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The empirical content of games with bounded regressors

Brendan Kline
Department of Economics, University of Texas at Austin

This paper develops a strategy for identification and estimation of complete infor-
mation games that does not require a regressor that has large support or a para-
metric specification for the distribution of the unobservables. The identification
result uses a nonstandard but plausible condition on the unobservables: the as-
sumption that the joint density of the unobservables of all agents is unimodal in
the sense of achieving the global maximum at a unique point. Also, a three-step
semiparametric estimator is proposed. Under mild regularity conditions, the es-
timator is consistent and asymptotically normally distributed. The estimator is
nonstandard in the sense that the estimators of the intercept and interaction ef-
fect parameters converge at slower than the parametric rate. An intermediate re-
sult concerns identification and estimation of the direction of the interaction ef-
fect.
Keywords. Identification, nonstandard estimation, strategic interaction, entry
game.
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1. Introduction

1.1 Overview

It is difficult to establish conditions under which the parameters of a model of a com-
plete information game are point identified, particularly because of problems related to
multiple equilibria. Nevertheless, Tamer (2003), Bajari, Hong, and Ryan (2010), Dunker,
Hoderlein, and Kaido (2013), Fox and Lazzati (2013), and Kline (2015a), provide various
sufficient conditions for point identification.

All those results are based on identification strategies that require a large support re-
gressor, although the way that such a regressor is used may vary across papers.1 If there
are no results that apply without a large support regressor, then point identification in
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empirical applications without large support regressors may be in question. So this pa-
per shows point identification without a large support regressor and without parametric
distributional assumptions, based on a novel location assumption concerning the mode
of the unobservables.2 In establishing this result, this paper uses the important fact that
the complete information game framework has nontrivial implications for the data for
all values of the explanatory variables, not just “extreme” values of the explanatory vari-
ables associated with large support: Nash equilibrium implies some possibly set-valued,
but generally nontrivial, restrictions on the outcome of the game, as a mapping from the
utility functions to the outcomes, regardless of the “magnitude” of the explanatory vari-
ables.3

Specifically, the identification strategy is based on the existence of “unique potential
outcomes.” A unique potential outcome is an outcome of the game that occurs exclu-
sively as a unique Nash equilibrium of the game, even if other outcomes of the game
occur as part of a region of multiple equilibria.

The identification strategy uses two main assumptions concerning the unobserv-
ables. The first assumption is the standard assumption that the unobservables are inde-
pendent of the exogenous explanatory variables. The second assumption is the location
assumption, which is nonstandard: the assumption that the joint density of the unob-
servables of all agents is unimodal, in the sense of achieving the global maximum at a
unique point. It is allowed that the density has many local maxima.

Moreover, a three-step semiparametric estimator is proposed, and the asymptotic
properties are derived. The three steps of the estimator are (i) estimate the direction of

of an identification strategy again based on parametric distributional assumptions for the unobservables.
Aradillas-Lopez and Rosen (2013) study an ordered response game, primarily from the partial identification
perspective, but do show that some model parameters are point identified without a large support regres-
sor, assuming either that the unobservables have a known distribution or a certain parametric distribution
(the Farlie–Gumbel–Morgenstern distribution).

2Subsequent to the results of this paper, these results (and/or “intuition” for the identification strategy)
have already proved useful. Fox and Lazzati (2014), among other contributions, use some of the ideas of
the current paper in the context of choice over bundles. Also, subsequently, Zhou (2013) studies some im-
plications of the assumption of “radially symmetric” unobservables, particularly as concerns the rate of
convergence for the interaction effect parameters, somewhat similarly to how the strength of symmetry as-
sumptions can be sufficient for positive Fisher information for the intercept in single-agent discrete choice
models (e.g., Cosslett (1987)).

3Suppose that the parameters of the utility function are specified at known values (i.e., the “theory
model” is specified), but the nuisance parameters that are not restricted by the theory are unknown (i.e.,
the selection mechanism). Because the selection mechanism is a distribution directly over the outcomes,
the concern is that there might not be any empirical implications unique to that specification of the the-
ory model, or at least that it is difficult to characterize the restrictions on the data implied by the model,
complicating identification of the model. This has lead to identification strategies based on large support
regressors, which “eliminate” the role of the selection mechanism, in which case the restrictions on the data
implied by the model are more straightforward to characterize. In this paper, establishing point identifica-
tion critically depends on establishing the fact that the theory model implies nontrivial restrictions on the
data even without large support regressors. In some econometric models, at least the empirical implica-
tions of the model are relatively straightforward to characterize, even if establishing identification is not. In
models of games, it tends to be difficult even to characterize (in a useful way) the empirical implications of
the model.
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the interaction effect (i.e., the sign of the interaction effect parameter sgn(Δ)), (ii) esti-
mate the slope parameters (i.e., the coefficients on the exogenous explanatory variables
β), and then (iii) estimate the “intercept” parameters (i.e., the interaction effect param-
eters, and the usual intercepts Δ and α). The interaction effect parameter is an intercept
parameter because it does not appear in the model as a slope coefficient on some ex-
ogenous explanatory variable.

The estimator for the slope parameters is related to density-weighted average
derivate estimation, and is

√
M consistent and asymptotically normally distributed,

where M is the number of markets in the data (i.e., the number of games played in the
data). The estimator for the intercept parameters involves maximizing the derivatives of
an unknown “regression function” that is estimated by nonparametric methods, and is
asymptotically normally distributed but converges at slower than the

√
M rate. The rate

of convergence depends on the assumed smoothness of the density of the unobserv-
ables, with more smoothness resulting in faster rates of convergence. Under realistic
assumptions the rate is M1/4 (or faster under more smoothness) in two-agent games.
The rate of convergence does not depend on the number of explanatory variables in the
model, due to a dimension reduction strategy. However, the rate of convergence does
depend negatively on the number of agents in the model.

1.2 Outline of the paper

Section 2 introduces the model. Section 3 establishes the identification strategy in the
context of an N-agent, two-action game with continuous explanatory variables. Sec-
tion 4 shows the identification strategy can be extended to cases involving discrete ex-
planatory variables or games involving more than two actions. Section 5 discusses iden-
tification of the direction of the interaction effect. Section 6 discusses estimation. Sec-
tion 7 reports the results of a Monte Carlo experiment. Section 8 reports the results
of a stylized empirical application to entry into airline markets. Section 9 concludes,
and includes some identification results on the distribution of the unobservables. As is
common in semiparametric models, the main results treat the distribution of the un-
observables as a “nuisance parameter.” Additional material is available in supplemen-
tary files on the journal website, http://qeconomics.org/supp/444/supplement.pdf and
http://qeconomics.org/supp/444/code_and_data.zip.

2. Model

The complete information game involves N ≥ 2 agents. The actions available to each
agent are S = {0�1}. For example, if this is a model of an entry game, the actions are to
enter the market (action 1) or not to enter the market (action 0).

The utility functions are

uim(0� y−im)= 0 and
(1)

uim(1� y−im)= αi + ximβix +wmβiw +Δi
∑
j �=i
yjm + εim

http://qeconomics.org/supp/444/supplement.pdf
http://qeconomics.org/supp/444/code_and_data.zip
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Table 1. Normal form.

0 1

0
(

0
0

) (
0

α2 + x2mβ2x +wmβ2w + ε2m

)
1

(
α1 + x1mβ1x +wmβ1w + ε1m

0

) (
α1 + x1mβ1x +wmβ1w +Δ1 + ε1m
α2 + x2mβ2x +wmβ2w +Δ2 + ε2m

)

in market m, where a “market” is the unit of observation. The subscript im refers to
agent i in market m and the subscript m refers to market m. The normalization that
uim(0� y−im)= 0 is used because only differences in utility are relevant. The solution con-
cept is pure strategy Nash equilibrium play.

If N = 2, the game is described in normal form in Table 1. The row player is agent 1
and the column player is agent 2. The first payoff is the row payoff, and the second payoff
is the column payoff.

The explanatory variables xim are specific to agent im, and the explanatory variables
wm are shared among the agents in market m (for example, market characteristics). It is
allowed that there are no shared variables, but there must be at least one agent-specific
variable per agent (i.e., xim for each agent i must contain at least one variable), because
the agent-specific variables represent an exclusion restriction in the identification of
the model with simultaneity. There are Di ≥ 1 agent-specific explanatory variables for
agent i, and there are L shared explanatory variables.

The variables β= (β1�β2� � � � �βN), where βi = (βix�βiw), are the slope parameters,
which characterize how utility depends on the exogenous explanatory variables. The
variables α= (α1�α2� � � � �αN) are the intercept parameters. Finally, Δ= (Δ1�Δ2� � � � �ΔN)

are the interaction effect parameters, which characterize how utility depends on the ac-
tions of the other agents.

It is assumed that the signs of theΔ parameters are weakly equal, in the sense that ei-
ther Δi ≤ 0 for all agents i (e.g., strategic substitutes) or Δi ≥ 0 for all agents i (e.g., strate-
gic complements). Games of strategic substitutes include such important instances as
entry games, oligopoly competition in quantity, public good provision, or information
provision. Games of strategic complements include such important instances as social
interactions, technology adoption, or oligopoly competition in prices. See, for example,
Bulow, Geanakoplos, and Klemperer (1985) or Vives (2005). The results forN ≥ 3 require
that Δi ≤ 0 for all agents i.

The assumption of complete information, rather than incomplete information, fol-
lows that part of the literature: in particular, complete information can be “justified” as
an approximation to a long-run interaction. Incomplete information generally results in
ex post regret (the action of an agent is not the best response to the realized action of the
other agents), which suggests that equilibrium cannot be maintained in the long run if
agents can adjust their action, whereas there is no ex post regret in pure strategy Nash
equilibrium with complete information.

In each market the econometrician observes the outcomes y = (y1� y2� � � � � yN) and
the exogenous explanatory variables z = (x1�x2� � � � � xN�w), but does not observe ε =
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(ε1� ε2� � � � � εN). The identification problem concerns recovering the parameters θ =
(α�β�Δ) from the population distribution of the data, P(y� z).

3. Identification

3.1 Sketch of identification strategy

The following subsection sketches the identification strategy for the case of a nonpos-
itive interaction effect, as in an entry game. (The case of a nonnegative interaction ef-
fect, as long as N = 2, is similar, but uses a different set of unique potential outcomes.)
This sketch assumes that all explanatory variables have a continuous distribution, an
assumption that is relaxed in Section 4.1. Roughly, if there are discrete explanatory vari-
ables, then the identification strategy is to point identify the model conditional on values
of the discrete explanatory variables.

With a nonpositive interaction effect, 01×N ≡ (0�0� � � � �0) is a unique potential out-
come4 because 01×N is the Nash equilibrium if and only if εi ≤ −αi−xiβix−wβiw for all
agents i. Therefore, observing that the outcome is 01×N is equivalent to that condition
on the unobservables. Therefore,

P(y = 01×N |z) = P
({εi ≤ −αi − xiβix −wβiw} ∀i)

= P0(−α1 − x1β1x −wβ1w�−α2 − x2β2x −wβ2w� � � � �

−αN − xNβNx −wβNw)�

where P0(t1� t2� � � � � tN) = P(ε1 ≤ t1� ε2 ≤ t2� � � � � εN ≤ tN). Let N0 = N − 1. Similarly,
11×N ≡ (1�1� � � � �1) is the Nash equilibrium if and only if εi ≥ −αi − xiβix −wβiw −N0Δi
for all agents i. Therefore,

P(y = 11×N |z)
= P({εi ≥ −αi − xiβix −wβiw −N0Δi} ∀i)
= P1(−α1 − x1β1x −wβ1w −N0Δ1�−α2 − x2β2x −wβ2w −N0Δ2� � � � �

−αN − xNβNx −wβNw −N0ΔN)�

where P1(t1� t2� � � � � tN)= P(ε1 ≥ t1� ε2 ≥ t2� � � � � εN ≥ tN). This uses the assumption that
the unobservables are independent of the explanatory variables.

4The observation that there are unique potential outcomes is not the innovation in this paper. Indeed, for
example, the same observation is made in Bresnahan and Reiss (1990) and Ciliberto and Tamer (2009). The
innovation in this paper is using the existence of unique potential outcomes as an ingredient in a strategy to
point identify and estimate the model parameters. Particularly, the innovation is showing that using unique
potential outcomes allows identification and estimation without a regressor with large support. For exam-
ple, despite using unique potential outcomes, the point identification result in Ciliberto and Tamer (2009)
uses a regressor with large support, leading them to use partial identification inference results in practice.
Note that the existence of unique potential outcomes relies critically on knowing (or point identifying; see
Section 5) the sign of the interaction effect. See also, for example, Bresnahan and Reiss (1991a).
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Therefore, for explanatory variable k of agent i, ∂P(y=01×N |z)
∂xik

= P(i)0 (−α1 − x1β1x −
wβ1w�−α2 − x2β2x −wβ2w� � � � �−αN − xNβNx −wβNw)(−βixk), where P(i)0 (·) indicates
the evaluation of the derivative of P0(·) with respect to its ith argument, and so

∂P(y = 01×N |z)
∂xik

∂P(y = 01×N |z)
∂xik′

= βixk
βixk′

�

so βix is point identified up to scale. (Note that this expression is also true taking ex-
pectations with respect to z, a fact that is used for estimation.) Also, a similar, but more
technical, identification strategy shows that βiw is point identified up to the same scale
normalization. Identification of βiw is more complicated because shared explanatory
variables affect all agents’ utilities, but only the total effect of the explanatory variables
is “observed,” so some additional work is necessary to point identify the effect on each
agent separately.

The intercept parameters are not coefficients on exogenous explanatory variables,
and therefore cannot be point identified using this strategy. Identification of the inter-
cept parameters is important, particularly as the interaction effect parameter Δ is an
intercept parameter. More generally, note that identification (and/or estimation) of in-
tercept parameters of models is often much more difficult than for slope coefficients,
and sometimes such parameters are “absorbed” into other parts of the model (see, for
example, Andrews and Schafgans (1998) or Remark 6.2).

Define ci = −xiβix − wβiw and c = (c1� c2� � � � � cN), which are point identified given
that β is point identified. Then P(y = 01×N |c) = P0(−α1 + c1�−α2 + c2� � � � �−αN + cN)

and P(y = 11×N |c)= P1(−α1 −N0Δ1 + c1�−α2 −N0Δ2 + c2� � � � �−αN −N0ΔN + cN). Con-
sequently,

∂NP(y = 01×N |c)
∂c1 ∂c2 · · ·∂cN

∣∣∣∣
(a1�a2�����aN)

= P(12···N)
0 (−α1 + a1�−α2 + a2� � � � �−αN + aN)�

where P(12···N)
0 is the Nth partial derivative of P0, taking a partial derivative with respect

to each argument exactly once. The left hand side is observed, and the right hand side
is an unknown function of the parameters of interest, α = (α1�α2� � � � �αN). In general,
it is impossible to use such an equation to identify the intercept parameters, since the
unknown P(12···N)

0 can “absorb” the intercept terms.5

But P(12···N)
0 (t1� t2� � � � � tN) = fε(t1� t2� � � � � tN), where fε is the density of ε. So

∂NP(y=01×N |c)
∂c1 ∂c2···∂cN |(a1�a2�����aN) is the joint density of ε evaluated at (−α1 + a1�−α2 + a2�

� � � �−αN + aN). Suppose that the joint density of ε is unimodal, in the sense of achiev-
ing the global maximum at a unique point, allowing potentially many local maxima.

5It could be that P(12···N)
0 (−α1 + a1�−α2 + a2� � � � �−αN + aN)=Q(12···N)

0 (−α′
1 + a1�−α′

2 + a2� � � � �−α′
N +

aN) for all (a1� a2� � � � � aN) if Q(12···N)
0 (t1� t2� � � � � tN)≡ P(12···N)

0 (t1 − α1 + α′
1� t2 − α2 + α′

2� � � � � tN − αN + α′
N),

implying that αwould not be point identified, since {P0�α} would be observationally equivalent (relative to
that equation) to {Q0�α

′}.
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As a normalization, it can be assumed that 01×N is the unique global maximizer of

the joint density of ε. Then ∂NP(y=01×N |c)
∂c1 ∂c2···∂cN |(a1�a2�����aN) is uniquely maximized as a func-

tion of (a1� a2� � � � � aN) when ai = αi for all agents i. Since ∂NP(y=01×N |c)
∂c1 ∂c2···∂cN |(a1�a2�����aN) is ob-

served, this implies that α is point identified. Similarly, (−1)N ∂NP(y=11×N |c)
∂c1 ∂c2···∂cN |(b1�b2�����bN) is

uniquely maximized as a function of (b1� b2� � � � � bN) when bi = αi +N0Δi for all agents
i, so Δ is point identified.

3.2 Formal identification results

The following assumptions are sufficient for point identification of the parameters of the
utility function.

Assumption 3.1 (Scale Normalization). It holds that βix1 = 1 for all agents i.

The scale of the utility functions has no observable implications. See Remark 3.7 on
the fact that this is also a sign assumption. (In short, the proof of Theorem 3.1 shows that
the sign of βix1 is point identified, and so to avoid distracting accounting details related
to keeping track of the sign, it is assumed the signs are positive. If not, the signs of xi1
can be “flipped” by multiplying them by −1.)

Assumption 3.2 (Independence of Unobservables From Explanatory Variables). It
holds that ε⊥ z.

Assumption 3.2 allows that εim is correlated with εjm within marketm.

Assumption 3.3 (Unobservables Have Mode at Zero). The distribution of ε admits an
ordinary continuous density fε(·) with respect to Lebesgue measure. The unique mode of
ε is 01×N , defined by 01×N = argmaxt1�t2�����tN fε(t1� t2� � � � � tN).

The assumption on the mode of ε deals with the fact that a necessary condition for
point identification of α and Δ is an assumption on the location of ε. The condition
that the mode is at 01×N rather than some other point is a normalization, as the true
mode is absorbed by α. The substantive condition is that the density of ε is maximized
at a unique point (i.e., argmaxt fε(t) is a singleton set), a condition satisfied by many
important distributions.6

Assumption 3.3 requires only the uniqueness of the point achieving the global maxi-
mum of the density of ε, and therefore allows multiple local maxima of the density of ε.7

6The use of the mode as a location assumption in econometrics seems rare, but one notable exception
is the mode regression setup of Lee (1989). Of course, the use of the mode differs significantly between this
paper and Lee (1989).

7The definition of unimodal is not standardized, as sometimes it means achieving the maximal den-
sity at a unique point, but allowing multiple local maxima, while other times it means having only one
local (and therefore global) maximum. Assumption 3.3 uses unimodal in the weaker sense of achieving the
global maximum at a unique point, while having possibly many local maxima. Remark 3.6 discusses some
additional implications of assuming the stronger sense of “strictly unimodal.”
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Many distributions, for example, mixture distributions, will tend to have multiple local
maxima of the density, but will achieve the global maximum at a unique point.

Typically, the location assumption concerns either the mean or median of the un-
observables. However, E(ε) = 01×N and ε ⊥ z is not sufficient for point identification
because there is no regressor with large support.8 An assumption on the median, in the
sense of Med(ε)≡ {Med(εi)}i, was shown to be compatible with point identification in
Kline (2015a) with a large support regressor (and allowing ε to not be independent from
z), but without a large support regressor it seems difficult (although not necessarily im-
possible) to achieve point identification using this assumption.9

The identifying power of an assumption on the mode of ε is due to the fact that the
condition that 01×N is the mode of ε is a “local” property. Solving

argmax
t1�t2�����tN

fε1+c1�ε2+c2�����εN+cN (t1� t2� � � � � tN)�

which is the problem of finding the mode of (ε1 +c1� ε2 +c2� � � � � εN+cN) so as to identify
(c1� c2� � � � � cN), requires only that the density fε1+c1�ε2+c2�����εN+cN (·) is known in a neigh-
borhood of the mode. For example, suppose that the density of (ε1 +α1� ε2 +α2� � � � � εN+
αN) is point identified on some set E . This is established in the identification result, and
generically E �RN because there is no regressor with “large support,” and the density of
(ε1 + α1� ε2 + α2� � � � � εN + αN) is point identified relative to the support of z. Neverthe-
less, as long as E contains (α1�α2� � � � �αN), the density of (ε1 + α1� ε2 + α2� � � � � εN + αN)
is point identified at its mode, so the mode of (ε1 + α1� ε2 + α2� � � � � εN + αN) can be
identified as the point in E with highest density. The mode is located at (α1�α2� � � � �αN),
so α is point identified. The interaction effects Δ= (Δ1�ΔN� � � � �ΔN) are point identified
similarly.

8Manski (1988) shows that mean independence is not sufficient for point identification in a single-agent
discrete choice model. Lewbel (2000) shows in single-agent discrete choice models that if there is a regres-
sor with large support, then the addition of stochastic independence assumptions is sufficient for point
identification. If there is not a regressor with large support, then the intercept is not point identified even
if E(ε)= 01×N and ε⊥ z. This is discussed by Magnac and Maurin (2007) and Khan and Tamer (2010) for a
single-agent discrete choice model, but the arguments extend to the case of a complete information game.
Essentially, for any outcome y of the game, there is a set of ε, called Ey , such that for any realization of ε ∈ Ey
and any realization of z, the outcome of the game is y . For example, when N = 2, for y = (1�1) the set of Ey
are ε such that ε1 and ε2 are both very large. By rearranging probability mass of ε within these regions of
ε space it is possible to construct observationally equivalent models that have different locations parame-
ters α, because the mean of the constructed distribution of ε can take arbitrarily positive or negative values
since the mean functional is infinitely sensitive to sufficiently large outliers even if they have only very small
probability. Note that the identification strategy for the slope parameters depends less critically on the sup-
port of the explanatory variables, both in this paper and in (some) papers on single-agent discrete choice
models. See, for example, the discussion of the support of the explanatory variables in identifiability of the
slope parameters in Cosslett (1983).

9The difficulty is that identification of the joint cumulative distribution function of ε on a set of points
E does not necessarily imply identification of the marginal cumulative distribution function of εi for any
particular agent i at any point, and assumptions about the median concern the marginal distributions while
the identification strategy shows identification of the joint cumulative distribution function on a certain set
of points.
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Assumption 3.4 (Continuous Explanatory Variables). The distribution of z is supported
on a convex set with nonempty interior, and admits an ordinary continuous density with
respect to Lebesgue measure that is strictly positive on the support, except possibly the
boundary.10 The support of z includes an open set Z0 with P(z ∈ Z0) > 0 such that for

z ∈ Z0, ∂P(y=01×N |z)
∂xi1

�= 0 for all agents i.

This assumption is understood to apply to the variables that actually exist, so it al-
lows that there are no shared variables. The requirement of continuous explanatory
variables arises because the identification strategy uses derivatives with respect to the
explanatory variables. The extension to allowing discrete explanatory variables is devel-
oped in Section 4.1. The strategy with discrete explanatory variables is to identify the
model conditional on each value of the discrete explanatory variables, using the identi-
fication strategy in this section. The set Z0 is the entire support of z if ε has everywhere
positive density, under the maintained assumption that βix1 �= 0 for all agents i. Con-
versely, if ∂P(y=01×N |z)

∂xi1
= 0 for all agents i, and under the maintained assumption that

βix1 �= 0 for all agents i, it would follow that ∂P(y=01×N |z)
∂xik

= 0 = ∂P(y=01×N |z)
∂wl

for all agents
i, and all k and l, so the existence of Z0 essentially is the condition that different values
of z result in different probabilities of the 01×N equilibrium outcome. (See the proof of
Theorem 3.1 for the details.)

Assumption 3.5 (Sufficient Variation of Explanatory Variables). The density of
(−x1β1x −wβ1w�−x2β2x −wβ2w� � � � �−xNβNx −wβNw) exists and is strictly positive on
a convex open set that contains (α1�α2� � � � �αN) and (α1 + N0Δ1�α2 + N0Δ2� � � � �αN +
N0ΔN).

This assumption requires that the densities of ε+α and ε+α+N0Δ are observed at
their modes, where “observed” is meant in the sense of the identification strategy above,
which results in identifying α and α+N0Δ since the mode of ε is zero. Qualitatively sim-
ilar assumptions have been used before in other contexts. For example, Horowitz (2009,
Corollary 4.1) uses a similar assumption to identify a binary choice model with median
restrictions.11 This assumption can have straightforward observable implications (un-
der an additional assumption on the unobservables), as discussed in Remark 3.6. Also,
since identification and estimation of β do not depend on this assumption, it is possible
to investigate the credibility of this assumption by estimating (heuristically, not as a for-
mal estimation problem) the support of (−x1β1x−wβ1w�−x2β2x−wβ2w� � � � �−xNβNx−
wβNw) based on the estimates ofβ. Some further remarks about this assumption are rel-
egated to a footnote.12

10The boundary has Lebesgue measure zero, so it is irrelevant (e.g., Dudley (1999, Lemma 2.4.3)).
11Essentially the assumption in Horowitz (2009) is that α+ xβ conditional on x−1 (all but the first com-

ponent of x) has positive density on some interval [−δ�δ], and that is equivalent to −xβ conditional on
x−1 having positive density on [α− δ�α+ δ] or, equivalently, −xβ conditional on x−1 having density in a
neighborhood of the intercept term α.

12It seems implausible that point identification is possible without this assumption or a stronger as-
sumption. To explain that claim, suppose that ε ≡ 0, which can be viewed as an extremely strong lo-



46 Brendan Kline Quantitative Economics 7 (2016)

Assumption 3.6 (Full Rank Marginal Effects of Agent-Specific Explanatory Variables).
If there is a shared explanatory variable (i.e., w is not void), either of the following state-
ments holds:

(1) It holds that βiw = βw for all agents i.

(2) The term E(Px(z)) exists and has full rank, where Px(z) is the N ×N matrix with
Px�ij(z)= ∂P(y=01×N |z)

∂xi1

∂P(y=01×N |z)
∂xj1

.

If there is not a shared explanatory variable, then there is no assumption.

If the shared explanatory variables affect the utility of each agent equally, then this
assumption is satisfied. This is implied by the assumption that βi = β for all agents i,
which often arises in models where the “labeling” of the agents has no economic con-
tent. Otherwise, to point identify the different effects on each agent of the shared ex-
planatory variable(s), the identification strategy requires that the marginal effects of one
unit increases in the utility of each agent, on average, have full rank effects on the out-
comes. Due to the normalization thatβix1 = 1 for all agents i, this is equivalent to requir-
ing that E(Px(z)) has full rank. This assumption is used because a shared explanatory
variable has an effect on the utility of all agents, and only the total effect on outcomes
is observed in the data, so some additional work is necessary to point identify the effect
on each agent separately.

The following theorem gives an identification result for Δ≤ 0, as in an entry game.

Remark 3.1 (Nonnegative Interaction Effect). The case of Δ ≥ 0 can be addressed
similarly when N = 2, using outcomes (0�1) and (1�0), and adjusting the statement
of the theorem and the assumptions. Specifically, P((1�0)|z) = P(ε1 ≥ −α1 − x1β1x −
wβ1w�ε2 ≤ −α2 − x2β2x − wβ2w − Δ2) and P((0�1)|z) = P(ε1 ≤ −α1 − x1β1x − wβ1w −
Δ1� ε2 ≥ −α2 − x2β2x −wβ2w). IfN > 2 and Δ≥ 0, then the identification strategy seems
to not directly extend, due to lack of unique potential outcomes.13

cation assumption. Suppose N = 2. Suppose α1 = α = α2 and Δ1 = Δ = Δ2 and suppose the support of
(−x1β1x −wβ1w�−x2β2x −wβ2w) is [c� c]2, a “box” in R2. Then suppose, contrary to Assumption 3.5, that
[c� c]2 is contained within [α+Δ�α]2. That implies that for all values of the explanatory variables, the utility
functions are in the region of multiple equilibria, so any more negative Δ could generate exactly the same
distribution of observables, since the utility functions would remain in the region of multiple equilibria
with more negative Δ. As a practical matter, this assumption means that the econometrician should as-
sume that there is a bounded parameter space for (α1�α2�Δ1�Δ2), which implies that the possible values of
(α1�α2) and (α1 + Δ1�α2 + Δ2) must be in some bounded set Γ . The assumption of a bounded parameter
space is ubiquitous in estimation, and is assumed in this paper in Section 6. Assumption 3.5 requires that
the support of the (negative of the) linear combination of the explanatory variables appearing in the utility
function contains Γ .

13Extrapolating from (0�1) being a unique potential outcome when N = 2, it is tempting but false to
claim that (0�0�1) would be a unique potential outcome when N = 3. Suppose that agent 3 is such that
y3 = 1 is a dominant action. Then agents 1 and 2 essentially play the two-agent game, in which (0�0) can
be part of the region of multiple equilibria with (1�1). So (0�0�1) would be part of the region of multiple
equilibria with (1�1�1). It is similar for other candidate unique potential outcomes, whenN > 3.
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The following theorem allows a certain weight function π(·). For estimation pur-
poses in Section 6, π(·) is taken to be the density of z. Also, in the statement of the the-
orem, let βwl = (β1wl�β2wl� � � � �βNwl) for any l ∈ {1�2� � � � �L}, let α= (α1�α2� � � � �αN), let

Δ= (Δ1�Δ2� � � � �ΔN), and let P[1](z) be the 1 ×N matrix whose ith entry is ∂P(y=01×N |z)
∂xi1

,

so that E(Px(z))=E(P[1](z)′P[1](z)).

Theorem 3.1 (Identification). Suppose that Δi ≤ 0 for all agents i. Under Assumptions
3.1, 3.2, 3.3, 3.4, 3.5, and 3.6, θ = (α�β�Δ) is point identified, and can be expressed in
terms of observables as follows.

Let π(·) be any function of z that is strictly positive on the support of z, except pos-
sibly the boundary. Then assuming that the expectations in these expressions exist (see
Remark 3.3), for any i and k ∈ {1�2� � � � �Di},

βixk =
E

(
π(z)

∂P(y = 01×N |z)
∂xik

)
E

(
π(z)

∂P(y = 01×N |z)
∂xi1

) �
If βiw = βw for all agents i, then for any l ∈ {1�2� � � � �L},

βwl =
E

(
π(z)

∂P(y = 01×N |z)
∂wl

)
N∑
i

E

(
π(z)

∂P(y = 01×N |z)
∂xi1

) �

Alternatively, if E(Px(z)) has full rank, then for any l ∈ {1�2� � � � �L},

βwl =
(
E

(
P[1](z)′P[1](z)

))−1
E

(
P[1](z)′ dP(y = 01×N |z)

dwl

)
�

Further, set ci ≡ −xiβix −wβiw and c = (c1� c2� � � � � cN), which are point identified by
the above statements. Then

α= argmax
a=(a1�a2�����aN)

∂NP(y = 01×N |c)
∂c1 ∂c2 · · ·∂cN

∣∣∣∣
a

and

Δ = 1
N0

(
argmax

b=(b1�b2�����bN)

(−1)N
∂NP(y = 11×N |c)
∂c1 ∂c2 · · ·∂cN

∣∣∣∣
b

− argmax
a=(a1�a2�����aN)

∂NP(y = 01×N |c)
∂c1 ∂c2 · · ·∂cN

∣∣∣∣
a

)
�

where the maximization is over the support of (c1� c2� � � � � cN).
The same identification results obtain for β even without Assumption 3.5.
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Remark 3.2 (Small Extensions). For purposes of identifying β, analogous results apply
to 11×N in place of 01×N , increasing efficiency of estimation.14 The expression for βwl is
also valid with π(·) inside all of the expectations, as long as E(π(z)Px(z)) has full rank.
(The details of this claim are obvious from the proof.)

Remark 3.3 (Existence of the Expectations). Theorem 3.1 requires existence of expecta-
tions. A sufficient condition is that the densities of εi for each agent i are bounded above
(which is essentially implied by the mode assumption), and that π(·) is integrable with
respect to the data generating process for z. See Lemma 10.1.

Remark 3.4 (Equilibrium Existence). A pure strategy Nash equilibrium exists, by an ar-
gument detailed in the Supplement, based on comparative statics.

Remark 3.5 (Large Number of Agents). One possible concern with this result in the
case of large N (i.e., N � 2) is that unique potential outcomes might be observed only
rarely in the data, even though the model implies they do exist in principle. This does
not threaten the validity of the identification strategy, but it might result in imprecise
estimates. In particular, Section 8 establishes that the rate of convergence of α and Δ is
slower with largerN . Of course, alternative identification strategies based on regressors
with large support may also result in imprecise estimates, since observations with ex-
treme realizations of the regressors might be rare even when they do exist in principle
(e.g., Khan and Tamer (2010)).

One relative advantage of the identification strategy in this paper is that the obser-
vation in the data of unique potential outcomes is implied by extreme realizations of the
regressors, but extreme realizations of the regressors is not implied by the observation
of unique potential outcomes in the data. For example, 01×N is the unique potential out-
come whenever εi ≤ −αi − xiβix −wβiw for all agents i, which in particular would arise
for extreme values of the explanatory variables that come from a regressor with large
support. But, clearly, the 01×N outcome arises even for moderate values of the explana-
tory variables. And so, compared to identification using a regressor with large support,
this identification strategy seems attractive even in the case of many agents.15

Remark 3.6 (Conditions on the Support of the Explanatory Variables). Assumption 3.5
has observable implications under the strengthened assumption that the density of ε is
strictly unimodal in the sense that it has a global maximum achieved at a unique point
and no other local maxima. Note that Assumption 3.3 requires only that the global max-
imum is achieved at a unique point, allowing many local maxima.

14Per Assumption 3.4, that requires that the support of z includes an open set Z ′
0 with P(z ∈ Z ′

0) > 0 such

that, for z ∈ Z ′
0, ∂P(y=11×N |z)

∂xi1
�= 0 for all agents i.

15Another approach is partial identification: Aradillas-Lopez and Tamer (2008), Ciliberto and Tamer
(2009), Beresteanu, Molchanov, and Molinari (2011), Galichon and Henry (2011), Kline and Tamer (2012),
Aradillas-Lopez and Rosen (2013), or Kline and Tamer (2015). Even from that perspective, the results of this
paper are still useful (as are any results establishing point identification), as they establish that there is point
identifying information about the parameters under the provided conditions.



Quantitative Economics 7 (2016) Games with bounded regressors 49

More specifically, by strictly unimodal, this remark means that the density of ε has
an everywhere negative definite Hessian matrix, and achieves the global maximum at a
unique point and has no other local maxima. Therefore, implicitly it is assumed in this
remark that the density of ε is twice continuously differentiable.

Theorem 3.1 (together with the proof) shows that α= (α1�α2� � � � �αN) and α+N0Δ=
(α1 +N0Δ1�α2 +N0Δ2� � � � �αN +N0ΔN) are point identified as

α = argmax
a1�a2�����aN

∂NP(y = 01×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · · ∂cN

∣∣∣∣
a1�a2�����aN

= argmax
a1�a2�����aN

fε(−α1 + a1�−α2 + a2� � � � �−αN + aN)

and

α+N0Δ

= argmax
b1�b2�����bN

(−1)N
∂NP(y = 11×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
b1�b2�����bN

= argmax
b1�b2�����bN

fε(−α1 −N0Δ1 + b1�−α2 −N0Δ2 + b2� � � � �−αN −N0ΔN + bN)�

Under the assumption that the density of ε is strictly unimodal, the first order con-

ditions (e.g., ∂
N+1P(y=01×N |c1�c2�����cN)

∂2c1 ∂c2···∂cN |a1�a2�����aN = 0) to these maximization problems will

be uniquely satisfied when evaluated at α and α+N0Δ, respectively. In contrast, the first
order conditions when evaluated at any other parameter specification will not be sat-
isfied. (Any other place where the first order conditions would be satisfied would be a
local maximum, since the Hessian is negative definite everywhere.)

Further, if Assumption 3.5 is satisfied, then the parameters defined by the above
maximization problems over the support of (c1� c2� � � � � cN) will indeed equal α and
α+N0Δ. In contrast, if Assumption 3.5 is not satisfied, then since the maximization is
by construction over the support of (c1� c2� � � � � cN), the parameters defined by the above
maximization cannot equal α and/or α + N0Δ. So Assumption 3.5 has the observable
implication that the parameters defined by the above maximization problems uniquely
satisfy the first order conditions of the maximization problem.

Remark 3.7 (Scale Normalization). Assumption 3.1 implies a sign assumption. How-
ever, the sign can be identified by the same identification strategy, because the proof
of identification shows that ∂P(y=01×N |z)

∂xi1
= F [i�1]

ε (−α1 − x1β1x − wβ1w�−α2 − x2β2x −
wβ2w� � � � �−αN −xNβNx−wβNw)(−βix1) and F [i�1]

ε (−α1 −x1β1x−wβ1w�−α2 −x2β2x−
wβ2w� � � � �−αN − xNβNx − wβNw) > 0 for z ∈ Z0, a result that does not depend on the
sign assumption, so the sign of βix1 is point identified. So by “flipping” the sign of xi1
appropriately, by multiplying by −1, the sign assumption is without loss of generality. If
N = 2, and Δ1 and Δ2 are nonnegative, then the sign can be identified using (0�1) and
(1�0): in that case, ∂P(yi=0�y−i=1|z)

∂xi1
has the opposite sign of βix1.
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4. Extensions

4.1 Identification with discrete explanatory variables

The identification strategy with discrete explanatory variables is to partition the data
based on the finitely many values of the discrete explanatory variables. (By discrete, this
paper implicitly assumes finitely many support points.) Then, viewing the model as con-
ditional on the discrete explanatory variables, it is possible to point identify the param-
eters of the model. This recovers the slope coefficients on the continuous explanatory
variables, the interaction effects, and the intercept terms that absorb the contribution
of the discrete explanatory variables. Further arguments show that it is possible to re-
cover the slope coefficients on the discrete explanatory variables and the true intercept
parameters α= (α1�α2� � � � �αN).

The following assumption allows discrete explanatory variables.

Assumption 4.1 (Continuous and Discrete Explanatory Variables). There is a partition-
ing of z = (x1�x2� � � � � xN�w) into z(d) = (x(d)1 �x(d)2 � � � � � x(d)N �w(d)) and z(c) = (x(c)1 �x(c)2 �

� � � � x
(c)
N �w

(c)) where the following statements hold:

(1) The variable z(d) has a discrete distribution with finite and discrete support, Z(d).
(2) For each value of z(d) ∈ Z(d), the conditional distribution of z(c)|z(d) is supported

on a convex set with nonempty interior, and admits an ordinary continuous density with
respect to Lebesgue measure that is strictly positive on the support, except possibly the
boundary.

(3) For each agent i, x(c)i1 = xi1, so that the explanatory variable with scale normaliza-
tion from Assumption 3.1 is continuous.

(4) For each value of z(d) ∈ Z(d), the support of z(c)|z(d) includes a set Zz(d) with P(z(c) ∈
Zz(d) |z(d)) > 0 such that, for z(c) ∈ Zz(d) ,

∂P(y=01×N |z(c)�z(d))
∂x
(c)
i1

�= 0 for all agents i.

As with Assumption 3.4, this assumption is understood to apply to the variables that
actually exist when there are, for example, no shared variables. The assumption requires
at least one agent-specific continuous explanatory variable per agent. Also, as with As-
sumption 3.4, Zz(d) is the entire support of z(c)|z(d) if ε has everywhere positive density,
under the maintained assumption that βix1 �= 0 for all agents i.

The slope coefficients are similarly partitioned as βix = (β(d)ix �β
(c)
ix ) and βiw =

(β(d)iw �β
(c)
iw ). The dimension of x(d)i is D(d)i , the dimension of x(c)i is D(c)i ≥ 1, the dimen-

sion of w(d) is L(d), and the dimension of w(c) is L(c). By Assumption 3.1, β(c)ix1 = 1. For

each z(d) ∈ Z(d) such that z(d) = (x(d)1 �x(d)2 � � � � � x(d)N �w(d)), let

αi�z(d) = αi + x(d)i β
(d)
ix +w(d)β(d)iw �

So, then note that the utility functions from equation (1) can be written as

uim(0� y−im)= 0 and
(2)

uim(1� y−im)= αim�z(d) + x(c)imβ(c)ix +w(c)m β(c)iw +Δi
∑
j �=i
yjm + εim�
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Consequently, conditional on the discrete explanatory variables, the model falls into
the class of models addressed in Section 3.2, viewing αi�z(d) as an intercept term that,
although dependent on z(d), is fixed conditional on z(d). Since the remaining explana-
tory variables are continuous, the results from Section 3.2 can be used to identify the
parameters of this utility function.

Remark 4.1 (Heterogeneity in Interaction Effects). If the interaction effects depended
nonparametrically on the discrete explanatory variables, so that the utility functions
were ui(0� y−i) = 0 and ui(1� y−i) = αi�z(d) + x(c)i β

(c)
ix +w(c)β(c)iw + Δi�z(d)

∑
j �=i yj + εi, then

the same identification strategy could be used to identify Δi�z(d) , just as αi�z(d) is identi-
fied. See also, for example, Aradillas-Lopez and Gandhi (2014) or Kline (2015a). Also, the
slope coefficients on the continuous explanatory variables could be allowed to depend
on the discrete explanatory variables. If the interaction effects depended on continu-
ous explanatory variables, then the same approach could be used as an approximation
after discretization. Using a parametric specification for the interaction effect (e.g., the
interaction effect for agent i is qδi for relevant explanatory variables q and parameter
δi) might result in more precise estimates, using a different estimation strategy. How-
ever, that would depend on q: if q were binary (and δi included an intercept), then the
linear specification is without loss of generality, so it would not be expected to improve
precision.

It is necessary to replace Assumptions 3.5 and 3.6 to allow discrete explanatory vari-
ables. Essentially, the replacement versions of these assumptions require that Assump-
tions 3.5 and 3.6 hold conditionally on the discrete explanatory variables.

Assumption 4.2 (Sufficient Variation of Explanatory Variables With Discrete Explana-
tory Variables). For each value of z(d) ∈ Z(d), the density of (−x(c)1 β

(c)
1x − w(c)β

(c)
1w�

−x(c)2 β(c)2x − w(c)β(c)2w� � � � �−x(c)N β(c)Nx − w(c)β(c)Nw)|z(d) exists and is strictly positive on a
convex open set that contains (α1�z(d) �α2�z(d) � � � � �αN�z(d)) and (α1�z(d) + N0Δ1�α2�z(d) +
N0Δ2� � � � �αN�z(d) +N0ΔN).

Assumption 4.2 is very similar to Assumption 3.5.16

Assumption 4.3 (Full Rank Marginal Effects of Agent-Specific Explanatory Variables
With Discrete Explanatory Variables). If there is a shared explanatory variable (i.e., w is
not void), either of the following statements holds:

16In particular, as a practical matter, this assumption means that the econometrician should assume
that there is a bounded parameter space for the parameters, which would imply that the possible values of
(α1�z(d) �α2�z(d) � � � � �αN�z(d) ) and (α1�z(d) +N0Δ1�α2�z(d) +N0Δ2� � � � �αN�z(d) +N0ΔN)must be in some bounded

set Γ ′, since z(d) can take on only finitely many values by construction. Then Assumption 4.2 simply re-
quires that the support of the (negative of the) linear combination of the continuous explanatory variables
appearing in the utility function contains Γ ′.
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(1) It holds that β(c)iw = β(c)w for all agents i.

(2) For at least one value of z(d) ∈ Z(d), E(Px(z)|z(d)) exists and has full rank, where

Px(z) is theN ×N matrix with Px�ij(z)= ∂P(y=01×N |z)
∂x
(c)
i1

∂P(y=01×N |z)
∂x
(c)
j1

.

If there is not a shared explanatory variable, then there is no assumption.

Directly applying the result of Theorem 3.1, conditional on any value of z(d) ∈ Z(d),
will result in point identifying the slope coefficients on the continuous explanatory vari-

ables, the interaction effects, and αi�z(d) = αi + x(d)i β(d)ix + w(d)β(d)iw . This is sufficient to

recover the utility function at any value of the explanatory variables in the support (re-

stricting the discrete explanatory variables to Z(d)), based on equation (2). However, it

might be of interest to point identify αi, β
(d)
ix , and β(d)iw , for example, to extrapolate to

unseen values of the discrete explanatory variables. If so, it is necessary to add an as-

sumption on the full rank of the discrete explanatory variables.

Assumption 4.4 (Full Rank Discrete Explanatory Variables). For each agent i, the dis-

crete explanatory variables appended with a constant z̃(d)i = (1�x(d)i �w(d)) have full rank

in the sense that E((z̃(d)i )′z̃(d)i ) has full rank.

Let ηi = (αi�β
(d)
ix �β

(d)
iw )

′. Then, since αi�z(d) is point identified for all z(d) ∈ Z(d), it

follows that ηi is point identified by ηi = (E((z̃(d)i )′z̃(d)i ))−1E((z̃(d)i )′αi�z(d)).
In the statement of the theorem, let β(c)wl = (β(c)1wl�β

(c)
2wl� � � � �β

(c)
Nwl) for any l ∈ {1�2� � � � �

L(c)}, let αz(d) = (α1�z(d) �α2�z(d) � � � � �αN�z(d)) for any z(d) ∈ Z(d), let Δ = (Δ1�Δ2� � � � �ΔN),

and let P[1](z) be the 1 ×N matrix whose ith entry is ∂P(y=01×N |z)
∂x
(c)
i1

, so that E(Px(z)|z(d))=
E(P[1](z)′P[1](z)|z(d)).

Theorem 4.1 (Identification With Discrete Explanatory Variables). Suppose that Δi ≤ 0
for all agents i. Under Assumptions 3.1, 3.2, 3.3, 4.1, 4.2, and 4.3, (β(c)ix �β

(c)
iw �Δi) is point

identified for each agent i. Further, for any z(d) ∈ Z(d), (α1�z(d) �α2�z(d) � � � � �αN�z(d)) is point

identified. The parameters can be expressed in terms of observables as follows.

For any z(d) ∈ Z(d), let πz(d)(·) be any function of z(c) that is strictly positive on

the support of z(c)|z(d), except possibly the boundary. Then, assuming that the expecta-

tions in these expressions exist (see Remark 3.3), for any z(d) ∈ Z(d) and any i and any

k ∈ {1�2� � � � �D(c)i },

β(c)ixk =
E

(
πz(d)(z)

∂P(y = 01×N |z)
∂x
(c)
ik

∣∣∣z(d))
E

(
πz(d)(z)

∂P(y = 01×N |z)
∂x(c)i1

∣∣∣z(d)) �
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If β(c)iw = β(c)w for all agents i, then for any z(d) ∈ Z(d) and for any l ∈ {1�2� � � � �L(c)},

β
(c)
wl =

E

(
πz(d)(z)

∂P(y = 01×N |z)
∂w(c)l

∣∣∣z(d))
N∑
i

E

(
πz(d)(z)

∂P(y = 01×N |z)
∂x(c)i1

∣∣∣z(d))
�

Alternatively, if z(d) ∈ Z(d) is such that E(Px(z)|z(d)) has full rank, then for any l ∈
{1�2� � � � �L(c)},

β(c)wl = (
E

(
P [1](z)′P[1](z)|z(d)))−1

E

(
P[1](z)′ dP(y = 01×N |z)

dw(c)l

∣∣∣z(d))�
Further, set c(c)i ≡ −x(c)i β(c)ix −w(c)β(c)iw and c(c) = (c

(c)
1 � c

(c)
2 � � � � � c

(c)
N ), which are point

identified by the above statements. Then, for any z(d) ∈ Z(d),

αz(d) = argmax
a=(a1�a2�����aN)

∂NP
(
y = 01×N |c(c)� z(d))

∂c(c)1 ∂c(c)2 · · ·∂c(c)N

∣∣∣∣
a

and

Δ = 1
N0

(
argmax

b=(b1�b2�����bN)

(−1)N
∂NP

(
y = 11×N |c(c)� z(d))

∂c(c)1 ∂c(c)2 · · ·∂c(c)N

∣∣∣∣
b

− argmax
a=(a1�a2�����aN)

∂NP
(
y = 01×N |c(c)� z(d))

∂c
(c)
1 ∂c

(c)
2 · · ·∂c(c)N

∣∣∣∣
a

)
�

where the maximization is over the support of (c(c)1 � c(c)2 � � � � � c(c)N )|z(d).
Under the addition of Assumption 4.4, (α1�α2� � � � �αN�β

(d)
1x �β

(d)
2x � � � � �β

(d)
Nx�β

(d)
1w �β

(d)
2w �

� � � �β(d)Nw) is point identified and can be expressed in terms of the observables as follows.

Let ηi = (αi�β(d)ix �β(d)iw )′. Then

ηi =
(
E

((
z̃(d)i

)′
z̃(d)i

))−1
E

((
z̃(d)i

)′
αi�z(d)

)
�

Some of the identification results concern expectations conditional on a value of the
discrete explanatory variables. Of course, then, essentially the same results would also
hold after integrating over the distribution of the discrete explanatory variables, which
might be attractive from an estimation perspective.

4.2 Discrete action games

The identification strategy can be used with certain more general discrete action games.
Suppose there are N ≥ 2 agents, and the actions available to each agent are S =
{0�1�2� � � � �H}. Suppose the utility functions are

uim(yim� y−im)=
(
α̃i + ximβix +wmβiw +Δi

∑
j

yjm + εim
)
yim� (3)
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For example, in a quantity competition game (e.g., Cournot competition), α̃i + ximβix +
wmβiw + Δi

∑
j yjm + εim can represent the average profit agent i gets from producing

yim units when the other agents produce y−im units, or, equivalently, the realized mar-
ket price minus (constant) marginal cost. In particular, Δi can represent the effect of
production on realized market price (i.e., slope of the demand curve). Note that Δi mul-
tiplies

∑
j yjm, rather than

∑
j �=i yjm, reflecting the effect of the production of agent im on

realized market price.17

Suppose that Δi ≤ 0 for all agents i. Then 01×N is the Nash equilibrium if and only if
α̃i + ximβix +wmβiw + Δi + εim ≤ 0 for all agents i.18 Also, H1×N ≡ (H�H� � � � �H) is the
Nash equilibrium if and only if α̃i+ximβix+wmβiw+Δi(NH+H−1)+εim ≥ 0.19 Letαi =
α̃i+Δi. Consequently, P(y = 01×N |z)= P({εi ≤ −αi−xiβix−wβiw} ∀i), which is the same
as the expression for P(y = 01×N |z) for binary actions. Also, P(y = H1×N |z) = P({εi ≥
−αi−xiβix−wβiw−Δi(NH+H−2)} ∀i), which is almost the same as the expression for
P(y = 11×N |z) for binary actions except that (NH +H − 2)multiplies Δi rather thanN0.

Consequently, the same identification strategy can be used, substituting (NH+H−
2) forN0 andH1×N for 11×N in the assumptions and results. Other identification results
for games with more than two actions includes Aradillas-Lopez and Rosen (2013) (com-
plete information, mainly partial identification) and Aradillas-Lopez and Gandhi (2014)
(incomplete information, partial identification).

5. Identification of the direction of the interaction effect

The main identification strategy (i.e., Theorem 3.1) requires either that N ≥ 3 and the
assumption that Δi ≤ 0 for all agents i, or thatN = 2 and the assumption that the econo-
metrician knows either that Δi ≥ 0 for all agents i or that Δi ≤ 0 for all agents i. In the
case of N = 2 agents, it is possible to identify the sign of the interaction effect (i.e., the
sign of Δ).

17In the game with S = {0�1}, Δi multiplied
∑
j �=i yjm, but that is equivalent to a model in which Δi mul-

tiplies
∑
j yjm, since when S = {0�1}, the entire αi + ximβix +wmβiw + Δi∑j �=i yjm + εim term only matters

when yim = 1, so essentially the intercept captures the total effect of yim = 1 on average profit (e.g., fixed
costs of production and effect on realized market price) when S = {0�1}.

18If 01×N is the Nash equilibrium, then α̃i + ximβix + wmβiw + Δi + εim ≤ 0 for all agents i. Conversely,
if α̃i + ximβix +wmβiw + Δi + εim < 0, then α̃i + ximβix +wmβiw + Δi + Δi∑j �=i yjm + εim < 0 for any y−im,
so yim ≥ 1 results in negative utility, so yim = 0 is a strictly dominant strategy. The probability 0 event that
α̃i + ximβix +wmβiw +Δi + εim = 0 for some agent i can be ignored.

19IfH1×N is the Nash equilibrium, then (α̃i+ximβix+wmβiw+ΔiNH+εim)H ≥ (α̃i+ximβix+wmβiw +
Δi(N−1)H+Δi(H−1)+εim)(H−1) for all agents i, which is equivalent to the claimed condition, since all
agents imust not find it to be a profitable deviation to take actionH− 1. Conversely, suppose α̃i +ximβix +
wmβiw + Δi(NH +H − 1) + εim > 0. Then, for 0 ≤ yim < y

′
im ≤ H, uim(y ′

im� y−im) − uim(yim� y−im) = (α̃i +
ximβix+wmβiw+Δi(∑j �=i yjm+y ′

im+yim)+εim)(y ′
im−yim)≥ (α̃i+ximβix+wmβiw+Δi((N−1)H+H+H−

1)+εim)(y ′
im−yim)= (α̃i+ximβix+wmβiw+Δi(NH+H−1)+εim)(y ′

im−yim) > 0. Therefore, for each agent
i, utility is strictly increasing in own action, so agent imaximizes utility by taking actionH regardless of the
actions of the other agents. The probability 0 event that α̃i + ximβix +wmβiw + Δi(NH +H − 1)+ εim = 0
for some agent i can be ignored.
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5.1 Sketch of the identification strategy

Consider two specifications of z = (x1�x2�w) = (x11�x1(−1)� x2�w). In the first specifi-
cation, z′ = (x′

11�x
∗
1(−1)� x

∗
2�w

∗). In the second specification, z′′ = (x′′
11�x

∗
1(−1)� x

∗
2�w

∗),
where x′

11 < x
′′
11.

Sinceβ1x1 = 1> 0, for any realization of ε, the utility agent 1 gets from taking action 1
is greater at z′′ compared to z′. In a single-agent model, this would imply that the prob-
ability that agent 1 takes action 1 is greater at z′′ compared to z′. However, in a game, it
could be that the equilibrium selection mechanism (over the region of multiple equilib-
ria) chooses the outcome with y1 = 1 more often when the observables are z′ compared
to when the observables are z′′. So a monotone selection mechanism assumption (for-
malized below) guarantees monotonicity of the probability of choosing action 1. Fur-
ther, even without an assumption on the selection mechanism, if x′′

11 − x′
11 > |Δ1|, then

the probability that agent 1 takes action 1 must be greater at z′′ compared to z′, because
if ε is such that agent 1 could possibly take action 1 in a Nash equilibrium at z′ (either as
a unique equilibrium or as a selection from the region of multiple equilibria), then for
that ε it is a dominant strategy for agent 1 to take action 1 at z′′.20

If there is a negative interaction effect, agent 2 will tend to get less utility from taking
action 1 at z′′ compared to at z′, because agent 1 is more likely to take action 1 at z′′
compared to at z′, decreasing the utility agent 2 gets from taking action 1. So agent 2
should be less likely to take action 1 at z′′ compared to at z′. Similarly, if there is a positive
interaction effect, agent 2 should be more likely to take action 1 at z′′ compared to at
z′. So the effect of x11 on the probability that y2 = 1 should be equal to the sign of Δ2,
and similarly the effect of x21 on the probability that y1 = 1 should be equal to the sign
of Δ1.

5.2 Formal identification results

The identification strategy relies either on a monotone selection mechanism assump-
tion or the condition that the support of x11 and x21 is large enough so that there are
values x′′

11 and x′
11 in the support with x′′

11 − x′
11 > |Δ1| and values x′′

21 and x′
21 in the

support with x′′
21 − x′

21 > |Δ2|. The monotone selection mechanism assumption is dis-
cussed in a separate subsection, which can be skipped if the support condition is satis-
fied.

5.2.1 Monotone selection mechanism It is necessary to introduce some notation to
state the monotone selection mechanism assumption. Let P(·|z�ε) be the distribution
over the selected equilibrium (i.e., equilibrium selection mechanism), when observables

20If ε is such that agent 1 could take action 1 in a Nash equilibrium at z′, then it has to be that α1 + x′
11 +

x∗
1(−1)β1x(−1)+w∗β1w+max{Δ1�0}+ε1 ≥ 0. Because x′′

11 > x
′
11 +|Δ1|, it follows that α1 +x′′

11 +x∗
1(−1)β1x(−1)+

w∗β1w+min{Δ1�0}+ε1 >α1 +x′
11 +x∗

1(−1)β1x(−1)+w∗β1w+|Δ1|+min{Δ1�0}+ε1 = α1 +x′
11 +x∗

1(−1)β1x(−1)+
w∗β1w + max{Δ1�0} + ε1 ≥ 0, which implies the utility agent 1 gets from taking action 1 is positive at z′′ and
that ε, regardless of what agent 2 does.
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are z and unobservables are ε, that respects the maintained assumption of pure strategy

Nash equilibrium. This depends on ε, so this distribution is not observed in the data.

Since there are finitely many possible outcomes, P(·|z�ε) = (P(y = (1�1)|z�ε)�P(y =
(1�0)|z�ε)�P(y = (0�1)|z�ε)�P(y = (0�0)|z�ε)).

Let R−(z�θ) = {(ε1� ε2) : −α1 − x1β1x − wβ1w ≤ ε1 ≤ −α1 − x1β1x − wβ1w − Δ1�

−α2 − x2β2x − wβ2w ≤ ε2 ≤ −α2 − x2β2x − wβ2w − Δ2} be the set of ε such that, for

that specification of z and θ, the game with a nonpositive interaction effect has mul-

tiple equilibria. Similarly, let R+(z�θ) = {(ε1� ε2) : −α1 − x1β1x − wβ1w − Δ1 ≤ ε1 ≤
−α1 − x1β1x − wβ1w�−α2 − x2β2x − wβ2w − Δ2 ≤ ε2 ≤ −α2 − x2β2x − wβ2w} be the set

of ε such that, for that specification of z and θ, the game with a nonnegative interac-

tion effect has multiple equilibria. (These are the “boxes” of multiple equilibria.) Then

let

R(z�θ)=
{
R−(z�θ)� if Δ1 ≤ 0 and Δ2 ≤ 0,

R+(z�θ)� if Δ1 ≥ 0 and Δ2 ≥ 0.

By definition of Nash equilibrium, it must be that the equilibrium selection mecha-

nism has the following form if there is a nonpositive interaction effect:

P(·|z�ε)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1�0�0�0)�
if ε1 >−α1 − x1β1x −wβ1w −Δ1� ε2 >−α2 − x2β2x −wβ2w −Δ2�

(0�0�0�1)�
if ε1 <−α1 − x1β1x −wβ1w�ε2 <−α2 − x2β2x −wβ2w�

(0�0�1�0)�
if ε1 <−α1 − x1β1x −wβ1w −Δ1� ε2 >−α2 − x2β2x −wβ2w −Δ2�

(0�0�1�0)�
if ε1 <−α1 − x1β1x −wβ1w�

−α2 − x2β2x −wβ2w < ε2 <−α2 − x2β2x −wβ2w −Δ2�

(0�1�0�0)�
if ε1 >−α1 − x1β1x −wβ1w�ε2 <−α2 − x2β2x −wβ2w�

(0�1�0�0)�
if ε1 >−α1 − x1β1x −wβ1w −Δ1�

−α2 − x2β2x −wβ2w < ε2 <−α2 − x2β2x −wβ2w −Δ2�

(0�pz�ε�1 −pz�ε�0)�
if ε ∈ R−(z�θ)�

where pz�ε ∈ [0�1], defined for (z�ε) such that ε ∈ R−(z�θ), characterizes the equilib-

rium selection mechanism in the region of multiple equilibria. In that case, pz�ε is the

probability of selecting the outcome (1�0).
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Similarly, it must be that the equilibrium selection mechanism has the form, if there
is a nonnegative interaction effect,

P(·|z�ε)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0�1�0�0)�
if ε1 >−α1 − x1β1x −wβ1w�ε2 <−α2 − x2β2x −wβ2w −Δ2�

(0�0�1�0)�
if ε1 <−α1 − x1β1x −wβ1w −Δ1� ε2 >−α2 − x2β2x −wβ2w�

(1�0�0�0)�
if ε1 >−α1 − x1β1x −wβ1w −Δ1� ε2 >−α2 − x2β2x −wβ2w�

(1�0�0�0)�
if ε1 >−α1 − x1β1x −wβ1w�

−α2 − x2β2x −wβ2w −Δ2 < ε2 <−α2 − x2β2x −wβ2w�

(0�0�0�1)�
if ε1 <−α1 − x1β1x −wβ1w�ε2 <−α2 − x2β2x −wβ2w −Δ2�

(0�0�0�1)�
if ε1 <−α1 − x1β1x −wβ1w −Δ1�

−α2 − x2β2x −wβ2w −Δ2 < ε2 <−α2 − x2β2x −wβ2w�

(pz�ε�0�0�1 −pz�ε)�
if ε ∈ R+(z�θ)�

where pz�ε ∈ [0�1], defined for (z�ε) such that ε ∈ R+(z�θ), characterizes the equilib-
rium selection mechanism in the region of multiple equilibria. In that case, pz�ε is the
probability of selecting the outcome (1�1). For both nonpositive and nonnegative in-
teraction effects, pz�ε is the probability of the outcome with y1 = 1. For nonnegative in-
teraction effect, pz�ε is also the probability of the outcome with y2 = 1. For nonpositive
interaction effect, 1 −pz�ε is the probability of the outcome with y2 = 1.

These expressions do not address the equilibrium selection mechanisms when one
or more of those strict inequalities holds as equality. Those are probability 0 events, con-
sidering the density of ε, and therefore the behavior of that part of the equilibrium se-
lection mechanism has no relevant observable implications. It is implicitly assumed that
pz�ε for any given z is a measurable function of ε.

Assumption 5.1 (Monotonic Selection Mechanism). The selection mechanisms are
weakly increasing, in the following senses:

(1) One of the following conditions holds:

(a) It holds that pz�ε ∈ (0�1) for all (z�ε) such that ε ∈ R(z�θ).
(b) It holds that pz�ε ≡ 0 for all (z�ε) such that ε ∈ R(z�θ).
(c) It holds that pz�ε ≡ 1 for all (z�ε) such that ε ∈ R(z�θ).

(2) For any z′ = (x′
11�x

∗
1(−1)� x

∗
2�w

∗) and z′′ = (x′′
11�x

∗
1(−1)� x

∗
2�w

∗), where x′
11 ≤ x′′

11, and
for any ε ∈ R(z′� θ)∩R(z′′� θ), it holds that pz′�ε ≤ pz′′�ε.
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(3) For any z′ = (x∗
1�x

′
21�x

∗
2(−1)�w

∗) and z′′ = (x∗
1�x

′′
21�x

∗
2(−1)�w

∗), where x′
21 ≤ x′′

21, and
for any ε ∈ R(z′� θ) ∩ R(z′′� θ), it holds that pz′�ε ≥ pz′′�ε if there is a nonpositive interac-
tion effect or pz′�ε ≤ pz′′�ε if there is a nonnegative interaction effect.21

The assumption requires thatpz�ε is weakly increasing in x11, meaning that the prob-
ability of the outcome with y1 = 1 is weakly increasing in x11. Similarly, if there is a non-
negative interaction effect, the assumption requires that pz�ε is weakly increasing in x21,
meaning that the probability of the outcome with y2 = 1 is weakly increasing in x21. And
if there is a nonpositive interaction effect, the assumption requires that 1−pz�ε is weakly
increasing in x21, meaning again that the probability of the outcome with y2 = 1 is weakly
increasing in x21. The first part of the assumption rules out this selection mechanism:
for some (z�ε), the selection mechanism selects the equilibrium y1 = 1 with probabil-
ity 1 and for other (z�ε), the selection mechanism selects the equilibrium y1 = 1 with
probability 0.

In particular, Assumption 5.1 is satisfied if the selection mechanism randomizes over
the multiple equilibria according to a fixed probability (i.e.,pz�ε ≡ p ∈ [0�1]): when there
are multiple equilibria, the equilibrium outcome has y1 = 1 with probabilityp. This con-
cerns only the region of multiple equilibria, not the overall probability that the equilib-
rium outcome has y1 = 1. Further, the assumption is satisfied if the equilibrium selec-
tion mechanism satisfies an exclusion restriction: If pz�ε ∈ (0�1) does not depend on x11

or x21, then obviously the monotonicity assumption is satisfied. The use of exclusion
restrictions in the identifiability of games has been addressed, for example, in Bajari,
Hahn, Hong, and Ridder (2011).

There are evidently many specifications of the selection mechanism that satisfy As-
sumption 5.1 even without requiring an exclusion restriction. For example, the equi-
librium selection mechanism satisfies the monotonicity condition if it relates to maxi-
mizing total utilitarian welfare in the following way. First, suppose that if the game has
a nonnegative interaction effect, so that the selection mechanism over multiple equi-
libria selects among (1�1) and (0�0), that in case of multiple equilibria the probabil-
ity of selecting the (1�1) outcome is increasing in α1 + x1β1x + wβ1w + Δ1 + ε1 + α2 +
x2β2x + wβ2w + Δ2 + ε2, which is the sum of the utilities the two agents get from out-
come (1�1), minus the sum of the utilities the two agents get from the outcome (0�0)
(which is zero). Alternatively, suppose that if the game has a nonpositive interaction ef-
fect, so that the selection mechanism over multiple equilibria selects among (1�0) and
(0�1), that in case of multiple equilibria the probability of selecting the (1�0) outcome
is increasing in (α1 + x1β1x +wβ1w + ε1)− (α2 + x2β2x +wβ2w + ε2), which is the sum
of the utilities the two agents get from the outcome (1�0) minus the sum of the utilities
the two agents get from the outcome (0�1).22 By construction, the equilibrium selection
mechanism satisfies the monotonicity condition.

21If there is both a nonpositive interaction effect and a nonnegative interaction effect, then there is a zero
interaction effect, so no scope for multiple equilibria, so this assumption becomes vacuous.

22Also, it would mean that the probability of playing the outcome (1�0) is increasing in the relative utility
agent 1 gets from outcome (1�0) compared to the utility agent 2 would get from outcome (0�1). So the
“stronger” agent is more likely to take action 1.
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5.2.2 Identification theorem

Assumption 5.2 (Strictly Positive Density). The density of ε is everywhere positive.

The proof of Theorem 5.1 shows that it is more than sufficient for the density of ε
to be everywhere positive on a set that strictly contains the convex hull of R(z′� θ) and
R(z′′� θ) for the z′ and z′′ used in the statement of the theorem. Let sgn(·) return 1 if the
argument is positive, 0 if the argument is zero, and −1 if the argument is negative.

Theorem 5.1 (Identification of the Sign of the Interaction Effect). Under Assumptions
3.1, 3.2, 3.3, and 5.2, the following results hold:

(1) For any z′ = (x∗
1�x

′
21�x

∗
2(−1)�w

∗) and z′′ = (x∗
1�x

′′
21�x

∗
2(−1)�w

∗), with x′
21 < x

′′
21,

sgn(Δ1)= sgn
(
P

(
y1 = 1|z′′) − P(

y1 = 1|z′))
under either of the following two conditions:

(a) Assumption 5.1 holds.

(b) The relationship x′′
21 − x′

21 > |Δ2| holds.

(2) For any z′ = (x′
11�x

∗
1(−1)� x

∗
2�w

∗) and z′′ = (x′′
11�x

∗
1(−1)� x

∗
2�w

∗), with x′
11 < x

′′
11,

sgn(Δ2)= sgn
(
P

(
y2 = 1|z′′) − P(

y2 = 1|z′))
under either of the following two conditions:

(a) Assumption 5.1 holds.

(b) The relationship x′′
11 − x′

11 > |Δ1| holds.

Remark 5.1 (Comparison to de Paula and Tang (2012)). The identification result in
de Paula and Tang (2012) for the direction of the interaction effect in incomplete in-
formation games relies on the assumption that the unobservables (i.e., the signals in the
incomplete information game) are independent across agents, which, although com-
pletely standard in the literature on incomplete information games, has a different
meaning in complete information games that would evidently rule out unobservable
market fixed effects in complete information games.23 The identification result in The-
orem 5.1 instead relies on the exclusion restrictions entailed by the existence of agent-
specific explanatory variables. The Supplement shows how the de Paula and Tang (2012)
identification strategy does carry over into the complete information game framework,
in the sense that their “test statistic” is valid for both complete and incomplete infor-
mation games. See also Aradillas-Lopez and Gandhi (2014) for more general incomplete
information games with ordered action spaces.

23There are also papers that establish the identification of the sign of the parameter on the endoge-
nous explanatory variable in triangular models, which shares some qualitative similarities to the problem
of identification of the direction of the interaction effect. Papers in that literature include Abrevaya, Haus-
man, and Khan (2010) and Kline (2015b).
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6. Estimation

This section provides a three-step semiparametric estimator. The focus is on the sec-
ond and third steps corresponding to estimating β, α, and Δ. The proposed estimator
is based on the analogy principle, given the constructive identification results. The re-
sults are stated for the case of continuous explanatory variables (i.e., Theorem 3.1), with
the understanding that the results can be applied conditionally on values of discrete ex-
planatory variables (i.e., Theorem 4.1). See Section 6.3.

The first step (when N = 2) corresponding to estimating the sign of Δ according to
Theorem 5.1 is trivial, and so is omitted.24 Since the first-step estimator converges arbi-
trarily fast (as it amounts to estimating the sign of a parameter, or similarly it amounts
to consistent model selection), it has no asymptotic effect on subsequent steps of esti-
mation. Footnote 24 sketches the details, which are standard.

6.1 Estimation of slope coefficients

Theorem 3.1 suggests an estimator for β based on density-weighted average derivative
estimation à la Powell, Stock, and Stoker (1989), with the weight function equal to the
density of the explanatory variables (i.e., π(z) = p(z)). This section assumes βiw ≡ βw
for all agents i, so as to use the first expression for the identification of βw in terms
of population quantities, but the properties of the estimator without that assumption
would be derived similarly.25

The data consist of independent observations of the markets (i.e., plays of the
game) indexed by m = 1�2� � � � �M . Let δ̂M�ixk = − 2

M(M−1)
1

hd+1
M

∑M
m=1

∑
m′ �=m 1[ym =

01×N ]K[1�ixk]( zm−zm′
hM

), where Di = dim(xi) and L = dim(w), and d = ∑
i Di + L. The

function K(·) is a kernel and hM is a sequence of bandwidths. The notation K[1�ixk](·)
means the derivative of K(·) with respect to the xik component of z. Let δ̂M�wl =
− 2
M(M−1)

1
hd+1
M

∑M
m=1

∑
m′ �=m 1[ym = 01×N ]K[1�wl]( zm−zm′

hM
), where K[1�wl](·) means the

derivative ofK(·) with respect to the wl component of z.
Let δ̂M�ix = (δ̂M�ix1� δ̂M�ix2� � � � � δ̂M�ixDi) and δ̂M�w = (δ̂M�w1� � � � � δ̂M�wL). Let δ̂ =

(δ̂M�1x� δ̂M�2x� � � � � δ̂M�Nx� δ̂M�w). Let δ be the associated population quantities, where

δixk =E(p(z)∂P(y=01×N |z)
∂xik

) and δwl =E(p(z)∂P(y=01×N |z)
∂wl

).

The econometrician might assume βi ≡ β for all agents i. If so, let β̂M�xk =
∑
i δ̂M�ixk∑
i δ̂M�ix1

for k ≥ 2, and let β̂M�wl = δ̂M�wl∑
i δ̂M�ix1

. Let β̂M�−1 = (β̂M�x2� � � � � β̂M�xD� β̂M�w1� � � � � β̂M�wL).

Let β−1 = (βx2� � � � �βxD�βw1� � � � �βwL). (In this case,Di =D for all agents i.)

24In short, the idea is that the estimator of E(P(yi = 1|z′′))− E(P(yi = 1|z′)) in Theorem 5.1 can be es-
timated by standard nonparametric methods, and then the sign can be estimated: the estimator of the
sign uses the fact that an estimator for the sign of θ that is estimated by θ̂ with θ̂ − θ = Op(M

−r ) is
sgn(1{Mr/2|θ̂| ≥ 1}θ̂), which converges arbitrarily fast. See also, for example, Andrews and Soares (2010)
or Kline (2011) for other similar estimation procedures.

25The properties of the estimator of βwl under the assumption that E(Px(z)) has full rank, which de-
pends on the expectation of products of derivatives, can be derived similarly to Samarov (1993).
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If not, let β̂M�ixk = δ̂M�ixk

δ̂M�ix1
for each i and k ≥ 2, and let β̂M�wl = δ̂M�wl∑

i δ̂M�ix1
. Let

β̂M�−1 = (β̂M�1x2� � � � � β̂M�1xD1� β̂M�2x2� � � � � β̂M�2xD2� � � � � β̂M�Nx2� � � � � β̂M�NxDN � β̂M�w1�

� � � � β̂M�wL). Let β−1 = (β1x2� � � � �β1xD1�β2x2� � � � �β2xD2� � � � �βNx2� � � � �βNxDN �βw1� � � � �

βwL).
In either case, β̂M is a

√
M-consistent and asymptotically normally distributed esti-

mator of β−1. The dimension of the estimators depends on whether or not the econo-
metrician assumes βi ≡ β for all agents i. The regularity conditions are the usual sorts of
conditions, as in the results of Powell, Stock, and Stoker (1989), which are discussed in
Horowitz (2009). Let S = d+4

2 if d is even and S = d+3
2 if d is odd.

Assumption 6.1 (Continuous Explanatory Variables, II). The probability density func-
tion p(·) of z has all mixed partial derivatives up to order S+ 1. In particular, p(z)= 0 on
the boundary of the support of z.

Assumption 6.2 (Smooth Population Quantities). The components of ∂P(y=01×N |z)
∂z and

∂p(z)
∂z (1[y = 01×N ]� z′) have finite second moments. The E(1[y = 01×N ]∂rp(z)) exists for

0 < r ≤ S + 1. There is a function m(z) such that E((1 + 1[y = 01×N ] + ‖z‖)m(z))2 <∞,
‖ ∂p(z+ψ)∂z − ∂p(z)

∂z ‖<m(z)‖ψ‖, and ‖ ∂p(z+ψ)P(y=01×N |z+ψ)
∂z − ∂p(z)P(y=01×N |z)

∂z ‖<m(z)‖ψ‖.

Assumption 6.3 (Higher Order Kernel). The function K(·) is a kernel of order S that is
symmetric about the origin, bounded, and differentiable.

Assumption 6.4 (Bandwidth Rate). It holds thatMh2S
M → 0 andMhd+2

M → ∞.

Finally, for the covariance matrix, let

Bi(δ)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δw1(∑
i

δix1

)2 0 � � � 0

−δw2(∑
i

δix1

)2 0 � � � 0

� � �

−δwL(∑
i

δix1

)2 0 � � � 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

L×Di

and

B(δ)=
⎛⎝B1(δ) B2(δ) � � � BN(δ)

1∑
i

δix1
IL×L

⎞⎠ �
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In case it is assumed that βi ≡ β for all agents i, let

A(δ)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 1 � � � 1)︸ ︷︷ ︸
1×N

⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
∑
i

δix2(∑
i

δix1

)2
1∑

i

δix1
0 � � � 0

−
∑
i

δix3(∑
i

δix1

)2 0 1∑
i

δix1
� � � 0

· · ·
−

∑
i

δixD(∑
i

δix1

)2 0 � � � 1∑
i

δix1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

(D−1)×D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

BecauseDi =D in this case, the matrixA(δ) is (D− 1)×ND and B(δ) is L× (ND+
L). The kth row of A(δ) has nonzero entries in the columns: 1, k+ 1, D+ 1, D+ k+ 1,

up to (N − 1)D+ 1 and (N − 1)D+ k+ 1. The lth row of B(δ) has nonzero entries in the

columns: 1, D+ 1, 2D+ 1, up to (N − 1)D+ 1, and ND+ l. Finally, let C(δ)= (A(δ) 0
B(δ)

)
.

The matrix C(δ) is ((D− 1)+L)× (ND+L).
If it is not assumed that βi ≡ β for all agents i, let

Ai(δ)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δix2
(δix1)

2
1
δix1

0 � � � 0

−δix3
(δix1)

2 0 1
δix1

� � � 0

· · ·
−δixDi
(δixi)

2 0 � � � 1
δix1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

(Di−1)×Di

and

A(δ)=

⎛⎜⎜⎜⎝
A1(δ) 0 � � � 0

0 A2(δ) 0 0
0 � � �

0 0 � � � AN(δ)

⎞⎟⎟⎟⎠ �

Let B(δ) remain as defined as above. Finally, let C(δ)= (A(δ) 0
B(δ)

)
. The matrix C(δ) is

(
∑
i(Di − 1)+L)× (∑i Di +L).
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Theorem 6.1 (Estimation ofβ). Suppose thatβiw ≡ βw andΔi ≤ 0 for all agents i. Under
Assumptions 3.1, 3.2, 3.3, 3.4, 6.1, 6.2, 6.3, and 6.4, it holds that

√
M(β̂M�−1 −β−1)→d N

(
0�C(δ)V (δ)C(δ)′

)
�

where

V (δ) = 4E
((
p(z)

∂P(y = 01×N |z)
∂z

− (
1[y = 01×N ] − P(y = 01×N |z))∂p(z)

∂z

)

×
(
p(z)

∂P(y = 01×N |z)
∂z

− (
1[y = 01×N ] − P(y = 01×N |z))∂p(z)

∂z

)′)
− 4δδ′�

6.2 Estimation of intercept parameters

Theorem 3.1 suggests an estimator for α and Δ: estimate ∂NP(y=01×N |c1�c2�����cN)
∂c1 ∂c2···∂cN |a1�a2�����aN

and (−1)N ∂NP(y=11×N |c1�c2�����cN)
∂c1 ∂c2···∂cN |b1�b2�����bN by nonparametric regressions of 1[ym = 01×N ]

and 1[ym = 11×N ] on the generated regressors ĉm where ĉim = −ximβ̂ix−wmβ̂iw, where β̂
is an estimate ofβ; then, estimate α and α+N0Δ by maximizing the first stage estimators
and estimate Δ by appropriately differencing these two estimates. So, let

Q̂M(γ) =
(
∂NPM(y = 01×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
a1�a2�����aN

(−1)N
∂NPM(y = 11×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
b1�b2�����bN

)′

be a 2 × 1 vector objective function, where γ = (a1� a2� � � � � aN�b1� b2� � � � � bN), and

∂NPM(y = 01×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
a1�a2�����aN

and

∂NPM(y = 11×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
b1�b2�����bN

are nonparametric estimators based on generated regressors ĉm = (ĉm1� ĉm2� � � � � ĉmN).
Let γ0 = (α1�α2� � � � �αN�α1 +N0Δ1�α2 +N0Δ2� � � � �αN +N0ΔN).
The estimator γ̂M maximizes the components of Q̂M(γ). And let

Δ̂QM(γ) =
(
∂NPM(y = 01×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
a1�a2�����aN

(−1)N
∂NPM(y = 11×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
b1�b2�����bN

)′
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−
(
∂NPM(y = 01×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
a1�a2�����aN

(−1)N
∂NPM(y = 11×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
b1�b2�����bN

)′
�

so that the “infeasible” objective function that uses the true cim as the regressors is
QM(γ)= Q̂M(γ)+ Δ̂QM(γ). This is infeasible because cim = −ximβix −wmβiw is not ob-
served. The parameter space for γ is Γ .

Assumption 6.5 (Compact Parameter Space). The parameter space Γ is compact.

The following assumptions require that the nonparametric estimator is suitably well
behaved. They are high-level assumptions that admit a variety of possible approaches
to the nonparametric estimation, including kernel regression.

Assumption 6.6 (Uniform Convergence of Regression Estimate). The infeasibleQM(γ)
converges in probability to

Q(γ) =
(
∂NPM(y = 01×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
a1�a2�����aN

(−1)N
∂NPM(y = 11×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
b1�b2�����bN

)′

uniformly over the parameter space Γ .

Assumption 6.6 requires the usual uniform convergence properties of a nonpara-
metric regression estimator over a compact set, for the infeasible estimator that uses the
true regressors c = (c1� c2� � � � � cN). Therefore, conditions under which it holds can be
found in the literature on nonparametric regression. See Remark 6.3.

Now let parameter B be a particular specification of the β parameter (for exam-
ple, an estimate β̂). Let cim(B) = −ximBix − wmBiw be the generated regressors at

parameter B. Let R̃M�1(a1� a2� � � � � aN�B) = ∂NPM(y=01×N |c1(B)�c2(B)�����cN(B))
∂c1(B)∂c2(B)···∂cN(B) |a1�a2�����aN and

R̃M�2(b1� b2� � � � � bN�B)= (−1)N ∂NPM(y=11×N |c1(B)�c2(B)�����cN(B))
∂c1(B)∂c2(B)···∂cN(B) |b1�b2�����bN . So, evaluated at

B = β̂, these are the feasible estimates, and evaluated at B = β, these are the infeasible
estimates.

Assumption 6.7 (Lipschitz Properties of Feasible and Infeasible Estimators). The terms
R̃M�1(a1� a2� � � � � aN�B) and R̃M�2(b1� b2� � � � � bN�B) have continuous derivatives with re-

spect to B. If β̂− β= Op(M
−1/2), then supa1�a2�����aN�‖β̃−β‖≤‖β̂−β‖ ‖ ∂R̃M�1(a1�a2�����aN�B)

∂B |β̃‖ =
Op(1) and supb1�b2�����bN�‖β̃−β‖≤‖β̂−β‖ ‖ ∂R̃M�2(b1�b2�����bN�B)

∂B |β̃‖ =Op(1).

Assumption 6.7 is used to imply that the difference between the infeasible estima-
tor QM(γ) and the feasible estimator Q̂M(γ) is asymptotically negligible, as long as β̂
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converges at the parametric rate. This follows from Assumption 6.7 by a Taylor series
approximation to Q̂M(γ). (See the proof of Theorem 6.2 for the details.)

Since cim(B) depends smoothly on B, most nonparametric estimators will satisfy the
first part of the assumption: the existence of a continuous derivative with respect to B.
The second part of the assumption can be established by application of a uniform law of
large numbers. In particular, in the case that the estimation is by kernel regression, see
the arguments of Horowitz (2009, Section 2.4).

The preceding assumptions are sufficient for consistency. The following additional
assumptions imply asymptotic normality, and establish the rate of convergence. These
assumptions mainly require that there is not a parameter on the boundary problem,
and the estimates of the first and second derivatives of the objective function suitably
converge to the corresponding population quantities at suitable rates.

Let ∂Q(γ)∂γ be a 2N × 1 vector: element i ∈ {1� � � � �N} is

∂

∂ci

∂NP(y = 01×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
a1�a2�����aN

�

and elementN + i ∈ {N + 1� � � � �2N} is

(−1)N
∂

∂ci

∂NP(y = 11×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
b1�b2�����bN

�

Let ∂2Q(γ)
∂γ ∂γ′ be the 2N × 2N matrix of derivatives of ∂Q(γ)

∂γ with respect to γ′. Let ∂QM(γ)
∂γ

and ∂2QM(γ)
∂γ ∂γ′ be the infeasible nonparametric estimators based on c, and let ∂Q̂M(γ)∂γ and

∂2Q̂M(γ)
∂γ ∂γ′ be the feasible nonparametric estimators based on ĉ.

Assumption 6.8 (Parameter in the Interior). The true value γ0 is in the interior of Γ .

Assumption 6.9 (Asymptotic Distribution of Derivatives). The term ∂QM(γ)
∂γ |γ0 exists

and rM
∂QM(γ)
∂γ |γ0 →d N(0�Ω0) at the rate rM with rMM−1/2 → 0.

Assumption 6.10 (Uniform Convergence of Derivatives). The term ∂2QM(γ)
∂γ ∂γ′ exists and

is continuous on a neighborhood of γ0 and converges in probability to ∂2Q(γ)
∂γ ∂γ′ uniformly

over a neighborhood of γ0.

Assumption 6.11 (Lipschitz Properties of Feasible and Infeasible Estimators). The con-

ditions in Assumption 6.7 hold for all components of ∂QM(γ)∂γ and ∂2QM(γ)
∂γ ∂γ′ .

Assumption 6.12 (Negative Definite Hessian). The Hessian of fε(·) is negative definite
on a neighborhood of 01×N .

Assumption 6.13 (Smooth Feasible Objective Function). The components of Q̂M(γ)
have continuous second derivatives with respect to γ in a neighborhood of γ0.
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If the econometrician does not assume that αi ≡ α and Δi ≡ Δ for all agents i,
the estimator is ψ̂M = (α̂M�1� α̂M�2� � � � � α̂M�N� Δ̂M�1� Δ̂M�2� � � � � Δ̂M�N), where for all agents
i, α̂M�i = γ̂M�i and Δ̂M�i = 1

N0
(γ̂M�N+i − γ̂M�i). The corresponding true value is ψ =

(α1�α2� � � � �αN�Δ1�Δ2� � � � �ΔN)= (α�Δ).
If the econometrician assumes that αi ≡ α and Δi ≡ Δ for all agents i, by im-

posing that condition on the objective function, the constrained objective function
is Qr(γ) = Q(γ1�γ1� � � � � γ1︸ ︷︷ ︸

N times

�γ2�γ2� � � � � γ2︸ ︷︷ ︸
N times

), where γ = (a�b). In that case, the estima-

tor is ψ̂M = (α̂M� Δ̂M), where α̂M = γ̂M�1 and Δ̂M = 1
N0
(γ̂M�2 − γ̂M�1). The true value is

ψ = (α�Δ). Note that this involves a different definition of α and Δ compared to above,
where α and Δ were vectors. The dimension of the estimators depends on whether or
not the econometrician assumes αi ≡ α and Δi ≡ Δ for all agents i.

In the statement of the theorem, let 11×N be the 1 ×N vector of 1s and let ∂
2Qr(γ)
∂γ ∂γ′ =( ∂2Qr(γ)

∂2a
0

0
∂2Qr(γ)
∂2b

)
, where ∂2Qr(γ)

∂2a
= ∑

i�j
∂2

∂ci ∂cj

∂NP(y=01×N |c1�c2�����cN)
∂c1 ∂c2···∂cN |a�a�����a and ∂2Qr(γ)

∂2b
=∑

i�j(−1)N ∂2

∂ci ∂cj

∂NP(y=11×N |c1�c2�����cN)
∂c1 ∂c2···∂cN |b�b�����b.

Theorem 6.2 (Estimation of α and Δ). Suppose that Δi ≤ 0 for all agents i. Suppose that
β is point identified and that β̂ is an estimator of β such that β̂−β=Op(M−1/2).

Under Assumptions 3.1, 3.2, 3.3, 3.5, 6.5, 6.6, and 6.7,

α̂M →p α and Δ̂M →p Δ�

Under the additional Assumptions 6.8, 6.9, 6.10, 6.11, 6.12, and 6.13,

rM(ψ̂M −ψ)→d N(0� V0)�

If it is not assumed that αi ≡ α and Δi ≡ Δ for all agents i, then

V0 = C
(
∂2Q(γ)

∂γ ∂γ′

∣∣∣∣
γ0

)−1

Ω0

(
∂2Q(γ)

∂γ ∂γ′

∣∣∣∣
γ0

)−1

C ′�

where C =
(

IN×N 0
− 1
N0
IN×N 1

N0
IN×N

)
�

If it is assumed that αi ≡ α and Δi ≡ Δ for all agents i, then

V0 = C
(
∂2Qr(γ)

∂γ ∂γ′

∣∣∣∣
γ0

)−1

DΩ0D
′
(
∂2Qr(γ)

∂γ ∂γ′

∣∣∣∣
γ0

)−1

C ′�

where C =
(

1 0
−1
N0

1
N0

)
andD=

(
11×N 0

0 11×N

)
�

Remark 6.1 (Consistency). The first order conditions are used to establish the asymp-
totic distribution, but not consistency. If the first order conditions were used to establish
consistency, local but not global maxima of fε(·) could cause inconsistency.
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Remark 6.2 (Rate of Convergence). The rate of convergence comes from Assump-
tion 6.9, related to estimating an (N + 1)st derivative of a regression function with N
explanatory variables. Per the identification result, that regression function concerns
an integral of the density of ε, so the rate of convergence will depend on the assumed
smoothness of the density of ε. Estimation is not subject to the curse of dimensionality
as a function of the number of explanatory variables (i.e., Di or L), since the regression
concerns c ∈ RN . This reflects a dimension reduction strategy. However, estimation is
subject to the curse of dimensionality as a function of the number of agents.

Slower than
√
M rate of convergence is not surprising. Khan and Nekipelov (2012)

show that there is zero Fisher information about the interaction effect in certain models
of complete information games, which implies by Chamberlain (1986) that there cannot
be a regular estimator that converges at the parametric rate. Further, there is zero Fisher
information about the intercept of a single-agent discrete choice model (i.e., Cosslett
(1987) and Pagan and Ullah (1999, Section 7.3)) under standard assumptions. Since a
complete information game nests independent instances of the single-agent discrete
choice model as a special case (i.e., when the interaction effect is zero, and everything
else is independent across agents), there is zero Fisher information about α under the
same assumptions. (The interaction effect disappears in this submodel, requiring the
arguments of Khan and Nekipelov (2012).)

Remark 6.3 (Nonparametric Kernel Regression). Under standard conditions (e.g.,
Bierens (1987), Andrews (1995), and Pagan and Ullah (1999), among others), these con-
ditions are satisfied by (trimmed) kernel regression estimators. In that case, Ω0 from
Assumption 6.9 can be found in standard references, as it is the asymptotic covariance
of estimates of the derivatives of a regression function.

6.3 Estimation with discrete explanatory variables

This section shows the extension of the estimator allowing discrete explanatory vari-
ables. Corresponding to the identification result (i.e., Theorem 4.1), the estimator for
the slope coefficients on the continuous explanatory variables, the interaction effects,
and αi�z(d) follows from an application of the above estimation results to the subsets of
the data defined by the value of the discrete explanatory variables.

The estimator of the slope coefficients on the discrete explanatory variables and the
true intercept parameters α = (α1�α2� � � � �αN) is the sample analog of the constructive
identification result in Theorem 4.1. The properties of that estimator are derived from
the properties of the above estimator as follows.

Let p(z(d)) be the population probability that the discrete explanatory variables
are equal to z(d) and let pM(z(d)) be the sample fraction of the data set with discrete
explanatory variables equal to z(d). Also let EM((z̃

(d)
i )′z̃(d)i ) be the sample analog of

E((z̃(d)i )′z̃(d)i ). The z̃(d)i notation is defined in Section 4.1.
Then, because z(d) has a discrete distribution, the estimator for ηi is

η̂i =
(
EM

((
z̃(d)i

)′
z̃(d)i

))−1
( ∑
z(d)∈Z(d)

pM
(
z(d)

)(
z̃(d)i

)′
α̂i�z(d)

)
�
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Under regularity conditions, including Assumption 4.4, (EM((z̃
(d)
i )′z̃(d)i ))−1 converges

to (E((z̃(d)i )′z̃(d)i ))−1 at the parametric rate. Further, since α̂i�z(d) converges at slower
than parametric rate for each z(d) ∈ Z(d), per Theorem 6.2, while pM(z(d)) converges
at the parametric rate under regularity conditions, it holds that rM

∑
z(d)∈Z(d)(pM(z

(d))−
p(z(d)))(z̃(d)i )′α̂i�z(d) is asymptotically negligible since rM(pM(z(d)) − p(z(d))) →p 0 for
all z(d) ∈ Z(d) because rM is slower than the parametric rate by Assumption 6.9. And so
the asymptotic distribution of rM(η̂i −ηi) is the asymptotic distribution of

rM

((
EM

((
z̃(d)i

)′
z̃(d)i

))−1
( ∑
z(d)∈Z(d)

pM
(
z(d)

)(
z̃(d)i

)′
α̂i�z(d)

)

− (
E

((
z̃(d)i

)′
z̃(d)i

))−1
( ∑
z(d)∈Z(d)

p
(
z(d)

)(
z̃(d)i

)′
αi�z(d)

))

= rM
((
E

((
z̃(d)i

)′
z̃(d)i

))−1

×
( ∑
z(d)∈Z(d)

pM
(
z(d)

)(
z̃(d)i

)′
α̂i�z(d) −

∑
z(d)∈Z(d)

p
(
z(d)

)(
z̃(d)i

)′
αi�z(d)

))
+ op(1)

=
((
E

((
z̃(d)i

)′
z̃(d)i

))−1
( ∑
z(d)∈Z(d)

p
(
z(d)

)(
z̃(d)i

)′
rM(α̂i�z(d) − αi�z(d))

))
+ op(1)�

which can be evaluated using the results of Theorem 6.2 to find the asymptotic distribu-
tions of rM(α̂i�z(d) −αi�z(d)) for each z(d) ∈ Z(d). In particular, to derive the asymptotic dis-
tribution of that linear combination of (α̂i�z(d) − αi�z(d)) terms, note that the asymptotic
joint distribution of (α̂i�z(d) − αi�z(d)) and (α̂i�z′(d) − αi�z′(d)) for z(d) �= z′(d) is independent,
since the estimators use disjoint partitions of the data.

7. Monte Carlo experiment

This section reports the results of a Monte Carlo experiment. Based on the normal form
in Table 1, the specification of the true data generating process withN = 2 is as follows:

(1) It holds that x̃= (x̃11� x̃12� x̃21� x̃22)∼N4(0�Σx̃), whereΣx̃ = 0�90×I4×4 +0�10×14×4

(where 1a×b is the a× bmatrix of all 1s).

(2) It holds that xik = 1
π arctan(x̃ik), and w is void.

(3) ε∼N2(0�Σε) where Σε = 0�03 × I2×2 + 0�01 × 12×2.

(4) It holds that β1 = (1�0�75)= β2, α1 = 0�1 = α2, and Δ1 = −0�2 = Δ2.

(5) It holds thatM = 500 orM = 1000.

The explanatory variables are a translation (by arctan) of positively correlated nor-
mal random variables. The arctan translation is used to generate explanatory variables
that have bounded support. Because of the scaling by 1

π , the support of each explana-
tory variable is the interval [− 1

2 �
1
2 ]. The positive correlation reflects the notion that the



Quantitative Economics 7 (2016) Games with bounded regressors 69

various observable components of profits are likely positively related.26 The positive cor-
relation of the unobservables reflects an unobserved market fixed effect.27 The econo-
metrician knows Δ1 ≤ 0 and Δ2 ≤ 0.

The experiment is run twice: when the sample has M = 500 and when the sample
hasM = 1000. For each sample size, 1000 such samples are generated, and the estimates
recorded. The estimator imposes that the parameters are equal across player roles. Since
only the unique potential outcomes are used, any selection mechanism would result in
exactly the same numerical results.

Estimation requires two kernels: for estimating β, and for estimating α and Δ based
on a kernel regression estimator. The kernel for estimation of β is the product of four
fourth order Gaussian kernels, where the order is per Assumption 6.1. The kernel for
estimation of α and Δ is the product of two fourth order Gaussian kernels. Similarly,
the estimator requires two bandwidths.28 Based on these bandwidths, the estimation
theorems imply that the rate of convergence of the estimator for β is M1/2 and the rate
of convergence of the estimator for α and Δ isM1/4.

Table 2 reports: the mean, median, mean square error (MSE), interquartile range
(IQR), and variance of the estimator in the experiment. Also, in the last column, Table 2
reports the empirical probability of rejecting the truth (Rej. Rate) for a test at thep= 0�10
significance level. The test is based on the asymptotic covariances derived in the theo-
retical results, which are estimated (in each Monte Carlo sample) by replacing unknown
population quantities by sample analogs. The results suggest the estimators and associ-
ated tests have good performance. The estimators seem approximately mean and me-

Table 2. Numerical results of Monte Carlo experiment.

Parameter Mean Median MSE IQR Variance Rej. Rate

M = 500
β= 0�750 0�745 0�734 0�016 0�178 0�016 0�094
α= 0�100 0�093 0�087 0�012 0�140 0�012 0�120
Δ= −0�200 −0�193 −0�197 0�025 0�195 0�025 0�098

M = 1000
β= 0�750 0�738 0�733 0�009 0�126 0�009 0�120
α= 0�100 0�105 0�098 0�009 0�126 0�009 0�076
Δ= −0�200 −0�216 −0�215 0�019 0�160 0�019 0�059

Note: MSE is mean square error, IQR is interquartile range, and Rej. Rate is the empirical rejection rate of the test at 0�10
significance level.

26The explanatory variables xik have approximately variances 0�0455 and covariances 0�0043.
27The unobservables have variance 0�04 and covariance 0�01 for a correlation of 0�25.
28Based on results on the optimal rate of convergence of the bandwidths (e.g., Powell and Stoker (1996)

and Pagan and Ullah (1999)), the bandwidth for the estimator corresponding to β is proportional to M−1/7

(as the optimal bandwidth for density-weighted average derivative estimation with four regressors) and the
bandwidth for the estimator corresponding to α and Δ is proportional toM−1/16 (as the optimal bandwidth
for kernel regression estimation of a third derivative with two regressors and a fourth order kernel). The
bandwidth for the estimator corresponding to β is based on the plug-in estimator for density-weighted
average derivatives in Powell and Stoker (1996).
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Table 3. Numerical results of Monte Carlo experiment, empirical rates
of convergence.

Parameter Standard Deviation Root MSE Median Absolute Deviation

β 0�499 0�487 0�546
α 0�206 0�206 0�200
Δ 0�223 0�216 0�297

dian unbiased, and the tests reject the truth at roughly the nominal rate of p= 0�10. To
check the empirical rate of convergence, the Monte Carlo experiment is repeated for
sample sizes M = 500�600� � � � �1000, and for each sample size and each parameter, the
following statistics are recorded: the standard deviation, the root mean square error, and
the median absolute deviation (from the truth). Then the logarithm of those statistics is
“regressed” against the logarithm of the sample size. The (negative of the) slope of that
relationship is the empirical rate of convergence, displayed in Table 3.29

Consistent with the theory, empirically the rate of convergence for β is approxi-
mately 1

2 , and empirically the rate of convergence for α and Δ is approximately 1
4 , for

each of standard deviation, root MSE, and median absolute deviation.

8. Empirical application

This section presents the results of a very brief, stylized, empirical example to entry in
airline markets, which has been previously studied, for example, in Berry (1992) and
Ciliberto and Tamer (2009). The data come from the second quarter of the 2010 Airline
Origin and Destination Survey (DB1B), as described in more detail in an empirical ap-
plication of partial identification methods in Kline and Tamer (2015). The data contain
7882 markets, which are formally defined as trips between two airports irrespective of
intermediate stops. The empirical question concerns the entry behavior of two kinds of
firms: LCC (low cost carriers)30 and OA (other airlines). A firm that is not an LCC is by
definition an OA.

As in Kline and Tamer (2015), for the purposes of mapping the data to an entry game,
the airlines are aggregated into two firms: LCC and OA. So, firm LCC enters the market
if any low cost carrier serves that market, and similarly for firm OA entering the market.
There are two explanatory variables: market presence and market size. Market presence
is a market- and airline-specific variable: for each airline and for each airport, compute
the number of markets that airline serves from that airport, divided by the total num-
ber of markets served from that airport by any airline. The market presence variable
for a given market and airline is the average of these ratios (excluding the one market
under consideration) at the two endpoints of the trip, providing some proxy for an air-
line’s presence in the airports associated with that market. (See Berry (1992) for more on

29If the statistic has form σ
Mα , then the logarithm of the statistic has form log(σ)− α log(M).

30The low cost carriers are AirTran, Allegiant Air, Frontier, JetBlue, Midwest Air, Southwest, Spirit, Sun
Country, USA3000, and Virgin America.
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Table 4. Estimation results for a model of entry in
airline markets.

Parameter Estimate 90% Confidence Interval

αLCC −0�0497 [−0�0708�−0�0286]
αOA −0�3335 [−0�3722�−0�2947]
ΔLCC −0�0192 [−0�0520�0�0000]
ΔOA −0�0557 [−0�0991�−0�0123]

this variable.) This variable is an agent-specific explanatory variable: the market pres-
ence for LCC enters only LCC’s payoffs, and the market presence for OA enters only OA’s
payoffs. Since the airlines are aggregated into two firms (LCC and OA), the market pres-
ence variable must also be aggregated: the market presence for the LCC firm (resp., OA
firm) is the maximum among the actual airlines in the LCC category (resp., OA category).
Market size is a market-specific variable (but shared by all airlines in that market): the
population at the endpoints of the trip.

The analysis proceeds conditionally on markets with a market size of less than
1,500,000. These are “small to moderate” markets. In larger markets, particularly con-
sidering the stylized nature of this analysis that considers only entry decisions of two
firms, rather than the intensity of service provided by many firms, it is unrealistic to de-
tect substantial competitive effects of entry. There are M = 5837 markets with a market
size less than 1,500,000.

Estimation proceeds as in Sections 6 and 7, and the results are displayed in Table 4.
The slope coefficients on the market presence explanatory variable are normalized to
be 1. Since market presence is in percentage points between 0 and 1, that normalization
implies that 100 times the other parameters can be interpreted as the effects relative
to the effect of 1 percentage point of market presence. The intercept parameter in this
utility function is the payoff to a firm that enters a market with no competition, and no
market presence, and an unobservable at 0. The results suggest that such payoff for a
low-cost carrier is relatively larger compared to other airlines, relative to their effects of
market presence. The competitive effects seem to be much more similar across types of
carrier, equivalent to either 2 or 6 percentage points of market presence, although there
is at least some evidence that the magnitude of the competitive effect of entry is greater
on other airlines compared to low cost carriers.

9. Conclusions and discussion

This paper shows that it is possible to point identify the parameters of the utility func-
tions in a complete information game without a large support regressor, based on a non-
standard but plausible assumption on the mode of the unobservables. The resulting es-
timator is consistent and asymptotically normal, but nonstandard in the sense that the
estimators of the intercept and interaction effect parameters converge at slower than
the parametric rate.
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More broadly, it is interesting to note that there appears to be an “identification pos-
sibility frontier” between the solution concept (e.g., Nash equilibrium or rationalizabil-
ity (i.e., Bernheim (1984) and Pearce (1984))) and the assumptions on the explanatory
variables (e.g., large support or bounded support). This paper has established point
identification under the standard assumption of Nash equilibrium, with bounded re-
gressors; in contrast, Kline (2015a) establishes point identification with a large support
regressor, under a weaker solution concept related to rationalizability.

Finally, it is worth remarking on identification of the distribution of the unobserv-
ables. Under only the assumptions in this paper, it is not possible to point identify the
tails of the distribution of the unobservables. For example, suppose that Δi ≤ 0 for all
agents i, and let t = (min{x1β1x +wβ1w}�min{x2β2x +wβ2w}� � � � �min{xNβNx +wβNw}),
where the minimum is taken over the support of the exogenous explanatory variables.
Unless there is a regressor with large support, t is finite. Note that if εi >−αi − ti −N0Δi
for all agents i, then for any realization of the explanatory variables in the support,
αi + xiβix +wβiw +N0Δi + εi > 0, so 11×N is necessarily the unique pure strategy Nash
equilibrium for all such ε. Consequently, any rearrangement of the probability mass of
the distribution of ε within the region where εi > −αi − ti − N0Δi for all agents i re-
sults in the same distribution over P(y|z), and therefore the distribution of ε is not point
identified.

Arguments similar to the proof of Theorem 3.1 show that the values of the cu-
mulative distribution function of ε are point identified in a certain region of its ar-
gument, as long as the finite-dimensional parameters are point identified. The region
where the cumulative distribution function is point identified depends on the support
of (α1 + x1β1x + wβ1w�α2 + x2β2x + wβ2w� � � � �αN + xNβNx + wβNw). If a parametric
family for the distribution of ε is sufficiently small so that there is a one-to-one mapping
between the cumulative distribution functions restricted only to being evaluated on that
support, and all cumulative distribution functions in the family, then the distribution of
ε is point identified. For example, this is true for the normal distribution with mean zero
but unknown covariance Σ.31

10. Proofs

Proof of Theorem 3.1. Proof of identification of β:
By Assumption 3.3,

Fε(t1� t2� � � � � tN)=
∫ t1

−∞

∫ t2

−∞
· · ·

∫ tN

−∞
fε(e1� e2� � � � � eN)deN · · ·de2 de1�

F
[i�1]
ε (t1� t2� � � � � tN) is the first derivative of Fε(·) with respect to ti, evaluated at t =
(t1� t2� � � � � tN). So,

F [i=1�1]
ε (t1� t2� � � � � tN)=

∫ t2

−∞
· · ·

∫ tN

−∞
fε(t1� e2� e3� � � � � eN)deN · · · de2

31This uses the fact that if fε(t) is the density at t, and fε(t)
dt is the N × 1 vector of derivatives with re-

spect to the arguments, then − fε(t)
dt /fε(t)= Σ−1t, so Σ can be recovered by observing − fε(t)

dt /fε(t) at linearly
independent t.
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and

F [i=2�1]
ε (t1� t2� � � � � tN)=

∫ t1

−∞

∫ t3

−∞
· · ·

∫ tN

−∞
fε(e1� t2� e3� � � � � eN)deN · · · de3 de1�

and so forth. Since the density is nonnegative, 0 ≤ F [i�1]
ε (t1� t2� � � � � tN)≤ fεi(ti). If the den-

sity were everywhere positive, then 0<F [i�1]
ε (t1� t2� � � � � tN).

Suppose that αi + xiβix + wβiw + εi < 0 for all i. Then the outcome 01×N is a pure

strategy Nash equilibrium. Moreover, since Δi ≤ 0, it is the unique pure strategy Nash

equilibrium, since ui(1� y(−i))≤ αi+xiβix+wβiw+εi < 0. Conversely, suppose that 01×N
is a pure strategy Nash equilibrium. Then it must be that αi + xiβix + wβiw + εi ≤ 0.

Therefore, since by Assumption 3.3 there is zero probability thatαi+xiβix+wβiw+εi = 0
conditional on any z, and using Assumption 3.2, P(y = 01×N |z)= P({εi ≤ −αi − xiβix −
wβiw} ∀i).

By Assumption 3.3, ∂P(y=01×N |z)
∂xik

= F [i�1]
ε (−α1 −x1β1x−wβ1w�−α2 −x2β2x−wβ2w� � � � �

−αN −xNβNx−wβNw)(−βixk) and ∂P(y=01×N |z)
∂wl

= ∑N
i (F

[i�1]
ε (−α1 −x1β1x−wβ1w�−α2 −

x2β2x −wβ2w� � � � �−αN − xNβNx −wβNw)(−βiwl)). If the density of ε were everywhere

positive, then ∂P(y=01×N |z)
∂xi1

�= 0 for all z since βix1 �= 0.

Since z has an ordinary density by Assumption 3.4, the derivatives on the left

hand sides of these expressions are observed in the population. Use the notation that

F [i�1]
ε (z�θ)≡ F [i�1]

ε (−α1 −x1β1x−wβ1w�−α2 −x2β2x−wβ2w� � � � �−αN −xNβNx−wβNw).
By Assumption 3.4, for any z ∈ Z0, F [i�1]

ε (z�θ) > 0, since otherwise ∂P(y=01×N |z)
∂xi1

= 0.

ThenE(π(z)∂P(y=01×N |z)
∂xik

)=E(π(z)F [i�1]
ε (z�θ))(−βixk). Also, ifβiw = βw for all agents

i, then E(π(z)∂P(y=01×N |z)
∂wl

) = E(π(z)
∑N
i F

[i�1]
ε (z�θ))(−βwl). Since βix1 = 1 by Assump-

tion 3.1, βixk = E(π(z)
∂P(y=01×N |z)

∂xik
)/E(π(z)

∂P(y=01×N |z)
∂xi1

). And if βiw = βw for all agents

i, then βwl = E(π(z)
∂P(y=01×N |z)

∂wl
)/

∑N
i E(π(z)

∂P(y=01×N |z)
∂xi1

). Since F [i�1]
ε (z�θ) > 0 for all

z ∈ Z0, which has positive probability, and π(z) is strictly positive on the support of z

(except possibly the boundary), E(π(z)∂P(y=01×N |z)
∂xi1

) < 0, so the divisions are justified.

Alternatively, if E(Px(z)) has full rank, let F [1]
ε (z�θ) be the 1×N matrix whose ith en-

try is F [i�1]
ε (z�θ). It follows that F [1]

ε (z�θ)
′ dP(y=01×N |z)

dwl
= F [1]

ε (z�θ)
′F [1]
ε (z�θ)(−βwl), where

βwl is the N × 1 matrix whose ith entry is βiwl. So taking expectations and using As-

sumption 3.6, βwl = −(E(F [1]
ε (z�θ)

′F [1]
ε (z�θ)))

−1E(F [1]
ε (z�θ)

′ dP(y=01×N |z)
dwl

). Let P[1](z) be

the 1 ×N vector, with ith entry equal to ∂P(y=01×N |z)
∂xi1

. Since βix1 = 1 by Assumption 3.1,

F [1]
ε (z�θ)= −P[1](z).

Proof of identification of α and Δ:

As above, P(y = 01×N |c) = P(ε1 ≤ −α1 + c1� ε2 ≤ −α2 + c2� � � � � εN ≤ −αN + cN) and

P(y = 11×N |c)= P(ε1 ≥ −α1 −N0Δ1 + c1� ε2 ≥ −α2 −N0Δ2 + c2� � � � � εN ≥ −αN −N0ΔN +
cN). Thus, fε(−α1 + a1�−α2 + a2� � � � �−αN + aN)= ∂NP(y=01×N |c)

∂c1 ∂c2···∂cN |a1�a2�����aN is point iden-

tified at points (a1� a2� � � � � aN) such that the density of (c1� c2� � � � � cN) is positive on a

neighborhood of (a1� a2� � � � � aN). Therefore, by Assumption 3.5 this derivative is point
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identified on an open set of (a1� a2� � � � � aN) that contains (α1�α2� � � � �αN). By Assump-
tion 3.3, the mode of ε is 01×N . Therefore,

(α1�α2� � � � �αN)= argmax
a1�a2�����aN

∂NP(y = 01×N |c)
∂c1 ∂c2 · · ·∂cN

∣∣∣∣
a1�a2�����aN

�

Similarly, (−1)Nfε(−α1 − N0Δ1 + b1�−α2 − N0Δ2 + b2� � � � �−αN − N0ΔN + bN) =
∂NP(y=11×N |c)
∂c1 ∂c2···∂cN |b1�b2�����bN , so

(α1 +N0Δ1�α2 +N0Δ2� � � � �αN +N0ΔN)

= argmax
b1�b2�����bN

(−1)N
∂NP(y = 11×N |c)
∂c1 ∂c2 · · ·∂cN

∣∣∣∣
b1�b2�����bN

�

The maximization is over the support of (c1� c2� � � � � cN). �

Lemma 10.1. Under the same conditions as Theorem 3.1, if the densities of εi for each
agent i are bounded above, and π(·) is integrable with respect to the data generating pro-
cess for z, then the expectations appearing in the statement of Theorem 3.1 all exist.

Proof. For E(π(z)∂P(y=01×N |z)
∂xik

), by the arguments of Theorem 3.1, π(z)∂P(y=01×N |z)
∂xik

=
(π(z)F [i�1]

ε (z�θ))(−βixk). If there is an upper bound f for the densities of εi for each
agent i, then by the arguments of Theorem 3.1, F [i�1]

ε (z�θ) ≤ f . Consequently,
(π(z)F [i�1]

ε (z�θ))(−βixk) is bounded above by a constant multiple of the integrable π(z).

It is similar for E(π(z)∂P(y=01×N |z)
∂wl

). And for E(Px(z)) and E(P [1](z)′ dP(y=01×N |z)
dwl

), the in-

tegrand is bounded above by a constant if there is an upper bound f for the densities of
εi for all agents i, and therefore is integrable. �

Proof of Theorem 4.1. After conditioning on the discrete explanatory variable, as
noted in the text, the model falls into the class of models addressed in Section 3.2 with
an intercept that depends on the value of the discrete explanatory variables. Therefore,
by applying the statement of Theorem 3.1 to the data and model conditional on z(d), the
identification results for (β(c)ix �β

(c)
iw �Δi) and αi�z(d) for each agent i follow. Then, under

Assumption 4.4, it follows that ηi = (E((z̃(d)i )′z̃(d)i ))−1E((z̃(d)i )′αi�z(d)). �

Proof of Theorem 5.1. Suppose that Δ1 ≤ 0 and Δ2 ≤ 0. By the condition for y2 = 1 to
be part of a pure strategy Nash equilibrium, and using Assumptions 3.2 and 3.3,

P(y2 = 1|z) =
∫
P(y2 = 1|z�ε)fε(ε)dε

=
∫
ε∈R−(z�θ)

(1 −pz�ε)fε(ε)dε+ P(ε2 ≥ −α2 − x2β2x −wβ2w −Δ2)

+ P(ε1 ≤ −α1 − x1β1x −wβ1w�

−α2 − x2β2x −wβ2w ≤ ε2 ≤ −α2 − x2β2x −wβ2w −Δ2)�
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Let S(z′� z′′� θ) = {ε : −α1 − x′′
11 − x∗

1(−1)β1x(−1) − w∗β1w ≤ ε1 ≤ −α1 − x′
11 −

x∗
1(−1)β1x(−1)−w∗β1w�−α2 −x∗

2β2x−w∗β2w ≤ ε2 ≤ −α2 −x∗
2β2x−w∗β2w−Δ2}. It follows

that

P
(
y2 = 1|z′′) − P(

y2 = 1|z′)
= −P(

ε ∈ S
(
z′� z′′� θ

)) +
∫
ε∈R−(z′′�θ)∩R−(z′�θ)

(pz′�ε −pz′′�ε)fε(ε)dε

+
∫
ε∈R−(z′′�θ)∩R−(z′�θ)C

(1 −pz′′�ε)fε(ε)dε

−
∫
ε∈R−(z′′�θ)C∩R−(z′�θ)

(1 −pz′�ε)fε(ε)dε

= −P(
ε ∈ S

(
z′� z′′� θ

) ∩ (
R−(

z′′� θ
) ∩R−(

z′� θ
)C))

− P(
ε ∈ S

(
z′� z′′� θ

) ∩ (
R−(

z′′� θ
) ∩R−(

z′� θ
)C)C)

+
∫
ε∈R−(z′′�θ)∩R−(z′�θ)

(pz′�ε −pz′′�ε)fε(ε)dε

+
∫
ε∈R−(z′′�θ)∩R−(z′�θ)C∩S(z′�z′′�θ)

(1 −pz′′�ε)fε(ε)dε

+
∫
ε∈R−(z′′�θ)∩R−(z′�θ)C∩S(z′�z′′�θ)C

(1 −pz′′�ε)fε(ε)dε

−
∫
ε∈R−(z′′�θ)C∩R−(z′�θ)

(1 −pz′�ε)fε(ε)dε

= −
∫
ε∈S(z′�z′′�θ)∩(R−(z′′�θ)∩R−(z′�θ)C)C

fε(ε)dε

−
∫
ε∈R−(z′′�θ)∩R−(z′�θ)

(pz′′�ε −pz′�ε)fε(ε)dε

−
∫
ε∈R−(z′′�θ)∩R−(z′�θ)C∩S(z′�z′′�θ)

pz′′�εfε(ε)dε

−
∫
ε∈R−(z′′�θ)C∩R−(z′�θ)

(1 −pz′�ε)fε(ε)dε�

The last equality uses the fact that R−(z′′� θ) ∩ R−(z′� θ)C ∩ S(z′� z′′� θ)C = ∅, since
R−(z′′� θ) ∩ R−(z′� θ)C ⊆ S(z′� z′′� θ): if ε ∈ R−(z′′� θ), then −α2 − x∗

2β2x − w∗β2w ≤
ε2 ≤ −α2 − x∗

2β2x − w∗β2w − Δ2 and −α1 − x′′
11 − x∗

1(−1)β1x(−1) − w∗β1w ≤ ε1 ≤ −α1 −
x′′

11 − x∗
1(−1)β1x(−1) − w∗β1w − Δ1. So, if further ε ∈ R−(z′� θ)C , then ε1 < −α1 − x′

11 −
x∗

1(−1)β1x(−1) − w∗β1w because otherwise −α1 − x′
11 − x∗

1(−1)β1x(−1) − w∗β1w ≤ ε1 ≤
−α1 − x′

11 − x∗
1(−1)β1x(−1) − w∗β1w − Δ1, which would imply that ε ∈ R−(z′� θ). There-

fore, as claimed, R−(z′′� θ)∩R−(z′� θ)C ⊆ S(z′� z′′� θ).
If Δ2 < 0, then since x′′

11 > x′
11, S(z′� z′′� θ) has positive Lebesgue measure. Also,

(S(z′� z′′� θ) ∩ (R−(z′′� θ) ∩ R−(z′� θ)C)C) ∪ (R−(z′′� θ) ∩ R−(z′� θ)C ∩ S(z′� z′′� θ)) =
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S(z′� z′′� θ). Also, (S(z′� z′′� θ) ∩ (R−(z′′� θ) ∩ R−(z′� θ)C)C) ∪ (R−(z′′� θ)C ∩ R−(z′� θ))=
{ε : −α1 − x′′

11 − x∗
1(−1)β1x(−1) −w∗β1w − Δ1 < ε1 ≤ −α1 − x′

11 − x∗
1(−1)β1x(−1) −w∗β1w −

Δ1�−α2 − x∗
2β2x − w∗β2w ≤ ε2 ≤ −α2 − x∗

2β2x − w∗β2w − Δ2} has positive Lebesgue
measure if Δ2 < 0. And S(z′� z′′� θ) ∩ (R−(z′′� θ) ∩ R−(z′� θ)C)C = {ε : −α1 − x′′

11 −
x∗

1(−1)β1x(−1) − w∗β1w − Δ1 < ε1 ≤ −α1 − x′
11 − x∗

1(−1)β1x(−1) − w∗β1w�−α2 − x∗
2β2x −

w∗β2w ≤ ε2 ≤ −α2 − x∗
2β2x −w∗β2w −Δ2}.

Case of Assumption 5.1: Supposing pz′′�ε > 0 by Assumption 5.1, which allows pz′′�ε ≡
1, and since fε(ε) > 0 by Assumption 5.2, the first and third terms of the expression de-
rived above sum to a strictly negative number. Supposing pz′′�ε ≡ 0 by Assumption 5.1,
the first and fourth terms of the expression derived above sum to a strictly negative num-
ber. Since pz′′�ε ≥ pz′�ε by Assumption 5.1, the second term is weakly negative, and since
pz�ε ∈ [0�1], the third and fourth terms are weakly negative. So this expression is strictly
negative.

Case of x′′
11 −x′

11 > |Δ1|: If ε ∈ R−(z′′� θ), then −α1 −x′′
11 −x∗

1(−1)β1x(−1)−w∗β1w ≤ ε1 ≤
−α1 − x′′

11 − x∗
1(−1)β1x(−1) −w∗β1w −Δ1 <−α1 − x′

11 − x∗
1(−1)β1x(−1) −w∗β1w, where the

third inequality uses x′′
11 −x′

11 > |Δ1|. Therefore, ε /∈ R−(z′� θ), so R−(z′′� θ)∩R−(z′� θ)=
∅. So the second term of the expression derived above is zero. Moreover, S(z′� z′′� θ) ∩
(R−(z′′� θ) ∩ R−(z′� θ)C)C has positive Lebesgue measure since x′′

11 − x′
11 > |Δ1|. So the

first term of the expression derived above is strictly negative, since fε(ε) > 0 by Assump-
tion 5.2. The third and fourth terms are weakly negative. So this expression is strictly
negative.

A symmetric result for P(y1 = 1|z) and x21 obtains if Δ1 < 0.
If Δ1 ≥ 0 and Δ2 ≥ 0, then symmetric results also obtain by symmetric arguments.
Finally, suppose Δ2 = 0. Then P(y2 = 1|z) = P(ε2 ≥ −α2 − x2β2x − wβ2w) does not

depend on x11. Similarly, if Δ1 = 0, then P(y1 = 1|z) does not depend on x21. �

Proof of Theorem 6.1. By Powell, Stock, and Stoker (1989),
√
M(δ̂M − δ) →d N(0�

V (δ)). So, by the delta method, the asymptotic covariance is C(δ)V (δ)C(δ)′. �

Proof of Theorem 6.2. By a Taylor series approximation, which exists by Assump-

tion 6.7, Δ̂QM(γ)= (
∂R̃M�1(a1�a2�����aN�B)

∂B |β̃1
(β− β̂) ∂R̃M�2(b1�b2�����bN�B)

∂B |β̃2
(β− β̂))′ , where

‖β̃1 −β‖ ≤ ‖β̂−β‖ and ‖β̃2 −β‖ ≤ ‖β̂−β‖. So

sup
γ

∥∥Δ̂QM(γ)∥∥ � max
(

sup
γ�‖β̃1−β‖≤‖β̂−β‖

∥∥∥∥∂R̃M�1(a1� a2� � � � � aN�B)

∂B

∣∣∣∣
β̃1

∥∥∥∥‖β− β̂‖�

sup
γ�‖β̃2−β‖≤‖β̂−β‖

∥∥∥∥∂R̃M�2(b1� b2� � � � � bN�B)

∂B

∣∣∣∣
β̃2

∥∥∥∥‖β− β̂‖
)

= Op
(
M−1/2)

by Assumption 6.7, where � means less than or equal up to a positive constant. There-
fore, by Assumption 6.6, Q̂M(γ) converges in probability toQ(γ) uniformly over Γ . Con-
sequently, because of Assumptions 3.3 and 6.5 and Theorem 3.1, Newey and McFadden
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(1994, Theorem 2.1) applies, so γ̂M →p γ0. (The notation that γ0 is the true value distin-
guishes between the use of γ as the argument of a function.)

The asymptotic distribution is derived for the case where it is assumed that αi ≡ α

and Δi ≡ Δ for all agents i, which implicitly entails deriving the asymptotic distribution
without that assumption.

SinceQr(γ)=Q(γ1�γ1� � � � � γ1︸ ︷︷ ︸
N times

�γ2�γ2� � � � � γ2︸ ︷︷ ︸
N times

), where γ = (a�b),

∂Q̂rM(γ)

∂γ
=

⎛⎜⎜⎜⎜⎝
∑
i

∂

∂ĉi

∂NPM(y = 01×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
a�a�����a

(−1)N
∑
i

∂

∂ĉi

∂NPM(y = 11×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
b�b�����b

⎞⎟⎟⎟⎟⎠

and
∂2Q̂rM(γ)
∂γ ∂γ′ = ( ∂2Q̂r

M
(γ)

∂2a
0

0
∂2Q̂r

M
(γ)

∂2b

)
, where

∂2Q̂rM(γ)

∂2a
=

∑
i�j

∂2

∂ĉi ∂ĉj

∂NPM(y = 01×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
a�a�����a

and

∂2Q̂rM(γ)

∂2b
= (−1)N

∑
i�j

∂2

∂ĉi ∂ĉj

∂NPM(y = 11×N |ĉ1� ĉ2� � � � � ĉN)

∂ĉ1 ∂ĉ2 · · ·∂ĉN

∣∣∣∣
b�b�����b

�

By a Taylor series approximation, which exists by Assumption 6.13, and since γ̂M
solves the first order condition by Assumption 6.8, with probability approaching 1,

0 = ∂Q̂rM(γ)
∂γ |γ̂M = ∂Q̂rM(γ)

∂γ |γ0 + ∂2Q̂rM(γ)
∂γ ∂γ′ |γ̃M (γ̂M − γ0). So rM((− ∂Q̂rM(γ)

∂γ |γ0 + ∂QrM(γ)
∂γ |γ0) −

∂QrM(γ)
∂γ |γ0)= rM((∂

2Q̂rM(γ)
∂γ ∂γ′ |γ̃M − ∂2QrM(γ)

∂γ ∂γ′ |γ̃M )(γ̂M −γ0)+ ∂2QrM(γ)
∂γ ∂γ′ |γ̃M (γ̂M −γ0)). By Assump-

tion 6.11, and arguments similar to the above, (− ∂Q̂rM(γ)
∂γ |γ0 + ∂QrM(γ)

∂γ |γ0)=Op(M−1/2) and

(
∂2Q̂rM(γ)
∂γ ∂γ′ |γ̃M − ∂2QrM(γ)

∂γ ∂γ′ |γ̃M )=Op(M−1/2).

By Assumption 6.10,
∂2QrM(γ)
∂γ ∂γ′ |γ̃M →p ∂2Qr(γ)

∂γ ∂γ′ |γ0 , where ∂2Qr(τ)
∂γ ∂γ′ = ( ∂2Qr(γ)

∂2a
0

0
∂2Qr(γ)
∂2b

)
,

where

∂2Qr(γ)

∂2a
=

∑
i�j

∂2

∂ci ∂cj

∂NP(y = 01×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
a�a�����a

and

∂2Qr(γ)

∂2b
= (−1)N

∑
i�j

∂2

∂ci ∂cj

∂NP(y = 11×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
b�b�����b

�
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The Hessian of the density of ε+ α evaluated at α is the N ×N matrix with (i� j) el-

ement equal to ∂2

∂ci ∂cj

∂NP(y=01×N |c1�c2�����cN)
∂c1 ∂c2···∂cN |α�α�����α. Therefore, by multiplying the Hessian

by the vector of 1s, Assumption 6.12 implies that

∑
i�j

∂2

∂ci ∂cj

∂NP(y = 01×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
α�α�����α

< 0�

By similar arguments based on the Hessian of the density of ε+ α+N0Δ evaluated
at α+N0Δ, it follows that

(−1)N
∑
i�j

∂2

∂ci ∂cj

∂NP(y = 11×N |c1� c2� � � � � cN)

∂c1 ∂c2 · · ·∂cN

∣∣∣∣
α+N0Δ�α+N0Δ�����α+N0Δ

< 0�

Therefore, with probability approaching 1,
∂2QrM(γ)

∂γ ∂γ′ |γ̃M is invertible.

Thus, rM(γ̂M − γ0) →d N(0� ( ∂
2Qr(γ)
∂γ ∂γ′ |γ0)

−1DΩ0D
′(∂

2Qr(γ)
∂γ ∂γ′ |γ0)

−1) by Assumption 6.9,

whereD= ( 11×N
0

0
11×N

)
. And by the delta method, rM(ψ̂M−ψ)→d N(0�C(∂

2Qr(γ)
∂γ ∂γ′ |γ0)

−1 ×
DΩ0D

′(∂
2Qr(γ)
∂γ ∂γ′ |γ0)

−1C ′), where C = ( 1
−1
N0

0
1
N0

)
. �
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