
Submitted to Quantitative Economics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

Forecasting with Shadow-Rate VARs

ANDREA CARRIERO

School of Economics and Finance, Queen Mary University of London

TODD E. CLARK

Research Department, Federal Reserve Bank of Cleveland

MASSIMILIANO MARCELLINO

Department of Economics, Baffi, Bidsa, IGIER, Bocconi University and CEPR

ELMAR MERTENS

Research Centre, Deutsche Bundesbank

Vector autoregressions (VARs) are popular for forecasting, but ill-

suited to handle occasionally binding constraints, like the effec-

Andrea Carriero: a.carriero@qmul.ac.uk

Todd E. Clark: todd.clark@researchfed.org

Massimiliano Marcellino: massimiliano.marcellino@unibocconi.it

Elmar Mertens: em@elmarmertens.com

We gratefully acknowledge helpful suggestions and comments received from Editor Jim Hamilton,

three referees, Boragan Aruoba, Sidd Chib, Refet Gürkaynak, Sophocles Mavroeidis, Emanuel Mönch,

Serena Ng, Frank Schorfheide, Harald Uhlig and seminar participants at the Bank of England, Bocconi

University, Cleveland Fed, De Nederlandsche Bank, Deutsche Bundesbank, Penn, 2023 IAAE meet-

ing, 2023 MEG meeting, and 2023 NBER Summer Institute. The views expressed herein are solely

those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of Cleve-

land, the Federal Reserve System, the Eurosystem, or the Deutsche Bundesbank. Marcellino thanks

Ministero dell’Istruzione, Universita’e Ricerca – PRIN Bando 2017 – prot. 2017TA7TYC for financial

support. An earlier version of this paper has also been circulated under the title “Shadow-rate VARs.”

Our shadow-rate estimates, a supplementary online appendix with additional results and replication

codes are available at https://github.com/elmarmertens/CCMMshadowrateVAR-code. Declarations

of interest: none.

http://qeconomics.org
mailto:a.carriero@qmul.ac.uk
mailto:todd.clark@researchfed.org
mailto:massimiliano.marcellino@unibocconi.it
mailto:em@elmarmertens.com
https://github.com/elmarmertens/CCMMshadowrateVAR-code


2 Submitted to Quantitative Economics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

tive lower bound on nominal interest rates. We examine reduced-

form “shadow-rate VARs” that model interest rates as censored ob-

servations of a latent shadow-rate process and develop an efficient

Bayesian estimation algorithm that accommodates large models.

When compared to a standard VAR, our better-performing shadow-

rate VARs generate superior predictions for interest rates and broadly

similar predictions for macroeconomic variables. We obtain this re-

sult for shadow-rate VARs in which the federal funds rate is the only

interest rate and in models including additional interest rates. Our

shadow-rate VARs also deliver notable gains in forecast accuracy rel-

ative to a VAR that omits shorter-term interest rate data in order to

avoid modeling the lower bound.

KEYWORDS. Macroeconomic forecasting, effective lower bound, term

structure, censored observations.

JEL CLASSIFICATION. C34, E17, E43.

1. INTRODUCTION

Linear vector autoregressions (VARs) typically include interest rates due to their

importance for macroeconomic forecasting and structural analysis. However, in

a number of economies, shorter-term interest rates have been stuck for years at

or near their effective lower bound (ELB), with longer-term rates drifting toward

the constraint as well. A fundamental challenge for econometric models is to ap-

propriately capture the existence of an ELB on interest rates and the resulting

asymmetries in predictive densities and impulse response functions not only for

interest rates, but also likely for other economic variables. At a mechanical level,

the existence of an ELB calls for treating nominal interest rates as variables whose

observations are constrained not to fall below the lower bound.

As one way around ELB constraints, Swanson and Williams (2014) have ar-

gued that it may be sufficient to track longer-term nominal interest rates, as long

as their dynamics have remained unaffected by a binding ELB on shorter-term

rates, and this has been done by, for example, Crump et al. (2024), Debortoli

et al. (2019), and Rogers et al. (2018). However, by 2020, even 10-year US Trea-

http://qeconomics.org
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sury yields had fallen below 1 percent, with 5-year yields hovering just above 25

basis points.

In contrast, the finance literature has derived important implications of the

ELB for the entire term structure of interest rates. Following the seminal work

of Black (1995), the term structure literature views the ELB as a censoring con-

straint on nominal interest rates, from which no-arbitrage restrictions are de-

rived for yields of all maturities. The resulting restrictions are, however, non-

trivial and have mostly been implemented for models with state dynamics that

are affine, homoskedastic, and time-invariant; see, for example, Bauer and Rude-

busch (2016), Christensen and Rudebusch (2012, 2015, 2016), Krippner (2015),

and Wu and Xia (2016).

In this paper, we examine shadow-rate approaches for accommodating the

ELB in commonly-used macroeconomic VARs, integrating the shadow-rate in-

ference into the macroeconomic model. To handle the ELB on interest rates, we

model observed rates as censored observations of a latent shadow-rates process

in an otherwise standard VAR setup.1 The shadow rates are assumed to be equal

to observed rates when above the ELB. More specifically, we apply our shadow-

rate approaches to a medium-scale Bayesian VAR (BVAR) for 15-20 US macroe-

conomic and financial variables, with stochastic volatility (SV), which has been

shown to generate competitive forecasts when ignoring the ELB (e.g., Carriero

et al. (2019)). Critically, we also demonstrate how to handle data in which the

ELB binds for multiple interest rates of different maturities. As in other studies of

shadow-rate VARs, we do not enforce any specific no-arbitrage restrictions like

those featured in the term structure literature.2

1Studies including Bäurle et al. (2020), Iwata and Wu (2006), and Nakajima (2011) have modeled the

nominal interest rate as a censored (or bounded) variable in VAR systems featuring only lagged actual

(but not shadow) rates on the right-hand side of equations for interest rates and other economic

variables.
2In doing so, we follow previous literature that uses VARs to derive forecasts and expectational er-

rors of financial and economic variables without imposing the restrictions of a specific structural

model. Should the data satisfy such restrictions, they will also be embodied in estimates derived from

a more generic reduced-form model. The potential loss in the efficiency of forecasts that do not ex-

plicitly enforce such restrictions can be offset by a gain in robustness obtained from not imposing

http://qeconomics.org
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Our approaches include three VAR specifications. We develop Bayesian esti-

mation methods for these models and extend existing shadow-rate approaches

to the case of multiple rates. First, the “general shadow-rate VAR” corresponds to

the reduced form specification that Mavroeidis (2021) derives from his structural

VAR. This model, which includes a single interest rate, accommodates param-

eter shifts induced by hitting the ELB. Lags of both the shadow rate and actual

interest rate enter all VAR equations; macroeconomic indicators and the shadow

rate can respond to lags of both the shadow and actual interest rates. Second,

the “non-structural shadow-rate VAR” imposes some restrictions on the extent of

parameter change allowed at the ELB. Relative to the general model, this spec-

ification continues to accommodate some change at the ELB and to allow lags

of shadow and actual rates to enter all VAR equations. In addition, this model al-

lows the inclusion of multiple shadow and interest rates to which the ELB applies.

Third, the “restricted version of the non-structural shadow-rate VAR” imposes

certain block zero restrictions so that shadow and actual interest rates do not ap-

pear jointly in a given VAR equation: In equations for macroeconomic variables,

only lagged actual rates appear on the right-hand side, whereas in equations for

shadow rates, only shadow rates appear on the right-hand side. Through the ef-

fects of lagged actual rates on macroeconomic variables, the restricted specifica-

tion still features some, more limited, ELB effects on the VAR’s dynamics.

In our empirical analysis, we assess the benefits of our shadow-rate VARs in

forecasting macroeconomic and financial variables in US data.3 In out-of-sample

simulations for the US since 2010, interest rate forecasts obtained from all of

our shadow-rate VARs are clearly superior, in terms of both point and density

accuracy, when compared to predictions from a standard VAR that ignores the

ELB. In forecasting other economic indicators, our better-performing shadow-

restrictions that are false. In fact, as argued by Joslin et al. (2013), the possible gains for forecasting

from imposing restrictions from the true term structure model may be small.
3Throughout, our analysis takes the level of the ELB as given at 25 basis points, consistent with

other studies, such as Bauer and Rudebusch (2016), Johannsen and Mertens (2021), and Wu and Xia

(2016). Our earlier working paper (Carriero et al., 2023) also shows that our main results are robust to

instead setting the value of the ELB to 12.5 basis points.

http://qeconomics.org
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rate specifications match the accuracy of a standard VAR. In models with the fed-

eral funds rate as the only interest rate, the general shadow-rate VAR is compa-

rable in macroeconomic forecast accuracy to the standard VAR, as is the non-

structural shadow-rate VAR. With additional yields in the model, our restricted

version of the non-structural shadow-rate VAR also matches the accuracy of the

standard VAR in forecasting other economic indicators (while beating it in fore-

casting interest rates). Our shadow-rate VARs also deliver notable gains in fore-

cast accuracy relative to a VAR that omits shorter-term interest rate data in order

to avoid modeling the lower bound.

Examining full-sample estimates of the reduced-form shadow rates of our

models, we begin with a 15-variable specification with the federal funds rate as

the only interest rate, which yields a shadow rate estimate that quickly turned

negative following the Great Financial Crisis (GFC) and the outbreak of the

COVID-19 pandemic and eventually rose gradually back to and above the ELB.

With multiple interest rates included in model, estimates from the restricted ver-

sion of the non-structural shadow-rate VAR show a more sustained decline in the

shadow rate.4 The path of this reduced-form shadow rate estimate broadly re-

sembles shadow rates from the affine term structure models of Krippner (2015)

and Wu and Xia (2016). Collectively, our reduced-form shadow rate estimates im-

ply that, based on macroeconomic conditions and historical relationships, the

Federal Open Market Committee (FOMC) would have set the funds rate much

lower than it could.

In the context of structural VAR models (SVARs), Aruoba et al. (2022), Ikeda

et al. (2024), and Mavroeidis (2021) study shadow-rate approaches to identify

and estimate impulse responses to monetary policy shocks. We differ from these

SVAR studies in focusing on the implementation of shadow-rate approaches in

a medium-scale, reduced-form Bayesian VAR (with stochastic volatility), and we

evaluate its application to forecasting. One of our key contributions is the devel-

opment of a tractable Bayesian estimation algorithm that can be applied to re-

4Specifically, we include maturities ranging from the daily federal funds rate to 10-year Treasury

yields and the yield on BAA-rated corporate bonds with maturities of at least 20 years.

http://qeconomics.org
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duced form models considerably larger than practical in existing structural VAR

approaches. Mavroeidis (2021) instead uses particle filtering to obtain maximum

likelihood estimates of a structural VAR in the face of ELB constraints. Aruoba

et al. (2022) develop a sequential Monte Carlo sampler for Bayesian estimation

of a structural VAR with an occasionally-binding constraint that leads to shifts

in coefficients. Our Bayesian Gibbs sampler enables estimation of the reduced-

form representation of the SVAR in Mavroeidis (2021), which applies to the case

of a single interest rate subject to the ELB. Moreover, by adding some restrictions,

we extend the model and its estimation to accommodate interest rates of mul-

tiple maturities at the ELB. Our approach builds on the work of Wei (1999) for a

dynamic Tobit model as well as Chib (1992) and Chib and Greenberg (1998) for

static Tobit and Probit models, which also featured data augmentation.

The remainder of this paper is structured as follows. Section 2 relates our paper

to other contributions regarding the modeling of the ELB and its consequences.

Section 3 describes the modeling and estimation of our shadow-rate VARs. Sec-

tion 4 details the data used in our empirical application. Section 5 provides the

forecast evaluation. Section 6 concludes. A supplementary online appendix pro-

vides technical details on our estimation procedure and additional empirical re-

sults.5

2. RELATED LITERATURE

With some term structure researchers making updates of their shadow-rate esti-

mates readily available (e.g., Krippner (2015) and Wu and Xia (2016)), some other

researchers have taken a shortcut of plugging these shadow-rate estimates in as

data for the nominal short-term interest rate during an ELB episode. In this vein,

Francis et al. (2020) find that linear VARs estimated with shadow-rate estimates

from Krippner (2015) and Wu and Xia (2016) as a measure of monetary policy

(unlike models that instead use the federal funds rate) pass tests of parameter sta-

bility and yield stable impulse response estimates. While convenient, this plug-in

5A more extensive set of additional results can be found in an earlier working paper version of this

manuscript (Carriero et al., 2023).

http://qeconomics.org
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approach risks a generated regressor problem that could be substantial, as docu-

mented by, for example, Krippner (2020). Mavroeidis (2021) notes that a plug-in

approach rules out consistent estimation and valid inference with a VAR, due to

estimation error in the shadow rate that is often highly autocorrelated and not

asymptotically negligible.6

Our approach extends the unobserved components model of Johannsen and

Mertens (2021) to the general VAR setting.7 In their setting, the censoring of ac-

tual rates affected the model’s measurement equation, but not its state dynam-

ics.8 In contrast, by including actual rates as VAR regressors, the state dynamics

of our models are also affected by the ELB. Moreover, we develop a computation-

ally more efficient shadow-rate sampling algorithm (detailed below) to be able

to estimate larger models. Sampling the shadow rate directly from the truncated

posterior makes the procedure computationally efficient, and using QR meth-

ods to construct positive definite second-moment matrices makes the proce-

dure numerically reliable. Our algorithm development also includes a Bayesian

complement to the maximum likelihood-based approach of Mavroeidis (2021)

to tractably estimate a general shadow-rate VAR that accommodates the ELB-

induced parameter change implied by his structural VAR.

Our approach also extends Carriero et al. (2021), which forecast bond yields

with a BVAR-SV in just yields using a prior based on a no-arbitrage affine

6In addition, as documented in an earlier working paper version of this manuscript (Carriero et al.,

2023), such plug-in VARs also generate inferior out-of-sample forecasts compared to the approach

proposed here.
7Johannsen and Mertens (2021) provide an out-of-sample forecast evaluation for short- and long-

term nominal interest rates in a model smaller than our VARs, and find their unobserved components

shadow-rate model to be competitive with the no-arbitrage model of Wu and Xia (2016), but do not

consider forecasts of other variables. Gonzalez-Astudillo and Laforte (2024) embed a shadow-rate

model in an unobserved components model and report improved point forecasts for economic and

financial variables from the shadow-rate approach.
8Relatedly, Guerrón-Quintana et al. (2023) study non-linear dynamic factor models. When applied

to a shadow-rate model for the term structure of interest rates, they find “little evidence of nonlinear-

ities in the factor dynamics” (as opposed to non-linearities in the censored measurement equation),

which is consistent with the VAR representation used in our paper.

http://qeconomics.org
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term structure model. Carriero et al. (2021) also accommodated the ELB with

the shadow rate treatment of Johannsen and Mertens (2021), using lags of the

shadow rate on the right-hand side of the equations in forming out-of-sample

forecasts. Our paper differs in that we include macroeconomic variables in a

larger VAR and in that we allow lags of both actual and shadow rates as predictors

when estimating the model and forming forecasts. As noted above, our paper also

makes use of a more efficient approach to sampling shadow rates. Importantly,

as noted above, our approach extends Carriero et al. (2021) by accommodating

parameter change included by the ELB, rather than treating reduced-form VAR

dynamics as unchanged at the ELB.

Finally, a number of studies have developed or deployed DSGE models that

formulate monetary policy in terms of censored prescriptions from a policy rule

for shadow rates. Examples include Aruoba et al. (2021), Gust et al. (2017), Ikeda

et al. (2024), Jones et al. (2022), Kulish et al. (2017), and Wu and Zhang (2019).

3. SHADOW-RATE VARS

This section presents the shadow-rate models considered in our empirical anal-

ysis. Throughout, we take the value of the lower bound, denoted ELB , as a given

and known constant. A central element of our approach is to relate actual and

shadow rates via a censoring equation known from Black (1995):

it =max(ELB , st). (1)

As in the no-arbitrage term structure literature (surveyed in Section 1), the cen-

soring function (1) implies that the shadow rate is observed and equal to the ac-

tual interest rate when the latter is above the ELB. When the ELB is binding, so

that it = ELB , the shadow rate is a latent variable that can only take values below

(or equal to) ELB , which will inform inference about st.

Let yt = (x′t, i
′
t)
′ denote the vector of Ny observed variables, with Nx macroe-

conomic and financial indicators, denoted xt, and Ni interest rates, it, to which

the ELB applies. Throughout our exposition of the models, we omit intercepts for

simplicity and use p to denote the VAR lag order.

http://qeconomics.org
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We begin with a general reduced form model patterned after Mavroeidis

(2021). This reduced form arises from a structural VAR, in which the variable set

is limited to contain only a single interest rate, the federal funds rate, with a corre-

sponding single shadow rate. In the case of a single interest rate there are only two

regimes (at and away from the ELB) for which coherency and completeness need

to be verified to ensure the uniqueness of the reduced-form solution. Extending

the general model to include multiple interest rates would lead to a richer set of

ELB-related regimes and thus also a richer, more complex set of conditions for

coherency and completeness — a case we leave as a subject for future research.

Instead, to include multiple interest rates in a reduced-form shadow-rate VAR,

we consider a slightly simplified version of the general model, which satisfies the

conditions of coherency and completeness in a straightforward fashion. We will

refer to this model as a non-structural shadow-rate VAR.

With multiple interest rates included, the non-structural shadow-rate VAR con-

siders a vector of interest rates to which the ELB applies. For brevity, we use the

singular to refer to “the” nominal interest rate, it, and its associated shadow rate,

st, while both it and st will generally be vectors of length Ni =Ns, where the cen-

soring of the shadow-rate vector st is element-wise. In the data, at a given point

in time, the ELB may be binding for none, some, or all interest rate measures in-

cluded in it. In our data, we include a total of Ni = 6 interest rates, and the ELB

has been binding for three of those. Finally, we consider a restricted version of the

non-structural shadow-rate VAR which imposes block zero restrictions so that no

lagged shadow rates appear in equations for macroeconomic variables, whereas

no lagged actual rates appear in equations for shadow rates.

3.1 General shadow-rate VAR for the case of a single interest rate

The structural VAR model of Mavroeidis (2021) applies to the case where it is a

scalar, which leads the model to track two states (it at and away from the ELB).

Each regime allows for different shock impacts, and these are mirrored by a set of

http://qeconomics.org
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regime-specific coefficients in the model’s reduced form representation:

xt = bxss
∗
t +

p∑
j=1

Πxx,j xt−j +

p∑
j=1

Πxs,j st−j +

p∑
j=1

Πxi,j it−j + vx,t , (2)

st =

p∑
j=1

Πsx,j xt−j +

p∑
j=1

Πss,j st−j +

p∑
j=1

Πsi,j it−j + vs,t , (3)

where s∗t ≡ 1(st < ELB) · (st −ELB) (4)

and bxs, Πxx,j , Πxs,j , Πxi,j , Πsx,j , Πss,j , Πsi,j denote coefficient matrices of appro-

priate dimension.9 With Ni = 1, this general model corresponds to the reduced

form specification in Proposition 2 of Mavroeidis (2021), who establishes point

identification of the coefficient matrices and the partially latent shadow rate st.10

We augment the model to feature heteroskedastic shocks, and model the re-

gression residuals as conditionally normal, with time-varying volatility:[
vxt

vst

]
=Q−1

[
εxt

εst

]
, with εt ≡

[
εxt

εst

]
∼N (0,Λt) , (5)

where Q is an upper triangular matrix with ones on the diagonal and Λt is a di-

agonal matrix. Letting λt denote the vector of diagonal elements of Λt, the log

volatility process is logλt = γ0 + γ1 logλt−1 + ηt, with γ0 a vector of intercepts, γ1 a

diagonal matrix of AR(1) coefficients, and ηt ∼N (0,Φ). This specification of mul-

tivariate stochastic volatility, used in many previous studies, implies a reduced-

form innovation variance-covariance matrix of Σt =Q−1Λt(Q
−1)′.

The upper triangular assumption in this reduced form specification is a delib-

erate choice. It enables tractable Bayesian estimation of the general shadow-rate

VAR, while providing a way to handle the simultaneity between xt and st present

9Specifically, for all j, the dimensions of bxs, Πxx,j , Πxs,j , Πxi,j , Πsx,j , Πss,j , Πsi,j are Nx × Ns,

Nx ×Nx, Nx ×Ni, Nx ×Ni, Ni ×Nx, Ni ×Ni, and Ni ×Ni, respectively. Please recall that Ni =Ns.
10Note that our bxs and st correspond to the reduced-form parameter β̃ and the non-structural

shadow-rate Ȳ ∗
2t in Mavroeidis (2021), respectively. Identification of reduced-form parameters is dis-

cussed in Section 3.1.1, p.2866, of his paper.

http://qeconomics.org
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in (2).11 As detailed below, in estimation we break the VAR system of (2) and (3)

into separate Gibbs steps, that can be separated due to the upper triangular spec-

ification of Q, and which build on ideas from Carriero et al. (2022). We should

stress that we do not view the triangular specification of Q as representing the

impact responses of structural shocks, but merely as useful orthogonalization of

the VAR’s residuals for reduced-form estimation and out-of-sample forecasting.

3.2 Non-structural shadow-rate VAR

We also consider a non-structural shadow-rate VAR that extends to the case of

multiple rates. The non-structural shadow-rate VAR restricts the general model

of equations (2)-(3) by imposing bxs = 0 so that the regime-specific shadow-rate

regressor drops out of the xt equation:

xt =

p∑
j=1

Πxx,j xt−j +

p∑
j=1

Πxs,j st−j +

p∑
j=1

Πxi,j it−j + vx,t . (6)

The non-structural shadow-rate VAR consists of equations (3) and (6), while al-

lowing also for Ni ≥ 1.

The additional restrictions in the non-structural model mean that interest rates

do not have to be be placed last in the VAR ordering with an upper triangular

specification of Q, although for comparability, we maintain that specification

and ordering in our empirical implementation. In addition, the non-structural

model includes the same specification of its innovations and stochastic volatility

indicated above for the general model. This non-structural model, like the gen-

eral shadow-rate VAR, relates all variables (i.e., both xt and st) to lags of both the

shadow rate and actual interest rates; both actual interest rates and shadow rates

predict future macroeconomic variables and interest rates, with nominal inter-

est rates modeled as censored processes. Shadow rates may be seen as reflecting

some effects of unconventional monetary policies (such as forward guidance or

11By contrast, Mavroeidis (2021) employs a maximum-likelihood evaluation for a smaller scale ap-

plication with the likelihood computed using a particle filter.
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asset purchases), whereas actual rates are paid (earned) by borrowers (lenders)

and thereby enter in economic dynamics and predictions.

This non-structural specification permits us to extend the set of interest rates

included beyond the federal funds rate, to include multiple bond yields, with

multiple rates (not necessarily all) potentially constrained by the ELB. Studies of

multivariate time series models for forecasting also commonly include multiple

interest rates (e.g., Chan (2021), Giannone et al. (2015), Gonzalez-Astudillo and

Laforte (2024), and Johannsen and Mertens (2021)). The accuracy of macroeco-

nomic forecasts may be helped by the inclusion of long-term bond yields and

other financial indicators such as stock prices; these indicators reflect the effects

of asset purchases and forward guidance from the central bank regarding the

path of policy rates. Indeed, Crump et al. (2024) develop a large VAR intended to

be useful for a range of forecasting questions faced by a central bank and include

several bond yields and financial indicators.

Relative to the general structural VAR of Mavroeidis (2021) (specifically, his

“censored and kinked” (“CKSVAR”) specification), the non-structural specifica-

tion of equations (3) and (6) arises when certain blocks of the impact matrix of

the underlying SVAR are zeroed out. In particular, our non-structural shadow-

rate VAR zeros out the SVAR’s contemporaneous responses of xt and st to actual

interest rates.12

While not capturing the full extent of changes in coefficients at the ELB allowed

in the general model (as detailed in Mavroeidis (2021)), this non-structural spec-

ification allows for some coefficient changes at the ELB. When all shadow rates

are above the ELB, then st = it and the VAR becomes

xt =

p∑
j=1

Πxx,j xt−j +

p∑
j=1

(Πxs,j +Πxi,j) st−j + vx,t ,

st =

p∑
j=1

Πsx,j xt−j +

p∑
j=1

(Πss,j +Πsi,j) st−j + vs,t.

12Formally, in the notation of Mavroeidis (2021), this model imposes on his equation (20) that

A12 = 0 and A22 = 0. From these restrictions, it follows that κ= 1 and β̃ = 0 in his setup.
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When all shadow rates are below the ELB, then it = ELB , and the VAR becomes

xt =

p∑
j=1

Πxx,j xt−j +

p∑
j=1

Πxs,j st−j +ELB ·
p∑

j=1

Πxi,j + vx,t ,

st =

p∑
j=1

Πsx,j xt−j +

p∑
j=1

Πss,j st−j +ELB ·
p∑

j=1

Πsi,j + vs,t.

As this indicates, when interest rates are constrained at the ELB, the non-

structural shadow-rate VAR includes parameter changes in the coefficients on

st−j and an intercept shift relative to when interest rates are not constrained.

When the lags of some shadow rates are above the ELB, and other lags are below,

a linear combination of these changes occurs. Moreover, the intercept shift is not

arbitrary, but reflects the difference in coefficient loadings on st−j (i.e., reflects

Πxi,j and Πsi,j , j = 1, . . . , p) when at or above the ELB.

3.3 Restricted version of the non-structural shadow-rate VAR

For out-of-sample forecasting, in which parsimony is known to have important

benefits, the inclusion of both actual interest rates and shadow rates as predic-

tors in the general and non-structural shadow-rate VARs might not be fully con-

ducive to forecast accuracy. Accordingly, we consider an additional specification

that restricts which rates appear as predictors in the reduced-form VAR. Specif-

ically, we consider a specification in which blocks of zero restrictions are im-

posed such that the VAR includes shadow rates as VAR regressors only in fore-

casting equations for other (shadow) term structure variables, while using actual

rates (and not shadow rates) as explanatory variables in the VAR equations of

macroeconomic variables and other measures of financial conditions.13 In terms

of the non-structural shadow-rate VAR’s equations (3) and(6), the restrictions are

13The block zero restrictions in this model mean that interest rates do not have to be be placed

last in the VAR ordering with an upper triangular specification of Q, although for comparability, we

maintain that specification and ordering in our model exposition and empirical implementation.
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Πxs,j = 0 and Πsi,j = 0, so that the restricted model takes the following form:

xt =

p∑
j=1

Πxx,j xt−j +

p∑
j=1

Πxi,j it−j + vx,t , (7)

st =

p∑
j=1

Πsx,j xt−j +

p∑
j=1

Πss,j st−j + vs,t. (8)

Of course, this model is nested within the non-structural shadow-rate VAR pre-

sented above, and includes the same specification of its innovations and stochas-

tic volatility. In its predictive relationships, the restricted model can be seen as

capturing the dynamics of short-term rates that are implied by the historical be-

havior of monetary policy which would have prescribed pushing rates below the

ELB (if possible) while modeling actual economic outcomes as a function of ac-

tual interest rates, not the shadow rates.

In the restricted system of equations (7)-(8), the censored values of (lagged)

actual interest rates are state variables that influence the evolution of macroe-

conomic variables. From a forecasting perspective, such a specification could be

seen as advantageous since the decisions of households and firms are most di-

rectly connected to the actual (and not shadow) levels of interest rates, so that

their levels (but not shadow rate levels) should serve as predictors in the VAR sys-

tem. Of course, the distinction is lessened when longer-term rates (for which the

ELB has not been binding so far) are included in the vector it, as we consider in

some of our empirical applications. While longer-term rates may indeed be rel-

evant for certain spending and investment categories, some lending rates (e.g.,

car loans) may be more tied to short-term interest rates than 5- or 10-year bond

yields. In addition, deposit rates earned by some savers will also be more tied

to short-term rates, making actual short-term rates relevant for macroeconomic

forecasting even when long-term rates are included in the analysis.

Relative to the structural VARs of Mavroeidis (2021) (specifically, his CKSVAR

specification), our restricted version of the non-structural shadow-rate VAR com-

bines elements of his “censored” and “kinked” SVARs: For macroeconomic vari-

ables, the restricted model borrows from his kinked specification, whereas for

http://qeconomics.org
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shadow rate equations it follows his purely censored model. In the interest of

brevity, we omit details of the relevant restrictions (in his notation, on certain el-

ements of the C coefficient matrices that are products of A and B terms of the

SVAR). This restricted model, like the non-structural shadow-rate VAR described

in Section 3.2, satisfies the coherency and completeness conditions for a unique

reduced form solution.

Of course, this restricted shadow-rate VAR treats economic dynamics as un-

changed (apart from interest rate censoring) in the face of the ELB. While a de-

parture from the emphasis of structural VAR work in studies such as Aruoba et al.

(2022) and Mavroeidis (2021), the constant-parameter specification of the re-

stricted shadow-rate VAR can be seen as consistent with some previous work in

the literature that has concluded that monetary policy was unconstrained by the

ELB (for example, through the use of unconventional policies) so that economic

dynamics remain unaffected by the ELB. In addition to the studies noted above,

this work includes empirical analysis of the response of bond yields to economic

news by Swanson and Williams (2014) and evidence on the stability of macroe-

conomic volatility and responses to shocks, along with consistency with a DSGE

model specification, in Debortoli et al. (2019). In the context of DSGE models, Wu

and Zhang (2019) derive conditions in which alternative policies can circumvent

the ELB such that the economy retains a linear representation with a shadow rate

capturing the effects of policy.14

3.4 Estimation and forecasting

All of our models are estimated with an MCMC sampler that extends the meth-

ods of Carriero et al. (2019) and Carriero et al. (2022), henceforth “CCCM,” for

estimation of large BVAR-SV models to handle the ELB. The MCMC sampler is

fairly standard, except for a step that draws values for shadow rates when actual

rates are at the ELB.

14Wu and Zhang (2019) also provide references to empirical work that has concluded that conven-

tional and unconventional monetary policies work in a similar fashion.
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We collect all unobserved shadow rates in a vector S and all observations of

yt = [x′t i′t]
′ in a vector Y . For ease of reference, suppose the ELB binds for all

elements of st at t= t∗, t∗ + 1, . . . , T ∗ − 1, T ∗, and we have:

S =



sT ∗

sT ∗−1
...

st∗+1

st∗


, and Y =



yT

yT−1
...

y0

y−p+1


. (9)

If the data contains more than one ELB episode, S contains non-consecutive ob-

servations since values above the ELB are excluded from S. Similarly, in the case

of multiple interest rates, so that st is a vector, elements of st with values above

ELB are excluded from S.

Below we describe an MCMC algorithm for shadow-rate VAR models that

features a shadow-rate sampling step that draws from f(S |Y ,Π,Σ; S ≤ ELB),

where the inequality is element-wise, and Π and Σ refer to given values of

the VAR parameters {Π··,j}pj=1 (and in case of the general model also bxs), and

the volatility matrices {Σt}Tt=1, respectively.15 Importantly, shadow-rate sampling

conditions on the restriction that S ≤ ELB , which reflects the known timing of

when the ELB binds for the interest rates contained in the data vector Y .

As in Johannsen and Mertens (2021), the shadow-rate sampler builds on solv-

ing a “missing value” problem, which ignores the restriction S ≤ ELB , and is thus

characterized by the density f(S |Y ,Π,Σ). In light of the conditionally linear and

Gaussian structure of the model, the missing-value results in a multivariate nor-

mal posterior, and truncation at the ELB leads to the following posterior for the

15For sake of exposition, we let Σ not only include Q and {Λt}Tt=1 (which make up the volatility

matrices Σt =Q−1Λt(Q
−1)′), but also the parameter values for the SV processes, γ0, γ1, and Φ.
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shadow rates:16

S | (Y ,Π,Σ) ∼N (µ,Ω) (10)

⇒ S | (Y ,Π,Σ; S ≤ ELB)∼ T N (µ,Ω,−∞,ELB) . (11)

Our MCMC sampler is summarized in Algorithm 1, where the mth MCMC

draws of shadow rates, VAR parameters, and volatility matrices are denoted by

S(m), Π(m), and Σ(m), respectively, and Π collects the VAR’s coefficients Π:

MCMC ALGORITHM 1 (Shadow-rate VAR estimation). Given initial values for

Π(0) and Σ(0), iterate over the following blocks for m= 1,2, . . . ,M :

1. Draw shadow rates from f(S(m)|Π(m−1),Σ(m−1),Y ; S ≤ ELB) as discussed

above, and further detailed in the supplementary online appendix.

2. Draw VAR coefficients from f(Π(m)|S(m),Σ(m−1),Y ) following CCCM.

3. Draw stochastic volatility parameters from f(Σ(m)|S(m),Π(m),Y ) as in Cog-

ley and Sargent (2005) and Kim et al. (1998).

Block 1 of the MCMC sampler in Algorithm 1 requires drawing from a truncated

multivariate normal distribution, for which no direct method exists. We com-

bine a sequential Gibbs sampler, for steps m that are early in the MCMC routine,

with rejection sampling for steps m late in the chain. Following Johannsen and

Mertens (2021), rejection sampling is straightforward to do based on the missing

value problem in (10), retaining only draws that adhere to S ≤ ELB . However,

the inequality restriction pertains to the entire trajectory of unobserved shadow

rates, S, which can lead to low acceptance rates. In our experience, the accep-

tance probability in rejection sampling S ≤ ELB from (10) can be quite low ,

but mostly during the early stages of the MCMC sampler that is described above.

Once the MCMC sampler has passed its burnin state, and draws for Π and Σ are

16The notation S ∼ T N (µ,Ω, a, b) denotes a truncated multivariate normal distribution for the

random vector S, with typical elements sj , where a ≤ sj ≤ b ∀ j, and where µ and Ω are the mean

vector and variance-covariance matrix of the underlying normal distribution.

http://qeconomics.org


18 Submitted to Quantitative Economics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

converging towards their eventual posteriors, rejection sampling turns out to be

computationally efficient, in particular when implemented via a precision-based

approach as in Chan et al. (2023) or Mertens (2023). For the burnin period of the

MCMC sampler (and when rejection sampling gets stuck post burnin), we em-

ploy instead a sequential Gibbs sampling approach for sampling from the trun-

cated shadow-rate distribution in equation (11). This Gibbs sampler efficiently

adapts the methods of Geweke (1991) and Park et al. (2007) to the variance-

covariance structure of the VAR(p) case. The computations for the Gibbs sam-

pler solve a sequential Kalman filtering problem. As discussed by, among oth-

ers, Durbin and Koopman (2012), Kalman filtering calculations are susceptible to

non-positive-definite results for second-moment matrices that arise from round

off errors. We circumvent these issues by using the array methods of Kailath et al.

(2000).

In Block 2 of the MCMC algorithm, we build on CCCM and break down esti-

mation of the VAR system into a sequence of separate Gibbs steps, one for each

equation’s coefficients. The Gibbs steps are enabled by the triangular factoriza-

tion of the VAR residuals’ variance covariance matrices, Σt, as illustrated in equa-

tion (5) above. For estimation of the general model in equations (2) and (3), it is

relevant that an upper-triangular Q in equation (5) (and a VAR vector that orders

shadow rates last) leads the CCCM approach to take the residuals of the shadow-

rate equation as given when estimating the coefficients of equations for xt. This

feature enables the CCCM approach to estimate the responses of xt to contem-

poraneous shadow rates, bxs, as part of a standard draw for the regression coef-

ficients in equation (2). For model variants other than the general model, Q may

also be taken to be upper triangular. As in CCCM, we use a Minnesota prior for the

VAR coefficients and follow their other choices for priors as far as applicable.17

17All VAR coefficients in Π have independent normal priors; all are centered around means of zero,

except for the first-order own lags of certain variables as listed in Table 1. (The implications of unit

roots for trends differ in our non-linear specifications as compared to linear models for which the

Minnesota prior was designed (see, e.g., Duffy et al. (2023))). As usual, different degrees of shrink-

age are applied to own- and cross-lag coefficients. Prior variances of the jth-order own lag are set

to θ1/j
θ4 . The cross-lag of the coefficient on variable m in equation n has prior variance equal to

http://qeconomics.org
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For the purpose of out-of-sample forecasting, we generate from every model

draws from the predictive density of yt+k at forecast origin t by recursive simula-

tions. In each case, to generate draws from the h-step-ahead density, VAR residu-

als, vt+k, are drawn for k = 1,2 . . . , h. For the shadow-rate VARs, simulation of the

predictive densities jumps off MCMC draws for st, st−1, . . . st−p+1 that are used to

initialize recursions over the VAR system in (2) and (3) (or their more restricted

counterparts). At each forecast horizon, censoring of predicted interest rates is

applied to generate actual rate values, which are fed into the VAR equations to

simulate subsequent predictions of yt+k.

4. DATA

Our data set consists of monthly observations for either 15 or 20 macroeconomic

and financial variables for 1959:03 to 2022:08, taken from the September 2022

vintage of the FRED-MD database maintained by the Federal Reserve Bank of

St. Louis (McCracken and Ng, 2016). Reflecting the raw sample, transformations

to growth rates for some variable, and lag specification, the sample for model

estimation always begins with 1960:04. We first describe results from models

containing 15 variables, with the funds rate as the only interest rate, which was

constrained by the ELB from late 2008 through late 2015 and from March 2020

through February 2022. We also report some results for the non-structural and

restricted shadow-rate VARs containing 20 variables, including the federal funds

rate and five additional interest rates: two other rates constrained by the ELB,

the 6-month Treasury bill rate and the yield on 1-year Treasuries, as well as three

longer-maturity bond yields, including 5- and 10-year Treasuries and Moody’s

Seasoned BAA corporate bond yield. Table 1 lists the variable set and transfor-

mations.

θ1/j
θ4 · θ2 · σ̂2

n/σ̂
2
m. In shadow-rate equations that feature lags of actual and shadow rates as regres-

sors, the shadow-rate lags are considered as own lags, while actual-rate lags are treated as cross-lag

coefficients. Similarly, the prior for bxs in the general shadow-rate VAR is identical to the prior for a

first-order cross lag. The intercept of equation n has prior variance θ3 · σ̂2
n. In all of these settings, σ̂2

n

is the OLS estimate of the residual variance of variable n in an AR(1) estimated over the entire sample.

The shrinkage parameters are θ1 = 0.22, θ2 = 0.52, θ3 = 100, and θ4 = 2.
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TABLE 1. List of variables

Variable FRED-MD code transformation Minnesota prior

PANEL A: Non-interest-rate variables (xt)

USD / GBP FX Rate EXUSUKx ∆log(xt) · 1200 0

S&P 500 SP500 ∆log(xt) · 1200 0

Housing Starts HOUST log(xt) 1

PCE Prices PCEPI ∆log(xt) · 1200 1

PPI (Metals) PPICMM ∆log(xt) · 1200 1

PPI (Fin. Goods) WPSFD49207 ∆log(xt) · 1200 1

Hourly Earnings CES0600000008 ∆log(xt) · 1200 0

Hours CES0600000007 0

Nonfarm Payrolls PAYEMS ∆log(xt) · 1200 0

Unemployment UNRATE 1

Capacity Utilization CUMFNS 1

IP INDPRO ∆log(xt) · 1200 0

Real Consumption DPCERA3M086SBEA ∆log(xt) · 1200 0

Real Income RPI ∆log(xt) · 1200 0

PANEL B: Nominal interest rates (it)

BAA Yield BAA 1

10-Year Yield GS10 1

5-Year Yield GS5 1

1-Year Yield GS1 1

6-Month Tbill TB6MS 1

Federal Funds Rate FEDFUNDS 1

Note: Data obtained from the 2022-09 vintage of FRED-MD. Monthly observations from 1959:03 to 2022:08. En-
tries in the column “Minnesota prior” report the prior mean on the first own-lag coefficient used in our BVARs (with
prior means on all other VAR coefficients set to zero).

In our application with monthly data, we use p = 12 lags. The value of ELB

is set to 25 basis points, which was the upper end of the FOMC’s target range

for the federal funds rate in previous ELB episodes. We treat a given interest rate

— at any maturity — as unconstrained unless it reaches the value of ELB . As a

matter of consistency with this convention, we set readings for the federal funds

rate, 6-month T-bill rate, and 1-year Treasury yield to 25 basis points when esti-

mating shadow-rate VARs (not when including these rates in a standard VAR that

http://qeconomics.org
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ignores the lower bound constraint). Treasury yields with maturities of five years

and longer and corporate bond yields stayed above 25 basis points in the data and

can thus be treated as part of the vector xt, defined in Section 3, for the purpose

of model estimation.18 Our working paper (Carriero et al., 2023) shows that our

main results are robust to instead setting the value of the ELB to 12.5 basis points.

Admittedly, while some might argue that, even if longer-term bond yields did not

actually hit the ELB , they were at least somewhat constrained when short-term

rates hit the ELB, such a constraint falls outside our shadow-rate VAR framework.

But a couple of considerations could be seen as supporting our approach: First,

the shadow rate VARs allow for changes in the predictive densities of all variables,

when interest rates are above but close to the ELB (relative to the case when all

rates were so high that the prospect of a binding ELB were negligible). The reason

is that actual rates matter in the forecasting equations for non-interest-rate vari-

ables (which in turn also affect projections for future shadow and actual rates).

These mechanics are present, and show some effect, in our forecasting results.

Second, a more generic, or even a more structural, approach could have been

chosen to model interest-rate dynamics near (but above) the ELB, but both ap-

proaches have their drawbacks as well. A purely empirical approach, based on

generic time variation in parameters, comes with its own issues regarding scal-

ability and identification (as shadow rates are latent at the ELB). In contrast, a

more structural approach could derive tighter restrictions on such behavior, but

at the cost of having to impose more specific assumptions on economic struc-

tures.19

18For these yields, the lower bound constraint is an issue when simulating the predictive density,

but not for estimating the VAR.
19For example, a no-arbitrage shadow-rate model in finance would commonly assume linear and

time-invariant state dynamics, and a specific set of pricing factors. Moreover, for our purposes, such

a pure finance model would still be silent on specific sensitivities of macroeconomic variables when

interest rates are near the ELB, as captured by our shadow-rate VARs.
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5. FORECAST EVALUATION

This section presents our empirical evaluation of the shadow-rate VARs for

macroeconomic forecasting, beginning with an evaluation of forecast accuracy

and proceeding with a closer look at historical estimates of the shadow rate esti-

mates and interest rate forecasts from our models.

5.1 Average performance 2010–2017

We conduct an out-of-sample forecast evaluation in quasi-real time, where we

simulate forecasts made from January 2010 through December 2017. For every

forecast origin, each model is re-estimated based on growing samples of data that

start in 1959:03. We begin the forecast evaluation in 2010 in order to concentrate

on a sample in which the ELB had already been binding for about a year and

continued to do so for most of the period.20 We stop forecasting in December

2017 to be sure the unusual volatility of the COVID-19 pandemic does not dis-

tort forecast comparisons; with a maximum forecast horizon of 24 months, the

last outcome date in the evaluation sample is December 2019, so that our eval-

uation sample does not include any realizations from 2020 or later. However, as

shown in the supplementary online appendix, ending the evaluation sample in

mid-2022 yields similar results. All data are taken from the September 2022 vin-

tage of FRED-MD; we abstract from issues related to real-time data collection.

To evaluate our shadow rate models, we compare their forecast accuracy to

that of a benchmark linear VAR (also with stochastic volatility) in yt that has no

shadow rate treatment of the ELB. A standard linear VAR could yield plausible

macroeconomic forecasts even in settings when monetary policy is constrained

by the ELB. With short-term rates included, a conventional VAR may forecast at

least adequately because, at any given forecast origin, projections of future short-

term interest rates can turn negative. To the extent that the historical behavior of

monetary policy implies the central bank would have set the policy rate negative

20With the funds rate hitting the ELB in December 2008, our general and (unrestricted) non-

structural specifications are challenged to forecast well in 2009. The restricted non-structural

shadow-rate VAR shows better forecast accuracy in 2009.
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in an ELB episode but could not and took other steps to provide policy accom-

modation, the simple linear VAR’s forecasts could be helped by being allowed to

project negative rates over the forecast horizon. However, for sake of comparabil-

ity in assessments of interest rate projections, forecasts from linear and shadow-

rate VARs are compared against realized interest-rate values that are censored at

the ELB.

Comparing various model specifications discussed below, Tables 2 and 3 pro-

vide results on point and density forecast accuracy, measured by mean absolute

error (MAE, computed around median forecasts) and continuous ranked proba-

bility score (CRPS), respectively. For point forecasts, we provide the MAE results

rather than root mean squared error estimates (computed around mean fore-

casts) in light of the concerns of Bauer and Rudebusch (2016) with the use of

mean forecasts for interest rates near the ELB constraint. The reported forecast

horizons are h = 6, 12, and 24 months (unreported results for h = 3 months are

similar). For those variables that enter the model in monthly growth rates (e.g.,

real income and nonfarm payrolls), the h-step forecasts are transformed to aver-

age growth rates over h periods.

We begin with forecasts from models in which the federal funds rate is the only

interest rate (which allows us to consider the general shadow-rate VAR). To fa-

cilitate comparisons, we report MAE and CRPS results for the general and non-

structural shadow-rate models as relative to the standard VAR that ignores the

ELB; entries of less (more) than 1 mean the shadow rate model’s forecast is more

(less) accurate than the baseline. To roughly gauge the significance of differences

with respect to the baseline, we use t-tests as in Diebold and Mariano (1995) and

West (1996), denoting significance in the tables (at 10 percent or better) with as-

terisks.

Overall, the results in Table 2 indicate that, in models with the funds rate as

the only included interest rate, the general shadow-rate VAR specification for ac-

commodating the ELB performs better in forecasting — both point and density —

than does a standard VAR. For federal funds rate forecasts, the MAE (CRPS) ratios

for h = 6, 12, and 24 range from 0.51 to 0.63 (0.46 to 0.60), nearly all significant. For

most of the indicators of economic activity, stock price returns, and the exchange
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FIGURE 1. Estimates of ELB-specific coefficient vector bxs. Posterior medians and poste-

rior 90% uncertainty of estimates obtained using the full data sample through 2022:08.

rate, the treatment of the ELB on interest rates does not seem to bear consistently

and importantly on forecast accuracy. In most cases, the MAE and CRPS ratios

for the general model relative to the linear VAR are close to 1. However, there are

exceptions in both directions: The general model modestly and consistently im-

proves forecasts of unemployment and housing starts. On the other hand, the

linear VAR is more accurate for PCE inflation and hourly earnings.

Our non-structural shadow-rate VAR also performs better in forecasting than

does a standard VAR. While imposing some restrictions relative to the general

shadow-rate VAR specification, the non-structural VAR effectively matches its

forecast accuracy. MAE and CRPS ratios relative to the linear VAR baseline are

broadly similar for the non-structural and general shadow-rate VARs. In forecast

accuracy, the restrictions imposed with the non-structural model have little cost

or benefit. Relative to the baseline, this model continues to improve the accuracy

of forecasts for the federal funds rate and some economic indicators (e.g., PCE in-

flation) while generally matching the baseline accuracy for most other variables.
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TABLE 2. Forecast performance of shadow-rate VARs with single interest rate

MAE CRPS

General Non-structural General Non-structural

6 12 24 6 12 24 6 12 24 6 12 24

FX $/£ 0.99 0.99∗ 0.99 0.99 0.98∗ 1.00 0.99 0.99∗ 1.00 0.99 0.99∗ 1.00

S&P500 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Hsng St 0.97 0.89 0.77∗ 0.99 0.99 0.99 0.98 0.94 0.89∗ 0.99 0.99 1.02

PCE Inf 1.07∗ 1.11∗ 1.13∗ 0.97 0.96 0.96 1.06∗ 1.09∗ 1.11∗ 0.97 0.94 0.94

PPI Met 0.99 1.00 1.01 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00

PPI Fin 1.01 1.02 1.02 1.00 0.98 0.97 1.01 1.01 1.02 1.00 0.97 0.97

H. Earn 1.03∗ 1.06∗ 1.08∗ 0.99 0.99 0.99 1.03∗ 1.04∗ 1.08∗ 0.99 1.00 0.99

Hours 1.01 1.04 1.05 1.02 1.03 1.06 1.01 1.02 1.04 1.02 1.03 1.05

Nfm Pyr 1.05∗ 0.99 0.98 1.03 1.00 1.00 1.03∗ 1.00 1.01 1.03 1.02 1.01

Unemp 0.95 0.96 0.93 0.98 0.98 0.97 0.97 0.96 0.93 1.00 0.99 0.98

CapUtil 1.00 0.96 0.95 1.03 0.98 0.96 1.00 0.97 0.96 1.01 0.98 0.96

IP 1.04∗ 1.04 1.04 1.01 0.99 0.99 1.04∗ 1.03∗ 1.03 1.02∗ 1.00 1.00

Cons 1.01 1.00 1.00 0.99 0.97∗ 0.97∗ 1.00 1.00 1.00 1.00 0.99 0.99

Income 1.01∗ 1.01 1.01 1.01∗ 1.01 1.00 1.01∗ 1.01 1.00 1.01 1.01 1.00

FFR 0.51∗ 0.63 0.57∗ 0.44∗ 0.60 0.55∗ 0.46∗ 0.57∗ 0.60∗ 0.39∗ 0.51∗ 0.56∗

Note: Comparison of General shadow-rate VAR and Non-structural shadow-rate VAR against standard linear
VAR (baseline, in denominator) for horizons 6, 12, and 24. Values below 1 indicate improvement over baseline. Eval-
uation window with forecast origins from 2010:01 through 2017:12 (and outcome data as far as available). Signifi-
cance assessed by Diebold-Mariano-West test using Newey-West standard errors with h+1 lags, and stars indicating
p values of 10% and below. Relative differences of 5 percent and more (compared to baseline) are indicated by bold
face numbers.

The fact that the non-structural shadow-rate VAR forecasts about as well as the

general model suggests that the contemporaneous shadow-rate terms included

in the general model’s equations for macroeconomic variables may not have

much predictive content. As a simple check, Figure 1 reports estimates of the co-

efficients of the vector bxs from the general model estimated with data through

2022:08. For most variables, the posterior medians of the coefficients are small

and imprecisely estimated. For a few variables — PPI inflation, S&P500 returns,

and growth in the exchange rate — the posterior medians are more sizable but

still imprecisely estimated. At least in our model and sample, the ELB-specific
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TABLE 3. Forecast performance of shadow-rate VARs with multiple interest rates

MAE CRPS

Non-structural Restricted Non-structural Restricted

6 12 24 6 12 24 6 12 24 6 12 24

FX $/£ 0.99 1.00 1.05 1.00 1.01 1.01 1.00 1.01 1.17∗ 1.00 1.01 1.01

S&P500 0.99 1.01 1.08 1.01 1.01 1.02 1.00 1.03 1.26∗ 1.01∗ 1.01 1.02∗

Hsng St 1.01 1.04 1.00 1.00 1.00 1.03 1.01 1.02 1.12 1.01 1.00 1.00

PCE Inf 1.02 1.01 1.08 1.00 1.03 1.08∗ 1.01 1.01 1.20 1.00 1.01 1.06∗

PPI Met 1.00 1.03 1.08 1.00 1.01 1.01 1.00 1.04∗ 1.24∗ 1.00 1.00 1.01∗

PPI Fin 1.00 1.05 1.14 1.00 1.01 1.00 0.99 1.03 1.26 1.00 1.00 0.99

H. Earn 1.01 1.02 1.13 1.00 1.02∗ 1.03∗ 1.02 1.05∗ 1.28∗ 1.01 1.01∗ 1.02∗

Hours 1.05 1.04 1.12 0.99 1.00 1.01 1.05 1.08 1.29∗ 0.99 1.00 1.01

Nfm Pyr 1.05 1.09 1.12 1.00 0.95∗ 0.85∗ 1.05 1.12∗ 1.35∗ 0.99 0.97∗ 0.91∗

Unemp 0.98 1.03 1.00 0.99 0.97 0.86∗ 1.01 1.07 1.13 0.99 0.98 0.90∗

CapUtil 1.03 1.04 1.01 1.01 0.98 0.91∗ 1.04∗ 1.09 1.19∗ 1.00 0.99 0.95

IP 0.96 1.04 1.33 1.01 0.99 1.02 0.98 1.06 1.49 1.01 0.99 1.03

Cons 1.05 1.04 1.17 1.00 0.97∗ 0.94 1.03∗ 1.06∗ 1.27∗ 1.00 0.99∗ 0.97∗

Income 1.07 1.13 1.31 1.01∗ 1.00 0.97 1.05 1.12 1.36 1.01∗ 1.00 0.98

BAA 1.07∗ 1.13∗ 1.08 0.99 1.03 1.00 1.07∗ 1.14∗ 1.25∗ 1.02 1.03 1.06

10y Tsy 1.02 1.01 1.09 0.94 0.85∗ 0.83∗ 1.03 1.03 1.14∗ 0.93 0.89 0.92

5y Tsy 0.96 0.96 0.99 0.89∗ 0.86∗ 0.83∗ 1.00 0.99 1.02 0.91 0.86∗ 0.85∗

1y Tsy 0.74∗ 0.81 0.77∗ 0.61∗ 0.69∗ 0.79∗ 0.77∗ 0.82 0.77∗ 0.67∗ 0.73∗ 0.73∗

6m Tsy 0.58∗ 0.65∗ 0.70∗ 0.53∗ 0.58∗ 0.71∗ 0.58∗ 0.67∗ 0.70∗ 0.51∗ 0.62∗ 0.68∗

FFR 0.47∗ 0.60 0.61∗ 0.40∗ 0.55∗ 0.60∗ 0.40∗ 0.49∗ 0.60∗ 0.35∗ 0.43∗ 0.55∗

Note: Comparison of Non-structural shadow-rate VAR and Restricted non-structural shadow-rate VAR against
standard linear VAR (baseline, in denominator) for horizons 6, 12, and 24. Values below 1 indicate improvement
over baseline. Evaluation window with forecast origins from 2010:01 through 2017:12 (and outcome data as far as
available). Significance assessed by Diebold-Mariano-West test using Newey-West standard errors with h+ 1 lags,
and stars indicating p values of 10% and below. Relative differences of 5 percent and more (compared to baseline)
are indicated by bold face numbers.

coefficient estimates and their precision appear to be too limited to make this

term helpful to out-of-sample forecast accuracy.

Turning to forecasts from models including some additional interest rates, Ta-

ble 3 reports MAE and CRPS results for the non-structural shadow-rate model

and its restricted version relative to a standard VAR that ignores the ELB. Start-

ing with the non-structural specification, it significantly improves forecasts of
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not only the federal funds rate (FFR) but also some other, shorter-maturity inter-

est rates. More specifically, in interest rate results, MAE (CRPS) ratios for federal

funds rate forecasts for h = 6, 12, and 24 range from 0.47 to 0.61 (0.40 to 0.60).

The model also offers sizable gains in forecasts of the 6-month T-bill rate (with

continued statistical significance in this case) and smaller gains at longer matu-

rities (statistically significant at only the 1-year maturity). In the case of indica-

tors of economic activity, measures of inflation, and other financial indicators,

the model’s forecast performance is more mixed, often broadly comparable to

the accuracy of the linear VAR, except for a noticeable deterioration in accuracy

at the h = 24 horizon, sharper for CRPS than MAE. For macroeconomic indica-

tors, MAE and CRPS ratios for the non-structural shadow-rate VAR as compared

to the linear VAR are sometimes close to 1 (e.g., PCE and PPI inflation) and other

times modestly above 1 (e.g., nonfarm payrolls). However, reflecting the effects of

uncertainty about its ELB-specific coefficients compounding at longer horizons,

density forecasts from the non-structural shadow-rate specification fall short of

the linear VAR’s accuracy at h = 24, with CRPS ratios consistently at about 1.3.

Our restricted version of the non-structural shadow-rate VAR improves on the

overall accuracy of the non-structural specification and, in turn, the linear VAR.

For the federal funds rate, MAE (CRPS) ratios for this shadow-rate VAR range from

0.40 to 0.60 (0.35 to 0.55) for h = 6, 12, and 24, similar to the ratios for the non-

structural model. However, unlike the non-structural model, the restricted spec-

ification also significantly improves the accuracy of forecasts of most other in-

terest rates (e.g., 5-year Treasury yields at h = 12 and 24). For other variables, the

restricted specification broadly matches the MAE and CRPS accuracy of the lin-

ear VAR, with ratios sometimes slightly to modestly lower than those seen for the

non-structural shadow-rate VAR and other times a little higher. For example, for

nonfarm payrolls, MAE ratios for h = 6 through 24 range from 0.85 to 1.05 for

the restricted model, compared to 1.05 to 1.12 for the non-structural specifica-

tion. Comparing the two shadow rate models covered in the table, the superi-

ority of the restricted model is sharpest at the h = 24 horizon. These ratios for

non-interest rate variables indicate that the restricted model is overall very simi-

lar to the linear VAR, at all horizons, whereas ratios for the non-structural speci-
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TABLE 4. Shadow-rate VARs compared against a linear VAR w/o short-term interest rates

MAE CRPS

w/o yields w/yields w/o yields w/yields

6 12 24 6 12 24 6 12 24 6 12 24

FX $/£ 1.00 1.00 1.01 1.02 1.02 1.04 1.00 1.01 1.02 1.01 1.02 1.02

S&P500 1.00 0.97∗ 0.99∗ 0.99 0.99 1.03 1.00 0.99 1.00 1.00 1.00 1.02∗

Hsng St 0.92∗ 0.85∗ 0.82 1.04 1.15 1.55∗ 0.93 0.88∗ 0.89 1.03 1.14 1.44∗

PCE Inf 0.95 0.91 0.88 0.94 0.95 0.97 0.95 0.91 0.88 0.94 0.93 0.97

PPI Met 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.01

PPI Fin 1.01 0.99 0.97 0.98 0.99 0.97 1.01 0.99 0.96 0.97 0.97 0.97

H. Earn 1.03 1.03 1.01 1.00 1.00 0.98 1.01 1.01 1.00 1.01 1.01 0.99

Hours 1.01 0.93 0.86 1.00 0.96 0.97 1.04 0.98 0.88 1.01 0.98 0.97

Nfm Pyr 1.01 0.92 0.90 0.93 0.82∗ 0.83 1.00 0.95 0.91 0.94∗ 0.88∗ 0.87

Unemp 1.05 0.98 0.92 1.04 0.99 0.98 1.02 1.01 0.92 1.01 0.99 0.96

CapUtil 1.04 0.93 0.84∗ 0.79∗ 0.74∗ 0.72∗ 1.04 0.95 0.84∗ 0.86∗ 0.80∗ 0.77∗

IP 0.98 0.95∗ 0.92 0.96 0.91∗ 0.91 0.99 0.95∗ 0.93 0.97 0.93∗ 0.93

Cons 1.01 1.00 0.97 0.94 0.91 0.97 1.00 0.99 0.98 0.99 0.96 0.98

Income 1.01 0.99 0.99∗ 1.01 1.00 1.01 1.01 1.00 0.99∗ 1.00 0.99 1.00

BAA −.− −.− −.− 0.96 0.94 0.92 −.− −.− −.− 0.97 0.95 0.95

10y Tsy −.− −.− −.− 0.97 0.98 0.99 −.− −.− −.− 0.99 1.00 1.04

5y Tsy −.− −.− −.− 1.04 1.06 1.02 −.− −.− −.− 1.02 1.01 0.95

Note: Comparison of “Non-structural shadow-rate VAR (w/o yields)” and “Restricted non-structural shadow-
rate VAR (w/yields)” against “Linear VAR without short-term yields’ (baseline, in denominator) for horizons 6, 12,
and 24. Values below 1 indicate improvement over baseline. Evaluation window with forecast origins from 2010:01
through 2017:12 (and outcome data as far as available). Significance assessed by Diebold-Mariano-West test using
Newey-West standard errors with h + 1 lags, and stars indicating p values of 10% and below. Relative differences
of 5 percent and more (compared to baseline) are indicated by bold face numbers. In some cases, due to strong
performance of the baseline model, relative MAE may involve divisions by zero. These cases are reported as blank
entries.

fication show more advantage to the linear model, especially at longer horizons.

From these patterns, it appears that, in forecasting with reduced-form shadow-

rate VARs, there is some benefit to distinguishing between effects from actual and

shadow rates as predictors for economic outcomes (i.e., to imposing zero restric-

tions on Πxs,j and Πsi,j , j = 1, . . . , p).

As noted above, to mitigate ELB constraints some studies have omitted short-

term interest rates from VARs. Table 4 compares the accuracy of forecasts from
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shadow-rate VARs that include short-term interest rates to forecasts from a lin-

ear BVAR that excludes short-term interest rates (specifically, the rates that hit

the ELB in our sample: the federal funds rate and Treasury yields at 6-months

and 1-year maturities) but includes longer-term yields. We begin with the non-

structural shadow rate model in which the federal funds rate is the only inter-

est rate (results are similar for the general model). At the h=6 forecast horizon,

the MAE and CRPS ratios indicate that, for most variables, point and density

forecasts from this model match or slightly the accuracy of corresponding fore-

casts from the linear VAR omitting short-term interest rates. The advantage of the

shadow-rate model increases as the horizon lengthens, achieving gains as large

as 18 percent. With additional interest rates included in the restricted version of

the shadow-rate VAR, the MAE and CRPS ratios of Table 4 indicate that, in a few

cases (e.g., housing starts) the linear VAR yields better forecasts than the shadow-

rate specification. However, for most variables, the shadow-rate VAR matches or

exceeds the forecast accuracy of the linear VAR that excludes short-term rates.

The gains are more consistent across horizons than in the case of the shadow-

rate VAR without longer-term interest rates, but of comparable magnitudes. Col-

lectively, in our data, for out-of-sample forecasting the shadow-rate “solution”

to the ELB is better than the alternative of simply excluding short-term interest

rates.

Our supplementary online appendix and an earlier working paper version of

this paper (Carriero et al., 2023) report various robustness checks, with similar

results to those reported here. In particular, when extending the evaluation pe-

riod to end in August 2022, it turns out that while the economic effects of the

pandemic left a heavy mark on readings of macroeconomic and financial vari-

ables in 2020 and 2021 — see, for example, our companion work in Carriero et al.

(2024) — they did not materially affect the relative comparisons reported here.

5.2 Shadow-Rate Estimates

The forecasting performance of the shadow-rate VARs of course reflects the un-

derlying reduced-form estimates of the shadow rate. This section presents full-
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sample estimates of the shadow rate from a few of the specifications included in

the out-of-sample forecast evaluation. Of course, it is well known from the term

structure literature that shadow rate estimates are often sensitive to model spec-

ification (see, e.g., Christensen and Rudebusch (2015)). Our reported reduced-

form estimates of shadow rates also show some sensitivity, to the model and

whether the model includes multiple interest rates or just the federal funds rate.

Figure 2 reports our reduced-form shadow rate estimates (posterior medians

and 90 percent credible sets) associated with the federal funds rate, along with

comparisons to some other estimates.21 Panel (a) shows smoothed, full-sample

estimates obtained from models with the federal funds rate as the only inter-

est rate: (1) the general shadow-rate VAR and (2) the non-structural shadow-rate

VAR, which were shown above to have comparable forecast accuracy. Panel (b)

provides corresponding estimates for the restricted version of the non-structural

shadow-rate VAR that includes multiple interest rates, along with (for compar-

ison) the shadow-rate measures from Krippner (2015) and Wu and Xia (2016)

based on affine term structure models. For historical perspective, the chart sam-

ples begin in January 2006. For 2006 through November 2008, with the federal

funds rate above the ELB, the shadow rate from our models is simply the ob-

served funds rate.

As indicated in Panel (a), when the only interest rate included in the model

is the federal funds rate, the general shadow-rate VAR generates a shadow rate

estimate (dashed red line) that fell to just about -70 basis points in 2009. There-

after, the shadow rate very slowly edged up over time, before finally rising above

the ELB by early 2016, following the Federal Reserve’s first increase in the federal

funds rate in mid-December 2015 (when the FOMC raised the target range from

21To be clear, in the full sample case, the model is estimated with data for 1960:04 through 2022:08,

but the figure omits most of the period of 1960-2008 during which the ELB did not bind. While not

reported in the interest of brevity, quasi-real-time estimates have more time variability than do the

full sample estimates, but follow a quite similar contour. As might also be expected, the quasi-real-

time estimates are less precise than the full sample estimates, with credible sets wider than those of

the full sample estimate. However, the inclusion of bond yields improves the precision of the shadow

rate estimate in quasi-real time and reduces its variability over time.
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FIGURE 2. Shadow-rate estimates (posterior medians and 90% bands). Panel (a) reports

estimates generated with models including the federal funds rate as the only interest rate:

(1) the general shadow-rate VAR and (2) the non-structural shadow-rate VAR. Panel (b)

reports corresponding estimates from the restricted version of the non-structural shad-

ow-rate VAR estimated using all variables, including longer-term yields. Panel (b) also in-

cludes current estimates of the shadow rates of Krippner (2015) and Wu and Xia (2016).

0-25 basis points to 25-50 basis points). During the first year of the COVID-19

pandemic, this shadow rate from the general model declined very quickly, briefly

hitting a nadir of about -1.75 percent, before rising back up to about -1 percent

and gradually climbing further to the ELB.

By comparison, as shown in the same panel, the estimate of the shadow rate

from the non-structural shadow-rate VAR (solid black line) posted a notably

sharper decline over the course of 2009, falling below -2 percent by 2010 and re-

maining well below zero for a considerable period before drifting back up again

by 2011. The estimate is particularly negative in the 2009-2011 period, and corre-

sponds to the initially slow recovery in real activity after the GFC. The shadow rate

estimate from this model showed similar behavior (as compared to its behavior

in the earlier ELB episode) during the first year of the COVID-19 pandemic, drop-

ping quickly in the spring of 2020. With the model including a range of macroe-

conomic and financial variables but excluding term structure data, the contours
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of shadow rate estimates resemble unconstrained Taylor-rule prescriptions cal-

culated for the Great Recession years by Eberly et al. (2020).

As indicated in Panel (b), the estimates from the restricted version of the

non-structural shadow-rate VAR including multiple interest rates display con-

tours with some similarities to the shadow rate estimates from the non-structural

model with the funds rate as the only interest rate, but also with noticeable dif-

ferences. With the additional yields (and added restrictions) in the model, the

estimated shadow rate declined more slowly than in the non-structural model

without bond yields. 22 This estimate of the reduced-form shadow rate bottomed

out only during the years 2011 and 2013 (and just below −2 percent), compared

to the earlier trough during the years 2009 and 2010 in the model estimates with-

out bond yields. The rate then gradually rose and crossed the ELB in early 2016.

The rate dropped precipitously in the spring of 2020, with the posterior median

reaching −3.4 percent in August 2020. The rate moved gradually higher starting

in April 2021 and crossed the ELB in April 2022, following the FOMC’s first in-

crease in the federal funds rate in mid-March 2022. Overall, the estimates from

our models with and without bond yields indicate that the shadow rate estimates

are significantly informed by the interest rate equations.

Finally, although our shadow-rate VARs do not impose the restrictions of an

affine term structure model, our shadow-rate estimates from the restricted ver-

sion of the non-structural model including multiple interest rates have some sim-

ilarities to the Krippner and Wu-Xia measures based on affine term structure

models. As indicated in Panel (b) of Figure 2, our restricted version of the non-

structural shadow-rate VAR estimate (black line with gray shading) and the Wu-

Xia series move together from 2009 through 2013. Over the remainder of the ELB

episode following the Great Recession, as our estimate gradually rose to the ELB

over the course of 2014 and 2015, the Wu-Xia series fell and then rose sharply.

22Our earlier working paper (Carriero et al., 2023) provides estimates of shadow rates for the 6-

month and 1-year Treasury maturities. The contours of these estimates follow those shown here for

the shadow federal funds rate.
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FIGURE 3. Predictive densities for actual and shadow values of the federal funds rate. Pre-

dictive density for the actual and shadow values of the federal funds rate, simulated out

of sample at different jump-off dates. Dashed-dotted (black) lines depict the predictive

density for the actual rate as generated from the standard VAR. The shaded (light blue)

area with dashed (white) lines represent the restricted version of the non-structural shad-

ow-rate VAR’s predictive density of the shadow rate, while solid lines (dark blue) reflect

the corresponding censored density for the actual interest rate. Posterior medians and 68

percent bands.

Compared to the other estimates, the Krippner measure fell more sharply in

2012-2013 and then bounced back more quickly in 2014-2015.

5.3 Interest rate forecasts made since the outbreak of COVID-19

The period following the outbreak of the COVID-19 pandemic in the US and the

aggressive easing of monetary policy by the FOMC provides an opportunity for

a case study of predicted interest rate dynamics from our shadow-rate VARs as

compared to a standard VAR that ignores the ELB. These comparisons focus on

the restricted version of the non-structural shadow-rate VAR that includes multi-

ple interest rates as compared to a standard VAR. The key differences between the

VAR specifications considered here (standard vs. shadow-rate) is the treatment of

nominal interest rates near the ELB, which (while not shown) has implications for

the resulting forecasts for other, mainly macroeconomic, variables.
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Figure 3 shows the evolution of federal funds rate forecasts as of March 2020

and September 2020 origins.23 With data available through March 2020, as the

outbreak of COVID-19 hit the US economy, the point forecast from a standard

VAR put the funds rate well below the ELB for the entire forecast horizon, with

substantial probability mass on very negative rates. As of September 2020, the

point forecast was close to the ELB for several months, but throughout the fore-

cast horizon substantial mass in the predictive distribution remained in negative

territory.

At the March 2020 forecast origin, past data for the US economy was still well

above the ELB, and the predictive density for the shadow rate generated from

the restricted version of the non-structural shadow-rate VAR was quite similar

to the (uncensored) actual rate distribution obtained from the standard VAR, as

shown in Panel (a) of the figure. However, things changed as the economy stayed

at the ELB in subsequent months. As noted earlier in this section, the rapid de-

terioration in economic conditions led to a decline in the (median) shadow rate,

which stabilized a little below −2.5 percent by the second half of 2020. As shown

in Panel (b), as of September 2020, negative levels of the shadow rate at the fore-

cast origin pulled down the predictive densities for the shadow rate.24 As a result,

until the second half of 2021 (detailed results omitted in the interest of brevity),

the shadow rate was expected to cross above the ELB quite a bit later than im-

plied by uncensored federal funds rate predictions generated from the standard

VAR.

In results not pictured in the interest of brevity, jumping forward in time a cou-

ple of years yields fewer differences in the models’ predictive densities. In March

2022, when the FOMC raised the funds rate off the ELB, predictive densities of

the funds rate from both the standard and shadow-rate VARs were solidly above

the ELB throughout the forecast horizon, with comparable median projections.

23Forecasts generated at a given forecast origin, say March 2020, reflect model estimates based on

data up to and including the month of the forecast origin.
24The shadow-rate VARs’ predictive densities integrate over the entire posterior distribution of

shadow-rate values, as depicted, for example, in Figure 2, instead of jumping off any specific estimate

for current and past values of the shadow rate.
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At the end of our sample, in August 2022, the median forecasts from the two ap-

proaches (standard and shadow-rate VAR) were even more similar, with the funds

rate rising from about 3 percent to nearly 5 percent before gradually declining.

6. CONCLUSION

Motivated by the prevalence of lower bound constraints on nominal interest

rates, this paper develops a tractable approach to including a shadow-rate spec-

ification in medium-scale VARs commonly used in macroeconomic forecasting.

Our models treat interest rates as censored observations of a latent shadow-rate

process in a VAR setup. As in a classic Tobit model, the shadow rate is assumed

to run below the ELB when the actual interest rate is at the ELB, and equal to the

observed interest rate when the ELB is not binding.

Overall, our shadow-rate specifications successfully address the ELB, which

drastically improves interest rate forecasts (compared to a model that ignores

the ELB), while broadly matching the standard VAR’s ability to forecast a range of

other variables. In this respect, our proposed approaches could be seen as help-

ful tools for preserving the practical value of VARs for forecasting in the presence

of the ELB. In practical settings, presented with forecasts from standard VARs

in which interest rates fall below the ELB, consumers of forecasts could ques-

tion the reliability or plausibility of the forecasts of the other variables of interest.

Forecasts of macroeconomic variables from shadow-rate VARs that obey the ELB

could be seen as more coherent and therefore practically useful even if their his-

torical accuracy were no greater than that achieved by a standard VAR ignoring

the ELB.
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