − cos(x+ y ).

C.2 Estimation procedure

Note that the sieve space {Fk}k := {Fξk × Fεk }k introduced in Section 4 is constructed
by {Pk}k, a sequence of spaces of truncated series based on the series representation P
in (8). That is, the infinite-dimensional spaces {Pk}k are determined by a sequence of
finite-dimensional sieves {Dk}k, where

Dk :=
{
δ ∈R

k : |δ
| ≤ c

1 + √

 ln


, 
= 1, � � � , k
}

.

Thus, so as to minimize Q̂N in (16) with respect to FkN , one can minimize

Q̂N (FkN ) = Q̂N
(
Hk

(
Gξ(·); δξ

)
,Hk

(
Gε(·); δε

))
with respect to (δξ, δε ) ∈ D2

kN
, where

Hk(v; δ) =

∫ v

0

(
1 +

k∑

=1

δ
ρ
(v)

)2

dv

1 +
k∑

=1

δ2



.

To alleviate computational concerns associated with solving the above finite-
dimensional optimization problem with the parameterization in (8), Bierens (2008) sug-
gests a reparametrization under which the c.d.f. Hk(·; δ) on [0, 1] can be expressed as
(see Sections 3 and 7 in Bierens (2008)):

Hk(v; θ) =
(
1 −π�

k θ, θ�)
�k+1(v)

(
1 −π�

k θ, θ�)�(
1 −π�

k θ, θ�)
�k+1(1)

(
1 −π�

k θ, θ�)� , v ∈ [0, 1],

where �k+1(v) is a (k+ 1)-square matrix and πk a k-dimensional vector defined as

�k+1(v) =
(
vi+j+1

i+ j + 1

)
i,j=0,1, ���,k

and πk =
(

1
i+ 1

)
i=1, ���,k

.

The compactifying restrictions on δ ∈ Dk in the definition of Dk translates to the follow-
ing constraints on the space �k for θ:

�k =
{
θ ∈ R

k :

∣∣∣∣∣
k−
∑
m=0

θ
+mμ
(m)

∣∣∣∣∣ ≤ c

1 + √

 ln


, 
= 1, � � � , k

}
,

where μ
(m) := ∫ 1
0 u


+mρ
(u)du.
We use the finite-dimensional sieves {�2

k}k for (θξ, θε ) to estimate the distribution
functions in the Monte Carlo study in Section 4.2. For further details regarding the sieve
space, we refer the readers to the original article by Bierens (2008).
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Figure 4. Monte Carlo simulation results for Fξ. Panels 1, 2, and 3 correspond to the tuning
parameter κ= 1, 3.14, and 5, respectively; Subpanels (a), (b), and (c) correspond to sample sizes
N = 1000, 2000, and 4000, respectively.

C.3 Additional simulation results

In this section, we report additional results from the simulation exercise described in

Section 4.2. Figures 4 and 5 display pointwise box plots that summarizes the simulated

coverage of the estimator for Fξ and Fε. Sample sizes N = 1000, 2000, and 4000 with

k = 4, 5, and 6, respectively, are considered with κ = 1, 3.14, and 5 for each sample

size.28 For each κ, the result shows that the estimator improves with largerN . The point-

wise variance, as indicated by more values outside the interquartile range, appears to be

higher when κ is set to a larger value.

28Panel 1 of Figures 4 and 5 are reproduced in Figure 1.
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Figure 5. Monte Carlo simulation results for Fε. Panels 1, 2, and 3 correspond to the tuning
parameter κ= 1, 3.14, and 5, respectively; Subpanels (a), (b), and (c) correspond to sample sizes
N = 1000, 2000, and 4000, respectively.
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