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Explaining the size distribution of cities: Extreme economies
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The empirical regularity known as Zipf’s law or the rank-size rule has motivated
development of a theoretical literature to explain it. We examine the assump-
tions on consumer behavior, particularly about their inability to insure against the
city-level productivity shocks, implicitly used in this literature. With either self-
insurance or insurance markets, and either an arbitrarily small cost of moving or
the assumption that consumers do not perfectly observe the shocks to firms’ tech-
nologies, the agents will never move. Even without these frictions, our analysis
yields another equilibrium with insurance where consumers never move. Thus,
insurance is a substitute for movement. We propose an alternative class of mod-
els, involving extreme risk against which consumers will not insure. Instead, they
will move, generating a Fréchet distribution of city sizes that is empirically com-
petitive with other models.

Keywords. Zipf’s law, Gibrat’s law, size distribution of cities, extreme value the-
ory.

JEL classification. R12.

1. Introduction and motivation

A small industry has developed that seeks to provide a theory to explain a singular but
robust stylized fact in urban growth: the size distribution of cities. Zipf’s law or the rank-
size rule, as applied to the size distribution of cities, states that for any country, the rank
of a city according to population (for example, New York is ranked number one in the
United States) multiplied by its population is constant. Thus, Los Angeles has half the
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Figure 1. The rank-size rule. Data source: Census 2000.

population of New York, whereas Chicago has one-third the population of New York.
This stylized fact holds across many countries and time periods (see Soo (2005)), but it
is only one fact. In general, it is connected to Gibrat’s law, stating that stochastic propor-
tional growth tends to a log-normal distribution. The most compelling empirical work in
this area shows that the size distribution of cities is log-normal (Eeckhout (2004)) when
the data are not cut off at an arbitrary rank or population. For those unfamiliar with the
empirics associated with this literature, we display in Figure 1 a graph of Eeckhout’s data,
consisting of more than 25,000 places from U.S. Census 2000. Since population on the
horizontal axis and rank on the vertical axis are both plotted in log scales, the rank-size
rule, taken literally, would say that the plot should be linear with slope −1. Deviations
from the rule or law at the top and bottom of the size distribution are documented and
discussed in the literature. See Gabaix and Ioannides (2004) for a fine survey of the entire
area of research.

Further orientation with the data will prove useful so that the finer details of the
distribution might be seen. The log–log plot is rather uninformative since very different
distributions can appear similar because the majority of observations are bunched in
the middle where there is little variation in the log–log scale. To that end, in Figure 2 we
provide a graph of the empirical distribution function, whereas in Figure 3 we provide
the density function.

Explanation of the stylized fact illustrated in these figures by a theory has long been
an objective of urban economists; it is quite robust, but also very difficult to theorize
about. Three recent articles, Eeckhout (2004), Duranton (2007), and Rossi-Hansberg and
Wright (2007), have tackled this issue head on. The general methodology in this litera-
ture is as follows. A city is defined as a set of firms that receive a common technological
shock to their production functions. Generally speaking, the shock is observed each pe-
riod before the agents make their decisions. Consumers are freely mobile between cities.
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Figure 2. Empirical cumulative distribution function. Data source: Census 2000.

Figure 3. Empirical density function. Data source: Census 2000.

A model of demand and supply is formulated, generally relying on specific functional
forms to obtain an analytical solution for equilibrium prices and quantities as a function
of shock realizations. The key equation obtained from the models is the reduced form
for the evolution of city population over time. Frequently (but not universally) this equa-
tion yields stochastic proportional growth for each city’s population, where the stochas-
tic component is derived from the city-specific technology shock. Then Gibrat’s law is
applied. The log-normal distribution matches Zipf’s law well for the upper portion of
the distribution.

The contribution of our work is as follows. First, we propose a new stochastic model
of technological innovation in cities under perfect competition, giving rise in the limit
to a generalized extreme value distribution of city sizes in aggregate, where the Fisher–
Tippett theorem replaces the central limit theorem and Gibrat’s law in a natural way.
This model and its implications are robust against the introduction of self-insurance or
insurance into the framework. The other models are generally not robust to the intro-
duction of self-insurance or insurance, as we illustrate formally for one example from
the literature in Appendix A. Our model is empirically competitive with other models
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of the size distribution of cities. In particular, the error in the estimate is very close to
Eeckhout’s (2004) for the log-normal distribution in the data on places, but better than
Eeckhout’s (2004) for the metropolitan statistical area (MSA) data.

All of these models, including ours, feature uncertainty that affects consumers
through the budget constraint only. By self-insurance, we mean that consumers have an
integrated budget constraint over time and know the distribution of future realizations
of the random variables. Thus, they can smooth consumption. Since the consumers are
risk averse, insurance or self-insurance is a substitute for migration. In the theoretical
models, since moving is a discrete choice, partial insurance is never chosen in equilib-
rium by an individual agent (see the last subsection of Appendix A).

The paper is organized as follows. First, in Section 2, we propose a new type of model
to explain the size distribution of cities, and implement it empirically. Only in Section 3
shall we discuss in detail the related literature that attempts to refine the stylized fact,
namely the rank-size rule, and explain it. Then we shall raise specific objections, in-
volving insurance or self-insurance against city-level risk, to these models. Section 4
discusses our conclusions and directions for future work. In Appendix A, we introduce
Eeckhout’s (2004) model and modify it to make the objections raised in Section 3 for-
mal for a specific example, whereas in Appendix B, we examine our model with posi-
tive transport costs. Replication files are available in a supplementary file on the journal
website, http://qeconomics.org/supp/42/code_and_data.zip.

2. Modeling the size distribution of cities

2.1 A model

2.1.1 The basic model and its equilibrium This model is loosely based on Duranton
(2007), but in the context of perfect competition instead of monopolistic competition. It
can also be viewed as a slice of a larger model that would include both our model and
the model of Eaton and Kortum (2002). Our model adds labor and consumer mobility,
whereas their model has them locationally fixed. In contrast with the other models in the
literature, there is economy-wide risk in addition to city-level risk. But this in itself is not
sufficient to generate consumer movement. For example, if all cities faced correlated
shocks at each time, consumers could still insure against this risk by smoothing their
consumption through borrowing and saving. Thus, we employ a more extreme form of
aggregate risk.

Time is discrete and all consumers are infinitely lived. Assume that there are many
cities (indexed by i = 1� � � � �m) and many industries, each producing one consumption
commodity (indexed by j = 1� � � � � n). All commodities are freely mobile. The production
function for commodity j in city i at time t is given by

yijt =Aijt · lijt �
where yijt is the output of commodity j in city i at time t, and lijt is labor input.1 The
random variable Aijt ∈ R++ will be discussed in detail shortly. Suppose that each con-

1The assumption of Starrett’s (1978) spatial impossibility theorem that is violated by this model is the
assumption of location-independent production sets.

http://qeconomics.org/supp/42/code_and_data.zip
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sumer supplies one unit of labor inelastically and that the total number of consumers
as well as total labor supply is given by N . We justify the assumption of perfect compe-
tition by implicitly assuming that there is a large number of firms in each city capable
of producing a commodity using a constant returns technology, but all experiencing the
same citywide technology shock.

In each time period t, each city i receives a random draw for its productivity in pro-
ducing commodity j, namely Aijt . Since we will be using the Fisher–Tippett limit the-
orem from extreme value theory rather than the central limit theorem, there is no re-
quirement that these random variables be independent. It is assumed that with prob-
ability 1, the random draws for two industries at time t for city i are not both maximal
among all cities for these given industries. In equilibrium, only the cities with the high-
est draw of the random variable for some industry will have employees and population.
(Alternatively, we could simply classify cities exogenously by industry, and assume that
a city in an industry receives only a draw for that industry.) Extensions that imply sev-
eral cities produce in equilibrium will be discussed shortly, but first we must explain the
basic model.

The wage rate for the (freely mobile) population of consumers is given by w(t). In
equilibrium, it will be the same across industries.

As is standard in this literature, the utility function of a consumer at time t is given
by

u(t) =
n∑

j=1

1
n
cj(t)

γ�

where cj(t) is the consumption of commodity j by a consumer at time t and γ ∈ (0�1).
Let pj(t) be the price of commodity j at time t. Assuming that commodities are freely
transportable, a consumer’s budget constraint at time t is

n∑
j=1

pj(t) · cj(t) = w(t)�

Let λ(t) be the Lagrange multiplier associated with the budget constraint in the con-
sumer optimization problem. Standard calculations yield demand for commodity j at
time t for a single consumer dj(t):

dj(t) =
(

γ

−λ(t)n ·pj(t)

)1/(1−γ)

�

Aggregate demand is given by

N · dj(t) = N

(
γ

−λ(t)n ·pj(t)

)1/(1−γ)

�

To reduce notation, for j = 1� � � � � n, define i∗ to be the city with Ai∗jt =
max1≤i≤m�0≤t ′≤t Aijt ′ .
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Profit optimization yields, for each t,

pj(t) ·Ai∗jt =w(t)�

Here we are assuming total recall, in that the best technology from the past is remem-
bered, so new technologies are not used unless they are better than all the old ones. Also,
only the best technology in industry j survives, where the best is across all cities and pre-
vious time periods. This assumption is made for convenience. We discuss it more below.

Hence

pj(t) = w(t)

Ai∗jt
� (1)

In other words, even though wage is constant across occupied cities, output price
varies inversely with the production shock. Consumption commodity market clearance
requires, for each t,

li∗jt ·Ai∗jt =N · dj(t) =N

(
γ

−λ(t)n ·pj(t)

)1/(1−γ)

� (2)

This is the key equation for our analysis.
Labor market clearance requires, for each t,

n∑
j=1

li∗jt = N� (3)

Setting the constant to be

κ(t) =N

(
γ

−λ(t) · n ·w(t)

)1/(1−γ)

�

and using (1) and (2), we obtain

li∗jt · (Ai∗jt)
γ/(γ−1) = κ(t)�

Hence

li∗jt = κ(t) · (Ai∗jt)
γ/(1−γ)� (4)

Since γ < 1, labor usage li∗jt and the shock Ai∗jt are positively correlated. Notice that
cities that do not have an industry with the largest shock in that industry at time t are
empty.

Existence of an equilibrium is not an issue here, since the equilibrium prices
and quantities can be solved analytically. For example, at t = 1, setting p1(1) = 1,
then w(1) = Ai∗11, pj(1) = Ai∗1t/Ai∗jt , λ(1) = − γ

nAi∗11
(
∑n

j=1 A
γ/(1−γ)
i∗j1 )1−γ , li∗j1 =

N( γ
−λ(1)nAi∗11

)1/(1−γ)A
γ/(1−γ)
i∗j1 , and so forth. Thus, equilibrium is also unique.

The original work on the asymptotic distribution of maxima drawn from a distribu-
tion is due to Fisher and Tippett (1928). Modern, more general treatments are given in
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Coles (2001) and Embrechts, Kluppelberg, and Mikosch (1997). We shall return to a dis-
cussion of extreme value theory momentarily, but first we will draw the implications for
our analysis.

The bottom line from this literature is that Ai∗jt has an asymptotic distribution,
known as the generalized extreme value (GEV) distribution, of the form

FGEV(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
−

[
1 + ξ ·

(
x−μ

σ

)]−1/ξ}
� when ξ �= 0,

exp
{
−exp

[
−

(
x−μ

σ

)]}
� when ξ = 0.

Notice that there are three free parameters to be estimated here, namely μ, σ , and ξ.
Also notice that to use rank as the left hand side variable in the regression, one simply
computes 1 −FGEV(x). But from a pragmatic point of view, it is easier to use ln(FGEV(x))

as the left hand side variable.
If there are no upper or lower bounds on the distribution, then ξ = 0 and the dis-

tribution is Gumbel. If there is an upper bound on the distribution, then ξ < 0 and the
distribution is reverse Weibull. If there is a lower bound on the distribution, for example,
0 in our case, then ξ > 0 and the distribution is Fréchet.

Substituting (4),

ln
(
F(l)

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[

1 + ξ ·
((

l

κ(t)

)(1−γ)/γ

−μ

σ

)]−1/ξ

� when ξ �= 0,

−exp

[−
((

l

κ(t)

)(1−γ)/γ

−μ

)
σ

]
� when ξ = 0.

(5)

Notice that if we use cross section data, then t and hence κ(t) is constant. Thus, in ad-
dition to the three standard parameters for the GEV distribution of Ai∗jt (namely μ, σ ,
and ξ), for the distribution of li∗jt there are two additional parameters, namely κ and γ,
that arise from our economic model.

Now that the basic model is fully developed, we can discuss why, unlike other models
in this literature, consumers will not want to insure against this risk. Instead, they will
move. If only a small percentage of cities produce at any time, then insurance would
cost only slightly less than the wage, so the consumers might as well move and receive
the wage in each period. For example, to keep things simple, suppose that there are 100
industries (or consumption commodities) and 100 cities in each industry (that is, each
city is capable of producing only one commodity). Then there is only one city producing
in each industry at each given time, and 100 cities out of 10,000 producing in each given
time. As time plays out, as long as some consumers are willing to move, each of the cities
producing at a given time will eventually be replaced by another in the industry. The city
using old technology has zero wage and no production. So if some workers do not move,
their average wage tends to 1% of the expected new wage with time. Under symmetry
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of cities in an industry, actuarially fair insurance would cost 99% of the expected new
wage. In other words, if workers move, they will receive the wage next period, but if they
insure, they will receive 1% of the wage next period. The only way workers will not move
is if they all agree to use old, frozen technology in each industry, and collude so that none
will move for a higher wage. In contrast, we assume competitive behavior.

This is the main idea motivating our specific model. Next, we discuss extensions and
the intuition behind why this idea is robust.

2.1.2 Extensions of the basic model and further implications In fact, what we have pre-
sented is an extreme example. All that is needed to induce consumers to reject insurance
and move is that the probability of unemployment next period is greater than zero if they
do not move. To obtain stronger results, for example, the GEV distribution, stronger as-
sumptions are required. Thus, there are many models like this in which consumers will
not take up insurance, but that do not require such strong assumptions. We provide a
simple model that is tractable.

We claim that the choice of insurance or moving is essentially a bang–bang phe-
nomenon, not only in this model, but in other models of stochastic growth belonging
to the literature that will be surveyed in Section 3. That is, generically one or the other
will be better for consumers, so in equilibrium they will not coexist. Moreover, in equi-
librium there will be no partial insurance. To see this, notice first that utilities are not
state-dependent, so the state only directly affects budget constraints. Second, the deci-
sion to move is a discrete one: Either all of a moving cost or none of it is incurred by a
particular consumer. If competition forces insurance to be priced competitively, imply-
ing both that consumer cost is proportional to price and that it is actuarially fair, then
risk averse consumers will always want to fully insure or move, facing no uncertainty
in equilibrium. The consumers must consider whether the moving cost or the cost of
full insurance is cheaper. Generically these exogenous parameters are unequal, so only
one or the other will be observed in equilibrium. Partial insurance will not result unless
there is some defect in insurance markets, but the random shock in this entire class of
models is assumed to be observed by all agents. Generically, none would predict that
consumers use partial insurance. We prove this more formally in Appendix A in the case
where moving is costly and insurance is actuarially fair.

Given the structure of the model and the other models in the literature, it is much
more natural to introduce a market imperfection in the labor market: labor heterogene-
ity and adverse selection, moral hazard, or search frictions, for example. This new source
of uncertainty or asymmetric information requires an additional dimension for states of
nature beyond the states we have specified for production shocks. It leads to a differ-
ent form of a distortion or market imperfection than that in this literature, since, for
example, labor supply might be distorted. Although individual labor supply is inelastic
in our basic model, it is elastic, for example, in Eeckhout (2004); see Appendix A. Elastic
labor supply could easily be put into our model in an additively separable way at the
cost of further notation. The consequences of a distortion in the labor market would be
very different from the introduction of an exogenous mobility cost that varies between
zero and infinity, as described in the previous paragraph. Full or partial insurance would
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have to be defined over states of the world associated with a new source of uncertainty
or asymmetric information related to the labor market, in contrast with the one already
in the model that is related to production shocks.

Returning to our basic model, the consumers still might want to insure against ag-
gregate wage volatility (namely movement in w(t) over time) by saving and borrowing
to smooth consumption, but their spatial distribution is still as we have laid out.

Returning now to our assumptions and extreme value theory, the original theory of
Fisher and Tippett presumed that, fixing j, the random variables, Aijt in our case, were
independent and identically distributed (i.i.d.) across i and t. Of course, in our context
this makes little sense. In general, the city with the best technology for some good j at a
particular time t is more likely to innovate and produce a better technology for the next
period than an arbitrary city. Moreover, it is possible that cities nearby are more likely to
innovate than an arbitrary city. Fortunately, much progress has been made in extreme
value theory since 1928. The modern versions of the Fisher–Tippett theorem, as given
by Coles (2001, Theorem 5.1) and Embrechts, Kluppelberg, and Mikosch (1997, Theo-
rem 4.4.1), allow some dependence. Specifically, what is required is that the sequence of
random variables be stationary and that a form of asymptotic independence (as blocks
of random variables become farther apart in time) hold.2 Since temporal (as well as spa-
tial) correlation is allowed, the model can explain the persistence of an industry in a given
city over time. For example, the assumption that the process is stationary imposes some
symmetry on the spatial correlation, in that the influence of neighbors on the produc-
tivity of one reference location is the same, independent of the reference location. How-
ever, we note that even the modern versions of the Fisher–Tippett theorem we have cited
give only sufficient conditions for convergence to the GEV distribution. There are yet fur-
ther generalizations to nonstationary processes; see Coles (2001, Chapter 6) for example.
So asymmetries in space, implying that the process is not stationary, can still lead to the
GEV distribution.

Returning to the case of i.i.d. technology draws, an implication of extreme value the-
ory (Embrechts, Kluppelberg, and Mikosch (1997, Chapter 5.4)) is that the time between
new record draws of technology in an industry grow in a roughly exponential fashion
with the passage of time. This implication of the theory might not hold in more general
settings, for example, nonstationary ones.

It is also important to note that the model and results can be extended to the case
where more than one city in an industry produces. This could happen, for example, if
there is transportation cost for consumption goods between cities, so a city with a high
realization of productivity for a commodity, but not the highest, might serve a local mar-
ket. It turns out that extreme value theory applies not only to the maximum of a se-
quence of random variables, but also to the upper order statistics. A detailed discussion
of the results can be found in Embrechts, Kluppelberg, and Mikosch (1997, Section 4.2).
These extensions of the model require a simulation approach, as the analytics are diffi-
cult. Specifically, the calculation of aggregate demand on the right hand side of equation

2An easy way to fit our structure into the theory is to fix an industry j and imagine that at each time t,
there are m subperiods. A city i draws its random variable Aijt in subperiod i of time t.
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(2) becomes difficult due to the endogeneity of market area. Our simulations appear in
Appendix B.

A couple more remarks are in order. First, the role of having different industries j, as
in the other models in the literature, is to generate a full distribution of limiting popula-
tions rather than just one realization of the asymptotic distribution of city populations.
Second, in contrast with other models in the literature, the cities without the best tech-
nology for some industry at a given time have zero population, so they do not show up
in the data because they are rural.

2.1.3 Stochastic proportional growth As a complement to our basic analysis of the
model, it is interesting to see under what conditions our model will generate stochas-
tic proportional growth in (occupied) city populations. To examine this, we must spe-
cialize and reinterpret slightly the stochastic part of our model, inspired by Eeckhout
(2004, p. 1447). Suppose that a primitive productivity random variable is generated by
the (autoregressive) AR(1) process

Bijt = k ·Bij(t−1) + 1 − γ

γ
· εij(t−1)� (6)

where εij(t−1) is i.i.d. with mean 0 and finite variance, and where 0 < k< 1. For the pur-
pose of approximation, we will be taking k close to 1. Then define the reduced form
random variable by

Aijt ≡ exp(Bijt)�

Our previous analysis applies to this more specific model of Aijt , for instance, the afore-
mentioned Theorem 4.4.1 of Embrechts, Kluppelberg, and Mikosch (1997), along with
all of the results in the subsections above. But with this additional structure, we can say
more.

Consistent with our notation,

for j = 1� � � � � n, let i∗ be such that Bi∗jt = max
1≤i≤m�0≤t ′≤t

Bijt ′ �

If the εijt are small, we claim that

Bi∗jt ≈ k ·Bi∗j(t−1) + 1 − γ

γ
· εi∗j(t−1)

in the sense that the distributions of the two sides of this expression viewed at time
t − 1 are close. The reasoning behind this approximation is as follows. Fix industry j. If
Bi∗j(t−1) 	 k ·Bi′j(t−1) for all 1 ≤ i ≤m, 0 ≤ t ′ ≤ t−1, i′ �= i∗, then the city with the maximal
draw remains the same between periods t − 1 and t, so the approximation holds accord-
ing to equation (6). If Bi∗j(t−1) ≈ k · Bi′j(t−1) for some 1 ≤ i′ ≤ m, 0 ≤ t ′ ≤ t − 1, i′ �= i∗,

then the distribution of k ·Bi∗j(t−1) + 1−γ
γ · εi∗j(t−1) conditional on Bi∗j(t−1) is close to the

distribution of k · Bi′j(t−1) + 1−γ
γ · εi′j(t−1) conditional on Bi′j(t−1), so the approximation

holds.
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Dividing equation (4) at time t by its value at time t − 1 to the power k,

li∗jt
[li∗j(t−1)]k

= κ(t)

[κ(t − 1)]k ·
(

Ai∗jt
[Ai∗j(t−1)]k

)γ/(1−γ)

(7)
for each industry j = 1� � � � � n�

Using (4) and (3),

N =
n∑

j=1

li∗jt

= κ(t) ·
n∑

j=1

(Ai∗jt)
γ/(1−γ)�

Now

lim
n→∞

∑n
j=1(Ai∗jt)γ/(1−γ)

n
= E

[
(Ai∗jt)

γ/(1−γ)
]
�

Hence for k close to 1,

κ(t)

[κ(t − 1)]k ≈ E[(Ai∗j(t−1))
γ/(1−γ)]

E[(Ai∗jt)γ/(1−γ)] ≈ 1�

Taking logarithms of both sides of equation (7),

ln(li∗jt) = k · ln(li∗j(t−1))+ γ

1 − γ
· 1 − γ

γ
· εi∗j(t−1)

= k · ln(li∗j(t−1))+ εi∗j(t−1)

≈ ln(li∗j(t−1))+ εi∗j(t−1)�

This last equation is the form of stochastic proportional city population growth obtained
in Eeckhout (2004).

The assumption that k < 1 is essential, in the sense that k = 1 yields Gibrat’s law
and a log-normal distribution for occupied cities. The assumption that k< 1 implies the
asymptotic independence used for modern variants of the Fisher–Tippett theorem. In
contrast, k = 1 implies some permanent path dependence. Another way to frame the
arguments in this subsection is that the order of limits in k and t matters.

2.2 Empirical implementation

Notice that we are not overly concerned with identification of the five parameters in
equation (5). In essence, the parameters are identified by the functional form itself. The
economic interpretation of these variables is as follows. The three parameters of the GEV
distribution, μ, σ , and ξ, are analogous to the mean and variance of the log-normal dis-
tribution estimated by Eeckhout or the regression coefficients estimated for Zipf’s law
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using a log–log regression. They have no direct economic interpretation. Since γ and
κ are derived from the model, they do have an economic interpretation. Standard cal-
culations tell us that 1

1−γ is the elasticity of substitution for consumers between con-
sumption commodities. The endogenous variable κ is more difficult to interpret, since
it involves a number of endogenous variables as well as random variables. But equation
(4) gives us the equilibrium relationship between the random variable representing pro-
ductivity in an industry (exogenous) and employment in that industry (endogenous). So
κ(t) tells us equilibrium employment in an industry where one unit of labor produces
one unit of consumption commodity.

We use the Census 2000 data set also used by Eeckhout. Table 1 gives the summary
statistics for this data along with the metropolitan statistical area (MSA)-level data that
we use later for comparison.3

As noted in the sources we cite for extreme value theory, the most common method
of estimating extreme value distributions is to use maximum likelihood. The maximum
likelihood estimator (MLE) does not yield the smallest Kolmogorov–Smirnov (KS) statis-
tic in our data set. The KS statistic measures the maximum distance between a sample
distribution and its estimate. As noted by Goldstein, Morris, and Yen (2004) in the con-
text of social networks and later by Eeckhout (2009) in the context of the size distribution
of cities, using a simple log–log regression can lead to serious statistical problems. The
use of MLE and the KS statistic is preferred. It is interesting to note that both the liter-
ature on estimation of the GEV distribution and the literature on Zipf’s law seem to be
(independently) converging on MLE as the preferred method of estimation.

For purposes of comparison with Eeckhout (2004), we produce estimates using the
log-normal (his) distribution and the generalized extreme value (our) distribution us-
ing equation (5), for both maximum likelihood estimation and minimization of the KS
statistic (MinKS). We also report an estimate using the double Pareto log-normal dis-
tribution (DPL) from Giesen, Zimmermann, and Suedekum (2010) for comparison. Ta-
ble 2 summarizes the estimation results. The results of maximum likelihood estimation
for the log-normal distribution are identical to Eeckhout’s. The rightmost columns con-
tain the KS statistic, the log likelihood of the estimates (LogLH), the Akaike information
criterion (AIC), and the Bayesian information criterion (BIC).

In the interest of full disclosure, we report both the MLE and MinKS estimates in
Table 2. Notice that the MLE estimate implies a reverse Weibull distribution whereas
MinKS estimates imply a Fréchet distribution. Since city sizes do not fall below zero,
we expect the distribution to follow a Fréchet distribution. MLE predicts otherwise due
to the large, uncensored data set containing places. The estimated Fréchet distribution
under MinKS implies that the smallest place will have population 1�582, and two places
actually fall below this size. Indeed, once we truncate the data to MSA’s, MLE predicts
a Fréchet distribution. So the reverse Weibull GEV distribution is driven by extremely
small populations in the sample of places.

Of course, the comparison between log-normal and GEV is not quite fair. In general,
the more parameters a distribution has, the better is its fit to data. There are only two

3For a definition of the spatial units used by the Census, see, for example, http://www.genesys-sampling.
com/pages/Template2/site2/61/default.aspx.

http://www.genesys-sampling.com/pages/Template2/site2/61/default.aspx
http://www.genesys-sampling.com/pages/Template2/site2/61/default.aspx
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Table 1. Summary statistics for U.S. data.

Unit Sample Size Mean Variance Median Mode Max Min

Place 25,358 8�232E+03 4�677E+09 1,338 86 8,008,278 1
MSA 922 2�837E+05 9�490E+11 71,800�5 20,411 18,323,002 13,004

Table 2. Parameter estimates and related statistics—United States.

Unit Distribution Method μ̂ σ̂ ξ̂ κ̂ γ̂ KS LogLH AIC BIC

Place Log-normal MLE 7�278 1�754 1�895E−02 −2�3477E+05 4�6955E+05 4�6957E+05
GEV MLE 1�410 0�3096 −2�902E−02 57�15 0�8827 8�638E−03 −2�3467E+05 4�6935E+05 4�6939E+05
Log-normal MinKS 7�249 1�738 1�336E−02 −2�3478E+05 4�6956E+05 4�6958E+05
GEV MinKS 1�592 0�6127 1�592 102�9 0�8100 6�970E−03 −2�3470E+05 4�6941E+05 4�6945E+05

MSA Log-normal MLE 11�46 1�190 9�426E−02 −1�203E+04 2�406E+04 2�407E+04
GEV MLE 4�295 2�192 0�6383 4552 0�6276 2�582E−02 −1�190E+04 2�382E+04 2�384E+04
DPL MLE 4�694E+05 4�695E+05
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parameters in the log-normal distribution whereas there are five parameters in our dis-
tribution, and these parameters do not contain the parameters used for the log-normal
distribution. In Table 2, we report the Akaike and Bayesian information criteria, that pe-
nalize distributions with more parameters. Smaller values for these criteria mean better
performance. Those two statistics indicate that the log-normal and our distribution are
still comparable when an adjustment for the number of parameters is made. In partic-
ular for the uncensored place data, after penalizing each estimate for the number of pa-
rameters used, where the penalty is larger for the GEV estimate, the error is quite similar,
with GEV slightly ahead. The penalties are actually quite small relative to the log like-
lihood, since the data sets are so large. There is more divergence between log-normal
and GEV in the error for the MSA estimates. Clearly, as Eeckhout (2004) points out, there
are problems with truncation of this data. On the other hand, it seems quite odd to give
places with just a few people in them the same weight as, say, New York City, in the data.
Implicitly in the place data, all places have weight 1. In the MSA data, places above a
certain population have weight 1, whereas all other weights are set to 0. There is likely
a way to weight the data better than these extreme cases, but we do not attempt a for-
mal theory of data weighting for these estimates.4 So we do not completely discount
the MSA estimates (as Eeckhout might), but rather await a less extreme data weighting
scheme than the two standard ones. The truth probably lies somewhere in between. This
appears to be an interesting topic for future research.

Graphically, the estimates and data plots are shown in Figure 4.
In summary, estimates using the generalized extreme value distribution are quite

competitive.
We ran simulations of our model with positive transportation cost. The results and

discussion can be found in Appendix B. Related to this, Hsu, Mori, and Smith (2014)
study a random growth model of the city-size distribution when city connections matter.

3. Relationship to the literature

3.1 The older literature

The innovative work of Gabaix (1999a, 1999b) is the source from which the modern liter-
ature on the size distribution of cities flows. This work uses an overlapping generations
structure where consumers live for two periods. It is assumed that moving costs are so
high that consumers can only choose their location (city) when they are young. This lo-
cation decision is made after shocks to production and amenities are realized for that
period, and are known to all. The consumer/workers cannot move again when old. The
wages or income for the old in a city are never even specified, and it is simply assumed
that the young make their decisions in a myopic manner. Moreover, the availability of

4As Eeckhout (2004, pp. 1434–1436) points out, the theoretical definition of a city as those firms that ex-
perience a common shock (perhaps assuming spatial independence of shocks) should drive the empirical
unit used. In places with only a few inhabitants, it is difficult to see how to apply this definition. On the
empirical side, Eeckhout (2004, Figure 7) finds some anomalies at the low end of the distribution. In our
opinion, random models of city growth might not be appropriate for small places.
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Figure 4. Empirical and estimated city-size distribution.

insurance or capital markets is never discussed, so it is unknown whether the young can
hedge against uncertainty about their wage when they are old in the city they choose.

If the old people are immobile, why is this important? It is important because when
the young make their decisions, they can anticipate what will happen when they are
old and might change their minds about their location decisions when young. In other
words, they will not behave myopically. Without myopia, insurance becomes important.

3.2 Recent literature

Chief among recent work are Rossi-Hansberg and Wright (2007), Duranton (2006),
Eeckhout (2004), and Duranton (2007). We focus on the latter two.

Eeckhout’s model has consumers who are infinitely lived, have foresight, and can
move each period. There are technological shocks to production in each city in each
time period. It is movement of the consumer/worker population in response to these
shocks that generates Gibrat’s law. The shocks generate changes in equilibrium wages,
rents, and congestion across time and space that correspond to the consumer move-
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ments that equalize utility levels across space at each time. Eeckhout (2004, p. 1445)
makes the following statement:

“Moreover, because there is no aggregate uncertainty over different locations, and because
capital markets are perfect, the location decision in each period depends only on the cur-
rent period utility. The problem is therefore a static problem of maximizing current utility
for a given population distribution, and the population distribution must be such that in
all cities, the population Si�t equates utilities across cities.”

Here we wish to make an important distinction between transfers of consumption
across time, namely perfect capital markets, and across states, namely complete and
perfect futures markets.

The actual consumer optimization problem in Eeckhout’s model does not involve
state-dependent assets or allow state-contingent transfers of income. If it were to al-
low this, as in a standard model of complete futures or insurance markets, then agents
would never move. They would simply buy assets at the start of time that would pay
them under a bad state in their city at a particular time, and such that they would pay
under a good realization in their city. In other words, they would insure against the state
of nature in their city. It is important to recognize that in this model there are two factors
determining a worker/consumer’s productivity, namely, the city-specific shock and the
externality in production induced by total population in the city.

The basic model of Duranton (2007) has consumers maximizing an intertempo-
ral utility function subject to an intertemporal budget constraint without facing un-
certainty. However, once the detailed urban features are added (Duranton (2007, Sec-
tion V)), the model looks similar to Eeckhout’s at least in terms of the urban features.
One simply needs some dependence of local prices (land rents or wages) on the state of
nature. Then utility equalization implies that people will move depending on the state
realization, but this movement disappears if one allows insurance.

There is not enough detail about the urban market in Duranton (2006, 2007) to make
specific statements about how insurance would work, but the consumers in a city face
uncertainty about employment due to the uncertainty about innovations in various in-
dustries, so similar insurance arguments should work if the details of the model are filled
in.

Regarding contemporary developments in this literature, Behrens, Duranton, and
Robert-Nicoud (2014) is a very interesting contribution that does not employ Gibrat’s
law to obtain Zipf’s law. Using a static model, a number of stylized facts are matched.
There is an asymmetric information/adverse selection component as well as a poten-
tially insurable luck component in the model.

In general, we are inquiring whether moving or buying insurance is cheaper for the
consumers in these models. Typically in these models, if moving costs are positive, it
makes sense for consumers to stay put and insure.

3.3 Criticism of the literature

3.3.1 How insurance reduces population movement So how might this insurance occur
in practice? Let us assume either that consumers cannot perfectly observe the technol-
ogy shocks to cities or that moving has a small cost, or both.
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• Self-insurance. Since consumers can transfer consumption across time and they
know that shocks are i.i.d., then they can borrow or use their savings in bad times and
save (or pay off their loans) in good, staying in the same city. In the literature, the in-
tertemporal uncertainty faced by consumers does not show up in their objective func-
tion, whereas the possibility of self-insurance does not show up in the budget constraint.
The earlier quote from Eeckhout seems to imply that this is allowed, but the formal state-
ment of the consumer budget constraint makes it clear that it is not allowed. This type of
insurance exploits the fact that for any given city, the shocks are i.i.d. over time. Empiri-
cally, the place to look for self-insurance is in the savings response to local employment
shocks.

• Insurance markets. In all of these models, at each time, the state of nature (the ran-
dom shock to each production function for each city) is known to all and is verifiable5

before consumers make their decisions about consumption bundles and location. So
this is a perfect setting for a viable insurance market. An insurance firm can step in or
the continuum of consumers can simply pool resources in each period, smoothing their
consumption without changing location, so it is independent of the state in their city.
This type of insurance exploits the fact that at any given time, the shocks are i.i.d. across
cities. Empirically, one place to look for insurance is a cross-country comparison of how
varying benefits of unemployment insurance affect mobility in response to local em-
ployment shocks.

• Futures markets. Consumers formulate plans to sell labor, and buy consumption
commodity and housing contingent on every possible state in every time period. There
is no empirical complement. We mention this for completeness.

Given that for Gibrat’s law to hold, the shocks to each city in each period must be
“small” (see Eeckhout (2004, p. 1447)), it seems reasonable to think that insurance would
yield higher consumer utility than movement if moving costs are at all significant or if
consumers cannot observe shocks to firms perfectly, and, thus, face even a small amount
of uncertainty in their optimization problems.

For models in the literature, consumers will choose to insure instead of move when
insurance is available. A common feature of both the models in the literature and the
model we have presented is the prediction that people will move and not insure. A major
difference between our model and the balance of the literature is clear: An advantage of
our model is that it can explain endogenously the lack of insurance, whereas the other
models in the literature implicitly assume that such markets, namely insurance or self-
insurance (saving and borrowing), do not exist. The empirical investigation of the use
of insurance as a substitute for migration, especially when consumer heterogeneity is
taken into account, seems quite interesting as a topic for future research.

As a preview, we present preliminary work. We compare U.S. data with analogous
data for Belgium and Germany. For Germany and Belgium, we use data on municipal-
ities, whereas for the United States, we use data on MSA’s. Please note that all of these

5Thus, such models differ from models of human capital, for example, where verification is not a realistic
assumption and, thus, insurance against fluctuations is not to be expected.
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data are, therefore, truncated. For Europe, we use the data from Soo (2005), who obtains
it from http://www.citypopulation.de/. We provide summary statistics for all three data
sets in Table 3.

We present in Table 4 the estimates of the models for Germany and Belgium, to be
used in conjunction with Table 2 for the MSA estimates for the United States. We note
that for MLE, there is no general analog of t-statistics for each parameter estimate, just
an overall measure of goodness of fit such as the KS statistic. The sample sizes are very
different in Tables 2 and 4, resulting in very different log likelihoods as well as AIC and
BIC statistics.

Likely insurance mechanisms are more developed and moving costs are higher for
Europe compared with the United States. Thus, one would expect deviations from Zipf’s
law and log-normal models, but not from GEV, for Europe as compared to the United
States. We examine AIC and BIC ratios of log-normal to GEV for each country in Table 5.
What we find is that in three of the four cases, the GEV fit is better for Europe as opposed
to the United States.

For a more complete analysis, it would be desirable to regress the ratios in Table 5
on proxies for moving cost and insurance mechanisms in each country for a larger sam-
ple of countries. That would give us a reading on which model performs better, but is
beyond the scope of this paper.

3.3.2 Possible objections to the criticism We emphasize that the criticism we make is a
purely theoretical point concerning models in the literature. Whether or not agents in
the real world actually insure or self-insure against citywide risk is not relevant to the
question at hand. Our point is that in the theoretical worlds of these models, insurance
or self-insurance of the sort discussed in the previous subsection is implicitly excluded.
The reasons are not given or, more importantly, included in the model. If these factors,
such as asymmetric information, are included in the model to explain insurance market
breakdown, other competing forces driving agglomeration can be important; see, for
example, Berliant and Kung (2010), where it is shown that adverse selection alone can
generate agglomeration. In other words, this criticism of the internal structure of the
models, for example, when there is a nonzero moving cost, is that the consumers are not
behaving rationally if they do not insure or self-insure.

Next we present a discussion of why insurance market breakdown is not natural in
the context of the models. Again, this is not meant to be a statement about the real world,
but rather about whether the exclusion of an insurance option for consumers in the
models makes sense.

The usual cause of a breakdown of insurance markets is adverse selection, repre-
sented, for example, by cream-skimming on the part of insurance companies. In the
models discussed here, the state is assumed to be realized and observable to all before
decisions are made in a given time period. So there is no issue of adverse selection. But
one can easily imagine variations of these models that incorporate some form of infor-
mation asymmetry. It would not be natural for, say, only consumers to know the shock
to the local economy, since the technology shock really affects firms. If only firms knew
the realization of the shock before making their decisions, then consumers could draw

http://www.citypopulation.de/
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Table 3. City population summary statistics for Germany, Belgium, and the United States.

Country Germany Belgium U.S.
Year 1998 2000 2000

Mean 152,684�8 62,959�74 156,903�7
Standard error 19,194�33 7,372�42 15,141�98
Median 77,486 39,261 80,537
Standard deviation 286,632�5 61,239�92 391,062
Sample variance 8�22E+10 3�75E+09 1�53E+11
Minimum 20,425 24,791 50,052
Maximum 3,425,759 446,525 8,008,278
Count 223 69 667

Table 4. Parameter estimates and related statistics for Europe.

Country Year Distribution Method μ̂ σ̂ ξ̂ κ̂ γ̂ KS LogLH AIC BIC

Germany 1998 Log-normal MLE 11�74 0�9865 0�1737 −2577 5158 5164
GEV MLE 2�242 1�159 1�081 3�179E+04 0�5085 0�05415 −2509 5027 5044

Belgium 2000 Log-normal MLE 10�84 0�5697 0�2030 −806�3 1617 1594
GEV MLE 1�529 0�01775 0�3513 0�6682 0�9626 0�1064 −786�6 1583 1621

Table 5. Comparison of European and U.S. results.

Germany Belgium U.S.

AIC log-normal/GEV 1�026 1�021 1�0101
BIC log-normal/GEV 1�024 0�983 1�0096
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inferences from firm behavior or the consumers could self-insure or insure. It is not clear
what hidden information or hidden action on the part of consumers would cause an in-
surance market breakdown in this context, given that the shock is to firms’ technologies.
It is natural to assume that amenities are observable.

One can imagine moral hazard at the city level with insurance markets, in that a city
might try to claim a productivity level lower than the actual one so the residents can col-
lect more insurance money. However, there are no local governments in the models in
the literature to coordinate this, and the assumption is that local productivity is observ-
able to all, including nonresidents of the city, when they make their location decisions.

Another objection that could be raised is the commitment required on the part of
consumers. In fact, commitment to a plan or contract is a requirement of models that
feature self-insurance, insurance, or futures markets generally. For example, a consumer
might experience regret over the purchase of a long-term health insurance contract af-
ter the state of the world that tells him that he is healthy is realized or the insurance
company might experience regret if the consumer turns out to be unhealthy, but they
are committed to their contracts. In the models of the size distribution of cities, for ex-
ample, one could begin the random process of technological change and at any point in
time, allow insurance and commitment to begin. Then the population distribution will
not change from that point on.

Self-insurance through borrowing and saving requires a long-term commitment to
a plan. Insurance cooperatives or firms only require a one period commitment to stay
in a city and work. The latter commitment problem can be solved with the following
time line, which is a standard time line for insurance in the real world. First, people are
in a city from last period. They make an insurance premium payment to the insurance
company equal to the maximum possible income for a shock this period less the income
workers received from work last period in the city. This will be “small” since the random
shock is small, as explained in detail in Appendix A. Then they work and the shock for
this period is realized (timing here is not important). Then any insurance payment is
made from the pool to obtain the average income. After that, the next period begins.

This way, people cannot receive income and then move without sacrificing their in-
surance. Since in all equilibria the utility levels in every city in Eeckhout’s model are the
same, they must lose utility by moving and giving up insurance (the loss is their pre-
mium). Of course, one could then say that the insurance company could abscond with
the money. But this stretches credulity.

One might easily object to even small moving costs or even a small amount of noise
in consumer observations of shocks. Then what we present is another equilibrium,
which yields exactly the same period by period utility as the equilibrium studied in this
literature. This alternative equilibrium retains the initial distribution of consumers and
does not generate Zipf’s law.

Finally, there are costs associated with insurance contracts that, from the point
of view of consumers, must be balanced against the cost of moving. Such costs in-
volve lawyers and potentially complex transactions. Moreover, unemployment insur-
ance might fulfill the role of explicit contracts. Self-insurance does not suffer from these
problems. But credit constraints could limit self-insurance. In any case, insurance does
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not need to be perfect. If there is substitution between insurance and mobility, the type
of mobility needed to generate the various empirical distributions of city size can be
upset.

But we emphasize again that although these various insurance market imperfections
can cause insurance market breakdown, their inclusion in a formal model is necessary
to ensure that consumers behave rationally when they do not insure, and the conse-
quences of their inclusion are far from obvious.

An alternative to insurance markets is self-insurance. Even if insurance markets are
excluded from a model by assumption, for example, because they are not observed in
the real world, self-insurance must also be excluded and this exclusion must be justified.

In Appendix A, we modify a model from the literature (Eeckhout (2004)) to include
insurance (as well as moving cost) and to prove our claims formally. This represents an
example. We conjecture that the other models in the literature can be modified in a sim-
ilar fashion.

4. Conclusions

We are making several related points.

• First, when a model, markedly different from those found previously in the litera-
ture, is constructed to explain a specific empirical phenomenon, the microeconomic,
structural assumptions about individual behavior and markets must make sense. Here,
there is a rather obvious problem that self-insurance and insurance markets are as-
sumed not to be functional. Models in the literature feature city-level risk, and it is gen-
erally possible to insure against such risk through many vehicles, barring asymmetric
information. The latter does not arise naturally in these models, since consumers are
assumed to know the state of nature before making their location and consumption de-
cisions.

• With time in the model, it is even possible to insure against aggregate risk through
borrowing and saving.

• However, it is much more difficult to insure against extreme aggregate risk, so we
propose such a model. Our model begins with microfoundations and delivers a different
functional form for the size distribution of cities than has been used in the literature.

In summary, we first propose a model based on primitive assumptions, not designed
to match any particular stylized fact (like the rank size rule), but rather capturing the fol-
lowing theoretical notion: Insurance is allowed, but consumers will never use it, as it is
very costly; instead, they move. The new model is based on extreme value theory and
yields a functional form for the size distribution of cities different from the other mod-
els, and this prediction is empirically competitive with those in the literature. Then we
advance a criticism of the literature based on the fact that a primitive assumption in pre-
vious work, that consumers cannot insure (either by borrowing and saving or by pooling
resources) against the random productivity variable for each city that is observable to
all. If insurance is allowed, there is another equilibrium of the model—retaining the ini-
tial distribution of consumers where there is never any migration. Instead, consumers
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insure against the risk, and the utility stream they obtain in this manner is the same
as that in the equilibrium used in the literature. If there is any moving cost or residual
uncertainty, the equilibrium used in the literature disappears.

Is insurance or self-insurance an important issue for the analysis of the size distri-
bution of cities and city growth? The presence of insurance has no effect on our model,
since it will never be taken up, and is simply prohibited in the other models in the lit-
erature. Thus, direct evidence regarding insurance or self-insurance is insufficient to
distinguish between the models empirically. From the theoretical viewpoint, it makes
no difference whether or not insurance is prohibited in our model, as the equilibrium
is unchanged. But it makes a huge difference whether insurance is prohibited in other
models, as the equilibrium with insurance and the equilibrium without insurance are
vastly different. Other models from the literature that are modified to include insurance
will not generate Zipf’s law or Gibrat’s law. It is in this sense that abstraction from con-
sideration of insurance or self-insurance by other models in the literature is a first-order
issue.

Future work includes testing further predictions of the model, for example, the wage
and rent distributions when transport costs for consumption commodities are intro-
duced, and applying the model in new (but appropriate) contexts, such as finance (see
Gabaix, Gopikrishnan, Plerou, and Stanley (2003) for an application of Gibrat’s law to
finance) or crop abundance (see Halloy (1999) for an application of the log-normal dis-
tribution to crop abundance).

Application to the size distribution of firms is of interest; see, for example, Axtell
(2001) in the context of Zipf’s law or Gabaix (2011) more generally. Frequent churning
might be expected more in firms than in cities. There are two issues with this idea. First,
in an aspatial model, moving between firms is easy for workers, so our insurance critique
will not apply to models using the log-normal or Pareto distributions, which therefore
might be more appropriate. Second, we are using a competitive model since there is
a continuum of firms in each city producing the same commodity and subject to the
same productivity shock. The competitive assumption might not make as much sense
in an aspatial model where productivity shocks are firm-specific, so only one firm has
the state of the art production technology.

Finally, an interesting direction for future research is to merge our model with that
of Eaton and Kortum (2002). Such a model would be very complicated. As an alternative
to this approach, adding an iceberg transportation cost to our model, as we have done
in simulations, seems more worthwhile.

Appendix A: A model from the literature modified to include insurance

A.1 Notation

We use the model of Eeckhout (2004) as the basis for the analysis because it is explicit
about consumer behavior, in the form of an optimization problem, as well as endoge-
nous urban variables, namely local wages and land rents.

The original model is specified as follows. For complete detail, see Eeckhout (2004,
pp. 1445–1446). In general, there are a large number of cities and a continuum of iden-
tical consumers. Each city produces the same commodity using labor and a constant
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returns to scale technology. The production function is dependent on a citywide shock
and on a positive agglomeration externality that is a function of city population. There is
also a negative congestion externality that is a function of city population and that only
affects consumers. On net, the random shocks to productivity cause some, but not all,
population to move each period so as to equalize utility across cities in equilibrium.

Time is discrete and indexed by t. The set of cities is indexed by i ∈ I. Consumers
are infinitely lived and identical. In city i at time t, consumption good is ci�t , housing or
land consumption is hi�t , whereas leisure is 1 − li�t for labor supply li�t ∈ [0�1]. Utility for
a consumer in city i at time t is Cobb–Douglas:

u(ci�t �hi�t � li�t) = cαi�th
β
i�t(1 − li�t)

1−α−β

with α�β�α+β ∈ (0�1).
Production is constant returns to scale. The measure of population in city i at time

t is Si�t . Let Ai�t be the technological productivity parameter of city i at time t. This pa-
rameter follows the law of motion

Ai�t = Ai�t−1(1 + σi�t)� (8)

where σi�t is the exogenous technological shock to city i at time t. It is assumed that σi�t is
i.i.d. with mean 0, symmetrically distributed, and satisfies 1 +σi�t > 0. The positive local
externality (spillover) function is given by a+(Si�t) > 0, where a′+(Si�t) > 0. The marginal
product of a worker in city i at time t is given by

yi�t = Ai�ta+(Si�t)�

For prices, let the consumption good be numéraire, let the price of housing or land
in city i at time t be pi�t , and let the wage in city i at time t be wi�t . The local negative
externality or congestion function is given by a−(Si�t) ∈ [0�1], where a′−(Si�t) < 0. The
optimization problem of a consumer in city i at time t is

max
{ci�t �hi�t �li�t }

cαi�th
β
i�t(1 − li�t)

1−α−β

subject to

ci�t +pi�thi�t ≤ wi�tLi�t�

where wi�t =Ai�ta+(Si�t) and Li�t = a−(Si�t)li�t . Total land or housing in a city is H.
Using the first-order conditions from this optimization problem and market clear-

ance, equilibrium (denoted by asterisks) in city i at time t as a function of population Si�t
can be found:

p∗
i�t = βAi�ta+(Si�t)a−(Si�t)Si�t

H
�

w∗
i�t =Ai�ta+(Si�t)�

c∗
i�t = αAi�ta+(Si�t)a−(Si�t)�
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h∗
i�t = H

Si�t
�

l∗i�t = α+β�

The last equation in particular, indicating that labor supply is independent of popu-
lation, is an artifact of the Cobb–Douglas specification.

Substituting back into the utility function, indirect equilibrium utility as a function
of population u∗(Si�t) can be written as

u∗(Si�t)= [
αAi�t · a+(Si�t)a−(Si�t)

]α
S

−β
i�t Hβ[1 − α−β]1−α−β� (9)

Under free mobility of consumers, indirect utility is equated across cities in each
time period, determining their populations as a function of their productivity and their
realized history of shocks, summarized by Ai�t . Instantaneous utility is constant over
both time and location in equilibrium. Again using Eeckhout’s notation, call this instan-
taneous utility level U .

A.2 Insurance

Let the discount factor be denoted by ρ ∈ (0�1]. In correspondence with the assumption
of complete capital markets, it is assumed that all consumers can borrow or lend at rate
1
ρ − 1. The consumer optimization problem (at time 0) becomes

max
{ci�t �hi�t �li�t }

∞∑
t=1

ρt · cαi�thβ
i�t(1 − li�t)

1−α−β

subject to
∞∑
t=1

ρt · (ci�t +pi�thi�t) ≤
∞∑
t=1

ρt ·wi�tLi�t �

As stated by Eeckhout, the problem reduces to the one period optimization problem
if there are no insurance or futures markets. Formally, there should be an expectation
in the objective function and a requirement that the budget constraint hold for every
state of nature. However, this is omitted in the literature since the problem is reduced to
a static optimization problem where the state of nature is observed before consumers
make their choices.

There are several important points to be made at this juncture. First, it is useful to
imagine the consumers stepping back at t = 0 and making decisions about their cities
of residence and their consumption bundles for the entire time stream of their infinite
lives, contingent on state realizations at each time. Second, and more important, it does
not matter which interpretation of the model one employs. Specifically, resources can be
transferred across states of the world (at any given time) in one or more of several ways
(insurance, self-insurance, or futures contracts). In the end, what a consumer is choos-
ing is their residence and consumption bundle for every time and for every possible state
of the world, optimizing utility subject to the budget constraint. The state of the world
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at time t affects the optimization problem through the prices, pi�t and wi�t , and income
(through a−(Si�t) and Li�t) only. These variables depend on Ai�t both directly and indi-
rectly, the latter because Si�t depends on Ai�t in equilibrium. The state of the world at
time t does not enter into the consumer optimization problem otherwise. For example,
it does not enter into the utility function. We could index these prices and incomes by
the state of the world, but that would only serve to complicate notation.

As already mentioned, what will matter are only the lifetime choices of residence and
consumption bundles, contingent on the state of the world in each period. The method
used to actually implement them, via transfers across states in a time period as opposed
to across time periods, does not matter; there are many possibilities. With complete fu-
tures markets, at time t = 0 the consumers can sell their labor in every future time pe-
riod and state, buying consumption good and housing in every future time period and
state. With insurance markets, at t = 0, the consumers can buy actuarially fair insurance
against price and income changes. With self-insurance, they can commit to a plan of
borrowing and saving under all possible scenarios, namely realizations of states in each
time period.

To get the basic idea across, in the next subsection we show how insurance would
work from the beginning when all cities have the same initial state (productivity) and
population. This yields no movement at any time in equilibrium. In the next subsection,
we discuss how to extend this so that insurance can begin from equilibrium of the model
at any time t. From that time on, there is no consumer movement unless the insurance
is switched off.

A.2.1 Insurance when the initial state is the same for all cities To illustrate the ideas
behind insurance, we begin with an example where all cities start with the same state at
time 0 and consumers insure from then on.

For notational purposes, let S be the mean population of cities, that is, S =
∑

i∈I Si�t|I| ,
where |I| is the cardinality of the set I. Let A0 =Ai�0 denote the common initial technol-
ogy level for all the identical cities before the process begins. Let Si�0 = S for all cities i,
so they all have the same initial population. We assume that

U = u∗(S)= [
αA0 · a+(S)a−(S)

]α
S

−β
Hβ[1 − α−β]1−α−β�

Thus, we assume for illustrative purposes that the initial configuration of shock A0 and
uniform population distribution S generates the instantaneous equilibrium utility. This
is to get the idea across; in the next section, we will show how to start insurance from
equilibrium at an arbitrary given time. In either case, no consumer movement will occur
once insurance begins.

With insurance, self-insurance, or a futures market (or some combination of all
three), we propose the following equilibrium solution for all cities i and times t:

pi�t = βA0a+(S)a−(S)S
H

�

wi�t =A0a+(S)�



178 Berliant and Watanabe Quantitative Economics 6 (2015)

ci�t = αA0a+(S)a−(S)�

hi�t = H

S
�

li�t = α+β�

In other words, this is the allocation generated by a constant, over both time and
state, allocation with a uniform distribution of consumers. By construction, it generates
the same instantaneous utility stream for all consumers in all cities and in all times as
both the initial distribution and the equilibrium studied by Eeckhout.

But how does this work in a pragmatic sense? Regarding futures markets, each con-
sumer works the same hours, independent of state. If the state realization is good, that is,
if the consumer is in city i at time 0 and Ai�t >A0, income in excess of A0a+(S) · (α+β)

is paid to the market. If the state realization is bad, then the consumer receives income
from the market, smoothing consumption. Under self-insurance, the consumer com-
mits to a plan of saving income in a good state, and withdrawing from savings or bor-
rowing in a bad state, thus smoothing consumption. The banks know that E(Ai�t) =A0,
so they are willing to lend. Under mutual insurance, the same type of idea, with com-
mitment, has consumers who are in cities with good states at time t contributing to an
insurance pool, and those in cities with bad states receiving payments from an insurance
pool. If the number of cities is large, the law of large numbers implies that the mutual
insurance pool is solvent.

It is interesting to note that the phenomenon we describe is something like another
manifestation of Starrett’s spatial impossibility theorem (see Mills (1967), Starrett (1978),
Fujita (1986), and Fujita and Thisse (2002, Chapter 2.3)), though here markets are incom-
plete due to the presence of unpriced local externalities, both positive (a+) and negative
(a−). In particular, we obtain a uniform distribution of economic activity, in spite of the
violation of one of the hypotheses of the theorem, namely perfect and complete markets.
It is well known (from these cites) that the hypotheses of Starrett’s theorem are sufficient
but not necessary for the conclusion, namely the lack of agglomeration.

In summary, the equilibrium time path of utility for every consumer is the same,
and constant, under insurance and under the equilibrium that generates movement and
eventually becomes log-normal. At the very least, a discussion of why the latter equilib-
rium is selected should be offered in the literature.

With any moving cost, the insurance or futures market equilibrium (the one denoted
with bars) clearly dominates the path with asterisks, the one put forth in the literature.
Given a choice between moving along the equilibrium path or insuring at t = 0, each
consumer will individually choose to insure.

A second, and perhaps more reasonable, possibility is that consumers observe Ai�t

imperfectly when they make their location decisions each period. In that case as well,
the consumers will insure rather than move, since they are risk averse. This can be seen
in equation (9). When consumers cannot perfectly observe Ai�t when optimizing, equi-
librium expected utility will vary in proportion to E(Ai�t)

α.
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A.2.2 Insurance starting when the state is an equilibrium at a given time The preced-
ing subsection was provided to give intuition. However, it has drawbacks in terms of
commitment on the part of consumers if they use mutual insurance at each given time,
and on the part of banks and consumers at time 0 if the consumers use self-insurance.
Moreover, there is a strong assumption that at time 0, A0 is the same across cities, each
city has the same population S, and this combination produces the instantaneous equi-
librium utility level. Here we discuss how to dispense with some of these assumptions.

Suppose that we start running the model without insurance, so that consumers are
generally moving around, and stop it at some arbitrary time t. At this time, the instanta-
neous utility level of each consumer is, of course, U . Consider a consumer in city i and
the possibility of self-insurance. At that point, the productivity parameter in the city is
Ai�t , and everyone knows from equation (8) that for t ′ > t, E(Ai�t ′) = Ai�t . So if the con-
sumers in that city freeze their consumption bundle at whatever it is at that time, and
commit to staying in that city and consuming that consumption bundle forever through
a plan of borrowing and saving, they will obtain utility level U in each period. This ex-
ploits the law of large numbers over time.

Mutual insurance, exploiting the law of large numbers over space at a given time, is
more interesting. Pick an arbitrary time t and freeze all the consumers in their equilib-
rium locations as well as their consumption bundles. All consumers obtain utility U in
this situation at time t. Now consider what would happen if they maintain the same lo-
cation and consumption bundle in time t + 1. Given equation (8), the surplus or deficit
in total wage payments for city i relative to the benchmark inherited from the previous
period t is

σi�t+1 ·Ai�t · a+(Si�t) · (α+β) · Si�t � (10)

Thus, to ensure that this system of mutual insurance across cities is solvent at time t + 1,
it is necessary that∑

i∈I

1
|I| · σi�t+1 ·Ai�t · a+(Si�t) · (α+β) · Si�t = 0�

Although this cannot be assured for finite |I|, we can see that as the number of cities
|I| tends to infinity, the limiting result is a consequence of a law of large numbers with
weights given by 1

|I| ·Ai�t · a+(Si�t) · (α+β) · Si�t .
Since the support of the random variable 1 + σi�t is contained in (0�2), equation (8)

implies that the size of Ai�t at given time t can be bounded over i by 2tAi�0. Since Ai�t

and Si�t are positively related, there is also a bound for Si�t and thus for the continuous
function a+(Si�t) for fixed t over i. There is an extensive literature on the law of large
numbers for sums of weighted random variables. Our framework would fit, for example,
in Cabrera and Volodin (2005, Corollary 1).

Notice that there is no commitment required under mutual insurance beyond the
next period. So it can be switched on and off as desired, with no consumer movement
when it is on and movement when it is off. If insurance is carried on to period t + 2, then
expression (10) updated to time t + 2 represents the change in the surplus or deficit in
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total wage payments for city i relative to time t + 1, so solvency at time t + 2 requires that
these changes sum to zero across cities.

There is a subtle issue of commitment relevant to mutual insurance that is not as
subtle for self-insurance. An interesting strategy for consumers is to insure for the first
period, wait for uncertainty in the first period to be resolved, then pick a winner (a lo-
cation where Ai�t+1 >Ai�t ), move there, and then reinsure. If a long-term commitment
to insurance is required, then of course (similar to self-insurance) this strategy is not
possible. Alternatively, if such commitment is not desirable, we could make an assump-
tion about off the equilibrium path beliefs. That is, we could assume that if a consumer
moves to a winning location, that person thinks that others will also follow this strategy,
driving down instantaneous utility until it is again equalized across locations. Thus, this
strategy does not do better than insuring in every period.

A.2.3 Extensions: Partial insurance and moving cost Before discussing partial insur-
ance, it is useful at this point to make some remarks and to give some detail about equi-
librium in Eeckhout’s model with moving costs. In such a model, equilibria do not fea-
ture equalization of utility across locations, and this makes matters more complicated.
We assume that a moving cost, if nonzero, is paid in terms of the numéraire consump-
tion good. We call it M ≥ 0. The main fact we need is that the explicit utility function is
strongly monotonic in consumption good.

In this framework, we assume that before uncertainty is realized in a given period,
each consumer must choose between a commitment to stay in their current location
(and possibly insure against the uncertainty) or to move (after the realizations of all
shocks that period are known to everyone).

First, consider the situation where the initial distribution generates the same instan-
taneous utility, independent of location. (With moving cost, this might not happen, but
it is useful for thinking about the problem.) Then we will consider the situation where
the initial distribution does not generate the same instantaneous utility.

The first claim we make is that under these conditions, for fixed positive M , every
consumer will unilaterally decide to commit to stay and insure. The reason is that for
Eeckhout’s arguments to work, uncertainty must be arbitrarily small. This is made ex-
plicit by Eeckhout (2004, p. 1447), where εi�t is written as an increasing function of σi�t ,
and asymptotic statements such as εi�t → 0 are used to derive Gibrat’s law. So for any
fixed M > 0, we can find sufficiently small εi�t , and thus σi�t (or its support), so that each
consumer would find it more costly to move than to insure. Thus, the potential gain from
moving will be less than the cost, namely M . If consumers have heterogeneous moving
costs, as long as there is not an atom of consumers at zero moving cost, as the random
variables representing the shocks become small, the measure of consumers who prefer
to move rather than insure will tend to zero.

Clearly, in the original equilibrium with consumer movement, the measure of con-
sumers who actually move between periods to equate utility across locations is relatively
small. But given the last argument, no individual will want to be among the movers. And
over time, the social cost of moving will add up.
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Given that nobody chooses to move, we can next calculate the amount of insurance
they will purchase. Since Si�t+1 = Si�t , we can calculate from (9) and (8) that

Eu∗(Ai�t+1 | Ai�t� Si�t) = E
([
α
{
Ai�t(1 + δ · σi�t+1)

}
· a+(Si�t)a−(Si�t)

]α[Si�t]−βHβ[1 − α−β]1−α−β
)
�

where 1 − δ is the percentage of insurance purchased. By concavity, E{(1 + δ · σi�t+1)
α}

is maximized at δ = 0, so everyone purchases full insurance. Partial insurance is not a
feature of equilibrium.

Finally, consider the case where the initial indirect utility levels are not equalized
across locations in equilibrium due to the moving cost. In fact, due to costly mobility,
the utility difference in terms of numéraire cannot exceed M , for otherwise consumers
would move to the location with higher gross utility (as it exactly compensates for the
moving cost). But since consumers can look ahead, they realize that this is not just a one
period difference in utility levels. In other words, after sinking moving cost this period,
next period it is expected that the higher utility location will yield the same utility (for
example, by fully insuring) without having to pay the moving cost. So more people will
move there this period. The present discounted value of the utility difference will be at
most the moving cost. So in the first period under consideration, people might move.
But after that, the population distribution will be stable, and everyone in all locations
will fully insure for the same reason as given above.

Appendix B: Positive transport costs

Before turning to the details of our simulations, we first summarize our conclusions.
Table 6 reports the statistics from our simulations. Typically, in equilibrium, there will
be more than one city producing the same commodity to serve nearby cities. Whereas
both the log-normal and GEV distributions track the simulated data well, the results
are inconclusive concerning which of the two distributions better explains the economy
with multiple production sites. The KS statistic is small for both distributions; AIC and
BIC are lower for the log-normal distribution when the iceberg transportation cost is
large, but in the end the differences are small.

Now let us turn to the details of the simulations. We have 10 industries with 30 poten-
tial production sites each, so there are 300 potential city locations lined up on a circle.
Transportation cost is of the iceberg form. In particular, we ship out 1�01, 1�05, or 1�1
units of commodity and an immediate neighbor on the circle receives 1 unit of it. Ship-
ment cost grows with distance traveled. City residents purchase goods from the city that
quotes the smallest delivered price within each industry. Everything else is the same as
the basic model we have described.

The results from our simulations depart from the results from the basic model in two
ways. As is the case for the basic model, high productivity reduces the mill price. How-
ever, it is not practical to serve the entire population from a single city just because that
city is the most productive in the industry; delivered price grows with distance. Rather,
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Table 6. Simulations with positive iceberg transport cost.

Iceberg Productive Cities/Cities Distribution μ̂ σ̂ ξ̂ κ̂ γ̂ LogLH AIC BIC KS

1�01 78/300 Log-normal −4�624 0�8466 −275�2 554�4 559�1 8�343E−2
1�01 78/300 GEV 4�845E−2 1�051E−2 −0�4621 1233 0�7967 −267�8 545�5 557�3 7�152E−2

1�02 107/300 Log-normal −5�250 1�1704 −345�2 694�5 699�8 4�886E−2
1�02 107/300 GEV 4�240E−2 1�711E−2 −0�04938 27�60 0�7377 −346�1 702�2 715�5 5�477E−2

1�05 92/300 Log-normal −5�301 1�3861 −307�5 618�9 623�9 1�062E−1
1�05 92/300 GEV 4�589E−2 1�491E−2 −0�1759 1839 0�8107 −310�7 631�4 644�0 1�028E−1

1�1 93/300 Log-normal −5�345 1�4345 −319�1 642�2 647�4 8�516E−2
1�1 93/300 GEV 1�456E−1 3�837E−2 −0�3230 250�5 0�8530 −321�6 653�2 666�0 8�148E−2
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a couple of cities will coexist within the same industry to serve the cities in close prox-
imity to each of them. Also, surviving cities are not necessarily the most productive in
the industry. It depends not only on a city’s own productivity, but also on the size and
productivity of close neighbors.

For the 300 locations, we mark an industry by j = 1� � � � �10 and a location block of 10
cities by i = 1� � � � �30. On a circle, we have city (i� j) = (1�1) located next to (1�2), next
to (1�3), and so on. Then, next to (1�10) we have (2�1). As we travel along the circle in
this way, we will eventually reach (30�10), whose next neighbor is (1�1), completing the
circle. Figure 5 is a schematic representation of the arrangement of cities so that we can
illustrate how the model works. A circle with 300 dots would be difficult to interpret, so
instead we give the industry on the horizontal axis and the location block on the vertical
axis.

Figure 5(a) represents the size of the random productivity draw A, where a larger
dot represents a larger value of A. We shall use this single draw of the random vari-
able for subsequent illustrations. In Figure 5(b) we represent the equilibrium city-size
distribution for a transport cost of 1�01, where a larger dot means a larger equilibrium

(a) (b) (c)

Figure 5. (a) Productivity parameter A. (b) City size (τ = 1�01). (c) City size (τ = 1�1).
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population and no dot means the area is rural. Such a small transport cost causes only
a minor change from our basic model. Take industry j = 8 for example. The most pro-
ductive city is (i� j) = (6�8). This would be the city that survives in the absence of any
transport cost. City (6�8) still survives and produces most of commodity j = 8 when we
throw in a minimal shipment fee. However, there are some other cities, such as (25�8),
that also engage in production to serve local markets. City (25�8) undercuts the deliv-
ered price of city (6�8) for nearby cities. Indeed, shipment from (6�8) to (25�8) would
require an impractical 189 steps.

As we raise transport cost, a qualitatively different city-size distribution emerges in
equilibrium. Own productivity level becomes less pertinent and the size of neighbor-
ing cities becomes more influential in determining city size. This can be seen in Fig-
ure 5(c), where transport cost is raised to 1�1 units. Take industry 8 again. The most
productive city (6�8) is still in the picture, but production is more intense in the less
productive city (17�8) when transport cost is raised. City (6�8) is quite productive in iso-
lation, but is surrounded by cities whose productivity is not exceptional. Consequently,
its local market is small. On the other hand, city (17�8) is surrounded by productive
cities. Since utility is concave, there is large demand for commodity 8 from these pro-
ductive (and therefore, populous) neighbors. And this large demand will be fulfilled by
the nearby city (17�8) rather than a faraway city (6�8) to ward off the increased ship-
ping charge. City (17�8) grows to support local demand that, in turn, will create a large
demand for goods other than 8 produced by its neighbors. As a result, high transporta-
tion cost creates snowballing clusters of cities, whose average productivity across the
industries within the region is high, and eliminates cities of high productivity in geo-
graphic isolation. The equilibrium does not simply select the most productive cities as
survivors.

The various theories we have summarized have zero transport costs. The simula-
tions indicate that positive transport costs can generate a new force in city selection,
namely a kind of local market effect illustrated in Figure 5(c).

Figure 6 and Table 6 summarize maximum likelihood estimation for the log-normal
and GEV city-size distributions from these simulations. On the whole, both distributions
fit the simulations well. Notice that the number of active cities is not monotonically in-
creasing in transport cost. The reason is that some clusters of cities empty out as trans-
port cost increases.

Table 6 reports the estimated parameters. The last four columns are the values of the
log likelihood function (larger is better), Akaike and Bayesian information criteria (AIC
and BIC), and the Kolmogorov–Smirnov (KS) statistic (smaller is better for all). Judging
by the values of the KS statistic, the overall fit is not bad. Turning next to the compar-
ison between the log-normal and GEV distributions, the simulated city-size distribu-
tions yield better log likelihood values for GEV when transport cost is small, but favor
log-normal for AIC and BIC (GEV has more parameters). In the end, the fits are almost
identical. In additional simulations not detailed here, we found no systematic relation-
ship between transportation cost and how well either distribution fits the data.
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(a) GEV (b) Log-normal (c) PDF

(d) GEV (e) Log-normal (f) PDF

(g) GEV (h) Log-normal (i) PDF

(j) GEV (k) Log-normal (l)

Figure 6. Maximum likelihood estimation with iceberg transport cost (from top row): 1�01, 1�02,
1�05, 1�1.
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