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This supplemental appendix contains additional theoretical results referenced in the main

paper. Specifically, Section A contains a theoretical example in which we can derive the

asymptotic bias as a function of primitives. Section 2 of the paper discusses this example

immediately after Theorem 1. Section B explains how our framework extends to VARmodels.

Section 5 of the paper references this explanation in its discussion of extending the original

framework to a setting with infinite lag feedback that decays relatively fast. Finally, Section

C contains additional simulation studies that investigate the behavior of the proposed IV

estimator in feedback models that deviate in various ways from the main setup considered

in the paper and compare with additional estimators a researcher might have considered.

Appendix A Theoretical example

As a proof of concept, this section introduces a theoretical example where the average sample

autocorrelation ρ̂ of the matrix X̃ remains bounded away from zero in large samples. We

construct a time series x̃t with short dependence in which the average population first-order

auto-correlation equals 1/2 and 1
K

∑
t M̃tt−1

p−→ −1
2
. For this example, we therefore show that

the asymptotic bias in the worst direction is τ K
T
, where τ ̸= 0 is a constant depending on
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the primitives of the data generating process. This example renders the OLS estimator for

the parameter α′β inconsistent (when K is proportional to T) and standard t-statistic based

inferences asymptotically invalid (when K/
√
T is separated from zero asymptotically).

Example. Assume that x1t = x̃1t + aεt and xkt = x̃kt for 2 ≤ k ≤ K, where x̃t = U⌊(t+1)/2⌋

for Ut ∼ i.i.d.N(0, σ2
UIK). The researcher observes {yt, xt}Tt=1 with even T where yt = x′

tβ+εt.

The errors {εt}Tt=1 are i.i.d. with mean zero and variance σ2 and are independent of X̃. We

will derive that in this setting, as long as K/T → ϕ with ϕ ∈ [0, 1/2), we have the following

formula for the asymptotic bias of the OLS estimator for the first coefficient:

β̂OLS
1 − β1 = τ

K

T
+ op(1) where τ = −σ2

2

a2

σ2
U(1− 2ϕ) + a2σ2(1− ϕ)

. (1)

Specifically, if ϕ > 0, then the OLS estimator for the first coefficient is inconsistent. If

K/
√
T → ∞, then the bias of the OLS estimator for the first coefficient asymptotically

dominates its standard error, and the standard t-statistic based inferences are asymptoti-

cally invalid. The critical feature of this example is that we can derive a formula in terms

of primitives for the leading term of the bias, which is non-random here.

The result follows from two statements we derive for this example:

1

K

∑
t

M̃tt−1
p−→ −1

2
, (2)

α′(S̄/T )−1α
p−→ a2

σ2
U(1− 2ϕ) + a2σ2(1− ϕ)

, (3)

where the notation is as in Theorem 1.

The proof of (2) uses some ideas from Anatolyev and Smirnov (2024). First, note that

∑
t

M̃tt−1 = −
T∑
t=1

P̃tt+1 = −
J∑

j=1

U ′
j(2U

′U)−1(Uj + Uj+1) = −K

2
− 1

2

J∑
j=1

PU
jj+1,

where PU = U(U ′U)−1U ′ is a J × J projection matrix, U = [U1, . . . , UJ ], and J = T/2. Let
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Σj =
∑J

i/∈{j,j+1} UiU
′
i . The Sherman–Morrison formula gives us:

PU
jj+1 =

U ′
jΣ

−1
j Uj+1

(1 + U ′
jΣ

−1
j Uj)(1 + U ′

j+1Σ
−1
j Uj+1)− (U ′

jΣ
−1
j Uj+1)

2 .

The denominator is always greater than or equal to one, so, E[PU
jj+1]

2 ≤ E[U ′
jΣ

−1
j Uj+1]

2. The

matrix Σj is independent from Uj and Uj+1, thus, E[U ′
jΣ

−1
j Uj+1] = 0 and E[U ′

jΣ
−1
j Uj+1]

2 =

σ4
UE tr(Σ−2

j ). Hence,

E

[
2

K

∑
j

PU
jj+1

]2
≤ 4

K2

∑
j,i

√
E[PU

jj+1]
2
√
E[PU

ii+1]
2 ≤ T 2

K2σ
4
UE tr(Σ−2

j ).

The matrix Σj has a Wishart distribution. Von Rosen (1988) derives a formula for the mo-

ments of the inverted Wishart distribution, and it implies in our setting that T
2

K
2E tr(Σ−2

j ) →
0. Putting all derivations together, we arrive at the statement in (2).

To establish (3), we apply a formula for block inversion to matrix S̄. We are interested

only in the (1,1) element of this inverse:

[S̄−1]11 =
(
X̃ ′

1M−1X̃1 + a2σ2(T −K)
)−1

,

where the notation is the same as in Section 2.2. Using the structure of the regressors:

1

T
X̃ ′

1M−1X̃1 =
1

J
U ′
1M

U
−1U1,

where U = [U1, U−1] with U1 a J × 1 vector, and MU
−1 is the J × J matrix that projects off

U−1. By construction U1 is independent from MU
−1. Hence,

E[
1

J
U ′
1M

U
−1U1] =

σ2
U

J
tr(MU

−1) = σ2
U

J −K + 1

J
= σ2

U

T − 2K + 2

T
.
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By standard arguments, we have

E

(
1

J

∑
i ̸=j

MU
−1,ijU1,iU1,j

)2

=
2σ4

U

J2

∑
i ̸=j

(MU
−1,ij)

2 = O(1/J).

V ar

(
1

J

∑
i

MU
−1,iiU

2
1,i

)
≤

3σ4
U tr

(
MU

)
J2 = O(1/J).

These moment bounds finally imply that

α′(S̄/T )−1α = a2[(S̄/T )−1]11 =
a2

σ2
U

T−2K
T

+ a2σ2 T−K
T

(1 + op(1)),

and leads to statement (3) and hence (1).

Appendix B VAR models

This section discusses how a VAR model fits the baseline framework when extended to

infinite feedback. Section 5 introduces a generalization of Assumption 1 by allowing for

a finite number of feedback terms αℓ with ℓ = 1, ..., L. Section 5 shows that the paper’s

main result, namely, the result on the OLS bias, generalizes, and the bias contains L terms

corresponding to the appropriate feedback lags. We explicitly state that this result directly

generalizes to the infinite feedback case as long as feedback size decays fast enough. This

result, though a very natural generalization of the current paper, is technically demanding

and deserving of a separate paper. Here, we only spell out how a typical VAR model widely

used in empirical macroeconomics naturally fits this framework.

Consider a data-generating process described by a VAR(1) setup:(
yt

zt

)
= A

(
yt−1

zt−1

)
+ et. (4)

Here, zt is multi-dimensional and may include multiple lags of yt and other variables while

yt is a scalar. It is customary to assume that et is an i.i.d. sequence of shocks (or forecast

errors). One can recast any multi-dimensional VAR(p) as an (even higher dimensional)

VAR(1), which is known as the companion-form representation. Stationarity of the VAR
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holds when ∥A∥ < 1. The literature typically estimates VAR models via equation-by-

equation OLS. Consider OLS estimation of the first equation:

yt = β′(yt−1, z
′
t−1)︸ ︷︷ ︸

=xt

′
+ eyt = x′

tβ + eyt ,

where β′ is the first row of the matrix A, and eyt is the first element of et.

Assume that et is Gaussian and decompose it as et = (1, α′)′eyt + (0, ξ′t)
′, where ξt’s

dimension is one lower than et and ξt is independent from eyt . One implication of (4) is that

xt =

(
yt−1

zt−1

)
=

∞∑
j=0

Aj

(
0

ξt−j−1

)
︸ ︷︷ ︸

=x̃t

+
∞∑
j=0

Aj

(
1

α

)
︸ ︷︷ ︸

αj

eyt−j−1

where x̃t is independent of e
y
t at all lags and leads, and thus, we can take it as the strictly

exogenous part for the first equation. Here, we have a model with infinite feedback αj =

Aj(1, α′)′, where the feedback size is geometrically decaying: ∥αj∥ ≤ ∥A∥j
√

1 + ∥α∥2. Thus,
the stated requirement of a fast (here, geometrically) decaying feedback holds.

Appendix C Additional simulations

This section contains additional simulation results that support the paper’s central message

and explore the results’ robustness in several directions.

C.1 Artificial data simulations

Short-run vs long-run dependence. Footnote 4 of the paper references this first simu-

lation exercise. The simulation design underlying Figure 1 of the paper uses K independent

AR(1) processes to generate X̃. Figure 1 shows that bias increases quickly with the auto-

regressive parameter ρ. In an AR(1) process, the parameter ρ characterizes both the short-

term dependence and the long-run persistence, so one may wonder which of these features

is essential for the result. Theorem 1 of the paper states that the first-order sample auto-

correlation matters. We, therefore, repeat the experiment presented in Figure 1 of the paper
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but now simulate X̃ as independent MA(1) processes. In an MA(1) process, the parameter

ρ characterizes the short-term dependence only.

The outcome vector is generated as y = Xβ + ε with ε ∼ N(0, I) and β = 0. The

design matrix is generated as x1t = x̃1t + aεt−1 and X−1 = X̃−1, where X̃ is generated as

a rotated MA(1) process with X̃X̃ ′/T = IK , independent from ε. Specifically, we generate

vt = ρut−1+ut with {ut}Tt=1 i.i.d. N(0, IK) and define X̃ = V (V ′V/T )−1/2, where the square

root comes from Cholesky decomposition. Across simulations, we fix the sample size at

T = 200 and the coefficient on the feedback mechanism at a = 1.5. Simulation results are

summarized in Figure C.1 with the left panel showing results for the number of regressors

K between 4 and 150 (fixing ρ at 0.8). The right panel reports the results for the auto-

correlation in regressors ρ between 0 and 0.98 (fixing K at 50). We report simulated values

of absolute bias and standard deviation for the first coordinate of OLS and IV together

with the mean absolute value of the ratio of the lower trace of M to the sample size. The

results present sixth-order polynomial fits to the simulation results across K. The results

are extremely similar to those reported in Section 2 regarding the size of the bias/standard

deviations and dependence on the number of regressors and their one-period predictability.
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Figure C.1: Absolute Bias and Standard Deviation of OLS and IV with T=200

Inconsistency of OLS. We now report another experiment using artificial data, replicat-

ing the simulations reported in Figure 1 of the paper but for a larger sample size. Figure

6



C.2 presents results for the same simulation design formulated in Section 2.2 of the paper

but with a sample size of T = 800. The number of regressors varies from 16 to 400. Here,

the bias reaches the same level as in Figure 1 when the number of regressors is the same

fraction of the sample size, while the standard deviations drop two-fold. These comparative

statics demonstrate the inconsistency of the OLS for the worst direction when the number

of regressors K grows proportionally to T . In essence, the estimator concentrates on an

incorrect value as the sample size increases.
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Figure C.2: Absolute Bias and Standard Deviation of OLS and IV with T = 800

C.2 Robustness to violations of Assumption 1

Our main results (OLS bias and the consistency of our newly proposed estimator) rely

heavily on Assumption 1. This section explores how these results adjust when we relax parts

of Assumption 1. The simulation experiment in this subsection tries to mimic the US macro

data described in Section 6.

Two-period feedback We consider a violation of Assumption 1, part (i), by introducing

two periods of empirically motivated feedback effects. Except for the additional feedback pe-

riod, the simulation setup is identical to the baseline (homoskedastic) simulations in Section

6. Specifically, we simulate samples as X = Xr +D′εα′
1 + (D′)2εα′

2 and y = Xβ + ε where

α1 = X ′
rD

′e/(e′e) and α2 = X ′
r(D

′)2e/(e′e), ε ∼ N(0, σ2I), σ2 = e′e/(T−K) for e = yr−Xrβ.
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We report results for estimators of the linear contrasts θ1 = α′
1β and θ2 = (α1 + α2)

′β. The

left panels of Figures C.3 and C.4 depict the results of the experiments (for different K) at

the 10th percentile of the OLS bias. The right panels of Figures C.3 and C.4 contain the

results of the experiments at the 90th percentile. For those experiments, Figure C.3 reports

the OLS bias and standard deviation and the IV bias and standard deviation in the first feed-

back direction (θ1 = α′
1β) along with the normalized lower trace of Mr = I −Xr(X

′
rXr)

−1X ′
r

that is, tr(D′Mr)/T . Figure C.4 reports similar indicators in the direction mixing the first

and second feedback directions (θ2 = (α1 + α2)
′β).
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Figure C.3: Absolute Bias and Standard Deviation of OLS and IV with two-period feedback
and θ1 = α′

1β

Theorem 7 of the paper extends our results to multi-period feedback and shows that the

bias of OLS has two terms corresponding to the two periods of feedback. It also shows that

an IV-type estimator has no bias if its two lower traces are zero. The estimator we introduced

relies heavily on the assumption of one-period feedback by only zeroing out the first lower

diagonal. This simulation exercise aims to answer what happens when one misjudges the

feedback’s lag length. Figure C.3 shows that our IV estimator successfully corrects the

bias in the direction of the first-order feedback, as predicted by Theorem 7. However, the

bias due to the second lag feedback is still present, as shown in Figure C.4. There, the IV

estimator has a noticeably smaller bias than the OLS, but some remain. Figures C.5 and

C.6 report the size of t-statistic based OLS and IV inferences in the same experiments. The

8



5 25 50 100

0

0.05

0.1

0.15
10th percentile experiment

5 25 50 100

0

0.05

0.1

0.15
90th percentile experiment

Figure C.4: Absolute Bias and Standard Deviation of OLS and IV with two-period feedback
and θ2 = (α1 + α2)

′β

results of Theorems 5 and 6 (on Gaussianity of estimators) extend to de-meaned versions

of IV-type estimators that are not unbiased. One can see that in both cases of θ1 = α′
1β

and θ2 = (α1 + α2)
′β the sizes depicted in Figures C.5 and C.6 trace extremely closely the

biases of the corresponding estimators depicted in Figures C.3 and C.4, pointing out that

the size distortions come from biases and not from violations of Gaussianity or inappropriate

standard errors.

C.3 Robustness of inference

Non-Gaussian errors The asymptotically valid inference based on the t-statistic for the

new estimator is established in Theorems 5 and 6 of the paper. Theorem 5 considers cases

with a moderate number of regressors K/T → 0 and uses only Assumption 1. Theorem 6

applies to the instances where the number of regressors is proportional to the sample size and

assumes that the regression errors are Gaussian. The paper discusses that this Gaussianity

of errors assumption matters for the standard errors. Skewed errors may require correcting

the standard errors, though the correction is likely minor. We consider a violation of the

assumption of Gaussian errors to explore whether inference is sensitive to this restriction.

The simulation setup here is identical to the setup in Section 6 using the US data with

one change: we generate mutually independent errors with εt | Vt = vt ∼ sN(vt, σ
2) and
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Figure C.5: Size of Nominal 5% two-sided tests using OLS and IV with two-period feedback
and θ1 = α′

1β
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Figure C.6: Size of Nominal 5% two-sided tests using OLS and IV with two-period feedback
and θ2 = (α1 + α2)

′β
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Figure C.7: Absolute Bias and Standard Deviation of OLS and IV with skewed errors

Vt = −.6 + binomial(.6), where s is such that the variance of εt is σ2. Thus, the errors

follow an asymmetric 0.4/0.6 mixture of two Gaussian distributions (one with positive and

one with negative mean).

5 25 50 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
10th percentile experiment

5 25 50 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
90th percentile experiment

Figure C.8: Size of Nominal 5% two-sided tests using OLS and IV with skewed errors

Figure C.7 reports the biases and standard deviations of the OLS and IV estimators

for the 10% and 90% experiments (the description is similar to the one in Figure 2 of the

paper). The results are highly comparable to the ones reported there, as this non-Gaussian
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experimental design satisfies Assumption 1. Figure C.8 reports the size of tests based on the

t-statistics for the same experiments. Our inference procedure controls size exceptionally

well for all K, even without Gaussian errors.

Heteroskedasticity In this part, we consider a violation of Assumption 1, part (ii), by in-

troducing empirically motivated heteroskedasticity. Here, the simulation design is precisely

the heteroskedastic design described in Section 6 and underlying Figure 4 of the paper.

Figure 4 of the paper depicts the biases and standard deviations of the OLS and the IV

estimator when Assumption 1 is violated by conditional heteroskedasticity of unspecified

form following the empirically observed one. We see from Figure 4 that bias correction is

performed successfully in this case. Figure C.9 reports simulated size in the experiments

(for different K) falling in the 10th and 90th percentile of the OLS size for the same exper-

iments. Figure C.9 shows that despite an excellent bias correction, the inference based on

the IV estimator t-statistic is imperfect. This issue arises because our standard errors are

homoskedasticity-only and are not heteroskedasticity-robust.
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Figure C.9: Size of Nominal 5% two-sided tests using OLS and IV with heteroskedasticity

C.4 Alternatives to our estimator

Principal component analysis (PCA) One common suggestion in empirical macroe-

conomics when dealing with many regressors is to use PCA for dimension reduction. This
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suggestion relies on the empirical observation that a large set of macro indicators have a

strong factor structure present. The essence of the suggestion is the following: one wants to

estimate a regression model yt = xtβ + εt with interest in the coefficient β1. To reduce the

number of regressors, one first conducts a PCA on the T × (K − 1) set of regressors X−1 to

estimate a T × r̂ matrix of factors [F̂1, ....F̂t]
′, where r̂ is much smaller than T and always

smaller than K. Then, one uses OLS to estimate the regression yt = x1tβ1 + F̂ ′
tδ+ vt, which

has a relatively smaller number of regressors.

To assess the potential benefits of the PCA approach, we consider a simulation experiment

that mimics the MA(1) design in Section C.1. The main difference from the baseline design

is that the regressors have a strong factor structure, and the factors directly explain variation

in the outcome. A key element that determines the potential omitted variable bias in PCA is

whether a small number of factors capture most of the influence of (x2t, . . . , xKt) on x1t or yt.

The structure of the regressors are

xt = ΛFt + ξt + αεt−1

where Λ, {Ft}t, {ξt}t, and {εt}t are independent. The factors follow an MA(1) process:

Ft = ηt + ρηt−1 and ηt ∼ i.i.d.N(0, τ 2Ir) where τ 2 is such that E[∥Ft∥2] = r/(1 + r).

The idiosyncratic part of the regressors also follows an MA(1) process: ξt = et + ρet−1

and et ∼ i.i.d.N(0, τ 2IK). The factor loadings are orthogonal: Λ = V (V ′V/K)−1/2 where

V is a K × r matrix with independent standard Gaussian entries. Finally, ε ∼ N(0, I)

and α = (3a/4, a/4, 0, . . . , 0)′, which spreads the feedback over two variables and induces a

positive correlation between x1t and x2t. We use a = 1.5 and ρ = 0.8 as in Section C.1, while

r = 5 ensures that the factors explain about 80% of the variation in the regressors.

The outcome equation is

yt = x1tβ1 + x2tβ2 + Ftδ + εt

where β1 = 0, β2 = −0.5, and δ = (1, . . . , 1)′/r.

Figure C.10 shows the absolute bias and standard deviation of OLS, IV, and PCA as

we vary the number of regressors, K. In our simulations, the PCA method uses the correct

(so-called “oracle”) number of factors, r̂ = r = 5, providing an advantage to PCA and
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Figure C.10: Absolute Bias and Standard Deviation of OLS, IV, and PCA

removing additional uncertainty associated with the model selection step.1 Figure C.10

demonstrates the inferior performance of PCA; it produces an estimator with a substantial

bias and relatively small standard deviations. In other words, the estimator concentrates on

the wrong value. The emerging bias of PCA is an omitted variable bias. Indeed, from an

extensive literature on regressions with a rich set of controls, we know that a data compression

approach (a.k.a. Machine Learning approach) would deliver valid results if it leads to good

approximations in either the outcome equation or a regression of the regressor of interest

(here x1t) on the controls. In the current simulation setup, the factors capture neither the

effect of controls on the outcome yt nor the impact of controls on x1t. We can see that

knowing the identity of the regressor x2t and placing it in the regression would successfully

control the omitted variable bias. However, in an actual empirical application, we rarely

know the exact identity of the needed controls, which is one of the main reasons for having

many regressors. We set up the simulations to favor PCA since the impact of all regressors

except the first two is captured well by the factor models. It is easy to see that by changing

the coefficient β2, we can change the size of the omitted variable bias.

Leave-one-out ideas As Section 2.2 explains, the OLS bias arises from the partialling

out of many controls, which mixes in the lead of the weakly exogenous regressor and infects

1We also considered r̂ = r + 1 = 6 which lead to essentially the same results.
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it with the current error term. An industrious reader might guess that a leave-one-out

estimator that partials out the regressor in period t while dropping the observation from

period t + 1 potentially could restore consistency with many regressors. For estimation of

β1, this thinking leads to the estimator

β̂LO
1 =

∑
t(x1t − x̂1t,(t+1))yt∑
t(x1t − x̂1t(t+1))xt

where x̂1t,(t+1) is the OLS prediction of x1t using (x2t, . . . , xKt)
′ in the sample of all ob-

servations but t + 1. By the Sherman-Morrison-Woodbury formula, we have the following

representation that highlights a relation between the IV estimator proposed in this paper

and β̂LO
1 :

β̂LO
1 =

∑
t

[
(x1t − x̂1t)−

M
∗
t,t+1

M
∗
t+1,t+1

(x1,t+1 − x̂1,t+1)
]
yt∑

t

[
(x1t − x̂1t)−

M
∗
t,t+1

M
∗
t+1,t+1

(x1,t+1 − x̂1,t+1)
]
xt

where x̂1t is the full sample OLS prediction. Specifically, when viewed as an IV estimator, we

see that β̂LO
1 use the partialled out regressor from the period ahead, x1,t+1 − x̂1,t+1, to offset

some of the endogeneity in x1t − x̂1t which gets introduced by partialling out. However, this

simple idea cannot ensure consistency at the same level of generality as the IV estimator.

We do not delve into the deeper theoretical underpinnings of this failure but illustrate it by

applying the estimator in the same simulations as in Section 6.

We report results for estimators of the linear contrasts θ = α′β. The left panel of Figure

C.11 depicts the results of the experiments (for different K) at the 10th percentile of the

bias for the leave-out estimator. The right panel of Figure C.11 contains the results of the

experiments at the 90th percentile. We do see that while the leave-one-out idea may work

in some circumstances, it does not always perform well.

Lag augmentation One referee proposed the following idea for the OLS bias corrections,

and we are very grateful for the suggestion. The thought arises from an observation that if

one had a good proxy for the previous period error term, then including it in the regression

as a control would solve the weak exogeneity problem for the original regressors. In the

absence of such a proxy, one may instead control for one lag of the outcome variable and
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Figure C.11: Absolute Bias and Standard Deviation of OLS, IV, and Leave-Out

additionally one lag of all the regressors (that is, to run a regression of yt on xt, yt−1, xt−1).

This adjustment more than doubles the number of regressors and ultimately leads to lower

precision, but it would hopefully resolve the bias issue. Similarly, an alternative is to run an

original OLS, calculate the residuals, and then re-run the OLS, including the lagged residual

as an additional control.

We implemented both suggestions in the simulation setup underlying Figure 1 of the

paper and described in Section 2.2. Specifically, the exogenous part of the regressors follows

a K-dimensional AR(1) process with coefficient ρ = 0.8. The only change we made in

comparison to Figure 1 is to use a non-zero value of β. The biases of OLS and our proposed

estimator depicted in Figure 1 are invariant to the true value of β; however, for the proposal

discussed in this section, the value of β seems to matter. We use β = (0, 1√
K
, ..., 1√

K
)′. We

calculate the following estimators: the OLS (red), our proposed IV (blue), the OLS of yt on

xt, yt−1, xt−1 (black), and the two-step OLS, where the first step calculates the residuals êt

from a regression of yt on xt, and then run OLS of yt on xt and êt−1 (magenta).

Figure C.12 reports the results of this exercise. We observe that controlling for the lags

of both the outcome and the regressors does not work at all; it leads to increases in bias and

variance of the estimator. Controlling for the lagged residual seems to correct the original

OLS bias somewhat (though not entirely) at the expense of higher standard deviations.

Our proposed estimator dominates the OLS with lagged residuals in terms of both bias and
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Figure C.12: Absolute Bias and Standard Deviation of OLS, IV, and OLS using lagged
variables as additional controls

variance.
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