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APPENDIX SA: PROOFS OF SELECTED RESULTS FROM THE MAIN TEXT
Proof of Proposition 2
Consider the term
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So we can write (SA.1) as

X n,—vy X n, -y v
-+ U -nFr+ Y / U= y)nFp () fi (y) dy

n=1 n=1 ’ r
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nF X n, —y v
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n=1"""T

) 00 1y, Fpn—l
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n=1

where the last equality follows from the dominated convergence theorem. We also have

"nF 1(y) = yy" L (y)
Z =X aonr = ree(rEr (),

n=1 n=1

SO
UR(v, 1) =8(T — t){ U(v—r)exp[yF(r) —y]+ [ U —y)exp(yFy (y) — ) vfr () dy}-

The other parts of the proposition are straightforward to verify.

Proof of Proposition 4

We show properties of the inverse cutoff function defined by

pe,r, T, t):c—U_1<6(7)(a(r, T, t)U(c—r)+/ U(c—y)h(y, T, t)dy))
=c—M(c,r,1,1)

over the support r € [0, 00), ¢ € [r, 00), T € (0, 0), and ¢ € (0, c0).
We start by deriving some useful properties of U~Y(x) and U~ (x) given Assump-
tion 1. Starting with the identity

z= U_l(U(z)),
differentiate w.r.t. z to get
1=U"(U@)U (2).
Evaluating this expression at z = U ~1(x), we obtain

= (U wt@)

1

U—l/(x) __ -
U'(U ()
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Differentiating this results in

UV (x) =—(U'(U'(x))) 20" (U (0)) UV ()

=-(U' (U W)U (U @) (U (U )T

Given our assumptions on U (x), these results imply the following statements:

(i) We have U~V (0) =1.
(ii) We have U~""(0) = -U"(0).
(iii) We have that U~V () > 0 and is bounded away from 0 and co.

(iv) We have that U~'(-) > 0 and is bounded away from oo.

With these results in hand, consider the statements in the proposition one by one.
First, p.(c,r, 7,t) > 0 because, by Assumption 3, the derivative of M w.r.t. its first argu-
ment is strictly less than 1.

Second, p.(c,r,T,t) < 1, since

Pc(Ca”, Ta t)

=1- U_1’<5(7)<a(r, ,HU(c—r)+ /C U(c—y)h(y, 7, 1) dy))
'8(7)((1(7’, T, t)U/(C_r)+/ U/(C—)’)h(y, T, t)dy)a

and because under our assumptions, U~V(:) > 0, §(-) > 0, U'(-) > 0, a(y, 7,t) > 0, and
h(y,7,t)>0fory>r.
Third, p,(c,r, 7, t) > 0, since

pr(C, ra 7, t)

= —U‘1’<8(7) <a(r, )U(c—r)+ /C U(c—y)h(y, 7, 1) dy))

r

: 8(7)(WU(C’ —r)—a(r, 7, U (c—r)+U(c—r)h(r,, t))
= U—l/(a(q-)(a(r, HU(c—r)+ /C U(c—y)h(y,, t)dy))
S(Da(r, T, U (c —1).

The second line follows since w = h(r, 7,t), and the term is strictly positive since

under our assumptions, U~ V(-) >0, 8(:) > 0, U'(-) > 0,and a(y, 7, t) > 0.
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Fourth, p,(c,r, 7, t) > 0, since

pT(cs rT, t) = _U_l/(S(T)(a(ra 7, Z)U(C - r) +/ U(C —)’)h(y, 7, t) dy))

8'(7) <a(r, ,0OU(c—r)+ [FU(c—y)h(y, T, 1) dy)

a(r,7,HU(c=r)+ [ Ulc=y)h(y,7,1) d}’)

ar

g
+ 6(7)

The first term in the square brackets is weakly negative since Assumption 1 implies
8()<0,a(,--)>0,h(,-,-)>0,and U(-) > 0. The second term in the square brackets
is weakly negative since 6(7) > 0 and the derivative of the expected utility from rejecting
the BP w.r.t. 7 is weakly negative (since the distribution of the highest competitor valu-
ation is stochastically increasing in the length of the bidding phase 7; this derivative is
zero when ¢ =r). Since U~V (x) > 0, this implies p.(c,r, 7, 1) > 0.

Fifth, p(c,r, 7,t) = riff c = r, because

p(C, c, T, t) =C— U_l (8(7’)((1(6’, T, t)U(C - C) +/ U(C —)’)h(y, T, t) dy))

=c-UY0)
=c=r
The “only if” follows because p.(c, r, 7, t) > 0 and because p(c, r, 7, t) is only defined for
c>r.
Sixth, p(c,r, 7,t) > r from a similar argument, since p(c,r, 7,¢) = r when ¢ =r and

pe(e,ry 7, t) > 0.
Seventh, p(c,r, 7,t) <c, since

ple,r,m,t)=c— Ut <6(7)(a(r, 7, HU(c—r)+ /C U(c—y)h(y, T, t)dy))

r

and U~1(-) > 0.
Next, p.(z,z,7,t) =1—8(7)a(z, 7, t), since

pC(Z7 Z7 Ta t)

=1- Ul/(8(7) <a(z, HU(z—2z)+ /z Uiz—-y)h(y,r,t) dy))

-8(7) (a(z, ., OU (z—z2)+ /Z U(z—y)h(y, 1) dy)

z

=1-UY0)6(r)a(z, 7, H)U'(0)
=1-06(na(z,,1t).
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Finally, p,(z, z, 7, t) = 6(7)a(z, 7, t), since

z

pr(Z, zZ, T, t) = _U1/<8(T)<a(za 7, t)U(Z - Z) +/ U(Z _y)h(ya T, t) dy))

' 60_)((96!(;,27, t)

Uiz—-2)—a(z,7,H U (z—2)+U(z - 2)h(z, T, t))

- U1/<5(7) (a(z, ,OU(z—2z)+ /Z U(z=y)h(y, T, Z)d)’>>

z
S(na(z, 7, )U' (z — 2)
=UY(0)8(r)a(z, 7, HU'(0)
=6(m)a(z, 1, 1),
where the last line follows because U~ (0) = U’(0) = 1.
Next, we consider the second derivatives of the inverse cutoff function w.r.t. ¢ and r,

thatis, pec(c, ), prr(c,r), and per(c, r). We drop the 7 and ¢ arguments for compactness.
For p..(c, r), we have

pe(c,r) =1— U_1/<5 <a(r)U(C —r)+ fc U(c—=y)h(y) dY>)

r

. S[a(r)U’(c —r)+ / U'(c—y)h(y) dy},

r

SO

Peclc,r) = —Ul”(6<a(r)U(c —r)+ / U(c—y)h(y) dy))
c 2
¥ [a(r)U’(c -7 +/ U'(c — y)h(y) dy]
_ U‘”(S(a(r)U(c -+ /C U(c—y)h(y) dy))

. S[a(r)U”(c —7r) +/ U'(c—y)h(y)dy + h(c)]

Under our assumptions, all these terms are bounded away from oo and —o0, S0 pc.(c, 1)
is bounded away from oo and —oco. Moreover, if we evaluate this expression at c =r = z,
we get

z

Dec(z, z)=—U‘l”<6<a(z)U(z—z)+/ U(z—y)h(y)dy))
z 2
-52[a(z)U/(z—z) +/ U'(z=y)h(y) dy}

_ U—1’<8<a(z)U(z —2) +/z U(z _y)h(y)dy)>
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-6|:a(z)U”(z—z)+/ U//(z—y)h(y)dy+h(z)j|

~UV(0)8%a(2)* = UV(0)8[a(2)U"(0) + h(2)]
=-U"(0)8a(z)(1 — da(z)) — 8h(2).

For p,r(c,r), we have

pr(c,r)= U_1’<6<a(r)U(c -+ /c U(c— y)h(y)dy))éa(r)U/(c -7,

r
SO

prr(e,r)=—U"Y <6<a<r>U(c -+ / ‘ U(c—y)h(y) dy))azasz’(c —r)?

+ U—l/(a<a<r>U(c —r+ / U(c - y)h(y) dy))

8l (NU' (¢ —1) —a(rU"(c —1)].

Again, under our assumptions, all the terms in this expression are bounded away from

oo and —o0, S0 p;+(c, r) is bounded away from oo and —oo. If we evaluate this expression
atc=r =1z, we get

prr(z,2) = —U“(6<a<z>U(z —2)+ / U(z = y)h(y) dy))aza(z)zU’(z —2)?

n U_1’<6(a(Z)U(Z —2) +/ U(z—y)h(y) d)’>>

[ (2)U'(z—2) — a(2)U" (z - 2)]
=-U""(0)8%a(2)°U' (0 + U~V (0)8[/ (2)U'(0) — () U" (0)]
= U"(0)8%a(2)* + 8[a/ (2) — a(2)U"(0)]
=-U"(0)8a(z)(1 — da(z)) + 8d/(2).

For p;c(c,r) = per(c, 1), we have

pric,r)= U_1’<6<a(r)U(c -+ /C U(c— y)h(y)dy))éa(r)U’(c —7),

r
SO

r

i U_l//<5(a(r)U(c 4 /" U(e = y)h(y) dy))aa(r)U/(c —r)

r

~[6(a(r)U’(c—r)+/ U/(c—y)h(y)dyﬂ.

Pre(c,r) = U]’(S (a(r)U(C -+ /C U(c—y)h(y) d)’>>5a(r)U"(C —7)

r
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Again, all the terms are bounded away from oo and —oo, s0 p,(c, r) is bounded away
from oo and —oco. Evaluated at ¢ =r = z, we get

Pre(z,2) = U_l/(5<a(Z)U(Z -2+ /z U(z = y)h(y) dY>>3a(Z)U”(Z —z)

+ U‘l”(b‘(a(z)U(z —-2)+ /Z Uz = y)h(y) dy))ﬁa(z)U’(z —2)

z

. |:8<a(z)U’(z— z) —l—/ U'(z— y)h(y) dy>}

=U"Y(0)8a(2)U"(0) + U~V (0)8a(z)U’ (0)da(z)U’(0)
=8a(2)U"(0) — U"(0)da(z)da(z)
=U"(0)8a(z)(1 — dau(2)).

Proof of Proposition 8

Since the hazard rate of the first action (accept or reject the BP) is observed in the data
and satisfies

0(t1|p,r, 7o) = A(t1) (1 — Fy(r)), (SA.2)

itis clear that A(;)(1 — Fy(r)) is identified on r € [r, 7] and #; € [0, T).
We next show that this implies that «a(r, 79, #1) is identified on r € [r,7] and # €
[0, T — 79). By definition

a(r7 T0, tl) = exp('}’FV(”) - y)a

t+T7
v = / A(s) ds.
t

where

Therefore

t+T70
a(r, 79, ) = exp(—(l —Fy(n) f A(s) ds)
t

t+T1
= exp(— /t‘ A (1= Fy(r)) ds).

Since A(f1)(1 — Fy/(r)) is identified on r € [r, 7] and #; € [0, T), this implies that a(r, 79, t1)
isidentifiedonr e [r,7Fland , € [0, T — 719).

Next we show that 4 (y, 79, t1) is identified on y € [r,7] and #; € [0, T — 7¢). Again, by
definition

h(y, 70, 1) = exp(vFy (y) — v)vfv (y)

t+7
=a(r, To,tl)/ A(S) fr (y)ds.
t
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Since A(t1)(1 — Fy(y)) is identified on y € [r, ¥] and #; € [0, T'), its derivative —A(#1) fi (y)
is also identified on y € [r, 7] and # € [0, T). This implies that ft””“ A(s) fiy (y) ds is iden-
tified on y € [r,7] and #; € [0, T — 7¢). Therefore, h(y, 79, t) is identified on y € [r, 7] and
Hel0, T — ).

Next, we consider identification of ¢(p, r, 79, #). From Section 3.3, we know that

1 _FV(c(par’ TO’tl))

where Pr(B = 1|p, r, 79, 1) is observed on the support r € [r,7], p€[r, pl,and t; € [0, T)
(at 7¢). Therefore,
At (1 = Fy(c(p, 1,70, 11)))

A(t)(1 = Fy(r))

_ A(tl)(l - FV(C(pa 7,70, tl)))
B 0(t11p,r, 70)

Pr(B=1|p,r, 70, 11) =

>

and therefore A(#)(1 — Fy (c(p,r, 79, t1))) is identified on the same support. Note that
this term is the hazard rate of the BP being accepted.

Since we have already identified A(#1)(1 — Fyy(r)) onr €[r,7] and t; € [0, T), this im-
plies that

c(p,r,10, 1) =2,

where z satisfies

At (1= Fy(c(p,r,m0,11))) = A(t1) (1 — Fy(2)). (SA.3)

Intuitively, this says that the cutoff at (p,r, 7, #1) is equal to the hypothetical re-
serve price that would imply that the hazard rate of the first action is equal A(#)(1 —
Fy(c(p,r,m0,11))).

It remains to be verified that we can identify the z that satisfies (SA.3). Note that the
right-hand side (r.h.s.) of (SA.3) is strictly decreasing in z. Since c(p, r, 79, 1) > r, the left-
hand side (l.h.s.) is less than or equal to the r.h.s. at z = r. Hence, we want to increase
z above r to satisfy (SA.3). The problem is that we only observe the r.h.s. for z € [r, 7].
However, as long as ¢(p,r, 79, #1) <7, we can find a z € [r, 7] that satisfies (SA.3). This
implies that c(p, r, 79, t;) is identified on the set ( p, r, t;) such that ¢(p, r, 79, t;) <7.! This
immediately implies that the inverse cutoff function p(c, r, 7, #1) is identified on the set
relr,rl,t1 €[0, T —79),and c € [r, 7].

Thus, we have shown that the following statements hold:

(i) The function a(r, 7¢, t;) is identified onr € [r,7]and t; € [0, T — 79).
(ii) The function A(y, 7, t1) isidentified on y € [r,7] and #, € [0, T — 7¢).

IThis set exists. To show this, consider a situation where r =r and p =r + & for some arbitrarily small ¢.
For small enough ¢, c¢(p, r, 7, 1) will be below 7 (since c¢ is continuous and c(7, 7, 7¢, ;) = 7). Obviously the
size of this set will depend on the range [r, 7].
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(iii) The function p(c, r, 79, t;) is identified on r € [r, 7], t; € [0, T — 79), and c € [r, 7].

Recall that our integral equation

U(c— p(c,r, 7, 1)) =5(TQ)<a(r‘, To,tl)U(c—r)—I—/ U(c—y)h(y, 79, tl)dy) (SA.4)

can be reduced to

D, (c,r, T, 1) + h(r, 7o, 1)

U// _ —
(e=7) ®(c,r, 70, 11)

U'(c—r), (SA.5)

where

1= pele,r,mo, 1)) 1]
pr(c,r, 7o, 1) ‘

Identification of «a(r, 79, t1), h(y, 19, t1), and p(c, r, 79, t;) implies that we can identify

<I’r(c,r£?c,7t;,):g,hér)no,t1) onre[r, 7], € [0, T —7p),and c € [r, 7]. Hence, by arguments similar

to Proposition 3, equation (SA.5) identifies U(-) on [0, r — F]. By the same arguments as

in Section 3.4, 8(-) is identified at 7.

®(c,r, 19, 1) = a(r, T, t1)|:(

Proof of Proposition 9

Assumption 8 further restricts the support of p to [pg — ¢, pg + €]. We also assume that
Po is such that there exists a r* € (r,7) and a ¢{ such that c(po, r*, 79, t{) € (r,7). By the
same arguments as in the proof of Proposition 8, we know that the following statements
hold:

(i) The function a(r, 7, t;) is identified on r € [r, 7] and t; € [0, T — 7).

(i) The function h(y, 7, t;) is identified on y € [r, 7] and t; € [0, T — 7).

By the same arguments as above (and the condition that ¢ € (r, 7)), one can see that
c(p,r, 7, t1) will be identified for p € (po — &, po + &), r € (r —m,r +m), {1 = £, and
T = 7¢ for 7 sufficiently small. Therefore, the inverse cutoff function p(c, r, 79, t1) will be
identified at #; = ¢}, and 7 = 7¢ in a ball centered at (c(po, r*, 79, t]), r*). This implies that
pr(c,r, 19, t1) and p.(c, r, 79, 1) are identified over that same region, as are ®(c, r, 79, f1)
and @, (c, r, 79, t1). We have

U”(C - r) _ (Dr(c»r, 705 tl) + h(ra 705 tl)

U—r) ®(c,r, 19, 11) (5A.6)

Hence, the Arrow—Pratt measure of risk aversion LL],—,,/ is identified at the point c( pg, r*, 79,
t{) — r*. Again, by the same arguments as Section 3.4, §(-) is identified at 7.

APPENDIX SB: PROOF THAT U <0 IS A SUFFICIENT CONDITION FOR ASSUMPTION 3

We have

M, r,7,t)= Ut <8(7) <a(r, nHUWw—r)+ /v Uw-y)h(y,T, t)dy))
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SO

My(v,r, 7, 1) = U_l/(b‘(f) (Ot(r, T, HU@w—r) +/ U(w—yh(y,, l)d}’)>

r

-8(7) (a(r, nHU (v—r)+ /v U(-—yh(y,t) dy)

8(7)(6{(}’, 7, t)U/(U—r)+/ U/(U—J’)h(y, 7, t)dy>

_ r

U/(Ul(éﬁ('r)(a(r, T, HU(v—r) +/v Uw—=yh(y, 1) d)’>))

< (S(T)<a(~)U’(v—r)+/ U'(v—y)h(-)dy

r

+ (1 Ca() - / h(-)dy) U/<0)))
/(U’(U—1 (6(7) <a(-)U(v — )+ /v Uv—y)h(-)dy

(i [0

The strict inequality holds because of our normalizations that U(0) =0 and U’(0) =1,
and because 1 — a(r, 7, t) — fr” h(y, 1, t)dy > 0 for any finite v.
Therefore, we have

8(T)EU'(x)

My(v, 1,7, t ;
rm = U'(UH(8(m)EU(x)))

where the random variable x has a mixed discrete-continuous distribution, taking the
value 0 with probability 1 — a(r, 7, 1) — [ rv h(y, 7, t) dy and the value v — r with probability
a(r, 7, t), and having density A(y, 7, t) over the interval (0, v — r). Because U” < 0 and
6(7) < 1, Jensen’s inequality implies that 6(7)EU (x) < U(Ex). Therefore,

8(T)EU'(x)
My(v,r,7,t
.r70 < U (U (U(EX)))

_8(NEU'(x)
~ U(Ex)

Since U < 0, Jensen’s inequality implies EU’(x) < U'(Ex). Hence,

My(v,r,7,t) <6(1) < 1.

APPENDIX SC: IDENTIFICATION OF UTILITY FUNCTIONS FROM CERTAINTY
EQUIVALENTS

Suppose that U is a utility function defined on X’ C R and that F is a collection of distri-
butions with supports contained in X. This generates a certainty equivalent functional



Supplementary Material Preferences in buy price auctions 11

(also called a quasilinear mean)
m(F) = U—l(/ U(x)dF(x)), FeF.

Now suppose that we are given a collection of lotteries F and a quasilinear mean
functional m. If F is sufficiently rich, it is plausible that the utility function U is uniquely
determined (up to affine transformations) by m. We show that this is true even for a well
chosen one-dimensional family of lotteries.

Our example is adapted from the proof of Theorem 83 in Hardy, Littlewood, and
Polya (1952). Let X = [a, b] and consider the collection of lotteries F = {F;(x), t € [0, 1]},
where the F; are mixtures of point masses at the endpoints a and b:

Fi(x)=(0—-1)8,(x) + tdp(x).
Note that
m(Fo) =m(8q) =a,
m(Fy) =m(8p) =0,

and since m is continuous and strictly increasing, m(F;) takes every value in [a, b].
Suppose that there is another function V' satisfying

m(F)=V"1 (/ V(x) dF(x)), FeF.

Let
() =m(Fy) = U‘l[(l —nU(a)+tU(b)] = V‘l[(l — 0V (a)+ 1tV (b)].
We have
U(x(n)=0—-0U(a)+tU(b),
and we can solve for r and (1 — ¢):

U(%(0) - U(a)

Ub)—Ula) ’
U~ U(x(0)
=T —u@

Now
V(fc(t)) =1 -0V(a)+tV(b)

_ U(b) — U(x(0)) Vi@ + U(x() — U(a)

U(b) — U(a) Ub)—U(a) Vo).

This is a linear (in fact, affine) function of U (X(¢)), so we can write

V(%(1) =a+ BU(X(1)),
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where « and B8 do not depend on ¢ and B > 0. Since this holds for all ¢ € [0, 1], we have
Vix)=a+BU(x) Vxe€la,bl].

Thus VV must be an affine transformation of U.
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