
Supplementary Material

Supplement to “Likelihood-ratio-based confidence sets
for the timing of structural breaks”

(Quantitative Economics, Vol. 6, No. 2, July 2015, 463–497)

Yunjong Eo
School of Economics, University of Sydney

James Morley
School of Economics, University of New South Wales

This supplement gives proofs for propositions and corollaries in the main text.

Appendix: Proofs

Proof of Proposition 1. Following Qu and Perron (2007a), Qu and Perron (2007b),
we consider the jth break date τj without loss of generality. The log-profile likelihood
ratio subject to the restrictions g(β�Σ) = 0 under the null hypothesis H0 :τj = τ0

j and the

alternative hypothesis H1 :τj �= τ0
j is given by
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where the maximization is taken over CM . The second and third lines in (A.1) result
from adding and subtracting the log-likelihood at the true values lj(τ

0
j �β

0
j �Σ

0
j ) to the

first line.1 The equality of the second and third lines and the fourth line in (A.1) follows
from Theorem 1 in Qu and Perron (2007a).
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We focus on the term lrj(τj�β
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line of (A.1) so as to find the asymptotic distribution of LRj(τ
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Then letting s = v2
T (τj − τ0

j ), with vT defined in Assumption 7, the proof of Theorem 3 in
Qu and Perron (2007b) shows that for s ≤ 0,
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Note that W1�j(0) =W2�j(0) = 0 because W1�j(s) and W2�j(s) are independent and starting
at s = 0.

Qu and Perron (2007a) derive a Bai-type distribution of τ̂ − τ0 by taking the arg max
of (A.2) and (A.3) over CM and using the continuous mapping theorem. Here, instead, we
are deriving the distribution of the likelihood ratio by taking the max of (A.2) and (A.3)
over CM . Thus, under the null hypothesis H0 :τj = τ0

j , we have
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where we can simplify this expression to relate it to a known distribution from
Bhattacharya and Brockwell (1976). Let LRj(τ
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Thus, we have the simplified expression for the distribution of the likelihood ratio under
the null hypothesis:
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Bhattacharya and Brockwell (1976) show that ξ1 and ξ2 in (A.8) and (A.9) are inde-
pendent and identically distributed exponential random variables with respective dis-
tribution functions P(ξ1 ≤ x) = 1 − exp(−x) for x ≤ 0 and P(ξ2 ≤ x) = 1 − exp(−x) for
x > 0. Thus,
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Then using the distribution of the profile likelihood ratio for the break date τj , we can
construct a 1 −α confidence set Cj�1−α = {τj|LRj(τj) ≤ κα�j} by inverting the α-level like-
lihood ratio test. The probability of coverage Cj�1−α for any τ0

j is given by Pτ0
j

(τ0
j ∈ Cj�1−α),
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Note that κα�j will be unique because for all κ > 0, the CDF is a strictly increasing func-
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Lemma 1. Under the null hypothesis H0 :τ = τ0, if lr(τ̂ − τ0) ⇒ ξ = maxv(− 1
2 |v| + W (v))
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Proof. As shown in Bhattacharya and Brockwell (1976), the CDF of ξ = maxv(− 1
2 |v| +

W (v)) is given by P(ξ ≤ x) = (1 − exp(−x))2. Then letting C1−α = {τ|lr(τ̂ − τ) ≤ κα},
Siegmund (1986) shows that the expected length for a 1 −α confidence set C1−α is given
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See Siegmund (1986) for more details.
Because we can find a critical value κα such that
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it implies that

κα = − log
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Then, by substituting (A.12) into (A.11), we can express the expected length for a 1 − α

confidence set as a function of the critical value κα rather than the level 1 − α as
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Proof of Proposition 2. For the general case, as in our setup under Assumptions 1–
8, first consider the period before the true jth break date, τj − τ0
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Note that from Proposition 1, the second line in (A.14) implies that
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Thus, the expression (ii) in the fourth line of (A.14) is calculated for P(ξ ≤ κα�j
2ω1�j

) by sub-

stituting the critical value κα�j/2ω1�j into half of the expected length in Lemma 1 given
that we are considering v ≤ 0. The expected length for v > 0 is calculated in a similar
fashion such that the expected length for the entire 1 − α likelihood-ratio-based confi-
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dence set is given by
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Note that as either ω1�j or ω2�j gets larger (i.e., the magnitude of a structural break is
larger), the expected length becomes shorter because there is more precise information
about the timing of the structural break. �

Proof of Corollary 1. If there is no break in variance, Σj = Σ for all j and B1�j =
B2�j = 0. In addition, if the errors form a martingale difference sequence, Π1�j = Q1�j
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pected length in Proposition 1, we can find the results in Corollary 1. The results in Re-
marks 1 and 2 follow in the same way. �

Proof of Corollary 2. If there is no break in conditional mean, �βj = 0 and, in ad-
dition, if the standardized errors, ηt , are identically Normally distributed, ηtη
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