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This paper makes several important contributions to the literature about non-
parametric instrumental variables (NPIV) estimation and inference on a struc-
tural function h0 and functionals of h0. First, we derive sup-norm convergence
rates for computationally simple sieve NPIV (series two-stage least squares) esti-
mators of h0 and its derivatives. Second, we derive a lower bound that describes
the best possible (minimax) sup-norm rates of estimating h0 and its derivatives,
and show that the sieve NPIV estimator can attain the minimax rates when h0

is approximated via a spline or wavelet sieve. Our optimal sup-norm rates sur-
prisingly coincide with the optimal root-mean-squared rates for severely ill-posed
problems, and are only a logarithmic factor slower than the optimal root-mean-
squared rates for mildly ill-posed problems. Third, we use our sup-norm rates
to establish the uniform Gaussian process strong approximations and the score
bootstrap uniform confidence bands (UCBs) for collections of nonlinear func-
tionals of h0 under primitive conditions, allowing for mildly and severely ill-posed
problems. Fourth, as applications, we obtain the first asymptotic pointwise and
uniform inference results for plug-in sieve t-statistics of exact consumer surplus
(CS) and deadweight loss (DL) welfare functionals under low-level conditions
when demand is estimated via sieve NPIV. Our real data application of UCBs for
exact CS and DL functionals of gasoline demand reveals interesting patterns and
is applicable to other goods markets.
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dence bands, nonlinear welfare functionals, nonparametric demand with endo-
geneity.
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1. Introduction

Well-founded empirical evaluation of economic policy is often based on inference on
nonlinear welfare functionals of nonparametric or semiparametric structural models.
This paper makes several important contributions to estimation and inference on a flex-
ible (i.e., nonparametric) structural function h0 and nonlinear functionals of h0 within
the framework of a nonparametric instrumental variables (NPIV) model,

Yi = h0(Xi)+ ui� E[ui|Wi] = 0� (1)

where h0 is an unknown function, Xi is a vector of continuous endogenous regressors,
Wi is a vector of (conditional) instrumental variables, and the conditional distribution of
Xi givenWi is unspecified.

Given a random sample {(Yi�Xi�Wi)}ni=1 (of size n) from the NPIV model (1), our first
two main theoretical results address how well one may estimate h0 and its derivatives
simultaneously in sup-norm loss, that is, we bound

sup
x

∣∣ĥ(x)− h0(x)
∣∣ and sup

x

∣∣∂kĥ(x)− ∂kh0(x)
∣∣

for estimators ĥ of h0, where ∂kh(x) denotes the kth partial derivatives of hwith respect
to components of x. We first provide upper bounds on sup-norm convergence rates for
the computationally simple sieve NPIV (i.e., series two-stage least-squares (2SLS)) esti-
mators (Newey and Powell (2003), Ai and Chen (2003), Blundell, Chen, and Kristensen
(2007)). We then derive a lower bound that describes the best possible (i.e., minimax)
sup-norm convergence rates among all estimators for h0 and its derivatives, and show
that the sieve NPIV estimator can attain the minimax lower bound when a spline or
wavelet basis is used to approximate h0.1 Next, we apply our sup-norm rate results to
establish the uniform Gaussian process strong approximation and the validity of score
bootstrap uniform confidence bands (UCBs) for collections of possibly nonlinear func-
tionals of h0 under primitive conditions.2 This includes valid score bootstrap UCBs for
h0 and its derivatives as special cases. Finally, as important applications, we establish
first pointwise and uniform inference results for two leading nonlinear welfare function-
als of a nonparametric demand function h0 estimated via sieve NPIV, namely the exact
consumer surplus (CS) and deadweight loss (DL) arising from price changes at differ-
ent income levels when prices (and possibly income) are endogenous.3 We present two

1The optimal sup-norm rates for estimating h0 are in the first version (Chen and Christensen (2013)); the
optimal sup-norm rates for estimating derivatives of h0 are in the second version (Chen and Christensen
(2015a)).

2The uniform strong approximation and the score bootstrap UCB results are in the second version (Chen
and Christensen (2015a)); see Theorem B.1 and its proof in that version.

3The pointwise inference results on exact CS and DL are in the second version (Chen and Christensen
(2015a)).
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real data applications to illustrate the easy implementation and usefulness of the score
bootstrap UCBs based on sieve NPIV estimators. The first application is to nonparamet-
ric exact CS and DL functionals of gasoline demand; the second is to nonparametric
Engel curves and their derivatives. The UCBs reveal new interesting and sensible pat-
terns in both data applications. We note that the score bootstrap UCBs for exact CS and
DL nonlinear functionals are new to the literature even when the prices might be exoge-
nous. Empiricists could jump to Section 2 to read the sieve score bootstrap UCBs pro-
cedure and these real data applications without reading the rest of the more theoretical
sections.

Regardless of whether the regressor Xi is endogenous or not, sup-norm conver-
gence rates provide sharper measures of how well h0 and its derivatives can be estimated
nonparametrically than the usual L2-norm (i.e., root-mean-squared) rates. This is also
why, in the existing literature on nonparametric models without endogeneity, consis-
tent specification tests in sup-norm (i.e., Kolmogorov–Smirnov type statistics) are widely
used. Further, sup-norm rates are particularly useful for controlling nonlinearity bias
when conducting inference on highly nonlinear (i.e., beyond quadratic) functionals of
h0. In addition to being useful in constructing pointwise and uniform confidence bands
for nonlinear functionals of h0 via plug-in estimators, the sup-norm rates for estimating
h0 are also useful in semiparametric two-step procedures when h0 enters the second-
stage moment conditions (equalities or inequalities) nonlinearly.

Despite the usefulness of sup-norm convergence rates in nonparametric estimation
and inference, as yet there are no published results on optimal sup-norm convergence
rates for estimating h0 or its derivatives in the NPIV model (1). This is because, un-
like nonparametric least-squares (LS) regression (i.e. estimation of h0(x)=E[Yi|Xi = x]
whenXi is exogenous), estimation of h0 in the NPIV model (1) is a difficult ill-posed in-
verse problem with an unknown operator (Newey and Powell (2003), Carrasco, Florens,
and Renault (2007)). Intuitively, h0 in model (1) is identified by the integral equation

E[Yi|Wi =w] = Th0(w) :=
∫
h0(x)fX|W (x|w)dx�

where T must be inverted to obtain h0. Since integration smoothes out features of h0, a
small error in estimating E[Yi|Wi =w] using the data {(Yi�Xi�Wi)}ni=1 may lead to a large
error in estimating h0. In addition, the conditional density fX|W and, hence, the oper-
ator T , are generally unknown, so T must be also estimated from the data. Due to the
difficult ill-posed inverse nature, even the L2-norm convergence rates for estimating h0

in model (1) have not been established until recently.4 In particular, Hall and Horowitz
(2005) derived minimax L2-norm convergence rates for mildly ill-posed NPIV models
and showed that their estimators can attain the optimal L2-norm rates for h0. Chen
and Reiss (2011) derived minimax L2-norm convergence rates for mildly and severely
ill-posed NPIV models and showed that sieve NPIV estimators can attain the optimal

4See, for example, Hall and Horowitz (2005), Blundell, Chen, and Kristensen (2007), Chen and Reiss
(2011), Darolles, Fan, Florens, and Renault (2011), Horowitz (2011), Chen and Pouzo (2012), Gagliardini
and Scaillet (2012), Florens and Simoni (2012), Kato (2013), and references therein.
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rates.5 Moreover, it is generally much harder to obtain optimal nonparametric conver-
gence rates in sup-norm than in L2-norm.6

In this paper, we derive the best possible (i.e., minimax) sup-norm convergence
rates of any estimator of h0 and its derivatives in mildly and severely ill-posed NPIV
models. Surprisingly, the optimal sup-norm convergence rates for estimating h0 and its
derivatives coincide with the optimal L2-norm rates for severely ill-posed problems and
are only a power of logn slower than optimal L2-norm rates for mildly ill-posed prob-
lems. We also obtain sup-norm convergence rates for sieve NPIV estimators of h0 and
its derivatives. We show that a sieve NPIV estimator using a spline or wavelet basis to
approximate h0 can attain the minimax sup-norm rates for estimating both h0 and its
derivatives. When specializing to series LS regression (without endogeneity), our results
automatically imply that spline and wavelet series LS estimators will also achieve the
optimal sup-norm rates of Stone (1982) for estimating the derivatives of a nonparamet-
ric LS regression function, which strengthen the recent sup-norm optimality results in
Belloni et al. (2015) and Chen and Christensen (2015b) for estimating regression func-
tion h0 itself. We focus on the sieve NPIV estimator because it has been used in empirical
work, can be implemented as easily as 2SLS, and can reduce to simple series LS when
the regressor Xi is exogenous. Moreover, both h0 and its derivatives may be simultane-
ously estimated at their respective optimal convergence rates via a sieve NPIV estimator
when the same sieve dimension is used to approximate h0. This is a desirable property to
practitioners. In addition, the sieve NPIV estimator for h0 in model (1) and our proof of
its sup-norm rates could be easily extended to estimating unknown functions in other
semiparametric models with nonparametric endogeneity, such as a system of shape-
invariant Engel curve instrumental variable (IV) regression models (Blundell, Chen, and
Kristensen (2007)).

We provide two important applications of our results on sup-norm convergence
rates in detail: both are about inferences on nonlinear functionals of h0 based on plug-
in sieve NPIV estimators; see Section 6 for discussions of additional applications. Infer-
ence on highly nonlinear (i.e., beyond quadratic) functionals of h0 in a NPIV model is
very difficult because of the combined effects of nonlinearity bias and the slow conver-
gence rates (in sup-norm and L2-norm) of any estimators of h0. Indeed, our minimax
rate results show that any estimator of h0 in an ill-posed NPIV model must necessarily
converge slower than its nonparametric LS counterpart. For example, the optimal sup-
and L2-norm rates for estimating h0 in a severely ill-posed NPIV model are (logn)−γ for
some γ > 0. It is well known that a plug-in series LS estimate of a weighted quadratic
functional could be root-n consistent. But a plug-in sieve NPIV estimate of a weighted
quadratic functional of h0 in a severely ill-posed NPIV model fails to be root-n consistent
(Chen and Pouzo (2015)). In fact, we establish that the minimax convergence rate of any

5Appendix B extends the results in Chen and Reiss (2011) to L2-norm optimality for estimating deriva-
tives of h0.

6Even for the simple nonparametric LS regression of h0 (without endogeneity), the optimal sup-norm
rates for series LS estimators of h0 were not obtained until recently in Cattaneo and Farrell (2013) for locally
partitioning series LS, Belloni, Chernozhukov, Chetverikov, and Kato (2015) for spline LS, and Chen and
Christensen (2015b) for wavelet LS.
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estimators of a simple weighted quadratic functional of h0 in a severely ill-posed NPIV
model is as slow as (logn)−a for some a > 0 (see Appendix C).

In the first application, we extend the seminal work of Hausman and Newey (1995)
about pointwise inference on exact CS and DL functionals of nonparametric demand
without endogeneity to allow for prices, and possibly incomes, to be endogenous. Ac-
cording to Hausman (1981) and Hausman and Newey (1995, 2016, 2017), exact CS and
DL functionals are the most widely used welfare and economic efficiency measures. Ex-
act CS is a leading example of a complicated nonlinear functional of h0, which is de-
fined as the solution to a differential equation involving a demand function (Hausman
(1981)). Hausman and Newey (1995) were the first to establish the pointwise asymptotic
normality of plug-in kernel estimators of exact CS and DL functionals of a nonparamet-
ric demand without endogeneity. Vanhems (2010) was the first to estimate exact CS via
the plug-in Hall and Horowitz (2005) kernel NPIV estimator of h0 when price is endoge-
nous, and she derived its convergence rate in L2-norm for the mildly ill-posed case, but
did not establish any inference results (such as the pointwise asymptotic normality).
Our paper is the first to provide low-level sufficient conditions to establish inference
results for plug-in (spline and wavelet) sieve NPIV estimators of exact CS and DL func-
tionals, allowing for both mildly and severely ill-posed NPIV models. Precisely, we use
our sup-norm convergence rates for sieve NPIV estimators of h0 and its derivatives to
locally linearize plug-in estimators of exact CS and DL, which then lead to asymptotic
normality of sieve t-statistics for exact CS and DL under primitive sufficient conditions.
We also establish the asymptotic normality of plug-in sieve NPIV t-statistic for an ap-
proximate CS functional, extending Newey (1997)’s result from nonparametric exoge-
nous demand to endogenous demand. Recently, Chen and Pouzo (2015) presented a
set of high-level conditions for the pointwise asymptotic normality of sieve t-statistics
of possibly nonlinear functionals of h0 in a general class of nonparametric conditional
moment restriction models (including the NPIV model as a special case). They verified
their high-level conditions for pointwise asymptotic normality of sieve t-statistics for
linear and quadratic functionals. But without sup-norm convergence rate result, Chen
and Pouzo (2015) were unable to provide low-level sufficient conditions for pointwise
asymptotic normality of plug-in sieve NPIV estimators for complicated nonlinear (be-
yond quadratic) functionals such as the exact CS functional. This was actually the origi-
nal motivation for us to derive sup-norm convergence rates for sieve NPIV estimators of
h0 and its derivatives.

In the second important application of our sup-norm rate results, we establish the
uniform Gaussian process strong approximation and the validity of score bootstrap uni-
form confidence bands (UCBs) for collections of possibly nonlinear functionals of h0,
under primitive sufficient conditions that allow for mildly and severely ill-posed NPIV
models. The low-level sufficient conditions for Gaussian process strong approximation
and UCBs are applied to complicated nonlinear functionals such as collections of exact
CS and DL functionals of nonparametric demand with endogenous price (and possibly
income). When specializing to collections of linear functionals of the NPIV function h0,
our Gaussian process strong approximation and sieve score bootstrap UCBs for h0 and
its derivatives are valid under mild sufficient conditions. In particular, for a NPIV model
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with a scalar endogenous regressor, our sufficient conditions are comparable to those in
Horowitz and Lee (2012) for their notion of UCBs with a growing number of grid points
by interpolation for h0 estimated via the modified orthogonal series NPIV estimator of
Horowitz (2011). When specialized to a nonparametric LS regression (with exogenous
Xi), our results on the Gaussian strong approximation and score bootstrap UCBs for
collections of nonlinear functionals of h0, such as exact CS and DL functionals, are still
new to the literature and complement the important results in Chernozhukov, Lee, and
Rosen (2013) for h0 and Belloni et al. (2015) for linear functionals of h0 estimated via
series LS.

Our sieve score bootstrap UCBs procedure is extremely easy to implement since it
computes the sieve NPIV estimator only once using the data, and then perturbs the sieve
score statistics by random weights that are mean zero and independent of the data. So it
should be very useful to empirical researchers who conduct nonparametric estimation
and inference on structural functions with endogeneity in diverse subfields of applied
economics, such as consumer theory, industrial organization, labor economics, public
finance, health economics, development, and trade, to name only a few. Two real data
illustrations are presented in Section 2. In the first, we construct UCBs for exact CS and
DL welfare functionals for a range of gasoline taxes at different income levels. For this il-
lustration, we use the same data set as in Blundell, Horowitz, and Parey (2012, 2017) and
estimate household gasoline demand via spline sieve NPIV (other data sets and other
goods could be used). Despite the slow convergence rates of NPIV estimators, the UCBs
for exact CS are particularly informative. In the second empirical illustration, we use the
same data set as in Blundell, Chen, and Kristensen (2007) to estimate Engel curves for
households with kids via a spline sieve NPIV and construct UCBs for Engel curves and
their derivatives for various categories of household expenditure.

The rest of the paper is organized as follows. Section 2 presents the sieve NPIV
estimator, the score bootstrap UCBs procedure, and two real-data applications. This
section aims at empirical researchers. Section 3 establishes the minimax optimal sup-
norm rates for estimating a NPIV function h0 and its derivatives. Section 4 presents low-
level sufficient conditions for the uniform Gaussian process strong approximation and
sieve score bootstrap UCBs for collections of general nonlinear functionals of a NPIV
function. Section 5 deals with pointwise and uniform inferences on exact CS and DL,
and approximate CS functionals in nonparametric demand estimation with endogene-
ity. Section 6 concludes with discussions of additional applications of the sup-norm
rates of sieve NPIV estimators. Appendix A contains additional results on sup-norm
convergence rates. Appendix B presents optimal L2-norm rates for estimating deriva-
tives of a NPIV function under extremely weak conditions. Appendix C establishes the
minimax lower bounds for estimating quadratic functionals of a NPIV function. The
main supplemental appendix, available in a supplementary file on the journal web-
site, http://qeconomics.org/supp/722/supplement.pdf, contains pointwise normality
of sieve t-statistics for nonlinear functionals of NPIV under lower-level sufficient con-
ditions than those in Chen and Pouzo (2015) (Appendix D), background material on
B-spline and wavelet sieves (Appendix E), and useful lemmas on random matrices (Ap-
pendix F). The secondary supplemental appendix, available in a supplementary file on

http://qeconomics.org/supp/722/supplement.pdf


Quantitative Economics 9 (2018) Nonlinear functionals of nonparametric IV 45

the journal website, http://qeconomics.org/supp/722/code_and_data.zip, contains ad-
ditional lemmas and all of the proofs (Appendix G).

2. Estimator and motivating applications to UCBs

This section describes the sieve NPIV estimator and a score bootstrap UCBs procedure
for collections of functionals of the NPIV function. It mentions intuitively why sup-norm
convergence rates of a sieve NPIV estimator are needed to formally justify the validity of
the computationally simple score bootstrap UCBs procedure. It then present two real
data applications of uniform inferences on functionals of a NPIV function: UCBs for ex-
act CS and DL functionals of nonparametric demand with endogenous price, and UCBs
for nonparametric Engel curves and their derivatives when the total expenditure is en-
dogenous. This section is presented to practitioners.

Sieve NPIV estimators. Let {(Yi�Xi�Wi)}ni=1 denote a random sample from the NPIV
model (1). The sieve NPIV estimator ĥ of h0 is simply the 2SLS estimator applied to some
basis functions of Xi (the endogenous regressors) and Wi (the conditioning variables),
namely

ĥ(x)=ψJ(x)′̂c with ĉ = [Ψ ′B
(
B′B

)−
B′Ψ

]−
Ψ ′B

(
B′B

)−
B′Y� (2)

where Y = (Y1� � � � �Yn)
′,

ψJ(x)= (ψJ1(x)� � � � �ψJJ(x)
)′
� Ψ = (ψJ(X1)� � � � �ψ

J(Xn)
)′
� (3)

bK(w)= (bK1(w)� � � � � bKK(w)
)′
� B= (bK(W1)� � � � � b

K(Wn)
)′
� (4)

and {ψJ1� � � � �ψJJ} and {bK1� � � � � bKK} are collections of basis functions of dimension
J and K for approximating h0 and the instrument space, respectively (Blundell, Chen,
and Kristensen (2007), Chen and Pouzo (2012), Newey (2013)). The regularization pa-
rameter J is the dimension of the sieve for approximating h0. The smoothing parame-
ter K is the dimension of the instrument sieve. From the analogy with 2SLS, it is clear
that we need K ≥ J. Blundell, Chen, and Kristensen (2007), Chen and Reiss (2011),
Chen and Pouzo (2012) have previously shown that limJ(K/J) = c ∈ [1�∞) can lead to
an optimal L2-norm convergence rate for the sieve NPIV estimator. Thus we assume
that K grows to infinity at the same rate as that of J, say J ≤ K ≤ cJ for some finite
c > 1 for simplicity.7 When K = J and bK and ψJ are formed from the same orthogonal
basis, the sieve NPIV estimator becomes Horowitz’s (2011) modified orthogonal series
NPIV estimator. Note that the sieve NPIV estimator (2) reduces to a series LS estimator
ĥ(x)=ψJ(x)′[Ψ ′Ψ ]−Ψ ′Y whenXi =Wi is exogenous, J =K, andψJ(x)= bK(w) (Newey
(1997), Huang (1998)).

7Monte Carlo evidence in (Blundell, Chen, and Kristensen (2007), Chen and Pouzo (2015)) and others
suggest that sieve NPIV estimators often perform better with K > J than with K = J, and that the regular-
ization parameter J is important for finite sample performance while the parameter K is not as important
as long as it is larger than J. See our second version (Chen and Christensen (2015a)) for the data-driven
choice of J.

http://qeconomics.org/supp/722/code_and_data.zip
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2.1 Uniform confidence bands for nonlinear functionals

One important motivating application is to uniform inference on a collection of nonlin-
ear functionals {ft(h0) : t ∈ T }, where T is an index set (e.g., an interval). Uniform infer-
ence may be performed via uniform confidence bands (UCBs) that contain the function
t �→ ft(h0) with prescribed coverage probability. UCBs for h0 (or its derivatives) are ob-
tained as a special case with T = X (support ofXi) and ft(h0)= h0(t) (or ft(h0)= ∂kh0(t)

for the kth derivative). We present applications below to uniform inference on exact CS
and DL functionals over a range of price changes as well as UCBs for Engel curves and
their derivatives.

A 100(1 − α)% bootstrap-based UCB for {ft(h0) : t ∈ T } is constructed as

t �→
[
ft(ĥ)− z∗

1−α
σ̂(ft)√
n
� ft(ĥ)+ z∗

1−α
σ̂(ft)√
n

]
� (5)

In this display, ft(ĥ) is the plug-in sieve NPIV estimator of ft(h0), σ̂2(ft) is a sieve vari-
ance estimator for ft(ĥ), and z∗

1−α is a bootstrap-based critical value to be defined below.

To compute the sieve variance estimator for ft(ĥ) with ĥ(x) = ψJ(x)′̂c given in (2),
one would first compute the 2SLS covariance matrix estimator (but applied to basis
functions) for ĉ,

�̂= [Ŝ′Ĝ−1
b Ŝ

]−1
Ŝ′Ĝ−1

b Ω̂Ĝ
−1
b Ŝ

[
Ŝ′Ĝ−1

b Ŝ
]−1
� (6)

where Ŝ = B′Ψ/n, Ĝb = B′B/n, Ω̂ = n−1∑n
i=1 û

2
i b
K(Wi)b

K(Wi)
′, and ûi = Yi − ĥ(Xi).

One then computes a “delta-method” correction term—a J × 1 vector Dft(ĥ)[ψJ] :=
(Dft(ĥ)[ψJ1]� � � � �Dft(ĥ)[ψJJ])′—by calculating Dft(ĥ)[v] = limδ→0+[δ−1{ft(ĥ + δv) −
ft(ĥ)}], which is the (functional directional) derivative of ft at ĥ in direction v for v =
ψJ1� � � � �ψJJ . The sieve variance estimator for ft(ĥ) is then

σ̂2(ft)= (Dft(ĥ)[ψJ])′�̂(Dft(ĥ)[ψJ])� (7)

We use the following sieve score bootstrap procedure to calculate the critical value
z∗

1−α. Let�1� � � � ��n be independent and identically distributed (IID) random variables
independent of the data with mean zero, unit variance, and finite third moment (e.g.,
N(0�1)).8 We define the bootstrap sieve t-statistic process {Z∗

n(t) : t ∈ T } as

Z
∗
n(t) :=

(
Dft(ĥ)

[
ψJ
])′[
Ŝ′Ĝ−1

b Ŝ
]−1
Ŝ′Ĝ−1

b

σ̂(ft)

(
1√
n

n∑
i=1

bK(Wi)ûi�i

)
for each t ∈ T � (8)

To compute z∗
1−α, one would calculate supt∈T |Z∗

n(t)| for a large number of independent
draws of �1� � � � ��n. The critical value z∗

1−α is the (1 − α) quantile of supt∈T |Z∗
n(t)| over

the draws. Note that this sieve score bootstrap procedure is different from the usual non-
parametric bootstrap (based on resampling the data and then recomputing the estima-
tor): here we only compute the estimator once and then perturb the sieve t-statistic pro-
cess by the innovations�1� � � � ��n.

8Other examples of distributions with these properties include the recentered exponential (i.e., �i =
Exp(1)− 1), the Rademacher (i.e., ±1 each with probability 1

2 ), or the two-point distribution of Mammen
(1993) (i.e., (1 − √

5)/2 with probability (
√

5 + 1)/(2
√

5) and (
√

5 + 1)/
√

2 with remaining probability).
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An intuitive description of why sup-norm rates are very useful to justify this pro-
cedure is as follows. Under regularity conditions, the sieve t-statistic for an individual
functional ft(h0) admits an expansion

√
n
(
ft(ĥ)− ft(h0)

)
σ̂(ft)

= Ẑn(t)+ nonlinear remainder term (9)

(see equation (18) for the definition of Ẑn(t)). The term Ẑn(t) is a central limit theorem
(CLT) term, that is, Ẑn(t)→d N(0�1) for each fixed t ∈ T . Therefore, the sieve t-statistic
for ft(h0) also converges to a N(0�1) random variable provided that the nonlinear re-
mainder term is asymptotically negligible (i.e., op(1)) (see Assumption 3.5 in Chen and
Pouzo (2015)). Our sup-norm rates are very useful for providing weak regularity condi-
tions under which the remainder is op(1) for fixed t.9 This justifies constructing confi-
dence intervals for individual functionals ft(h0) for any fixed t ∈ T by inverting the sieve
t-statistic (on the left-hand side of display (9)) and using N(0�1) critical values. How-
ever, for uniform inference the usualN(0�1) critical values are no longer appropriate, as
we need to consider the sampling error in estimating the whole process t �→ ft(h0). For
this purpose, display (9) is strengthened to be valid uniformly in t ∈ T (see Lemma 4.1).
Under some regularity conditions, supt∈T |Ẑn(t)| converges in distribution to the supre-
mum of a (nonpivotal) Gaussian process. As its critical values are generally not available,
we use the sieve score bootstrap procedure to estimate its critical values.

Section 4 formally justifies the use of this procedure for constructing UCBs for
{ft(h0) : t ∈ T }. The sup-norm rates are useful for controlling the nonlinear remain-
der terms for UCBs for collections of nonlinear functionals. Theorem 4.1 appears to
be the first to establish the consistency of sieve score bootstrap UCBs for general non-
linear functionals of NPIV under low-level conditions, allowing for mildly and severely
ill-posed problems. It includes as special cases the score bootstrap UCBs for nonlin-
ear functionals of h0 under exogeneity when h0 is estimated via series LS and the score
bootstrap UCBs for the NPIV function h0 and its derivatives.10 Theorem 4.1 is applied
in Section 5 to formally justify the validity of score bootstrap UCBs for exact CS and DL
functionals over a range of price changes when demand is estimated nonparametrically
via sieve NPIV.

2.2 Empirical application 1: UCBs for nonparametric exact CS and DL functionals

Here we apply our methodology to study the effect of gasoline price changes on house-
hold welfare. We extend the important work by Hausman and Newey (1995) on point-
wise confidence bands for exact CS and DL of demand without endogeneity to UCBs for
exact CS and DL of demand with endogeneity.

9Chen and Pouzo (2015) verified their high-level Assumption 3.5 for a plug-in sieve estimator of a
weighted quadratic functional example. Without sup-norm convergence rates, it is difficult to verify their
Assumption 3.5 for nonlinear functionals (such as the exact CS) that are more complicated than quadratic
functionals.

10One also needs to use sup-norm convergence rates of ĥ to h0 to build a valid UCB for {h0(t) : t ∈ X }.
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Let the demand of consumer i be

Qi = h0(Pi�Yi)+ ui�

where Qi is quantity, Pi is price, which may be endogenous, Yi is income of consumer i,
and ui is an error term.11

 Hausman (1981) shows that the exact CS from a price change
from p0 to p1 at income level y, denoted Sy(p0), solves

∂Sy
(
p(u)

)
∂u

= −h0
(
p(u)� y − Sy

(
p(u)

))dp(u)

du
�

Sy
(
p(1)

)= 0�

(10)

where p : [0�1] → R is a twice continuously differentiable path with p(0)= p0 and p(1)=
p1. The corresponding DL functional Dy(p0) is

Dy
(
p0)= Sy

(
p0)− (p1 − p0)h0

(
p1� y

)
� (11)

As is evident from (10) and (11), exact CS and DL are (typically nonlinear) functionals
of h0. An exception is when demand is independent of income, in which case exact CS
and DL are linear functionals of h0. Let t = (p0�p1� y) index the initial price, final price,
and income level, and let T ⊆ [p0�p0] × [p1�p1] × [y� y] denote a range of price changes
and/or incomes over which inference is to be performed. To denote dependence on h0,
we use the notation

fCS�t(h) = solution to (10) with h in place of h0, (12)

fDL�t(h) = fCS�t(h)−
(
p1 − p0)h(p1� y

)
� (13)

so Sy(p0)= fCS�t(h0) and Dy(p0)= fDL�t(h0).
We estimate exact CS and DL using the plug-in estimators fCS�t(ĥ) and fDL�t(ĥ). The

sieve variance estimators σ̂2(fCS�t) and σ̂2(fDL�t) are as described in (7) with the delta-
method correction terms

DfCS�t(ĥ)
[
ψJ
] =

∫ 1

0
ψJ
(
p(u)� y − Ŝy

(
p(u)

))
e−

∫ u
0 ∂2ĥ(p(v)�y−Ŝy(p(v)))p′(v)dvp′(u)du� (14)

DfDL�t(ĥ)
[
ψJ
] =DfCS�t(ĥ)

[
ψJ
]− (p1 − p0)ψJ(p1� y

)
� (15)

where p′(u) = dp(u)
du , ∂2h denotes the partial derivative of h with respect to its second

argument, and Ŝy(p(u)) denotes the solution to (10) with ĥ in place of h0.
We use the 2001 National Household Travel Survey gasoline demand data from

Blundell, Horowitz, and Parey (2012, 2017).12 The main variables are annual household

11Endogeneity may also be an issue in the estimation of static models of labor supply, in which Qi rep-
resents hours worked, Pi is the wage, and Yi is other income. In this setting it is reasonable to allow for
endogeneity of both Pi and Yi (see Blundell, Duncan, and Meghir (1998), Blundell, MaCurdy, and Meghir
(2007), and references therein).

12We are grateful to Matthias Parey for sharing the data set with us. We refer the reader to Section 3 of
Blundell, Horowitz, and Parey (2012) for a detailed description of the data.
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Table 1. Summary statistics for gasoline demand data.

Quantity (gal) Price ($/gal) Income ($)

Mean 1455 1�33 58,307
25th % 871 1�28 42,500
Median 1269 1�32 57,500
75th % 1813 1�40 72,500
Std dev 894 0�07 19,584

gasoline consumption (in gallons), average price (in dollars per gallon) in the county in
which the household is located, household income, and distance from the Gulf coast to
the capital of the state in which the household is located. Due to censoring, we consider
the subset of households with incomes less than $100,000 per year. To keep households
somewhat homogeneous, we select households with incomes above $25,000 per year
(the 8th percentile) that have at most six inhabitants and one or two drivers. The result-
ing sample has size n= 2753.13 Table 1 presents summary statistics.

We estimate the household gasoline demand function in levels via sieve NPIV using
distance as an instrument for price. To implement the estimator, we form ΨJ by taking
a tensor product of quartic B-spline bases of dimension 5 for both price and income (so
J = 25) and form BK by taking a tensor product of quartic B-spline bases of dimension 8
for distance and 5 for income (soK = 40) with interior knots spaced evenly at quantiles.

We consider exact CS and DL resulting from price increases from p0 ∈ [$1�20�$1�40]
to p1 = $1�40 at income levels of y = $42,500 (low) and y = $72,500 (high). We estimate ex-
act CS at each initial price level by solving the ordinary differential equation (ODE (10))
by backward differences. We construct UCBs for exact CS as described above by setting
T = [$1�20�$1�40]×{$1�40}×{$42,500} for the low-income group and T = [$1�20�$1�40]×
{$1�40} × {$72,500} for the high-income group, ft(h) = fCS�t(h) from display (12), and
Dft(ĥ)[ψJ] = DfCS�t(ĥ)[ψJ] from display (14). The ODE (10) is solved numerically by
backward differences and the integrals in (14) are computed numerically. UCBs for DL
are formed similarly, ft(h) = fDL�t(h) from display (13), and Dft(ĥ)[ψJ] =DfDL�t(ĥ)[ψJ]
from display (15). We draw the bootstrap innovations�i from Mammen’s two-point dis-
tribution with 1000 bootstrap replications.

The exact CS and DL estimates are presented in Figure 1 together with their UCBs. It
is clear that exact CS is much more precisely estimated than DL. This is to be expected,
since exact CS is computed by essentially integrating over one argument of the estimated
demand function and is therefore smoother than the DL functional, which depends on
h0 estimated at the point (p1� y). In fact, even though the sieve NPIV ĥ itself converges
slowly, the UCBs for exact CS are still quite informative. At their widest point (with initial
price $1�20), the 95% UCBs for exact CS for low-income households are [$259�$314]. In
terms of comparison across high- and low-income households, the exact CS estimates

13We also exclude one household that reports 14,635 gallons; the next largest is 8089 gallons. Similar
results are obtained using the full set of n= 4811 observations.
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Figure 1. Estimated CS and DL from a price increase to $1�40/gal (solid black line) and their
bootstrap UCBs (dashed black lines are 90%; dashed grey lines are 95%) when demand is esti-
mated via sieve NPIV. Left panels are for household income of $72,500; right panels are for house-
hold income of $42,500.

are higher for the high-income households, whereas DL estimates are higher for the low-
income households.

Figure 2 displays estimates obtained when we treat price as exogenous and estimate
demand (h0) by series LS regression. This is a special case of the preceding analysis with
Xi =Wi = (Pi�Yi)′,K = J, andψJ = bK . These estimates display several notable features.
First, the exact CS estimates are very similar whether demand is estimated via series LS
or via sieve NPIV. Second, the UCBs for exact CS estimates are of a similar width to those
obtained when demand was estimated via sieve NPIV, even though NPIV is an ill-posed
inverse problem, whereas nonparametric LS regression is not. Third, the UCBs for DL
are noticeably narrower when demand is estimated via series LS than when demand is
estimated via sieve NPIV. Fourth, the DL estimates for LS and sieve NPIV are similar for
high-income households, but quite different for low-income households. This is consis-
tent with Blundell, Horowitz, and Parey (2017), who find some evidence of endogeneity
in gasoline prices for low-income groups.
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Figure 2. Estimated CS and DL from a price increase to $1�40/gal (solid black lines) and their
bootstrap UCBs (dashed black lines are 90%; dashed grey lines are 95%) when demand is esti-
mated via series LS. CS and DL when demand is estimated via NPIV are also shown (black dash–
dot lines). Left panels are for household income of $72,500; right panels are for household income
of $42,500.

2.3 Empirical application 2: UCBs for Engel curves and their derivatives

Engel curves describe the household budget share for expenditure categories as a func-
tion of total household expenditure. Following Blundell, Chen, and Kristensen (2007),
we use sieve NPIV to estimate Engel curves, taking log total household income as an in-
strument for log total household expenditure. We use data from the 1995 British Family
Expenditure Survey, focusing on the subset of married or cohabitating couples with one
or two children, with the head of household aged between 20 and 55 and in work. This
leaves a sample of size n= 1027. We consider six categories of nondurables and services
expenditure: food in, food out, alcohol, fuel, travel, and leisure.

We construct UCBs for Engel curves as described above by setting T = [4�75�6�25]
(approximately the 5th–95th percentile of log expenditure), ft(h) = h(t), and
Dft(ĥ)[ψJ] = ψJ(t). We also construct UCBs for derivatives of the Engel curves by set-
ting T = [4�75�6�25], ft(h) to be the derivative of h evaluated at t, and Dft(ĥ)[ψJ] to be
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Figure 3. Estimated Engel curves (black line) with bootstrap uniform confidence bands
(dashed black lines are 90%; dashed grey lines are 95%). The x axis is log total household ex-
penditure; the y axis is household budget share.

the vector formed by taking derivatives ofψJ1� � � � �ψJJ evaluated at t. For both construc-
tions, we use a quartic B-spline basis of dimension J = 5 for ΨJ and a quartic B-spline
basis of dimension K = 9 for BK , with interior knots evenly spaced at quantiles (an im-
portant feature of sieve estimators is that the same sieve dimension can be used for
optimal estimation of the function and its derivatives; this is not the case for kernel-
based estimators). We draw the bootstrap innovations �i from Mammen’s two-point
distribution with 1000 bootstrap replications.

The Engel curves presented in Figure 3 and their derivatives presented in Figure 4
exhibit several interesting features. The curves for food in and fuel (necessary goods)
are both downward sloping, with the curve for fuel exhibiting a pronounced downward
slope at lower-income levels. The derivative of the curve for fuel is negative, though
the UCBs are positive at the extremities. In contrast, the curve for leisure expenditure
(luxury good) is strongly upward sloping and its derivative is positive except at low-
income levels. Remaining curves for food out, alcohol, and travel appear to be non-
monotonic.
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Figure 4. Estimated Engel curve derivatives (black line) with bootstrap uniform confidence
bands (dashed black lines are 90%; dashed grey lines are 95%).

3. Optimal sup-norm convergence rates

This section presents several results on sup-norm convergence rates. Section 3.1
presents upper bounds on sup-norm convergence rates of NPIV estimators of h0 and
its derivatives. Section 3.2 presents (minimax) lower bounds. Section 3.3 considers NPIV
models with endogenous and exogenous regressors that are useful in empirical studies.

Notation. We work on a probability space (Ω�F�P). The term Ac denotes the com-
plement of an even A ∈ F . We abbreviate “with probability approaching 1” to wpa1,
and say that a sequence of events {An} ⊂ F holds wpa1 if P(Acn) = o(1). For a random
variable X , we define the space Lq(X) as the equivalence class of all measurable func-
tions of X with finite qth moment if 1 ≤ q < ∞; when q = ∞, we denote L∞(X) as
the set of all bounded measurable functions g : X → R endowed with the sup-norm
‖g‖∞ = supx |g(x)|. Let 〈·� ·〉X denote the inner product on L2(X). For matrix and vec-
tor norms, ‖ · ‖
q denotes the vector 
q-norm when applied to vectors and the operator
norm induced by the vector 
q-norm when applied to matrices. If a and b are scalars,
we let a∨b := max{a�b} and a∧b := min{a�b}. Minimum and maximum eigenvalues are
denoted by λmin and λmax. If {an} and {bn} are sequences of positive numbers, we say that
an � bn if lim supn→∞ an/bn <∞ and we say that an � bn if an � bn and bn � an.
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Sieve measure of ill-posedness. For a NPIV model (1), an important quantity is the
measure of ill-posedness, which, roughly speaking, measures how much the conditional
expectation h �→ E[h(Xi)|Wi = w] smoothes out h. Let T : L2(X)→ L2(W ) denote the
conditional expectation operator given by

Th(w)=E[h(Xi)|Wi =w]�
Let ΨJ = clsp{ψJ1� � � � �ψJJ} ⊂ L2(X) and BK = clsp{bK1� � � � � bKK} ⊂ L2(W ) denote the
sieve spaces for the endogenous variables and instrumental variables, respectively. Let
ΨJ�1 = {h ∈ΨJ : ‖h‖L2(X) = 1}. The sieve L2 measure of ill-posedness is

τJ = sup
h∈ΨJ :h�=0

‖h‖L2(X)

‖Th‖L2(W )

= 1
inf

h∈ΨJ�1
‖Th‖L2(W )

�

Following Blundell, Chen, and Kristensen (2007), we call a NPIV model (1) withXi being
a d-dimensional random vector

(i) mildly ill-posed if τJ =O(Jς/d) for some ς > 0

(ii) severely ill-posed if τJ =O(exp( 1
2J
ς/d)) for some ς > 0.

See our second version (Chen and Christensen (2015a)) for simple consistent esti-
mation of the sieve measure of ill-posedness τJ .

3.1 Sup-norm convergence rates

We first introduce some basic conditions on the basic NPIV model (1) and the sieve
spaces.

Assumption 1. (i) The variable Xi has compact rectangular support X ⊂ R
d with

nonempty interior and the density of Xi is uniformly bounded away from 0 and ∞ on
X ; (ii) Wi has compact rectangular support W ⊂ R

dw and the density of Wi is uniformly
bounded away from 0 and ∞ on W ; (iii) T : L2(X)→ L2(W ) is injective; (iv) h0 ∈ H ⊂
L∞(X), and ∪JΨJ is dense in (H�‖ · ‖L∞(X)).

Assumption 2. We have (i) supw∈W E[u2
i |Wi = w] ≤ σ2 <∞ and (ii) E[|ui|2+δ] <∞ for

some δ > 0.

The following assumptions concern the basis functions. Define

Gψ =Gψ�J =E[ψJ(Xi)ψJ(Xi)′]=E[Ψ ′Ψ/n
]
�

Gb =Gb�K =E[bK(Wi)bK(Wi)′]=E[B′B/n
]
�

S = SKJ =E[bK(Wi)ψJ(Xi)′]=E[B′Ψ/n
]
�

We assume throughout that the basis functions are not linearly dependent, that is, S has
full column rank J, and Gψ�J and Gb�K are positive definite for each J and K, that is,
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eJ = λmin(Gψ�J) > 0 and eb�K = λmin(Gb�K) > 0, although eJ and eb�K could go to zero as
K ≥ J goes to infinity. Let

ζψ = ζψ�J = sup
x

∥∥G−1/2
ψ ψJ(x)

∥∥

2� ζb = ζb�K = sup

w

∥∥G−1/2
b bK(w)

∥∥

2�

ξψ = ξψ�J = sup
x

∥∥ψJ(x)∥∥

1

for each J and K, and define ζ = ζJ = ζb�K ∨ ζψ�J . Note that ζψ�J has some useful prop-

erties: ‖h‖∞ ≤ ζψ�J‖h‖L2(X) for all h ∈ ΨJ and
√
J = (E[‖G−1/2

ψ ψJ(X)‖2

2 ])1/2 ≤ ζψ�J ≤

ξψ�J/
√
eJ ; clearly ζb�K has similar properties.

We say that the sieve basis for ΨJ is Hölder continuous if there exist finite constants
ω≥ 0, ω′ > 0 such that ‖G−1/2

ψ�J {ψJ(x)−ψJ(x′)}‖
2 � Jω‖x− x′‖ω′

2 for all x�x′ ∈ X .

Assumption 3. (i) The basis spanningΨJ is Hölder continuous, (ii) τJζ2/
√
n=O(1), and

(iii) ζ(2+δ)/δ√(logn)/n= o(1).

Let ΠJ : L2(X) → ΨJ denote the L2(X) orthogonal (i.e., least-squares) projec-
tion onto ΨJ , namely ΠJh0 = arg minh∈ΨJ ‖h0 − h‖L2(X), and let ΠK : L2(W ) → BK
denote the L2(W ) orthogonal (i.e., least-squares) projection onto BK . Let QJh0 =
arg minh∈ΨJ ‖ΠKT(h0 −h)‖L2(W ) denote the sieve 2SLS projection of h0 ontoΨJ . We may
writeQJh0 =ψJ(·)′c0�J , where

c0�J = [S′G−1
b S

]−1
S′G−1

b E
[
bK(Wi)h0(Xi)

]
�

Assumption 4. We have (i) suph∈ΨJ�1 ‖(ΠKT − T)h‖L2(W ) = o(τ−1
J ), (ii) τJ × ‖T(h0 −

ΠJh0)‖L2(W ) ≤ const × ‖h0 − ΠJh0‖L2(X), and (iii) ‖QJ(h0 − ΠJh0)‖∞ ≤ O(1) × ‖h0 −
ΠJh0‖∞.

Discussion of Assumptions. Assumption 1 is standard. Assumption 1(iii) is stronger
than needed for convergence rates in sup-norm only. We impose it as a common suffi-
cient condition for convergence rates in both sup-norm and L2-norm (Appendix B). For
the sup-norm convergence rate only, Assumption 1(iii) could be replaced by the follow-
ing alternative weaker identification condition:

Assumption 1. (iii-sup) We have h0 ∈ H ⊂ L∞(X), and T [h− h0] = 0 ∈ L2(W ) for any
h ∈ H implies that ‖h− h0‖∞ = 0.

This in turn is implied by the injectivity of T : L∞(X) → L2(W ) (or the bounded
completeness), which is weaker than the injectivity of T : L2(X) → L2(W ) (i.e., the
L2 completeness). Bounded completeness or L2-completeness condition is often as-
sumed in models with endogeneity (e.g., Newey and Powell (2003), Carrasco, Florens,
and Renault (2007), Blundell, Chen, and Kristensen (2007), Andrews (2011), Chen, Cher-
nozhukov, Lee, and Newey (2014)) and is generically satisfied according to Andrews
(2011). The parameter space H for h0 is typically taken to be a Hölder or Sobolev class
of smooth functions. Assumption 1(i) could be relaxed to unbounded support, and the



56 Chen and Christensen Quantitative Economics 9 (2018)

proofs need to be modified slightly using wavelet basis and weighted compact embed-
ding results; see, for example, Blundell, Chen, and Kristensen (2007), Chen and Pouzo
(2012), Triebel (2006), and references therein. To present the sup-norm rate results in
a clean way we stick to the simplest Assumption 1. Assumption 2 is also imposed for
sup-norm convergence rates for series LS regression under exogeneity (e.g., Chen and
Christensen (2015b)). Assumption 3(i) is satisfied by many commonly used sieve bases,
such as splines, wavelets, and cosine bases. Assumption 3(ii) and (iii) restrict the rate
at which J can grow with n. Upper bounds for ζψ�J and ζb�K are known for commonly
used bases, for instance, under Assumption 1(i) and (ii), ζb�K =O(√K) and ζψ�J =O(√J)
for (tensor-product) polynomial spline, wavelet and cosine bases, and ζb�K =O(K) and
ζψ�J =O(J) for (tensor-product) orthogonal polynomial bases; see, for example, Newey
(1997), Huang (1998) and Appendix E. Assumption 4(i) is a mild condition on the ap-
proximation properties of the basis used for the instrument space and is similar to the
first part of Assumption 5(iv) of Horowitz (2014). In fact, ‖(ΠKT − T)h‖L2(W ) = 0 for all
h ∈ΨJ when the basis functions for BK andΨJ form either a Riesz basis or an eigenfunc-
tion basis for the conditional expectation operator. Assumption 4(ii) is the usualL2 “sta-
bility condition” imposed in the NPIV literature (cf. Assumption 6 in Blundell, Chen, and
Kristensen (2007) and Assumption 5.2(ii) in Chen and Pouzo (2012)). Assumption 4(iii)
is a new L∞ stability condition to control the sup-norm bias. It turns out that Assump-
tion 4(ii) and (iii) are also automatically satisfied by Riesz bases; see Appendix A for fur-
ther discussions and sufficient conditions.

To derive the sup-norm (uniform) convergence rate, we split ‖ĥ− h0‖∞ into “bias”
and “standard deviation” terms and derive sup-norm convergence rates for the two
terms. Specifically, let

h̃(x)=ψJ(x)′̃c with c̃ = [Ψ ′B
(
B′B

)−
B′Ψ

]−
Ψ ′B

(
B′B

)−
B′H0�

where H0 = (h0(X1)� � � � �h0(Xn))
′. We refer loosely to ‖h̃ − h0‖∞ as the bias term and

to ‖ĥ − h̃‖∞ as the standard deviation (or sometimes “variance”) term. Both are ran-
dom quantities. We first bound the sup-norm standard deviation term in the following
lemma.

Lemma 3.1. Let Assumptions 1(i) and (iii), 2(i) and (ii), 3(ii) and (iii), and 4(i) hold.

(i) Then ‖ĥ− h̃‖∞ =Op(τJξψ�J
√
(logJ)/(neJ)).

(ii) If Assumption 3(i) also holds, then ‖ĥ− h̃‖∞ =Op(τJζψ�J
√
(logn)/n).

Recall that
√
J ≤ ζψ�J ≤ ξψ�J/√eJ . Result (ii) of Lemma 3.1 provides a slightly tighter

upper bound on the variance term than result (i) does, while result (i) allows for
slightly more general basis to approximate h0. For splines and wavelets, we show in Ap-
pendix E that ξψ�J/

√
eJ �

√
J, so results (i) and (ii) produce the same tight upper bound

‖ĥ− h̃‖∞ =Op(τJ
√
(J logn)/n) when J � nr for some constant r > 0.

Before we present an upper bound on the bias term in Theorem 3.1(i) below, we
mention one more property of the sieve spaceΨJ that is crucial for sharp bounds on the
sup-norm bias term. Let h0�J ∈ ΨJ denote the best approximation to h0 in sup-norm,
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that is, h0�J solves infh∈ΨJ ‖h0 − h‖∞. Then by Lebesgue’s lemma (DeVore and Lorentz
(1993, p. 30))

‖h0 −ΠJh0‖∞ ≤ (1 + ‖ΠJ‖∞
)× ‖h0 − h0�J‖∞�

where ‖ΠJ‖∞ is the Lebesgue constant for the sieve ΨJ . Recently it has been estab-
lished that ‖ΠJ‖∞ � 1 when ΨJ is spanned by a tensor-product B-spline basis (Huang
(2003)) or a tensor-product Cohen–Daubechies–Vial (CDV) wavelet basis (Chen and
Christensen (2015b)).14 Boundedness of the Lebesgue constant is crucial for attaining
optimal sup-norm rates.

Theorem 3.1.

(i) Let Assumptions 1(iii), 3(ii), and 4 hold. Then

‖h̃− h0‖∞ =Op
(‖h0 −ΠJh0‖∞

)
�

(ii) Let Assumptions 1(i), (iii), and (iv), 2(i) and (ii), 3(ii), and (iii), and 4 hold. Then

‖ĥ− h0‖∞ =Op
(‖h0 −ΠJh0‖∞ + τJξψ�J

√
(logJ)/(neJ)

)
�

(iii) Further, if the linear sieve ΨJ satisfies ‖ΠJ‖∞ � 1 and ξψ�J/
√
eJ �

√
J, then

‖ĥ− h0‖∞ =Op
(‖h0 − h0�J‖∞ + τJ

√
(J logJ)/n

)
�

Theorem 3.1(ii) and (iii) follows directly from part (i) (for bias) and Lemma 3.1(i) (for
standard deviation). See Appendix A for additional details about bounds on sup-norm
bias.

The following corollary provides concrete sup-norm convergence rates of ĥ and
its derivatives. To introduce the result, let Bp∞�∞ denote the Hölder space of smooth-
ness p > 0 and let ‖ · ‖Bp∞�∞ denote its norm (see Section 1.11.10 of Triebel (2006)). Let

B∞(p�L)= {h ∈ Bp∞�∞ : ‖h‖Bp∞�∞ ≤ L} denote a Hölder ball of smoothness p> 0 and ra-
dius L ∈ (0�∞). Let α1� � � � �αd be nonnegative integers, let |α| = α1 +· · ·+αd , and define

∂αh(x) := ∂|α|h
∂α1x1 · · ·∂αdxd h(x)�

Of course, if |α| = 0, then ∂αh= h.15

Corollary 3.1. Let Assumptions 1(i), (ii), and (iii) and 4 hold. Let h0 ∈ B∞(p�L), ΨJ be
spanned by a B-spline basis of order γ > p or a CDV wavelet basis of regularity γ > p, and
let BK be spanned by a cosine, spline, or wavelet basis.

14See DeVore and Lorentz (1993) and Belloni et al. (2015) for examples of other bases with bounded
Lebesgue constant or with Lebesgue constant diverging slowly with the sieve dimension.

15If |α|> 0, then we assume h and its derivatives can be continuously extended to an open set contain-
ing X .
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(i) If Assumption 3(ii) holds, then∥∥∂αh̃− ∂αh0
∥∥∞ =Op

(
J−(p−|α|)/d) for all 0 ≤ |α|<p�

(ii) If Assumptions 2(i) and (ii) and 3(ii) and (iii) hold, then∥∥∂αĥ− ∂αh0
∥∥∞ =Op

(
J−(p−|α|)/d + τJJ|α|/d√(J logJ)/n

)
for all 0 ≤ |α|<p�

(ii)(a) Mildly ill-posed case. With p ≥ d/2 and δ ≥ d/(p + ς), choosing J �
(n/ logn)d/(2(p+ς)+d) implies that Assumption 3(ii) and (iii) hold and∥∥∂αĥ− ∂αh0

∥∥∞ =Op
(
(n/ logn)−(p−|α|)/(2(p+ς)+d))�

(ii)(b) Severely ill-posed case. Choosing J = (c0 logn)d/ς with c0 ∈ (0�1) implies that As-
sumption 3(ii) and (iii) hold and∥∥∂αĥ− ∂αh0

∥∥∞ =Op
(
(logn)−(p−|α|)/ς)�

Corollary 3.1 shows that, for sieve NPIV estimators, taking derivatives has the same
impact on the bias and standard deviation terms in terms of the order of convergence,
and that the same choice of sieve dimension J can lead to optimal sup-norm conver-
gence rates for estimating h0 and its derivatives simultaneously (since they match the
lower bounds in Theorem 3.2 below). When specializing to series LS regression (with-
out endogeneity, i.e., τJ = 1), Corollary 3.1(ii)(a) with ς = 0 automatically implies that
spline and wavelet series LS estimators will also achieve the optimal sup-norm rates of
Stone (1982) for estimating the derivatives of a nonparametric LS regression function.
This strengthens the recent results in Belloni et al. (2015) and Chen and Christensen
(2015b) for sup-norm rate optimality of spline and wavelet LS estimators of the regres-
sion function h0 itself. This is in contrast to kernel-based LS regression estimators where
different choices of bandwidth are needed for the optimal rates of estimating h0 and its
derivatives.

Corollary 3.1 is useful for estimating functions with certain shape properties. For
instance, if h0 : [a�b] → R is strictly monotone and/or strictly concave/convex, then
knowing that ∂ĥ(x) and/or ∂2ĥ(x) converge uniformly to ∂h0(x) and/or ∂2h0(x) implies
that ĥwill also be strictly monotone and/or strictly concave/convex wpa1. In this paper,
we shall illustrate the usefulness of Corollary 3.1 in controlling the nonlinear remainder
terms for pointwise and uniform inferences on highly nonlinear (i.e., beyond quadratic)
functionals of h0; see Sections 4 and 5 for details.

3.2 Lower bounds

We now establish that the sup-norm rates obtained in Corollary 3.1 are the best possible
(i.e., minimax) sup-norm convergence rates for estimating h0 and its derivatives.

To establish a lower bound, we require a link condition that relates smoothness of
T to the parameter space for h0. Let ψ̃j�k�G denote a tensor-product CDV wavelet ba-
sis for [0�1]d of regularity γ > p. Appendix E provides details on the construction and
properties of this basis.
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Condition LB. (i) Assumption 1(i)–(iii) hold, (ii) E[u2
i |Wi = w] ≥ σ2 > 0 uniformly

for w ∈ W , and (iii) there is a positive decreasing function ν such that‖Th‖2
L2(W )

�∑
j�G�k[ν(2j)]2〈h� ψ̃j�k�G〉2

X holds for all h ∈ B∞(p�L).

Condition LB is standard in the optimal rate literature (see Hall and Horowitz (2005)
and Chen and Reiss (2011)). The mildly ill-posed case corresponds to choosing ν(t) =
t−ς , and says roughly that the conditional expectation operator T makesp-smooth func-
tions ofX into (ς+p)-smooth functions ofW . The severely ill-posed case, which corre-
sponds to choosing ν(t)= exp(− 1

2 t
ς) and says roughly that T maps smooth functions of

X into “supersmooth” functions ofW .

Theorem 3.2. Let Condition LB hold for the NPIV model with a random sample
{(Xi�Yi�Wi)}ni=1. Then, for any 0 ≤ |α|<p,

lim inf
n→∞ inf

ĝn
sup

h∈B∞(p�L)
Ph

(∥∥ĝn − ∂αh∥∥∞ ≥ crn
)≥ c′ > 0�

where

rn =
[
(n/ logn)−(p−|α|)/(2(p+ς)+d) in the mildly ill-posed case,
(logn)−(p−|α|)/ς in the severely ill-posed case,

infĝn denotes the infimum over all estimators of ∂αh based on the sample of size n,
suph∈B∞(p�L) Ph denotes the sup over h ∈ B∞(p�L), and distributions of (Xi�Wi�ui) that
satisfy Condition LB with fixed ν, and the finite positive constants c and c′ do not depend
on n.

According to Theorem 3.2 and Theorem B.2 (in Appendix B), the minimax lower
bounds in sup-norm for estimating h0 and its derivatives coincide with those in L2 for
severely ill-posed NPIV problems, and are only a factor of [log(n)]ε (with ε= p−|α|

2(p+ς)+d <
p

2p+d <
1
2 ) worse than those in L2 for mildly ill-posed problems. Our proof of sup-norm

lower bound for NPIV models is similar to that of Chen and Reiss (2011) for L2-norm
lower bound. Similar sup-norm lower bounds for density deconvolution were recently
obtained by Lounici and Nickl (2011).

3.3 Models with endogenous and exogenous regressors

In many empirical studies, some regressors might be endogenous while others are ex-
ogenous. Consider the model

Yi = h0(X1i�Zi)+ ui� (16)

where X1i is a vector of endogenous regressors and Zi is a vector of exogenous regres-
sors. Let Xi = (X ′

1i�Z
′
i)

′. Here the vector of instrumental variables Wi is of the form
Wi = (W ′

1i�Z
′
i)

′, whereW1i are instruments forX1i. We refer to this as the partially endoge-
nous case. The sieve NPIV estimator is implemented in exactly the same way as the fully
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endogenous setting in which Xi consists only of endogenous variables, just like 2SLS
with endogenous and exogenous regressors.16 Our convergence rates presented in Sec-
tion 3.1 and Appendix B apply equally to the partially endogenous model (16) under the
stated regularity conditions: all that differs between the two cases is the interpretation
of the sieve measure of ill-posedness.

Consider first the fully endogenous case where T : L2(X)→ L2(W ) is compact un-
der mild conditions on the conditional density of X given W (see, e.g., Newey and
Powell (2003), Blundell, Chen, and Kristensen (2007), Darolles et al. (2011), Andrews
(2011)). Then T admits a singular value decomposition (SVD) {φ0j�φ1j�μj}∞j=1, where

(T ∗T)1/2φ0j = μjφ0j , μj ≥ μj+1 for each j, and {φ0j}∞j=1 and {φ1j}∞j=1 are orthonormal

bases for L2(X) and L2(W ), respectively. Suppose that ΨJ spans φ0j� � � � �φ0J . Then the
sieve measure of ill-posedness is τJ = μ−1

J .
Now consider the partially endogenous case. Similar to Horowitz (2011), we sup-

pose that for each value of z the conditional expectation operator Tz : L2(X1|Z = z)→
L2(W1|Z = z) given by (Tzh)(w1)= E[h(X1)|W1i =w1�Zi = z] is compact. Then each Tz
admits a SVD {φ0j�z�φ1j�z�μj�z}∞j=1, where Tzφ0j�z = μj�zφ1j�z , (T ∗

z Tz )
1/2φ0j�z = μj�zφ0j�z ,

(Tz T
∗
z )

1/2φ1j�z = μj�zφ1j�z , μj�z ≥ μj+1�z for each j and z, and {φ0j�z}∞j=1 and {φ1j�z}∞j=1 are

orthonormal bases for L2(X1|Z = z) and L2(W1|Z = z), respectively, for each z. The fol-
lowing result adapts Lemma 1 of Blundell, Chen, and Kristensen (2007) to the partially
endogenous setting.

Lemma 3.2. Let Tz be compact with SVD {φ0j�z�φ1j�z�μj�z}∞j=1 for each z. Letμ2
j =E[μ2

j�Zi
]

and φ0j(·� z)=φ0j�z(·) for each z and j. Then

(i) τJ ≥ μ−1
J .

(ii) If, in addition, φ01� � � � �φ0J ∈ΨJ , then τJ ≤ μ−1
J .

Consider the following partially endogenous stylized example from Hoderlein and
Holzmann (2011). LetX1i,W1i, and Zi be scalar random variables with⎛⎜⎝X1i

W1i

Zi

⎞⎟⎠∼N
⎛⎜⎝
⎛⎜⎝0

0
0

⎞⎟⎠ �
⎛⎜⎝ 1 ρxw ρxz
ρxw 1 ρwz
ρxz ρwz 1

⎞⎟⎠
⎞⎟⎠ �

Then ⎛⎜⎜⎜⎜⎝
X1i − ρxzz√

1 − ρ2
xz

W1i − ρwzz√
1 − ρ2

wz

∣∣∣∣∣∣∣∣∣∣
Zi = z

⎞⎟⎟⎟⎟⎠∼N
((

0
0

)
�

(
1 ρxw|z

ρxw|z 1

))
� (17)

16All that changes here is that J may grow more quickly as the degree of ill-posedness will be smaller. In
contrast, other NPIV estimators based on estimating the conditional densities of the regressors and instru-
mental variables must be implemented separately for each value of z (Hall and Horowitz (2005), Horowitz
(2011), Gagliardini and Scaillet (2012)).
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where

ρxw|z = ρxw − ρxzρwz√(
1 − ρ2

xz

)(
1 − ρ2

wz

)
is the partial correlation between X1i and W1i given Zi. For each j ≥ 1, let Hj denote
the jth Hermite polynomial (the Hermite polynomials form an orthonormal basis with
respect to Gaussian density). Since Tz : L2(X1|Z = z)→ L2(W1|Z = z) is compact for
each z, it follows from Mehler’s formula that Tz has a SVD {φ0j�z�φ1j�z�μj�z}∞j=1 with

φ0j�z(x1)=Hj−1

(
x1 − ρxzz√

1 − ρ2
xz

)
� φ1j�z(w1)=Hj−1

(
w1 − ρwzz√

1 − ρ2
wz

)
� μj�z = |ρxw|Z |j−1

for each z. SinceμJ�z = |ρxw|z|J−1 for each z, we haveμJ = |ρxw|z|J−1 � |ρxw|z|J . IfX1i and
W1i are uncorrelated with Zi, then μJ = |ρ|J−1, where ρ= ρxw.

In contrast, consider the following fully endogenous model in which Xi and Wi are
bivariate with ⎛⎜⎜⎜⎝

X1i

X2i

W1i

W2i

⎞⎟⎟⎟⎠∼N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

0
0
0
0

⎞⎟⎟⎟⎠ �
⎛⎜⎜⎜⎝

1 0 ρ1 0
0 1 0 ρ2

ρ1 0 1 0
0 ρ2 0 1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ �

where ρ1 and ρ2 are such that the covariance matrix is invertible. It is straightforward to
verify that T has singular value decomposition with

φ0j(x)=Hj−1(x1)Hj−1(x2)� φ1j(w)=Hj−1(w1)Hj−2(w2)� μj = |ρ1ρ2|j−1�

and μJ = ρ2(J−1) if ρ1 = ρ2 = ρ. Thus, the measure of ill-posedness diverges faster in the
fully endogenous case (μJ = ρ2(J−1)) than that in the partially endogenous case (μJ =
|ρ|J−1).

4. Uniform inference on collections of nonlinear functionals

In this section, we apply our sup-norm rate results and tight bounds on random ma-
trices (in Appendix F) to establish uniform Gaussian process strong approximation and
the consistency of the score bootstrap UCBs defined in (5) for collections of (possibly)
nonlinear functionals {ft(·) : t ∈ T } of a NPIV function h0. See Section 6 for discussions
of other applications.

We consider functionals ft : H ⊂ L∞(X)→ R for each t ∈ T for which Dft(h)[v] =
limδ→0+[δ−1{ft(h+δv)−ft(h)}] exists for all v ∈ H−{h0} for allh in a small neighborhood
of h0 (where the neighborhood is independent of t). This is trivially true for, say, ft(h)=
h(t)with T ⊆ X for UCBs for h0. LetΩ=E[u2

i b
K(Wi)b

K(Wi)
′]. Then the 2SLS covariance

matrix for ĉ (given in (2)) is

� = [S′G−1
b S]−1S′G−1

b ΩG
−1
b S[S′G−1

b S]−1�
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and the sieve variance for ft(ĥ) is[
σn(ft)

]2 = (Dft(h0)
[
ψJ
])′

�
(
Dft(h0)

[
ψJ
])
�

Assumption 2 (continued). (iii) We have E[u2
i |Wi =w] ≥ σ2 > 0 uniformly for allw ∈ W

and (iv) supw E[|ui|3|Wi =w]<∞.

Assumption 2(iii) and (iv) are reasonably mild conditions used to derive the uniform
limit theory. Define

vn(ft)(x)=ψJ(x)′[S′G−1
b S

]−1
Dft(h0)

[
ψJ
]
� v̂n(ft)(x)=ψJ(x)′[S′G−1

b S
]−1
Dft(ĥ)

[
ψJ
]
�

where, for each fixed t, vn(ft) could be viewed as a “sieve 2SLS Riesz representer.” Note
that vn(ft)= v̂n(ft) whenever ft is linear. Under Assumption 2(i) and (iii), we have that[
σn(ft)

]2 �Dft(h0)
[
ψJ
]′[
S′G−1

b S
]−1
Dft(h0)

[
ψJ
]= ∥∥ΠKTvn(ft)∥∥2

L2(W )
uniformly in t�

Following Chen and Pouzo (2015), we call ft(·) an irregular functional of h0 (i.e., slower
than

√
n estimable) if σn(ft)↗ +∞ as n→ ∞. This includes the evaluation function-

als h0(t) and ∂αh0(t) as well as fCS�t(h0) and fDL�t(h0). In this paper, we shall focus on
applications of sup-norm rate results to inference on irregular functionals.

Assumption 5. Let ηn and η′
n be sequences of nonnegative numbers such that ηn = o(1)

and η′
n = o(1). Let σn(ft)↗ +∞ as n→ ∞ for each t ∈ T . Either (a) or (b) of the following

options holds:

(a) The functional ft is a linear functional for each t ∈ T and supt∈T
√
n(σn(ft))

−1 ×
|ft(h̃)− ft(h0)| =Op(ηn).

(b) The functional (i) v �→Dft(h0)[v] is a linear functional for each t ∈ T ; (ii)

sup
t∈T

∣∣∣∣√nft(ĥ)− ft(h0)

σn(ft)
− √

n
Dft(h0)[ĥ− h̃]

σn(ft)

∣∣∣∣=Op(ηn);
(iii) supt∈T

‖ΠKT (̂vn(ft )−vn(ft ))‖L2(W )
σn(ft )

=Op(η′
n).

Assumption 5(a) and (b)(i) and (ii) are similar to uniform-in-t versions of Assump-
tion 3.5 of Chen and Pouzo (2015). Assumption 5(b)(iii) controls any additional error
arising in the estimation of σn(ft) by σ̂(ft) (given in equation (7)) due to nonlinearity of
ft(·), and is automatically satisfied with η′

n = 0 when ft(·) is a linear functional.
The next remark presents a set of sufficient conditions for Assumption 5 when {ft :

t ∈ T } are irregular functionals of h0. Since the functionals are irregular, the quantity
σn := inft∈T σn(ft) will typically satisfy σn ↗ +∞ as n→ ∞. Our sup-norm rates for ĥ
and h̃, together with divergence of σn, help to control the nonlinearity bias terms.

Remark 4.1. Let Hn ⊆ H be a sequence of neighborhoods of h0 with ĥ� h̃ ∈ Hn wpa1 and
assume σn := inft∈T σn(ft) > 0 for each n. Then Assumption 5(a) is implied by (a′) and
Assumption 5(b) is implied by (b′), where the following alternative statements hold:
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(a′) (i) The functional ft is a linear functional for each t ∈ T and there exists α with
|α| ≥ 0 such that supt |ft(h− h0)| � ‖∂αh− ∂αh0‖∞ for all h ∈ Hn, and (ii) n1/2σ−1

n ‖∂αh̃−
∂αh0‖∞ =Op(ηn).

(b′) (i) The functional v �→ Dft(h0)[v] is a linear functional for each t ∈ T and there
exists α with |α| ≥ 0 such that supt |Dft(h0)[h− h0]| � ‖∂αh− ∂αh0‖∞ for all h ∈ Hn.

(ii) There are α1 and α2 with |α1|� |α2| ≥ 0 such that

(ii.1) sup
t

∣∣ft(ĥ)− ft(h0)−Dft(h0)[ĥ− h0]
∣∣� ∥∥∂α1 ĥ− ∂α1h0

∥∥∞
∥∥∂α2 ĥ− ∂α2h0

∥∥∞�

(ii.2) n1/2σ−1
n

(∥∥∂α1 ĥ− ∂α1h0
∥∥∞
∥∥∂α2 ĥ− ∂α2h0

∥∥∞ + ∥∥∂αh̃− ∂αh0
∥∥∞
)=Op(ηn)�

(iii) Additionally, supt∈T
(τJ)

√∑J
j=1(Dft(ĥ)[(G−1/2

ψ ψJ)j ]−Dft(h0)[(G−1/2
ψ ψJ)j ])2

σn(ft )
=Op(η′

n).

Condition (a′)(i) is automatically satisfied by functionals of the form ft(h) = ∂αh(t)
with T ⊆ X and Hn = H. Conditions (a′)(i) and (b′)(i) and (ii) are sufficient conditions
that are formulated to take advantage of the sup-norm rate results in Section 3. For
example, conditions (b′)(i) and (ii.1) are easily satisfied by exact CS and DL function-
als (Lemma A.1 of Hausman and Newey (1995)). Condition (b′)(ii.2) is simply satisfied
by applying our sup-norm rate results. Condition (b′)(iii) is a sufficient condition for
Assumption 5(b)(iii) and is needed for uniform-in-t consistent estimation of σn(ft) by
σ̂(ft) only, and is automatically satisfied with η′

n = 0 when ft(·) is a linear functional.
The next assumption concerns the set of normalized sieve 2SLS Riesz representers,

given by

un(ft)(x)= vn(ft)(x)/σn(ft)�
Let dn denote the semimetric on T given by dn(t1� t2)2 = E[(un(ft1)(Xi)− un(ft2)(Xi))2]
and let N(T � dn� ε) be the ε-covering number of T with respect to dn. Let ηn and η′

n

be from Assumption 5, and let δh�n be a sequence of positive constants such that ‖ĥ−
h0‖∞ = Op(δh�n) = op(1). Denote δV �n ≡ [ζ(2+δ)/δ

b�K

√
(logK)/n]δ/(1+δ) + τJζ

√
(logJ)/n +

δh�n.

Assumption 6. (i) There is a sequence of finite constants cn � 1 that could grow to infin-
ity such that

1 +
∫ ∞

0

√
logN(T � dn� ε)dε=O(cn)

and (ii) there is a sequence of constants rn > 0 decreasing to zero slowly such that

(ii)(a) rncn � 1 and
ζb�KJ

2

r3n
√
n

= o(1),
(ii)(b) τJζ

√
(J logJ)/n+ηn+ (δV �n+η′

n)× cn = o(rn), with η′
n ≡ 0 when ft(·) is linear.

Assumption 6(i) is a mild regularity condition requiring that the class {un(ft) : t ∈ T }
not be too complex; see Remark 4.2 below for sufficient conditions to bound cn. As-

sumption 6(ii) strengthens conditions on the growth rate of J. Condition
ζb�KJ

2

r3n
√
n

= o(1) of
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Assumption 6(ii)(a) is used to apply Yurinskii’s coupling Chernozhukov, Lee, and Rosen
(2013), Pollard (2002, Theorem 10, p. 244) to derive a uniform Gaussian process strong
approximation to the linearized sieve process {Ẑn(t) : t ∈ T } (defined in equation (18)).
This condition could be improved if other types of strong approximation probability
tools are used. Assumption 6(ii)(b) ensures that both the nonlinear remainder terms
and the error in estimating σn(ft) by σ̂(ft) vanish sufficiently fast. While the consistency
of σ̂(f ) is enough for the pointwise asymptotic normality of the plug-in sieve t-statistic
for f (h0) (see Theorem D.1 in Appendix D), we need the rate of convergence for uniform
inference

sup
t∈T

∣∣∣∣σn(ft)σ̂(ft)
− 1

∣∣∣∣=Op(δV �n +η′
n

)
�

which is established using our results on sup-norm convergence rates of sieve NPIV; see
Lemma G.4 in Appendix G.

Remark 4.2. Let Assumptions 1(iii) and 4(i) hold. Let T be a compact subset in R
dT ,

and let there exist positive sequences �n and γn such that for any t1� t2 ∈ T ,

sup
h∈ΨJ :‖h‖L2(X)=1

∣∣(Dft1(h0)[h] −Dft2(h0)[h]
)∣∣≤ �n‖t1 − t2‖γn
2 �

Then Assumption 6(i) holds with cn = 1 + ∫∞
0

√{(dT /γn) log(�nτJ/(εσn))} ∨ 0 dε.

The next lemma is about uniform Bahadur representation and uniform Gaussian
process strong approximation for the sieve t-statistic process for (possibly) nonlinear
functionals of NPIV. Define

Ẑn(t)=
(
Dft(h0)

[
ψJ
])′[
S′G−1

b S
]−1
S′G−1/2

b

σn(ft)

(
1√
n

n∑
i=1

G
−1/2
b bK(Wi)ui

)
� (18)

Zn(t)=
(
Dft(h0)

[
ψJ
])′[
S′G−1

b S
]−1
S′G−1/2

b

σn(ft)
Zn

with Zn ∼N(0�G−1/2
b ΩG

−1/2
b ). Note that Zn(t) is a Gaussian process indexed by t ∈ T .

Lemma 4.1. Let Assumptions 1(iii), 2, 3(ii) and (iii), 4(i), 5, and 6 hold. Then

sup
t∈T

∣∣∣∣
√
n
(
ft(ĥ)− ft(h0)

)
σ̂(ft)

−Zn(t)

∣∣∣∣= sup
t∈T

∣∣∣∣
√
n
(
ft(ĥ)− ft(h0)

)
σ̂(ft)

− Ẑn(t)

∣∣∣∣+ op(rn)
= op(rn)�

(19)

Lemma 4.1 is used in this paper to establish the consistency of the sieve score
bootstrap for estimating the critical values of the uniform sieve t-statistic process,

supt∈T |
√
n(ft (ĥ)−ft (h0))

σ̂(ft )
|, for a NPIV model. The strong approximation result, however, is

also useful for various applications to testing equality and/or inequality (such as shape)
constraints on ft(h0), and is therefore of independent interest.
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In what follows, P∗(·) denotes a probability measure conditional on the data Zn :=
{(Xi�Yi�Wi)}ni=1. Recall that Z∗

n(t) is defined in equation (8).

Theorem 4.1. Let conditions of Lemma 4.1 hold. Let η′
n

√
J = o(rn) for nonlinear ft( ).

Let the bootstrap weights {�i}ni=1 be IID with zero mean, unit variance, and finite third
moment, and independent of the data. Then

sup
s∈R

∣∣∣∣P(sup
t∈T

∣∣∣∣
√
n
(
ft(ĥ)− ft(h0)

)
σ̂(ft)

∣∣∣∣≤ s)− P
∗(sup
t∈T

∣∣Z∗
n(t)

∣∣≤ s)∣∣∣∣= op(1)� (20)

Theorem 4.1 appears to be the first to establish consistency of a sieve score bootstrap
for uniform inference on general nonlinear functionals of NPIV under low-level condi-
tions. When specializing to collections of linear functionals, Lemma 4.1, Theorem 4.1,
and Corollary 3.1 immediately imply the following result.

Corollary 4.1. Consider a collection of linear functionals {ft(h0) = ∂αh0(t) : t ∈ T } of
the NPIV function h0, with T a compact convex subset of X . Let Assumptions 1(i), (ii),
and (iii) and 2 (with δ ≥ 1) hold, let h0 ∈ B∞(p�L), let ΨJ be formed from a B-spline
basis of regularity γ > (p ∨ 2 + |α|), let BK be a B-spline, wavelet, or cosine basis, and let
σn(ft)� τJJa uniformly in t with a= 1

2 + |α|
d . For κ ∈ [1/2�1] we set J5(logn)6κ/n= o(1),

τJJ(logJ)κ+0�5/
√
n = o(1), and J−p/d = o([logJ]−κτJ

√
J/n). Then results (19) (with rn =

(logJ)−κ) and (20) hold for ft(h0)= ∂αh0(t).

Recently Horowitz and Lee (2012) developed a notion of UCBs for a NPIV function h0

of a scalar endogenous regressorXi ∈ [0�1] based on interpolation over a growing num-
ber of uniformly generated random grid points on [0�1], with h0 estimated via the mod-
ified orthogonal series NPIV estimator of Horowitz (2011).17 When specializing Corol-
lary 4.1 to a NPIV function of a scalar regressor (i.e., d = 1 and |α| = 0), our sufficient
conditions are comparable to theirs (see their Theorem 4.1). Our score bootstrap UCBs
would be computationally much simpler for a NPIV function of a multivariate endoge-
nous regressorXi, however.

WhenXi is exogenous, the sieve NPIV estimator ĥ reduces to the series LS estimator
of a nonparametric regression h0(x) = E[Yi|Wi = x] with Xi = Wi, K = J, and bK = ψJ
with τJ = 1. Lemma 4.1 and Theorem 4.1 immediately imply the validity of Gaussian
strong approximation and sieve score bootstrap UCBs for collections of general non-
linear functionals of a nonparametric LS regression. We note that the regularity condi-
tions in Lemma 4.1 and Theorem 4.1 are much weaker for models with exogenous re-
gressors. For instance, when specializing Corollary 4.1 to a nonparametric LS regression
with exogenous regressor Xi, the conditions on J simplify to J5(logn)6κ/n = o(1) and
J−p/d = o([logJ]−κ√J/n) for κ ∈ [1/2�1], and results (19) (with rn = [logJ]−κ) and (20)
both hold for linear functionals {ft(h0) = ∂αh(t0) : t ∈ T } of h0(·) = E[Yi|Xi = ·]. These

17Remark 4 in Horowitz and Lee (2012) mentioned that their notion of UCB is different from the standard
UCBs. They also proved the consistency of their bootstrap confidence bands over a fixed finite number of
grid points.
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conditions on J are the same as those in Chernozhukov, Lee, and Rosen (2013) for h0

(see their Theorem 7) and Belloni et al. (2015) for linear functionals of h0 (see their The-
orem 5.5 with rn = [logJ]−1/2) estimated via series LS.

To the best of our knowledge, there is no published work on uniform Gaussian pro-
cess strong approximation and sieve score bootstrap for general nonlinear functionals
of sieve NPIV or series LS regression. The results in this section are thus presented as
nontrivial applications of our sup-norm rate results for sieve NPIV, and are not aimed at
weakest sufficient conditions.

4.1 Monte Carlo

We now evaluate the finite sample performance of our sieve score bootstrap UCBs for
h0 in NPIV model (1). We use the experimental design of Newey and Powell (2003), in
which IID draws are generated from⎛⎜⎝ uiV ∗

i

W ∗
i

⎞⎟⎠∼N
⎛⎜⎝
⎛⎜⎝0

0
0

⎞⎟⎠ �
⎛⎜⎝ 1 0�5 0

0�5 1 0
0 0 1

⎞⎟⎠
⎞⎟⎠

from which we then setX∗
i =W ∗

i + V ∗
i . To ensure compact support of the regressor and

instrument, we rescale X∗
i and W ∗

i by defining Xi =�(X∗
i /

√
2) and Wi =�(W ∗

i ), where
� is the Gaussian cumulative distribution function (cdf). We use h0(x)= 4x− 2 for our
linear design and h0(x)= log(|16x−8|+1) sgn(x− 1

2) for our nonlinear design (our non-
linear h0 is a rescaled version of the h0 used in Newey and Powell (2003)). Note that p for
the nonlinear h0 is between 1 and 2, so h0 is not particularly smooth (h′

0(x) has a kink at
x= 1

2 ).
We generate 1000 samples of length 1000 and implement our procedure using a B-

spline basis for BK and ΨJ . For each simulation, we calculate the 90%, 95%, and 99%
uniform confidence bands for h0 over the support [0�05�0�95] with 1000 bootstrap repli-
cations for each simulation. We draw the bootstrap innovations �i from the two-point
distribution of Mammen (1993). We then calculate the Monte Carlo (MC) coverage prob-
abilities of our uniform confidence bands.

Figure 5 displays the estimated structural function ĥ and confidence bands together
with a scatter plot of the sample (Xi�Yi) data for the nonlinear design. The true function
h0 is seen to lie inside the UCBs. The results of this MC experiment are presented in
Table 2. By comparing the MC coverage probabilities with their nominal values, it is clear
that the uniform confidence bands for the linear design are slightly too conservative.
However, the uniform confidence bands for the nonlinear design using cubic B-splines
to approximate h0 have MC converge much closer to the nominal coverage probabilities.

5. Pointwise and uniform inference on nonparametric welfare functionals

We now apply our sup-norm rate results to study pointwise and uniform inference on
nonlinear welfare functionals in nonparametric demand estimation with endogeneity.
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Figure 5. The 90% and 95% uniform confidence bands for h0 (dashed lines; innermost are
90%), NPIV estimate ĥ (solid black line), and true structural function h0 (solid grey line) for the
nonlinear design.

Table 2. MC coverage probabilities of uniform confidence bands for h0. Results are presented
for cubic (C) and quartic (Q) B-spline bases for ΨJ and BK . Confidence interval is abbreviated
CI.

Design 1: Linear h0 Design 2: Nonlinear h0

ΨJ BK J K 90% CI 95% CI 99% CI 90% CI 95% CI 99% CI

C C 5 5 0�962 0�983 0�996 0�896 0�942 0�987
C C 5 6 0�957 0�983 0�996 0�845 0�924 0�981
C Q 5 5 0�961 0�982 0�996 0�884 0�939 0�985
C Q 5 6 0�958 0�983 0�997 0�846 0�921 0�981
Q Q 5 5 0�964 0�984 0�997 0�913 0�948 0�989
Q Q 5 6 0�961 0�985 0�996 0�886 0�937 0�983

First, we provide mild sufficient conditions under which plug-in sieve t-statistics for ex-
act CS and DL and approximate CS functionals are asymptotically N(0�1), allowing for
mildly and severely ill-posed NPIV models (Sections 5.1 and 5.2). Second, under stronger
sufficient conditions but still allowing for severely ill-posed NPIV models, the validity of
uniform Gaussian process strong approximations and sieve score bootstrap UCBs for
exact CS and DL over a range of taxes and/or incomes (Section 5.3) are presented. When
specialized to inference on exact CS and DL and approximate CS functionals of nonpara-
metric demand estimation without endogeneity, our pointwise asymptotic normality
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results are valid under sufficient conditions weaker than those in the existing literature,
while our uniform inference results appear to be new (Section 5.4).

Previously, Hausman and Newey (1995) and Newey (1997) provided sufficient condi-
tions for pointwise asymptotic normality for plug-in nonparametric LS estimators of ex-
act CS and DL functionals and of approximate CS functionals, respectively, when prices
and incomes are exogenous. Vanhems (2010) studied consistency and convergence rates
of kernel-based plug-in estimators of CS functionals allowing for mildly ill-posed NPIV
models. Blundell, Horowitz, and Parey (2012) and Hausman and Newey (2016) estimated
CS and DL of nonparametric gasoline demand allowing for prices to be endogenous, but
did not provide theoretical justification for their inference approach under endogeneity.
Therefore, although presented as applications of our sup-norm rate results, our infer-
ence results contribute nicely to the literature on nonparametric welfare analysis.

5.1 Pointwise inference on exact CS and DL with endogeneity

Here we present primitive regularity conditions for pointwise asymptotic normality of
the sieve t-statistics for exact CS and DL. We suppress dependence of the functionals on
t = (p0�p1� y).

Let Xi = (Pi�Yi). We assume in what follows that the support of both Pi and Yi is
bounded away from zero. If both Pi and Yi are endogenous, let Wi be a 2 × 1 vector of
instruments. Let T : L2(X)→ L2(W) be compact and injective with singular value de-
composition (SVD) {φ0j�φ1j�μj}∞j=1, where

Tφ0j = μjφ1j�
(
T ∗T

)1/2
φ0j = μjφ0j�

(
TT ∗)1/2φ1j = μjφ1j�

and {φ0j}∞j=1 and {φ0j}∞j=1 are orthonormal bases for L2(X) and L2(W), respectively.
If Pi is endogenous but Yi is exogenous, we take Wi = (W1i�Yi)

′ with W1i an instru-
ment for Pi. Let Ty : L2(P|Y = y) → L2(W1|Y = y) be compact and injective with SVD
{φ0j�y�φ1j�y�μj�y}∞j=1 for each y, where

Tyφ0j�y = μj�yφ1j�y�
(
T ∗

y Ty

)1/2
φ0j�y = μj�yφ0j�y�

(
Ty T

∗
y

)1/2
φ1j�y = μj�yφ1j�y�

and {φ0j�y}∞j=1 and {φ0j�y}∞j=1 are orthonormal bases for L2(P|Y = y) and L2(W1|Y = y),
respectively. In this case, we define φ0j(p� y) = φ0j�y(p), φ1j(w1� y) = φ1j�y(w1), and
μ2
j =E[μ2

j�Yi
] (see Section 3.3 for further details).

In both cases, we follow Chen and Pouzo (2015) and assume that ΨJ and BK are
Riesz bases in that they span φ01� � � � �φ0J and φ11� � � � �φ1K , respectively. This implies
that τJ � μ−1

J . For fixed p0, p1, and y we define

aj = aj
(
p0�p1� y

)=
∫ 1

0

(
φ0j

(
p(u)� y − Sy

(
p(u)

))
e−

∫ u
0 ∂2h0(p(v)�y−Sy(p(v)))p′(v)dvp′(u)

)
du

for the exact CS functional.

Assumption CS. (i) The random vectors Xi and Wi both have compact rectangular sup-
port and densities bounded away from 0 and ∞; (ii) h0 ∈ B∞(p�L) with p > 2 and
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0 < L < ∞; (iii) E[u2
i |Wi = w] is uniformly bounded away from 0 and ∞, E[|ui|2+δ] is

finite for some δ > 0, and supw E[u2
i {|ui|> 
(n)}|Wi =w] = o(1) for any positive sequence

with 
(n) ↗ ∞; (iv) ΨJ is spanned by a (tensor-product) B-spline basis of order γ > p
or continuously differentiable wavelet basis of regularity γ > p and BK is spanned by a
(tensor-product) B-spline, wavelet, or cosine basis; (v) J(2+δ)/(2δ)√(logn)/n= o(1) and

√
n(

J∑
j=1

(aj/μj)
2

)1/2 ×
(
J−p/2 +μ−2

J

J2
√

logJ
n

)
= o(1)�

Assumption CS(i)–(iv) are standard even for series LS regression without endo-
geneity. Let [σn(fCS)]2 = (DfCS(h0)[ψJ])′�(DfCS(h0)[ψJ]) be the sieve variance of the
plug-in sieve NPIV estimator fCS(ĥ0). Then these assumptions imply that [σn(fCS)]2 �∑J
j=1(aj/μj)

2 � Jμ−2
J . Assumption CS(v) is sufficient for Remark 4.1(b′) for a fixed t.

Our first result is for exact CS functionals, established by applying Theorem D.1 in
Appendix D. Let

σ̂2(fCS)=DfCS(ĥ)
[
ψJ
]′
�̂DfCS(ĥ)

[
ψJ
]

with

DfCS(ĥ)
[
ψJ
]=

∫ 1

0
ψJ
(
p(u)� y − Ŝy

(
p(u)

))
e−

∫ u
0 ∂2ĥ(p(v)�y−Ŝy(p(v)))p′(v)dvp′(u)du�

Theorem 5.1. Let Assumption CS hold. Then the sieve t-statistic for fCS(h0) is asymptot-
icallyN(0�1), that is,

√
n
fCS(ĥ)− fCS(h0)

σ̂(fCS)
→d N(0�1)�

Since μj > 0 decreases as j increases, we could use the relation

μ−2
J J � μ−2

J

J∑
j=1

a2
j ≥

J∑
j=1

(aj/μj)
2

≥ max

((
min

1≤j≤J
a2
j

) J∑
j=1

μ−2
j � max

1≤j≤J
(
a2
j μ

−2
j

)
�μ−2

1

J∑
j=1

a2
j

) (21)

to provide simpler sufficient conditions for Assumption CS(v) that could be satisfied by
both mildly and severely ill-posed NPIV models. Corollary 5.1 provides one set of con-
crete sufficient conditions for Assumption CS(v).

Corollary 5.1. Let Assumption CS(i)–(iv) hold and let a2
j � ja for a ≤ 0. Then

[σn(fCS)]2 �∑J
j=1(j

aμ−2
j ).
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(i) Mildly ill-posed case Let μj � j−ς/2 for ς ≥ 0, a+ ς >−1. Then[
σn(fCS)

]2 � J(a+ς)+1�

Further, if δ ≥ 2/(2 + ς − a), nJ−(p+a+ς+1) = o(1), and J3+ς−a(logn)/n = o(1), then As-
sumption CS(v) is satisfied, and the sieve t-statistic for fCS(h0) is asymptoticallyN(0�1).

(ii) Severely ill-posed case. Let μj � exp(− 1
2 j
ς/2), ς > 0 and J = (log(n/(logn)�))2/ς for

�> 0. Then [
σn(fCS)

]2 � n

(logn)�
× (log

(
n/(logn)�

))2a/ς
�

Further, if �> 0 is chosen such that 2p>�ς− 2a and �ς > 8 − 2a, then Assumption CS(v)
is satisfied and the sieve t-statistic for fCS(h0) is asymptoticallyN(0�1).

Note that in Corollary 5.1, J may be chosen to satisfy the stated conditions in the
mildly ill-posed case whenever p > 2 − 2a and in the severely ill-posed case whenever
p> 4 − 2a.

Our next result is for DL functionals. Note that DL is the sum of CS and a tax receipts
functional, namely (p1 − p0)h0(p

1� y). Note that the tax receipts functional is typically
less smooth and hence converges slower than the CS functional. Therefore, [σn(fDL)]2 =
(DfDL(h0)[ψJ])′�(DfDL(h0)[ψJ])will typically grow on the order of (τJ

√
J)2, which is the

growth order of the sieve variance term for estimating the unknown NPIV function h0
at a fixed point. For this reason we do not derive the joint asymptotic distribution of
fCS(ĥ) and fDL(ĥ). The next result adapts Theorem 5.1 to derive asymptotic normality
of plug-in sieve t-statistics for DL functionals. Let

σ̂2(fDL)=DfDL(ĥ)
[
ψJ
]′
�̂DfDL(ĥ)

[
ψJ
]

with

DfDL(ĥ)
[
ψJ
]=DfCS(ĥ)

[
ψJ
]− (p1 − p0)ψJ(p1� y

)
�

Theorem 5.2. Let Assumption CS(i)–(iv) hold. Let σn(fDL) � μ−1
J

√
J,

√
nμJJ

−(p+1)/2 =
o(1) and (J(2+δ)/(2δ)√logn∨μ−1

J J
3/2
√

logJ)/
√
n= o(1). Then

√
n
fDL(ĥ)− fDL(h0)

σ̂(fDL)
→d N(0�1)�

5.2 Pointwise inference on approximate CS with endogeneity

Suppose instead that demand of consumer i for some good is estimated in logs, that is,

log Qi = h0(log Pi� log Yi)+ ui� (22)

As h0 is the log-demand function, any linear functional of demand is a nonlinear func-
tional of h0. One such example is the weighted average demand functional of the form

fA(h)=
∫
w(p)eh(log p�log y) dp�
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where w(p) is a nonnegative weighting function and y is fixed. With w(p)= 1{p ≤ p ≤ p},
the functional f (h)may be interpreted as the approximate CS. The functional is defined
for fixed y, so it will typically be an irregular functional of h0.

The setup is similar to the previous subsection. Let Xi = (log Pi� log Yi). If both Pi and
Yi are endogenous, we let Wi be a 2 × 1 vector of instruments and let T :L2(X)→L2(W)

be compact with SVD {φ0j�φ1j�μj}∞j=1. If Pi is endogenous but Yi is exogenous, we let

Wi = (W1i� log Yi)
′ with W1i an instrument for Pi, and let Ty : L2(log P| log Y = log y) →

L2(W1| log Y = log y) be compact with SVD {φ0j�y�φ1j�y�μj�y}∞j=1 for each y. In this case,

we define φ0j(log p� log y) = φ0j�y(log p), φ1j(w1� log y) = φ1j�y(w1), and μ2
j = E[μ2

j�Yi
]. We

again assume that ΨJ and BK are Riesz bases. For each j ≥ 1, define

aj = aj(y)=
∫
w(p)eh0(log p�log y)φ0j(log p� log y)dp�

The next result follows from Theorem D.1 (in Appendix D). Let

σ̂2(fA)=DfA(ĥ)
[
ψJ
]′
�̂DfA(ĥ)

[
ψJ
]

with

DfA(ĥ)
[
ψJ
]=

∫
w(p)eĥ(log p�log y)ψJ(log p� log y)dp�

Theorem 5.3. Let Assumption CS(i)–(iv) hold for the log-demand model (22) withp> 0,
and let J(2+δ)/(2δ)√(logn)/n= o(1) and

√
n(

J∑
j=1

(aj/μj)
2

)1/2 ×
(
J−p/2 +μ−2

J

J3/2
√

logJ
n

)
= o(1)�

Then √
n
(
fA(ĥ)− fA(h0)

)
σ̂(fA)

→d N(0�1)�

5.3 Uniform inference on collections of exact CS and DL functionals with endogeneity

Here we apply Lemma 4.1 and Theorem 4.1 to present sufficient conditions for uniform
Gaussian process strong approximations and bootstrap UCBs for exact CS and DL under
endogeneity. We maintain the setup described at the beginning of Section 5.1. We take
t = (p0�p1� y) ∈ T = [p0�p0]× [p1�p1]× [y� y], where the intervals [p0�p0] and [p1�p1] are in
the interior of the support of Pi and [y� y] is in the interior of the support of Yi. For each
t ∈ T we let

aj�t = aj�t
(
p0�p1� y

)
=
∫ 1

0

(
φ0j

(
p(u)� y − Sy

(
p(u)

))
e−

∫ u
0 ∂2h0(p(v)�y−Sy(p(v)))p′(v)dvp′(u)

)
du

(23)
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for each j ≥ 1 (where p(u) is a smooth price path from p0 = p(0) to p1 = p(1)). Also define
σn = inft∈T ((

∑J
j=1(aj�t/μj)

2)1/2.

Assumption U-CS. (i) The function E[u2
i |Wi = w] is uniformly bounded away from 0,

E[|ui|2+δ] is finite with δ ≥ 1, and supw E[|ui|3|Wi = w] is finite; (ii) the Hölder condi-
tion in Remark 4.2 holds with γn = γ and �n � Jc for some finite positive constants γ

and c; (iii) J5(logn)3/n = o(1),
√
n(logJ)
σn

J−p/2 = o(1); (iv) letting η′
n = J3/2μ−1

J
σn

(J−p/2 +
μ−1
J

√
J(logJ)/n), either (iv)(a) η′

n(logJ)= o(1) or (iv)(b) η′
n

√
J(logJ)= o(1).

Assumption U-CS(i) is slightly stronger than Assumption CS(iii) (since δ = 1 in As-
sumption U-CS(i) is enough). Assumption U-CS(ii) is made for simplicity to verify As-
sumption 6(i); other sufficient conditions could also be used. Assumption U-CS(iii) and
(iv)(a) strengthen Assumption CS(v) to ensure uniform Gaussian process strong approx-
imation with an error rate of rn = (logJ)−1/2. Again, one could use bounds on σn that are
analogous to relation (21) to provide sufficient conditions for Assumption U-CS(iii) and
(iv) that could be satisfied by mildly and severely ill-posed NPIV models. See Remark 5.1
below for one concrete set of such sufficient conditions.

Remark 5.1. Let σ2
n �

∑J
j=1(j

aμ−2
j ) for a≤ 0.

(i) Mildly ill-posed case. Let μj � j−ς/2 for ς ≥ 0 and a + ς > −1. Let
J5∨(4+ς−a)(logn)3/n = o(1) and nJ−(p+a+ς+1)(logJ) = o(1). Then Assumption U-CS(iii)
and (iv) hold.

(ii) Severely ill-posed case. Let μJ � exp(− 1
2 j
ς/2), ς > 0. Let J = (log(n/(logn)�))2/ς

with �> 0 chosen such that 2p> �ς− 2a and �ς > 10 − 2a. Then Assumption U-CS(iii)
and (iv) hold.

The next results are about the uniform Gaussian process strong approximation and
validity of score bootstrap UCBs for exact CS and DL functionals.

Theorem 5.4. Let Assumptions CS(i), (ii), and (iv) and U-CS(i), (ii), and (iii) hold.

(i) If Assumption U-CS(iv)(a) holds, then result (19) (with rn = (logJ)−1/2) holds for
ft = fCS�t .

(ii) If Assumption U-CS(iv)(b) holds, then result (20) also holds for ft = fCS�t .

In the next theorem the condition σn � μ−1
J

√
J is implied by the assumption that

σn(fDL�t)� μ−1
J

√
J uniformly for t ∈ T , which is reasonable for the DL functional.

Theorem 5.5. Let Assumptions CS(i), (ii), and (iv) and U-CS(i), (ii), and (iii) hold with
σn � μ−1

J

√
J.

(i) If Assumption U-CS(iv)(a) holds, then result (19) (with rn = (logJ)−1/2) holds for
ft = fDL�t .

(ii) If Assumption U-CS(iv)(b) holds, then result (20) also holds for ft = fDL�t .
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5.4 Inference on welfare functionals without endogeneity

This subsection specializes the pointwise and uniform inference results for welfare
functionals from the preceding subsections to nonparametric demand estimation with
exogenous price and income. Precisely, we let Xi = Wi, J = K, bK = ψJ , and μJ � 1,
τJ � 1, and so the sieve NPIV estimator reduces to the usual series LS estimator of
h0(x)=E[Yi|Wi = x].

The next two corollaries are direct consequences of our Theorems 5.1, 5.2, and 5.3
for pointwise asymptotic normality of sieve t-statistics for exact CS and DL and approx-
imate CS functionals under exogeneity; hence, the proofs are omitted.

Corollary 5.2. Let Assumption CS(i)–(iv) hold with Xi = Wi, J =K, bK =ψJ , and μJ �
1, and let

∑J
j=1 a

2
j � Ja+1 with 0 ≥ a≥ −1.

(i) Let nJ−(p+a+1) = o(1), J3−a(logJ)/n = o(1), and δ ≥ 2/(2 − a). Then the sieve t-
statistic for fCS(h0) is asymptoticallyN(0�1).

(ii) Let nJ−(p+1) = o(1), J3(logJ)/n = o(1), and a = 0, δ ≥ 1. Then the sieve t-statistic
for fDL(h0) is asymptoticallyN(0�1).

Previously Hausman and Newey (1995) established the pointwise asymptotic nor-
mality of t-statistics for exact CS and DL based on plug-in kernel LS estimators of de-
mand without endogeneity. They also established root-n asymptotic normality of t-
statistics for averaged exact CS and DL (i.e., CS/DL averaged over a range of incomes)
based on plug-in power series LS estimator of demand without endogeneity, under some
regularity conditions including that supx E[|ui|4|Xi = x]<∞ (which, in our notation, im-
plies δ = 2), p = ∞ (i.e., h0 is infinitely times differentia,ble) and J22/n = o(1). Corol-
lary 5.2 complements their work by providing conditions for the pointwise asymptotic
normality of exact CS and DL functionals based on spline and wavelet LS estimators of
demand.

Corollary 5.3. Let Assumption CS(i)–(iv) hold for the log-demand model (22) with
Xi = Wi, J = K, bK = ψJ , μJ � 1, and p > 0, and let

∑J
j=1 a

2
j � Jc+1 with 0 ≥ c ≥ −1. Let

nJ−(p+c+1) = o(1), J2−c(logJ)/n = o(1), and δ ≥ 2/(1 − c). Then the sieve t-statistic for
fA(h0) is asymptoticallyN(0�1).

Previously Newey (1997) established the pointwise asymptotic normality of t-
statistics for approximate CS functionals based on plug-in series LS estimators of exoge-
nous demand under some regularity conditions including that supx E[|ui|4|Xi = x]<∞
(which implies δ = 2), nJ−p = o(1), and either J6/n = o(1) for power series or J4/n =
o(1) for splines.

The final corollary is a direct consequence of our Theorems 5.4 and 5.5 and Re-
mark 5.1 for uniform inferences based on sieve t processes for exact CS and DL nonlinear
functionals under exogeneity; hence, its proof is omitted.
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Corollary 5.4. Let Assumptions CS(i), (ii), and (iv) and U-CS(i) and (ii) hold with Xi =
Wi, J = K, bK = ψJ , and μJ � 1. Let σ2

n � Ja+1 with 0 ≥ a ≥ −1. Let J5(logn)3/n = o(1)
and nJ−(p+a+1)(logJ) = o(1). Then results (19) (with rn = (logJ)−1/2) and (20) hold for
ft = fCS�t � fDL�t .

We note that σ2
n � J (or a = 0) for ft = fDL�t . Corollary 5.4 appears to be a new ad-

dition to the existing literature. The sufficient conditions for uniform inference for col-
lections of nonlinear exact CS and DL functionals of nonparametric demand estimation
under exogeneity are mild and simple.

6. Conclusion

This paper makes several important contributions to inference on nonparametric mod-
els with endogeneity. We derive the minimax sup-norm convergence rates for estimat-
ing the structural NPIV function h0 and its derivatives. We also provide upper bounds
for sup-norm convergence rates of computationally simple sieve NPIV (series 2SLS) es-
timators using any sieve basis to approximate unknown h0, and show that the sieve NPIV
estimator using a spline or wavelet basis can attain the minimax sup-norm rates. These
rate results are particularly useful for establishing the validity of pointwise and uniform
inference procedures for nonlinear functionals of h0. In particular, we use our sup-norm
rates to establish the uniform Gaussian process strong approximation and the validity of
score bootstrap-based UCBs for collections of nonlinear functionals of h0 under prim-
itive conditions, allowing for mildly and severely ill-posed problems. We illustrate the
usefulness of our UCBs procedure with two real data applications to nonparametric de-
mand analysis with endogeneity. We establish the pointwise and uniform limit theories
for sieve t-statistics for exact (and approximate) CS and DL nonlinear functionals un-
der low-level conditions when the demand function is estimated via sieve NPIV. Our
theoretical and empirical results for CS and DL are new additions to the literature on
nonparametric welfare analysis.

We conclude the paper by mentioning some further extensions and applications of
sup-norm convergence rates of sieve NPIV estimators.

Extensions to semiparametric IV models

Although our rate results are presented for purely nonparametric IV models, the results
may be adapted easily to some semiparametric models with nonparametric endogene-
ity, such as partially linear IV regression (Ai and Chen (2003), Florens, Johannes, and
Van Bellegem (2012)), shape-invariant Engel curve IV regression (Blundell, Chen, and
Kristensen (2007)), and single index IV regression (Chen et al. (2014)), to list a few. For
example, consider the partially linear NPIV model

Yi =X ′
1iβ0 + h0(X2i)+ ui� E[ui|W1i�W2i] = 0�

where X1i and X2i are of dimensions d1 and d2 and do not contain elements in com-
mon, and Wi = (W1i�W2i) is the (conditional) IV. See Florens, Johannes, and Van Bel-
legem (2012), Chen et al. (2014) for identification of (β0�h0) in this model. We can still
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estimate (β0�h0) via sieve NPIV or series 2SLS as before, replacingΨ and B in equations
(3 and (4) by

ψJ(x)= (x′
1�ψ

J
2(x2)

′)′� ψJ2(x)= (ψJ1(x2)� � � � �ψJJ(x2)
)′
�

bK(w)= (w′
1� b

K
2 (w2)

′)′� bK2 (w)= (bK1(w2)� � � � � bKK(w2)
)′
�

where x = (x′
1�x

′
2)

′, w = (w′
1�w

′
2)

′, ψJ1� � � � �ψJJ denotes a sieve of dimension J for ap-
proximating h0(x2), and bK1� � � � � bKK denotes a sieve of dimensionK for the instrument
space for W2. We then partition ĉ in (2) into ĉ = (β̂′ � ĉ′2)

′ and set ĥ(x) = ψJ2(x)′̂c2. Note
that β̂ is root-n consistent and asymptotically normal for β0 under mild conditions (see
Ai and Chen (2003), Chen and Pouzo (2009)), and, hence, would not affect the optimal
convergence rate of ĥ to h0. Our rate results may be slightly altered to derive sup-norm
convergence rates for ĥ and its derivatives.

Nonparametric specification testing in NPIV models

Structural models may specify a parametric form mθ0(x), where θ0 ∈ Θ ⊆ R
dθ for

the unknown structural function h0(x) in NPIV model (1). We may be interested in
testing the parametric model {mθ : θ ∈ Θ} against a nonparametric alternative that
only assumes some smoothness on h0. Specification tests for nonparametric regres-
sion without endogeneity have typically been performed via either a quadratic-form-
based statistic or a Kolmogorov–Smirnov (KS) type sup statistic.18 However, specifica-
tion tests for NPIV models have so far only been performed via quadratic-form-based
statistics; see, for example, Horowitz (2006, 2011, 2012), Blundell and Horowitz (2007),
Breunig (2015). Equipped with our sup-norm rate and UCBs results for the NPIV func-
tion and its derivatives, one could also perform specification tests in NPIV models using
KS type statistics of the form

Tn = sup
x

∣∣ĥ(x)− m̂(x� θ̂)∣∣
sn(x)

�

where θ̂ is a first-stage estimator of θ0, and m̂(x� θ̂) is obtained from series 2SLS regres-
sion of m(X1� θ̂)� � � � �m(Xn� θ̂) on the same basis functions as in ĥ, and sn(x) is a nor-
malization factor. Alternatively, one could consider a KS statistic formed in terms of the
projection of [ĥ(x)− m̂(x� θ̂)] onto the instrument space. Sup-norm convergence rates
and uniform limit theory derived in this paper would be useful in deriving the large-
sample distribution of these KS type statistics. Further, based on our rate results (in sup-
and L2-norm) for estimating derivatives of h0 in a NPIV model, one could also perform
nonparametric tests of significance by testing whether partial derivatives of the NPIV
function h0 are identically zero, via KS or quadratic-form-based test statistics.

If one is interested in specifications or inferences on functionals directly, then one
might consider KS type sup statistics for (possibly nonlinear) functionals directly. For

18See, for example, Bierens (1982), Hardle and Mammen (1993), Hong and White (1995), Fan and Li
(1996), Lavergne and Vuong (1996), Stinchcombe and White (1998), and Horowitz and Spokoiny (2001) to
list a few.
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example, if one is interested in the exact CS functional of a demand and concerns about
the potential endogeneity of price, then one could estimate the exact CS functional us-
ing a series LS estimated demand (under exogeneity) and series 2SLS estimated demand
(under endogeneity), and then compare the two estimated exact CS functionals via a KS
type or a quadratic-form-based test. In fact, the score bootstrap-based UCBs reported
in Figure 2 indicate that such a test based on the exact CS functional directly could be
quite informative.

Semiparametric two-step procedures with NPIV first stage

Many semiparametric two-step or multi-step estimation and inference procedures in-
volve a nonparametric first stage. There are many theoretical results when the first stage
is a purely nonparametric LS regression (without endogeneity) and its sup-norm con-
vergence rate is used to assist subsequent analysis. For structural estimation and in-
ference, it is natural to allow for the presence of nonparametric endogeneity in the
first stage as well. For instance, if there is endogeneity present in the conditional mo-
ment inequality application of the famous intersection bound paper of Chernozhukov,
Lee, and Rosen (2013), one could simply use our sup-norm rate and UCBs results for
sieve NPIV instead of their series LS regression in the first stage. As another exam-
ple, consider semiparametric two-step generalized method of moments (GMM) mod-
els E[g(Zi�θ0�h0(Xi))] = 0, where h0 is the NPIV function in model (1), g is a R

dg -valued
vector of moment functions with dg ≥ dθ, and θ0 ∈R

dθ is a finite-dimensional parameter
of interest, such as the average exact CS parameter of a nonparametric demand function
with endogeneity. A popular estimator θ̂ of θ0 is a solution to the semiparametric two-
step GMM with a weighting matrix Ŵ ,

min
θ

(
1
n

n∑
i=1

g
(
Zi�θ� ĥ(Xi)

))′
Ŵ

(
1
n

n∑
i=1

g
(
Zi�θ� ĥ(Xi)

))
�

where ĥ is a sieve NPIV estimator of h0. When h0 enters the moment function g(·) non-
linearly, sup-norm convergence rates of ĥ to h0 are useful in deriving the asymptotic
properties of θ̂.

Appendix A: Additional lemmas for sup-norm rates

Let smin(A) denote the minimum singular value of a rectangular matrixA. For a positive-
definite symmetric matrix A, we let A1/2 be its positive definite square root. We define
sJK = smin(G

−1/2
b SG

−1/2
ψ ), which satisfies

s−1
JK = sup

h∈ΨJ :h�=0

‖h‖L2(X)

‖ΠKTh‖L2(W )

≥ τJ

for allK ≥ J > 0. The following lemma is used throughout the paper.

Lemma A.1. Let Assumptions 1(iii) and 4(i) hold. Then (1 − o(1))s−1
JK ≤ τJ ≤ s−1

JK as
J→ ∞.
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Before we provide a bound on the sup-norm bias term, we present some suffi-
cient conditions for Assumption 4(iii). This involves three projections of h0 onto the
sieve approximating space ΨJ . These projections imply different, but closely related,
approximation biases for h0. Recall that ΠJ : L2(X) → ΨJ is the L2(X) orthogonal
(i.e., least squares) projection onto ΨJ , namely ΠJh0 = arg minh∈ΨJ ‖h0 − h‖L2(X), and
QJh0 = arg minh∈ΨJ ‖ΠKT(h0 − h)‖L2(W ) is the sieve 2SLS projection of h0 onto ΨJ . Let
πJh0 = arg minh∈ΨJ ‖T(h0 − h)‖L2(W ) denote the IV projection of h0 onto ΨJ . Note that
each of these projections is nonrandom.

Instead of Assumption 4(iii), we could impose the following version.

Assumption 4. (iii′) We have (ζψ�JτJ) × ‖(ΠKT − T)(QJh0 − πJh0)‖L2(W ) ≤ const ×
‖QJh0 −πJh0‖L2(X).

Assumption 4(iii′) seems mild and is automatically satisfied by Riesz basis. This is be-
cause ‖(ΠKT −T)h‖L2(W ) = 0 for all h ∈ΨJ when the basis functions forBK andΨJ form
either a Riesz basis or an eigenfunction basis for the conditional expectation operator.
The following lemma collects some useful facts about the approximation properties of
πJh0.

Lemma A.2. Let Assumptions 1(iii) and 4(ii) hold.

(i) Then we have ‖h0 −πJh0‖L2(X) � ‖h0 −ΠJh0‖L2(X).

(ii) If Assumption 4(i) also holds, then ‖QJh0 −πJh0‖L2(X) ≤ o(1)×‖h0 −πJh0‖L2(X).

(iii) Further, if Assumption 4(iii′) and

‖ΠJh0 −πJh0‖∞ ≤ const × ‖h0 −ΠJh0‖∞ (24)

hold, then Assumption 4(iii) is satisfied.

In light of Lemma A.2 parts (i) and (ii), condition (24) seems mild. In fact, condition
(24) is trivially satisfied when the basis for ΨJ is a Riesz basis because then πJh0 =ΠJh0

(see Section 6 in Chen and Pouzo (2015)). See Lemma G.1 in Appendix G for more de-
tailed relations amongΠJh0, πJh0, andQJh0.

The next lemma provides a bound on the sup-norm bias term.

Lemma A.3. Let Assumptions 1(iii), 3(ii), and 4 hold. Then

(i) ‖h̃−ΠJh0‖∞ ≤Op(1)× ‖h0 −ΠJh0‖∞
(ii) ‖h̃− h0‖∞ ≤Op(1 + ‖ΠJ‖∞)× ‖h0 − h0�J‖∞.

Appendix B: Optimal L2-norm rates for derivatives

Here we show that the sieve NPIV estimator can attain the optimal L2-norm conver-
gence rates for estimating h0 and its derivatives under much weaker conditions. The
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optimalL2-norm rates for sieve NPIV derivative estimation presented in this section are
new, and should be very useful for inference on some nonlinear functionals involving
derivatives such as f (h)= ‖∂αh‖2

L2(X)
.

Instead of Assumption 1(iii), we impose the following condition for identification in
(H�‖ · ‖L2(X)).

Assumption 1. (iii′) We have h0 ∈ H ⊂L2(X), and T [h− h0] = 0 ∈L2(W ) for any h ∈ H
implies that ‖h− h0‖L2(X) = 0.

Theorem B.1. Let Assumptions 1(iii′) and 4(i) and (ii) hold, and let τJζ
√
(logJ)/n =

o(1).

(i) Then we have ‖h̃− h0‖L2(X) ≤Op(1)× ‖h0 −ΠJh0‖L2(X).

(ii) Further, if Assumption 2(i) holds, then

‖ĥ− h0‖L2(X) =Op
(‖h0 −ΠJh0‖L2(X) + τJ

√
J/n

)
�

The following corollary provides concrete L2-norm convergence rates of ĥ and its
derivatives. Let Bp2�2 denote the Sobolev space of smoothness p> 0, let ‖ · ‖Bp2�2 denote a

Sobolev norm of smoothness p, and let B2(p�L)= {h ∈ Bp2�2 : ‖h‖Bp2�2 ≤ L}, where radius

0<L<∞ (Triebel (2006, Section 1.11)).

Corollary B.1. Let Assumptions 1(i), (ii), and (iii′) and 4(i) and (ii) hold. Let h0 ∈
B2(p�L), letΨJ be spanned by a cosine basis, B-spline basis of order γ > p, or CDV wavelet
basis of regularity γ > p, and let BK be spanned by a cosine, spline, or wavelet basis. Let
τJ
√
(J logJ)/n= o(1) hold.

(i) Then ‖∂αh̃− ∂αh0‖L2(X) =Op(J−(p−|α|)/d) for all 0 ≤ |α|<p.

(ii) Further if Assumption 2(i) holds, then∥∥∂αĥ− ∂αh0
∥∥
L2(X)

=Op
(
J−(p−|α|)/d + τJJ|α|/d√J/n) for all 0 ≤ |α|<p�

(ii)(a) Mildly ill-posed case. Choosing J � nd/(2(p+ς)+d) yields τJ
√
(J logJ)/n= o(1) and∥∥∂αĥ− ∂αh0

∥∥
L2(X)

=Op
(
n−(p−|α|)/(2(p+ς)+d))�

(ii)(b) Severely ill-posed case. Choosing J = (c0 logn)d/ς for any c0 ∈ (0�1) yields
τJ
√
(J logJ)/n= o(1) and∥∥∂αĥ− ∂αh0

∥∥
L2(X)

=Op
(
(logn)−(p−|α|)/ς)�

The conclusions of Corollary B.1 remain true for any basis BK under the condi-
tion τJζb

√
(logJ)/n= o(1). Previously, assuming some rates on estimating the unknown

operator T , Johannes, van Bellegem, and Vanhems (2011) obtained similar L2-norm
rates for derivatives of iteratively Tikhonov-regularized estimators in a NPIV model with
scalar regressorXi and scalar instrumentWi.
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Our next theorem shows that the rates obtained in Corollary B.1 are optimal. It ex-
tends the earlier work by Chen and Reiss (2011) onL2-norm lower bounds for h0 to lower
bounds for derivative estimation.

Theorem B.2. Let Condition LB hold with B2(p�L) in place of B∞(p�L) for the NPIV
model with a random sample {(Xi�Yi�Wi)}ni=1. Then, for any 0 ≤ |α|<p,

lim inf
n→∞ inf

ĝn
sup

h∈B2(p�L)

Ph

(∥∥ĝn − ∂αh∥∥
L2(X)

≥ cn−(p−|α|)/(2(p+ς)+d))≥ c′ > 0

in the mildly ill-posed case, and

lim inf
n→∞ inf

ĝn
sup

h∈B2(p�L)

Ph

(∥∥ĝn − ∂αh∥∥
L2(X)

≥ c(logn)−(p−|α|)/ς)≥ c′ > 0

in the severely ill-posed case, where infĝn denotes the infimum over all estimators of ∂αh
based on the sample of size n, suph∈B2(p�L)

Ph denotes the sup over h ∈ B2(p�L) and distri-
butions of (Xi�Wi�ui) that satisfy Condition LB with ν fixed, and the finite positive con-
stants c and c′ do not depend on n.

Appendix C: Lower bounds for quadratic functionals

In this section, we study quadratic functionals of the form

f (h)=
∫ (
∂αh(x)

)2
μ(x)dx�

where μ(x) ≥ μ > 0 is a positive weighting function. These functionals are very impor-
tant for nonparametric specification and goodness-of-fit testing, as outlined in the con-
clusion section. We derive lower bounds on convergence rates of estimators of the func-
tional f (h0).

Theorem C.1. Let Condition LB hold with B2(p�L) in place of B∞(p�L) for the NPIV
model with a random sample {(Xi�Yi�Wi)}ni=1. Then, for any 0 ≤ |α|<p,

lim inf
n→∞ inf

ĝn
sup

h∈B2(p�L)

Ph

(∣∣̂gn − f (h)∣∣> crn)≥ c′ > 0�

where

rn =
⎡⎢⎣n−1/2 in the mildly ill-posed case when p≥ ς+ 2|α| + d/4�
n−4(p−|α|)/(4(p+ς)+d) in the mildly ill-posed case when ς < p< ς+ 2|α| + d/4�
(logn)−2(p−|α|)/ς in the severely ill-posed case,

infĝn denotes the infimum over all estimators of f (h) based on the sample of size n,
suph∈B2(p�L)

Ph denotes the sup over h ∈ B2(p�L) and distributions (Xi�Wi�ui) that satisfy
Condition LB with ν fixed, and the finite positive constants c and c′ do not depend on n.
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In the mildly ill-posed case, Theorem C.1 shows that the rate exhibits a so-called
elbow phenomenon, in which f (h0) is

√
n-estimable when p ≥ ς + 2|α| + d/4 and is

irregular otherwise. Moreover, f (h0) is always irregular in the severely ill-posed case.
Consider estimation using the plug-in estimator f (ĥ). Expanding the quadratic, we

see that

f (ĥ)− f (h0)=
∫
∂αh0(x)

(
∂αĥ(x)− ∂αh0(x)

)
μ(x)dx+ ∥∥∂αĥ− ∂αh0

∥∥2
L2(μ)

�

Under appropriate normalization, the first term on the right-hand side will be the CLT
term. Consider the quadratic remainder term. Since μ is bounded away from zero and
the density ofXi is bounded away from zero and infinity, the quadratic remainder term
behaves like ‖∂αĥ − ∂αh0‖2

L2(X)
. In the mildly ill-posed case, the optimal convergence

rate of this term has been shown to be Op(n−2(p−|α|)/(2(p+ς)+d)) (see Appendix B). This
term vanishes faster than n−1/2 provided that p > ς + 2|α| + d/2, which is a stronger
condition than is required for f (h0) to be

√
n-estimable. Therefore, when ς+2|α|+d/4<

p< ς+2|α|+d/2, the weighted quadratic functional f (h0) is
√
n-estimable but its simple

plug-in estimator f (ĥ) fails to attain the optimal rate.
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