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Simultaneous selection of optimal bandwidths
for the sharp regression discontinuity estimator
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Department of Economics, University of Tokyo

A new bandwidth selection method that uses different bandwidths for the local
linear regression estimators on the left and the right of the cut-off point is pro-
posed for the sharp regression discontinuity design estimator of the average treat-
ment effect at the cut-off point. The asymptotic mean squared error of the estima-
tor using the proposed bandwidth selection method is shown to be smaller than
other bandwidth selection methods proposed in the literature. The approach that
the bandwidth selection method is based on is also applied to an estimator that
exploits the sharp regression kink design. Reliable confidence intervals compat-
ible with both of the proposed bandwidth selection methods are also proposed
as in the work of Calonico, Cattaneo, and Titiunik (2014a). An extensive simula-
tion study shows that the proposed method’s performances for the samples sizes
500 and 2000 closely match the theoretical predictions. Our simulation study also
shows that the common practice of halving and doubling an optimal bandwidth
for sensitivity check can be unreliable.

Keywords. Bandwidth selection, local linear regression, regression discontinuity
design, regression kink design, confidence interval.
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1. Introduction

The regression discontinuity (RD) is a quasi-experimental design to evaluate causal ef-
fects introduced by Thistlewaite and Campbell (1960) and developed by Hahn, Todd,
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and Van der Klaauw (2001). A large number of empirical studies are carried out using
the RD design in various areas of economics. See Imbens and Lemieux (2008), Van der
Klaauw (2008), Lee and Lemieux (2010), and DiNardo and Lee (2011) for an overview and
lists of empirical researches. The RD approach has been extended in various directions.
For example, Card, Lee, Pei, and Weber (2015) and Dong and Lewbel (2015) consider the
regression kink design and its related model, and Frandsen, Frörich, and Melly (2012)
and Chiang and Sasaki (2016) consider the quantile treatment effect in the context of
the RD and RK designs, respectively.

We first consider the sharp RD design in which whether a value of the assignment
variable exceeds a known cut-off point or not determines the treatment status. A param-
eter of interest is the average treatment effect at the cut-off point. The average treatment
effect is given by the difference between the two conditional mean functions at the cut-
off point. This implies that estimating the treatment effect amounts to estimating two
functions at the boundary point. One of the most frequently used estimation methods
is the local linear regression (LLR) because of its superior performance at the boundary.
See Fan (1992, 1993) and Porter (2003).

A particular nonparametric estimator, in general, is undefined unless the smooth-
ing parameter selection method is specified, and it is well recognized that choosing an
appropriate smoothing parameter is a key implementation issue (Ichimura and Todd
(2007)). In the RD setting, it amounts to choosing a bandwidth for each of the LLR es-
timators at two sides of the cut-off point. Therefore, in the context of RD design, using
two bandwidths for estimating two functions is a natural approach. In fact, DesJardins
and McCall (2008) propose to use the plug-in method for each side of the cut-off point.
However, each of the two bandwidths are chosen optimally to estimate the conditional
mean functions considered separately. But the target function is the difference of the
two conditional mean functions, which corresponds to the average treatment effect at
the cut-off point.

Figure 1 illustrates the situation motivated by Ludwig and Miller (2007) where the
cut-off value is depicted by a dotted vertical line. The solid lines depict two conditional
mean functions to estimate. And the dashed curve denotes the estimated density of the
assignment variable. One can see that the curvatures of the conditional mean functions
for the treated and the untreated in the vicinity of the cut-off point differ significantly.
This is not an exceptional case but arises naturally in many empirical studies. For ex-
ample, sharp contrasts in curvatures are observed in Figures 1 and 2 in Ludwig and
Miller (2007), Figures IV and V in Card, Mas, and Rothstein (2008), Figures 12 and 14
in DesJardins and McCall (2008), Figures 3 and 5 in Lee (2008), and Figures 1 and 2 in
Hinnerich and Pettersson-Lidbom (2014), among others.

The most widely used bandwidth selection methods in the RD context are the
method by Imbens and Kalyanaraman (2012) (hereafter IK) and its modification by
Calonico, Cattaneo, and Titiunik (2014a) (hereafter CCT).1 These methods choose the

1Calonico, Cattaneo, and Titiunik (2014a) is the first to propose robust confidence intervals for estima-
tors exploiting the sharp design, the fuzzy RD design, or the RK design.
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Figure 1. Conditional mean functions of outcomes based on Ludwig and Miller (2007). The
solid line on the left of the cut-off point, zero, depicts the conditional mean function of the po-
tential outcome for untreated conditional on the assignment variable. Similarly, the solid line
on the right of the cut-off point draws the corresponding function for treated. The dashed line
depicts the kernel density estimate of the assignment variable based on the rule-of-thumb band-
width. The left and right vertical axes denote the solid line and the dashed line, respectively.

optimal bandwidth for the difference of the two conditional mean functions, but im-
posing that the bandwidths are the same for two sides of the cut-off point.2,3

If we use the same bandwidth for both sides of the cut-off point, which is relatively
large, in the situation described by Figure 1, it will incur a large bias on the right of the
cut-off point, for estimating the conditional mean function. On the other hand, using a
single bandwidth, which is relatively small, will lead to a smaller bias on the right while
it will generate a large variance on the same side as the sample size is about half that
on the left of the cut-off point. While a distinct-bandwidth approach would choose a
modest bandwidth on the right and a large bandwidth on the left of the cut-off point, a
single-bandwidth approach such as IK or CCT tend to choose a bandwidth in between,
leading to the larger bias on the right and the larger variance on the left of the cut-off
point.

We develop an optimal bandwidth selection method that uses two distinct band-
widths for two sides of the cut-off point taking into account that the target parameter is
the difference of two conditional mean functions.

2Ludwig and Miller (2005, 2007) used the cross validation method to select a single bandwidth. However,
they did not consider an objective function that corresponds to the asymptotic mean square error of the
difference of the two conditional mean functions at the cut-off point.

3A single bandwidth approach is familiar to empirical researchers in the applications of matching meth-
ods (Abadie and Imbens (2011)) since the supports of covariates for treated and untreated individuals over-
lap and we wish to construct two comparable groups. This reasoning does not apply to the RD estimator
since values of the assignment variable never overlap due to the structure of the RD design.
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Our theoretical results and simulation results show that the proposed bandwidth
selection method produces more accurate point estimates relative to the existing band-
widths especially when the curvatures or the sample sizes on each side of the cut-off
point differ significantly. Even when the curvatures and the sample sizes are very similar
on each side, the performance of the proposed bandwidth selection method performs
reasonably well especially when the sample size is large. Hence there would be almost
no loss but a gain for employing the proposed method.

In addition, we show the importance of using an optimal bandwidth through an ex-
tensive simulation work and an empirical application. A very popular practice in dealing
with the bandwidth selection is to report results of a sensitivity analysis using different
bandwidths. Often, after reporting results using an “optimal bandwidth,” results using
half the bandwidth and those using double the bandwidth are reported. Through a sim-
ulation study, we show that this approach is unreliable. That is, we show that this ap-
proach results in a large loss in efficiency in terms of mean squared error. An optimal
bandwidth typically minimizes an approximation to the mean squared error of an esti-
mator and halving or doubling the bandwidths could lead to a large deviation from the
optimal point. Hence the practice should not be appropriate as the robustness check.
Our suggestion is to use different “optimal” bandwidths to conduct sensitivity analy-
sis. The proposed method complements the existing methods in the sense that it offers
an additional option for the robustness check which is rooted in the different principle
from the existing ones.

We also consider a bandwidth selection method for the case of the sharp regression
kink (RK) design, a term coined by Nielsen, Sørensen, and Taber (2010) and extensively
developed by Card et al. (2015) (hereafter CLPW). We show that this case has a similar
structure with the case of the RD design and apply the proposed approach to the sharp
RK design. Following the point estimation, an important next step is the statistical in-
ference. As emphasized by CCT, the confidence interval without bias correction using
the conventional standard error is not asymptotically valid when it is combined with
the optimal bandwidths. Although the conventional confidence interval with bias cor-
rection is asymptotically valid, CCT also show via simulation that the resulting coverage
probability tends to be much lower than the nominal one. To overcome these issues,
they constructed a novel method to construct a reliable confidence interval for the esti-
mators that use a single bandwidth. We show that the approach by CCT can be extended
to accommodate the estimators that use the proposed bandwidth selection methods
that exploit the sharp RD or the sharp RK designs by constructing the CCT-type robust
confidence intervals.

In Section 2 of this paper, we propose a new bandwidth selection method suitable
for the RD context. Our asymptotic analysis shows that the proposed method dominates
the currently available methods in terms of the asymptotic mean square error (AMSE).
In Section 3, we extend the approach to the regression kink (RK) design and consider
the CCT-type robust confidence interval. In Section 4, we report results from an exten-
sive simulation work and show that the asymptotic advantages theoretically derived in
Section 2 realize in finite sample sizes relevant for empirical works. We also report an
empirical illustration in Section 5. Section 6 concludes the paper. In the Appendix, we
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include the proofs of the main theorems. All the omitted proofs and detailed implemen-
tation procedures are provided in the Supplemental Material (available in a supplemen-
tary file on the journal website, http://qeconomics.org/supp/590/supplement.pdf).4

2. Bandwidth selection of the sharp regression discontinuity estimators

For observation i, we denote potential outcomes with and without treatment by Yi(1)
and Yi(0), respectively. Let Di be a binary variable which takes the value 0 or 1 indicat-
ing the treatment status. The observed outcome, Yi, can be written as Yi = DiYi(1) +
(1 − Di)Yi(0). In the sharp RD setting, we consider, the treatment status is determined
solely by the assignment variable, denoted by Xi: Di = I{Xi ≥ c} where c is a known cut-
off point and I{A} takes value 1 if A holds and takes value 0 if A does not hold. Through-
out the paper, we assume that (Y1�X1)� � � � � (Yn�Xn) are independent and identically
distributed observations and Xi has the Lebesgue density f .

Define m1(x) = E(Yi(1)|Xi = x) = E(Yi|Xi = x) for x ≥ c and m0(x) =
E(Yi(0)|Xi = x) = E(Yi|Xi = x) for x < c. Suppose that the limits limx→c+m1(x)

and limx→c−m0(x) exist where x → c+ and x → c− mean taking the limits from the
right and left, respectively. Denote limx→c+m1(x) and limx→c−m0(x) by m1(c) and
m0(c), respectively. Then the average treatment effect at the cut-off point is given by
τSRD(c) = m1(c)−m0(c) and τSRD(c) is the parameter of interest in the sharp RD design.

Estimation of τSRD(c) requires to estimate two functions, m1(c) and m0(c). The non-
parametric estimators that we consider are LLR estimators proposed by Stone (1977)
and investigated by Fan (1992). For estimating these limits, the LLR is particularly at-
tractive because it exhibits the automatic boundary adaptive property (Fan (1992, 1993),
Hahn, Todd, and Van der Klaauw (2001), and Porter (2003)). The LLR estimator for m1(c)

is given by α̂h1(c), where

(
α̂h1(c)� β̂h1(c)

) = arg min
α�β

n∑
i=1

{
Yi − α−β(Xi − c)

}2
K

(
Xi − c

h1

)
I{Xi ≥ c}�

where K(·) is a kernel function and h1 is a bandwidth. A standard choice of the ker-
nel function for the RD estimators is the triangular kernel given by K(u) = (1 − |u|) ×
I{|u| < 1} because of its MSE and minimax optimality (Cheng, Fan, and Marron (1997)).
The LLR estimator for m0(c), α̂h0(c), can be obtained in the same manner, except replac-
ing I{Xi ≥ c} with I{Xi ≤ c}. Denote α̂h1(c) and α̂h0(c) by m̂1(c) and m̂0(c), respectively.
Then τSRD(c) is estimated by τ̂SRD(c) ≡ m̂1(c)− m̂0(c).

Before we start to discuss issues on difficulties of choosing two bandwidths simul-
taneously and to propose our optimal bandwidth selection method, we provide a quick
exposition of our proposed bandwidths for the sharp RD design. A standard approach
to choose a bandwidth for the average treatment effect at the cut-off point, τ̂SRD(c), is to

4Matlab and Stata codes to implement the proposed methods are available as a supplementary file on the
journal website, http://qeconomics.org/supp/590/code_and_data.zip, or at one of the authors’ webpage,
http://www.f.waseda.jp/yarai/.

http://qeconomics.org/supp/590/supplement.pdf
http://qeconomics.org/supp/590/code_and_data.zip
http://www.f.waseda.jp/yarai/
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minimize the AMSE of τ̂SRD(c) given by5

AMSEn(h) =
{
b1

2
[
m(2)

1 (c)h2
1 −m

(2)
0 (c)h2

0
]}2

+ v

nf (c)

{
σ2

1 (c)

h1
+ σ2

0 (c)

h0

}
�

where b1 and v are constants solely determined by a kernel function, m(s)
j (c) is the sth

derivative of mj(x) at c and f (c) is the density of the assignment variable at c. For ex-
ample, IK and CCT minimize this object with regularization under the assumption of
h1 = h0. In contrast to the standard approach, the proposed bandwidths minimize the
following modified version of the AMSE given by

MMSEn(h) =
{
b1

2
[
m(2)

1 (c)h2
1 −m

(2)
0 (c)h2

0
]}2

+ {
b2�1(c)h

3
1 − b2�0(c)h

3
0
}2

+ v

nf (x)

{
σ2

1 (x)

h1
+ σ2

0 (x)

h0

}
�

where b2�j(c) is the object which depends on the constant determined by the kernel
function, f (c), and the second and third derivatives of mj(c) and f (c) for j = 0�1.
Section 2.1 explains why the standard approach does not work through to choose two
bandwidths simultaneously. We discuss, in Section 2.2, how the proposed bandwidths
overcome the difficulties and show that they possess theoretically desirable properties
relative to the existing methods.

2.1 The AMSE for the regression discontinuity estimators

In this paper, we propose a simultaneous selection method for two distinct bandwidths,
h1 and h0, based on an AMSE. The use of the AMSE as an objective function is the stan-
dard approach in the literature.6 In the standard case, the first-order AMSE formula gives
a trade-off of using a narrower bandwidth versus a wider bandwidth. For example, the
formula shows that when a narrower bandwidth is used, the bias term is smaller but the
variance term is larger. However, because the target parameter is the difference of two
conditional mean functions, this trade-off in the first-order AMSE formula can break
down in the RD setting. We first describe this issue to motivate the objective function we
ultimately use.

The conditional mean squared error (MSE) of the RD estimators of the average treat-
ment effect given the assignment variable, X , is defined by

MSEn(h) =E
[{[

m̂1(c)− m̂0(c)
] − [

m1(c)−m0(c)
]}2|X]

�

where X = (X1�X2� � � � �Xn)
′.7

5All of the assumptions and details are provided in the following sections. Here, we simply assume that
all objects such as derivatives and variances exist.

6As IK emphasize, the bandwidth selection problem in the context of the RD setting is how to choose
local bandwidths rather than global bandwidths. Thus, bandwidth selection based on either the asymptotic
mean “integrated” squared errors or the cross-validation criterion can never be optimal.

7Throughout the paper, we use “h” without a subscript to denote a combination of h1 and h0, for ex-
ample, MSEn(h1�h0) is written as MSEn(h). We assume that X is such that this conditional MSE is well-
defined.
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To describe the trade-off, we examine the first-order AMSE under the standard set of
assumptions described below.

Assumption 1. K(·) : R → R is a bounded and symmetric second-order kernel function
that is continuous with compact support, that is, K satisfies the following: K(u) ≥ 0 for
any u ∈ R,

∫ ∞
−∞K(u)du = 1,

∫ ∞
−∞ uK(u)du = 0, and

∫ ∞
−∞ u2K(u)du > 0.

Also let μs = ∫ ∞
0 usK(u)du and νs = ∫ ∞

0 usK2(u)du for the nonnegative integer s.

Assumption 2. The positive sequence of bandwidths is such that hj → 0 and nhj → ∞
as n → ∞ for j = 0�1.

Assumptions 1 and 2 are standard assumptions on the kernel functions and the
bandwidths in the literature of regression function estimation as well as the RD design.

Let D be an open set in R, k be a nonnegative integer, Ck be the family of k times
continuously differentiable functions on D� and g(k)(·) be the kth derivative of g(·) ∈ Ck.
Let Gk(D) be the collection of functions g such that g ∈ Ck and

∣∣g(k)(x)− g(k)(y)
∣∣ ≤Mk|x− y|α� x� y ∈ D

for some positive Mk and some α such that 0 <α ≤ 1.
Let σ2

1 (x) and σ2
0 (x) denote the conditional variances of Y1 and Y0 given Xi = x,

respectively, and let

σ2
1 (c) = lim

x→c+σ2
1 (x)� σ2

0 (c) = lim
x→c−σ2

0 (x)� m(s)
1 (c) = lim

x→c+m(s)
1 (x)�

and

m(s)
0 (c) = lim

x→c−m(s)
0 (x)�

The following assumptions are also standard regularity conditions on the underlying
Lebesgue density of the assignment variable, conditional variance functions, and the
conditional mean functions of the outcome variables, respectively.

Assumption 3. The Lebesgue density of Xi, denoted f , is an element of G1(D) where D is
an open neighborhood of c and is bounded above and strictly positive on D�

Assumption 4. Let δ be some positive constant. The conditional variance function σ2
1 is

a element of G0(D1), where D1 is a one-sided open neighborhood of c, (c� c+δ), and σ2
1 (c)

exists and are bounded above and strictly positive. Analogous conditions hold for σ2
0 on

D0, where D0 is a one-sided open neighborhood of c, (c − δ� c).

Assumption 5. Let δ be some positive constant and κ be some positive integer. The con-
ditional mean function m1 is a element of Gκ(D1), and m

(s)
1 (c), for s = 1� � � � �κ, exist and

are bounded. Analogous conditions hold for m0 on D0.
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Under Assumptions 1–4 and 5 with κ = 3, we can obtain the following result analo-
gous to the results by Fan and Gijbels (1992):8

MSEn(h) =
{
b1

2
[
m(2)

1 (c)h2
1 −m(2)

0 (c)h2
0
]}2

+ v

nf (c)

{
σ2

1 (c)

h1
+ σ2

0 (c)

h0

}

+ o

(
h4

1 + h2
1h

2
0 + h4

0 + 1
nh1

+ 1
nh0

)
�

(1)

where

b1 = μ2
2 −μ1μ3

μ0μ2 −μ2
1

and v = μ2
2ν0 − 2μ1μ2ν1 +μ2

1ν2(
μ0μ2 −μ2

1
)2 �

This suggests that we choose the bandwidths to minimize the following AMSE:

AMSEn(h) =
{
b1

2
[
m(2)

1 (c)h2
1 −m

(2)
0 (c)h2

0
]}2

+ v

nf (c)

{
σ2

1 (c)

h1
+ σ2

0 (c)

h0

}
� (2)

However, this procedure can fail. To see why, consider the case where m(2)
1 (c)m

(2)
0 (c) > 0.

Now choose h0 = [m(2)
1 (c)/m(2)

0 (c)]1/2h1 to remove the first-order bias component com-
pletely from the AMSE. Then the first-order AMSE consists only of the variance term:

AMSEn(h) = v

nh1f (c)

{
σ2

1 (c)+ σ2
0 (c)

[
m(2)

0 (c)

m(2)
1 (c)

]1/2}
�

This implies that the AMSE can be made arbitrarily small by choosing a sufficiently large
h1. When the target parameter is the difference of the conditional mean functions and
m(2)

1 (c)m
(2)
0 (c) > 0, the first-order bias can be reduced not only by choosing a smaller

bandwidth but also by changing a ratio of two bandwidths.
One reason for this problem is that the AMSE given in (2) does not account for

higher-order terms. If we account for the higher-order terms for the bias component,
setting the bias term in (2) to zero does not eliminate the whole bias component, and
thus choosing large values for bandwidths may be punished. However, in what follows,
we show that simply incorporating the second-order bias term into the AMSE does not
resolve the problem because the bias term can be reduced to a smaller order inclusive of
higher-order bias terms when m(2)

1 (c)m(2)
0 (c) > 0. After demonstrating this, we propose

a new objective function that avoids this problem.
In order to discuss these, we first show in the next lemma, the second-order expan-

sion of the MSE by generalizing the higher-order approximation of Fan, Gijbels, Hu, and
Huang (1996).9

8The conditions on the first derivative of f and the third derivatives of m1 and m0, described in Assump-
tions 3 and 5, are not necessary to obtain the result (1). They are stated for later use.

9Fan et al. (1996) show the higher-order approximation of the MSE for interior points of the support
of X . Lemma 1 presents the analogous result for a boundary point. A proof of Lemma 1 is provided in the
Supplementary Material. The expression presented in Lemma 1 is the higher-order approximation rather
than a better approximation to the bias since the next-order term of the variance is O(1/n).
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Lemma 1. Suppose Assumptions 1–4 and 5 with κ= 4 hold. Then it follows that

MSEn(h) =
{
b1

2
[
m(2)

1 (c)h2
1 −m(2)

0 (c)h2
0
] + [

b2�1(c)h
3
1 − b2�0(c)h

3
0
] + o

(
h3

1 + h3
0
)}2

+ v

nf (c)

{
σ2

1 (c)

h1
+ σ2

0 (c)

h0

}
+ o

(
1

nh1
+ 1

nh0

)
�

where, for j = 0�1,

b2�j(c) = (−1)j+1
{
ξ1

[m(2)
j (c)

2
f (1)(c)

f (c)
+

m
(3)
j (c)

6

]
− ξ2

m
(2)
j (c)

2
f (1)(c)

f (c)

}
�

ξ1 = μ2μ3 −μ1μ4

μ0μ2 −μ2
1

� and ξ2 =
(
μ2

2 −μ1μ3
)
(μ0μ3 −μ1μ2)(

μ0μ2 −μ2
1
)2 �

Given the expression of Lemma 1, one might be tempted to proceed with an AMSE
including the second-order bias term:

AMSE2n ≡
{
b1

2
[
m(2)

1 (c)h2
1 −m

(2)
0 (c)h2

0
] + [

b2�1(c)h
3
1 − b2�0(c)h

3
0
]}2

+ v

nf (c)

{
σ2

1 (c)

h1
+ σ2

0 (c)

h0

}
�

(3)

As indicated above, when m
(2)
1 (c)m

(2)
0 (c) > 0, we show that the bias component, inclu-

sive of higher-order terms, can be made to the orderO(h�
1), for an arbitrarily large integer

� > 0 by appropriately choosing h0. This implies that the minimization problem is not
well-defined. Therefore, incorporating higher-order terms in itself does not resolve the
problem we discussed when m(2)

1 (c)m(2)
0 (c) > 0.

To gain insight, consider choosing h0 = C(h1�k)
1/2h1 for any given h1 where

C(h1�k) = C0 + C1h1 + C2h
2
1 + C3h

3
1 + · · · + Ckh

k
1 for some constants C0�C1� � � � �Ck

and positive k.10 We first consider the case of k = 1 with C(h1�1) = C0 + C1h1, where
C0 =m(2)

1 (c)/m(2)
0 (c). In this case, the sum of the first- and second-order bias terms is

b1

2
[
m(2)

1 (c)−C(h1�1)m(2)
0 (c)

]
h2

1 + [
b2�1(c)−C(h1�1)3/2b2�0(c)

]
h3

1

=
{
−b1

2
C1m

(2)
0 (c)+ b2�1(c)−C

3/2
0 b2�0(c)

}
h3

1 +O
(
h4

1
)
�

By choosing C1 = 2[b2�1(c) − C
3/2
0 b2�0(c)]/[b1m

(2)
0 (c)], one can make the order of bias

O(h4
1). Next, consider C(h1�2) = C0 + C1h1 + C2h

2
1, where C0 and C1 are as determined

10Given that bandwidths are necessarily positive, we must have C0 > 0, although we allow C1�C2� � � � �Ck

to be negative. For sufficiently large n and for any k, we always have C(h1�k) > 0 given C0 > 0 and we
assume this without loss of generality.
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above. In this case,

b1

2
[
m(2)

1 (c)−C(h1�2)m(2)
0 (c)

]
h2

1 + [
b2�1(c)−C(h1�2)3/2b2�0(c)

]
h3

1

= −{
b1C2m

(2)
0 (c)+ 3C1/2

0 C1b2�0(c)
}
h4

1/2 +O
(
h5

1
)
�

Hence, by choosing C2 = −3C1/2
0 C1b2�0(c)/[b1m

(2)
0 (c)], one can make the order of the

bias term O(h5
1). Similar arguments can be formulated generally: the discussion above

is summarized in the following lemma.

Lemma 2. Suppose that the conditions stated in Lemma 1 hold. Also suppose
m

(2)
1 (c)m

(2)
0 (c) > 0. Then there exist a combination of h1 and h0 such that the AMSE2n

defined in (3) becomes

v

nh1f (c)

{
σ2

1 (c)+ σ2
0 (c)

[
m(2)

1 (c)

m
(2)
0 (c)

]1/2}
+O

(
h2(k+3)

1

)

for an arbitrary integer k> 0.

Lemma 2 says, given that our target is to minimize the AMSE2n with respect to two
bandwidths, we can make the objective function converge to zero arbitrarily close to the
rate 1/n by a proper choice of bandwidths when m(2)

1 (c)m(2)
0 (c) > 0. This implies non-

existence of the optimal solution.11 Lemma 2 can be generalized to the case of the AMSE
with higher-order bias terms. Lemma A.1 in Appendix A shows, given that our target is
to minimize the AMSE with up to (K − 1)th-order bias terms for any K > 2, there exists
a combination of h1 and h0 such that the AMSE can be made converge to 0 at the rate
arbitrarily close to 1/n.

2.2 Simultaneous selection of bandwidths

Note the dichotomous nature of the problem with the AMSE objective function or its
higher-order version AMSE2n. When m(2)

1 (c)m(2)
0 (c) > 0, the trade-off breaks down even

with AMSE2n as Lemma 2 shows.
We define a new objective function which shows that the bandwidths that minimize

it adapt to both situations without knowing the sign of m(2)
1 (c)m(2)

0 (c). The new objective

11In the present approach, we consider choosing the bandwidths for the LLR estimator. In the literature
of regression function estimation, it is common to employ local polynomial regression (LPR) of second
order when the conditional mean function is three times continuously differentiable because it is known
to reduce bias (see, e.g., Fan (1992)). However, we have two reasons for confining our attention to the LLR.
First, as shown later, we can achieve the same bias reduction with the LLR when the sign of the product of
the second derivatives is positive. When the sign is negative, the existence of the third derivatives becomes
unnecessary. Second, even when we use a higher-order LPR, we end up with an analogous problem. For
example, the first-order bias term is removed by using the second-order LPR, but when the signs of b2�1(c)

and b2�0(c) are the same, the second-order bias term can be eliminated by using an appropriate choice of
bandwidths.
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function is a modified version of the AMSE with the second-order bias term (MMSE):

MMSEn(h) =
{
b1

2
[
m(2)

1 (c)h2
1 −m

(2)
0 (c)h2

0
]}2

+ {
b2�1(c)h

3
1 − b2�0(c)h

3
0
}2

+ v

nf (x)

{
σ2

1 (x)

h1
+ σ2

0 (x)

h0

}
�

A notable characteristic of the MMSE is that the bias component is represented by
the sum of the squared first- and the second-order bias terms. Intuitively, when
m(2)

1 (c)m(2)
0 (c) < 0, the first-order bias term dominates the second order and the

standard trade-off of the first-order bias term and the variance term emerges. When
m(2)

1 (c)m(2)
0 (c) > 0, the first-order bias term can be made small, but the second-order

term and the variance term provide the appropriate trade-off.
The bandwidth selection method discussed above is infeasible because the MMSE

contains unknown quantities. We propose a feasible bandwidth selection method based
on the MMSE by replacing the unknown objects in the MMSE by their nonparametric
estimates. Consider the following plug-in version of the MMSE denoted by MMSEp:

MMSEp
n (h) =

{
b1

2
[
m̂(2)

1 (c)h2
1 − m̂

(2)
0 (c)h2

0
]}2

+ {
b̂2�1(c)h

3
1 − b̂2�0(c)h

3
0
}2

+ v

nf̂ (c)

{
σ̂2

1 (c)

h1
+ σ̂2

0 (c)

h0

}
�

(4)

where m̂
(2)
j (c), b̂2�j(c), σ̂2

j (c), and f̂ (c) are consistent estimators of m(2)
j (c), b2�j(c), σ2

j (c),

and f (x) for j = 0�1, respectively.12 Let (ĥ1� ĥ0) be a combination of bandwidths that
minimizes the MMSEp given in (4) and ĥ denote (ĥ1� ĥ0).13 The next theorem charac-
terizes the asymptotic properties of ĥ. The theorem demonstrates that the bandwidth
selection methods adapt to the underlying sign of m(2)

1 (c)m
(2)
0 (c) automatically.

Let the bandwidths, (h∗
1�h

∗
0), be the unique minimizer of

AMSE1n(h) =
{
b1

2
[
m(2)

1 (c)h2
1 −m(2)

0 (c)h2
0
]}2

+ v

nf (c)

{
σ2

1 (c)

h1
+ σ2

0 (c)

h0

}
� (5)

when m(2)
1 (c)m(2)

0 (c) < 0, and when m(2)
1 (c)m(2)

0 (c) > 0 let (h∗
1�h

∗
0) be the unique mini-

mizer of

AMSE2n(h)= {
b2�1(c)h

3
1 − b2�0(c)h

3
0
}2 + v

nf (c)

{
σ2

1 (c)

h1
+ σ2

0 (c)

h0

}
(6)

subject to the restriction m(2)
1 (c)h2

1 −m(2)
0 (c)h2

0 = 0.14

12The construction of MMSEp
n requires pilot estimates for m(2)

j (c), b2�j(c), f (c), and σ2
j (c) for j = 0�1.

A detailed procedure about how to obtain the pilot estimates is given in the Supplemental Material.
13It is also possible to construct another version of the MMSEp based on the finite sample approxima-

tions discussed by Fan and Gijbels (1996, Section 4.3). We do not pursue this direction because it is com-
putationally intensive for a large sample and an unreported simulation produced almost the same result as
that based on the MMSEp given in (4).

14Uniqueness of (h∗
1�h

∗
0) in each case is verified in Arai and Ichimura (2013).
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The bandwidths (h∗
0�h

∗
1) defined in the theorem coincides with the bandwidths de-

fined above without a need to know the sign of m(2)
1 (c)m

(2)
0 (c).

Theorem 1. Suppose that the conditions stated in Lemma 1 hold. Assume further
that b2�1(c) − {m(2)

1 (c)/m(2)
0 (c)}3/2b2�0(c) 
= 0. Let m̂(2)

j (c), b̂2�j(c), f̂ (c), and σ̂2
j (c) satisfy

m̂(2)
j (c)

p→ m
(2)
j (c), b̂2�j(c)

p→ b2�j(c), f̂ (c)
p→ f (c), and σ̂2

j (c)
p→ σ2

j (c) for j = 0�1, respec-
tively. Then the following hold:

ĥ1

h∗
1

p→ 1�
ĥ0

h∗
0

p→ 1� and
MMSEp

n (ĥ)

MSEn
(
h∗) p→ 1�

where h∗
1 = θ∗n−1/5 and h∗

0 = λ∗h∗
1 with

θ∗ =
{

vσ2
1 (c)

b2
1f (c)m

(2)
1 (c)

[
m(2)

1 (c)− λ∗2m(2)
0 (c)

]
}1/5

and λ∗ =
{
−σ2

0 (c)m
(2)
1 (c)

σ2
1 (c)m

(2)
0 (c)

}1/3
� (7)

when m(2)
1 (c)m(2)

0 (c) < 0, and h∗
1 = θ∗n−1/7 and h∗

0 = λ∗h∗
1 with

θ∗ =
{

v
[
σ2

1 (c)+ σ2
0 (c)/λ

∗]
6f (c)

[
b2�1(c)− λ∗3b2�0(c)

]2

}1/7
and λ∗ =

{
m(2)

1 (c)

m(2)
0 (c)

}1/2
� (8)

when m(2)
1 (c)m(2)

0 (c) > 0.

Theorem 1 also shows that the minimized value of the plug-in version of the MMSE
is asymptotically the same as the MSE based on (h∗

1�h
∗
0).

As discussed already, Theorem 1 shows that the single objective function adapts
to two distinct cases where the optimal bandwidths converge to zero at the different
rates, n−1/5 and n−1/7. To see how this happens, consider when m(2)

1 (c)m(2)
0 (c) < 0. In

this case, the square of the first-order bias term serves as the leading penalty and that
of the second-order bias term becomes the second-order penalty, which does not af-
fect the asymptotic behavior of the bandwidths. When m(2)

1 (c)m(2)
0 (c) > 0, the square of

the second-order bias term works as the penalty and that of the first-order bias term
becomes the linear restriction in equation (6) asymptotically.15

We next discuss the advantages of the bandwidths, ĥ, through the asymptotically
equivalent bandwidths, (h∗

1�h
∗
0). In particular, we show that the bandwidths dominate

the existing approaches in the AMSE, irrespective of the values of the second derivatives.
To see this, first note that when the product of the second derivatives is positive, the
AMSE based on (h∗

1�h
∗
0) is of order n−6/7 whereas the AMSE based on the optimal band-

widths chosen for each of the regression function separately (we refer to these band-
widths, Independent Bandwidths (IND)) is of order n−4/5.16 The same order holds for

15In this case, the first-order bias term can be considered as the regularization term in the sense that it
provides additional information on the bandwidths.

16The independent selection chooses the bandwidths on the left and the right of the cut-off optimally for
each function without paying attention to the relationship between the two functions. The IND bandwidths
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the single bandwidth approach such as IK bandwidth unless the two second derivatives
are exactly the same. Thus, when the product of the second derivatives is positive, the
bandwidths, (h∗

1�h
∗
0), are more efficient than either the IK bandwidth or the IND band-

widths in the sense that the AMSE has a faster rate of convergence.
The only exception to this observation is when the second derivatives are the same.

In this case, the IK bandwidth is

hIK = θIKn
−1/7�

where

θIK = CIK

(
σ2

1 (c)+ σ2
0 (c)[

σ2
1 (c)

]2/7{
p1

[
m(3)

1 (c)
]2}5/7 + [

σ2
0 (c)

]2/7{
p0

[
m(3)

0 (c)
]2}5/7

)1/5

�

CIK = [v/(2160 · 3�565 · b2
1[f (c)]5/7)]1/5, p1 = ∫ ∞

c f (x)dx, and p0 = ∫ c
−∞ f (x)dx.17 Al-

though this bandwidth is of the same order with (h∗
1�h

∗
0), it is not determined by mini-

mizing the AMSE. In fact, the ratio of the AMSE up to the second-order bias term based
on (h∗

1�h
∗
0) to that of the IK bandwidth converges to

1
1
7
γ6 + 6

7
1
γ

�

where γ = θIK/θS and θS equals θ∗ in equation (4) for λ∗ = m(2)
1 (c)/m(2)

0 (c) = 1.18 It is
easy to show that the ratio is strictly less than one and equals one if and only if γ = 1.
Since the θS depends on the second derivatives but θIK does not, the ratio can be much
larger or smaller than 1, and hence the ratio can be arbitrarily close to 0.

When the sign of the product of the second derivatives is negative, the rates of con-
vergence of the AMSEs corresponding to different bandwidth selection rules are the
same. By construction, (h∗

1�h
∗
0) lead to the lowest AMSE. Hence the issue would be how

large the difference in the AMSE could be under what kind of circumstances. The AMSEs

based on the AMSE criterion are given by

ȟ1 =
{

vσ2
1 (c)

b2
1f (c)

[
m(2)

1 (c)
]2

}1/5
n−1/5 and ȟ0 =

{
vσ2

0 (c)

b2
1f (c)

[
m(2)

0 (c)
]2

}1/5
n−1/5�

17The derivation of θIK is provided in the Supplementary Material.
18To see why the ratios of the AMSEs converges to the specified limit, note that the ratio of the AMSEs is

[
b2�1(c)− b2�0(c)

]2
θ6
S + v

[
σ2

1 (c)+ σ2
0 (c)

]
θSf (c)[

b2�1(c)− b2�0(c)
]2
θ6

IK + v
[
σ2

1 (c)+ σ2
0 (c)

]
θIKf (c)

�

Since the first-order condition implies v[σ2
1 (c) + σ2

0 (c)]/[θSf (c)] = 6[b2�1(c) − b2�0(c)]2θ6
S , substituting this

expression and some simple calculations yield the result.
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corresponding to (h∗
1�h

∗
0), IK bandwidth, and IND bandwidths are, respectively,

AMSE
(
h∗) = 5

4
n−4/5CK

[
m(2)

0 (c)
]2/5[

σ2
0 (c)

]4/5[(
γ1γ

2
2
)1/3 + 1

]6/5
�

AMSE(hIK) = 5
4
n−4/5CK

[
m(2)

0 (c)
]2/5[

σ2
0 (c)

]4/5
(γ1 + 1)2/5(γ2 + 1)4/5�

and

AMSE(hIND)= 5
4
n−4/5CK

[
m

(2)
0 (c)

]2/5[
σ2

0 (c)
]4/5]((γ1γ

2
2
)1/5 + 1

)2((
γ1γ

2
2
)2/5 + 1

)
�

where γ1 = −m(2)
1 (c)/m(2)

0 (c), γ2 = σ2
1 (c)/σ

2
0 (c), and CK = [b1v2/f (c)

2]2/5.
Clearly, the AMSE based on (h∗

1�h
∗
0) relative to that based on the IK depends only on

γ1 and γ2. It is straightforward to show that the maximum of the ratio is 1 and attained
if and only if γ1 = γ2. Efficiency as a function of γ1 given γ2 and that as a function of
γ2 given γ1 are plotted in Figure 2(a) and Figure 2(b), and the contour of the ratio is
depicted in Figure 2(c). We note that while the region on which the ratio is close to 1 is
large, the ratio is less than 0�8 whenever γ1 and γ2 are rather different.

The bandwidths (h∗
1�h

∗
0) have the advantage over the IND bandwidths, too. Again,

clearly the AMSE of (h∗
1�h

∗
0) relative to that of the IND only depends on γ1 and γ2. The

ratio attains its minimum when γ1γ
2
2 = 1 and the minimum value is 26/5/(12/5) �= 0�957.

It is an interesting finding that when the sign of the second derivatives differs, there is
less than 5% gain in efficiency by (h∗

1�h
∗
0) over IND.

In summary, the bandwidths (h∗
1�h

∗
0) improve the rate of convergence of AMSE when

the sign of the product of the second derivatives is positive. When the sign is negative, it
is more efficient than either the IK bandwidth or the IND bandwidths although the gain
over IND is less than 5%.

Another important issue would be the robustness of ĥ with respect to the sign of
the product of the second derivatives since the behavior of (h∗

1�h
∗
0) changes discontin-

uously at m(2)
1 (c)m

(2)
0 (c) = 0. The discontinuous behavior seems unlikely to produce a

well-behaved estimator and this was confirmed by our unreported simulation experi-
ments. In fact, the robustness is the reason why we consider the bandwidths based on
the MMSE rather than the plug-in version of (h∗

1�h
∗
0). We can show that the minimizer

of MMSEp
n , ĥ, is unique around m

(2)
1 (c)m

(2)
0 (c) = 0 regardless of the sign of the second

derivatives and that ĥ changes continuously with respect to the second derivatives.19

This is how ĥ performs stably around m(2)
1 (c)m(2)

0 (c) = 0.

3. Extension

In this section, we extend the framework of the simultaneous bandwidth selection to
the problem of the sharp regression kink (RK) design developed by CLPW. We then pro-
pose the confidence interval of the RD and RK design estimators based on the proposed
bandwidths in the spirit of CCT.

19The property of ĥ is discussed in the Supplemental Material.
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(a) Efficiency as a function of γ1 given γ2

(b) Efficiency as a function of γ2 given γ1

Figure 2. The ratio of the AMSEs, AMSE(h∗)/AMSE(hIK), as a function of γ1 and γ2. (a) The
ratio of the AMSEs as a function of γ1 given γ2, (b) the ratio of the AMSEs as a function of γ2

given γ1, and (c) the contour of the ratio of the AMSEs, as a function of γ1 and γ2.

3.1 Sharp regression kink design

The sharp RK design is a class of models where a continuous treatment variable is a
known kinked function of an assignment variable. The sharp RK design is discussed ex-
tensively by CLPW and applied to investigate the effect of unemployment benefits on
unemployment durations. CLPW employed several bandwidths including the optimal
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(c) Contour as a function of γ1 and γ2

Figure 2. Continued.

bandwidth proposed by CCT as well as a rule-of-thumb bandwidth proposed by Fan and
Gijbels (1996). CCT extends the approach for the RD design by IK to the case of the RK
design. Since the bandwidth by CCT is based on a single bandwidth approach, it would
be meaningful to propose to choose distinct bandwidths as in the sharp RD design.

The sharp RK design has a similar structure to the sharp RD design and the
treatment-on-treated parameter, denoted τSRK up to a known multiplicative constant,
is given using the notation introduced in the previous section by

τSRK(c) =m(1)
1 (c)−m(1)

0 (c)�

A standard estimation method is to use the LPR of second order. Denote the LPR
estimators by m̂(1)

1 (c) and m̂(1)
0 (c). Then τSRK(c) is estimated by τ̂SRK(c) = m̂(1)

1 (c) −
m̂(1)

0 (c).
We follow the approach taken for the sharp RD design to choose bandwidths for the

sharp RK design. The next lemma provides the MSE expansion up to a second-order bias
term, which plays a key role to propose the optimal bandwidths.

Lemma 3. Suppose Assumptions 1–4 and 5 with κ= 5 hold. Then it follows that

MSEn(h) = {
d1

[
m

(3)
1 (c)h2

1 −m
(3)
0 (c)h2

0
] + [

d2�1(c)h
3
1 − d2�0(c)h

3
0
] + o

(
h3

1 + h3
0
)}2

+ w

nf(c)

{
σ2

1 (c)

h3
1

+ σ2
0 (c)

h3
0

}
+ o

(
1

nh3
1

+ 1

nh3
0

)
�
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where, for j = 0�1,

d1 = e′
1S

−1
0�2c3�2/3!� w = e′

1S
−1
0�2S

∗
0�2S

−1
0�2e1�

d2�j(c) = (−1)j+1
{[m(3)

j (c)

3!
f (1)(c)

f (c)
+

m(4)
j (c)

4!
]
e′

1S
−1
0�2c4�2

−
m

(3)
j (c)

2
f (1)(c)

f (c)
e′

1S
−1
0�2S1�2S

−1
0�2c3�2

}
�

e2 is the unit vector (0�1�0)′, Sk�p and S∗
k�p are (p + 1) × (p + 1) matrices of which (i� j)

element is given by μk+i+j−2 and μk+i+j−1, respectively, and ck�p is a (p+ 1)-dimensional
column vector of which jth element is given by μk+j−1.

It is evident that the MSE of the sharp RK estimator possesses the same structure as
that of the sharp RD estimator. This fact suggests the bandwidths, which minimize the
following MMSE:

MMSEp
n (h) = {

d1
[
m̂(3)

1 (c)h2
1 − m̂

(3)
0 (c)h2

0
]}2 + {[

d̂2�1(c)h
3
1 − d̂2�0(c)h

3
0
]}2

+ w

nf̂ (c)

{
σ̂2

1 (c)

h3
1

+ σ̂2
0 (c)

h3
0

}
�

(9)

where, for j = 0�1, m̂(3)
j (c), d̂2�j(c), σ̂2

j (c), and f̂ (c) are the consistent estimators of

m
(3)
j (c), d2�j(c), σ2

1 (c), and f (c), respectively.20 Let (ĥ1� ĥ0) be a pair of the bandwidths
that minimizes the MMSEp. The next theorem describes their asymptotic properties.

Theorem 2. Suppose that the conditions stated in Lemma 3 hold. Assume further that
d2�1(c)− {m(3)

1 (c)/m
(3)
0 (c)}3/2d2�0(c) 
= 0. Then the following hold:

ĥ1

h∗
1

p→ 1�
ĥ0

h∗
0

p→ 1� and
MMSEp

n (ĥ)

MSEn
(
h∗) p→ 1�

where h∗
1 = θ∗n−1/7 and h∗

0 = λ∗h∗
1 with

θ∗ =
{

3wσ2
1 (c)

4d2
1f (c)m

(3)
1 (c)

[
m(3)

1 (c)− λ∗2m(3)
0 (c)

]
}1/7

and λ∗ =
{
−σ2

0 (c)m
(3)
1 (c)

σ2
1 (c)m

(3)
0 (c)

}1/5
�

(10)
when m

(3)
1 (c)m

(3)
0 (c) < 0, and h∗

1 = θ∗n−1/9 and h∗
0 = λ∗h∗

1 with

θ∗ =
{

w
[
σ2

1 (c)+ σ2
0 (c)/λ

∗3]
2f (c)

[
d2�1(c)− λ∗3d2�0(c)

]2

}1/9
and λ∗ =

{
m(3)

1 (c)

m
(3)
0 (c)

}1/2
� (11)

when m
(3)
1 (c)m

(3)
0 (c) > 0.

20A detailed procedure to obtain these pilot estimates are provided in the Supplemental Material.
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The proof of Theorem 2 is analogous to that of Theorem 1 and it is provided in the
Supplemental Material.

Theorem 2 shows that the bandwidths that minimize the MMSE is asymptotically
equivalent to (h∗

1�h
∗
0), and analogously to Theorem 1, the bandwidths adapt automati-

cally to the sign of m(3)
1 (c)m(3)

0 (c). That is, the bandwidths, (h∗
1�h

∗
0), are the unique min-

imizer of

AMSE1n(h)= {
d1

[
m(3)

1 (c)h2
1 −m(3)

0 (c)h2
0
]}2 + w

nf(c)

{
σ2

1 (c)

h3
1

+ σ2
0 (c)

h3
0

}
�

when m(3)
1 (c)m(3)

0 (c) < 0, and when m(3)
1 (c)m(3)

0 (c) > 0, (h∗
1�h

∗
0) are the unique mini-

mizer of

AMSE2n(h)= {
d2�1(c)h

3
1 − d2�0(c)h

3
0
}2 + w

nf(c)

{
σ2

1 (c)

h3
1

+ σ2
0 (c)

h3
0

}
�

subject to the restriction m(3)
1 (c)h2

1 −m
(3)
0 (c)h2

0 = 0.
One notable difference between the sharp RK and RD designs is that the bandwidths

are now of order n−1/7 when m
(3)
1 (c)m

(3)
0 (c) < 0 and n−1/9 when m

(3)
1 (c)m

(3)
0 (c) > 0. The

advantages of the bandwidths, (h∗
1�h

∗
0), over the existing bandwidths are parallel to the

case of the RD design.

3.2 Confidence intervals

The main purpose of this paper is to choose bandwidths optimally for point estima-
tion. In practice, estimation of confidence intervals is also important. For the construc-
tion of confidence intervals for the RD and RK estimators, as CCT discuss, the conven-
tional confidence intervals are not valid when the optimal bandwidths are employed
and that the coverage probabilities of the conventional confidence intervals tend to be
much lower than the nominal one. Then CCT propose novel confidence interval estima-
tors based on the bias-corrected RD and RK estimators with the robust standard errors,
which account for variability in the bias estimators. See Calonico, Cattaneo, and Farrell
(forthcoming) for more discussions on theoretical superiority of the confidence interval
proposed by CCT. Here, we propose confidence interval estimators in the spirit of CCT.
Through simulations, we demonstrate their usefulness in the next section.

The robust confidence interval estimators proposed by CCT require a modification
for the RD and RK estimators based on our bandwidths since the conditions on the
bandwidths imposed by Theorems 1 and 2 of CCT are violated by our bandwidths when
the sign of the product of the relevant order (second or third) derivatives is positive.
However, we show that the approach of CCT can be extended to cover the case by em-
ploying the bias correction suitable for the estimators based on our bandwidths. While
the bias correction based on the first-order bias term is sufficient for the estimators
by CCT, our bias-corrected estimators take the second-order bias term into consider-
ation in addition to the first-order bias term. Hence our confidence interval estimators
are based on the following bias-corrected estimators. Let h = (h1�h0) be the bandwidth
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used to estimate the relevant treatment effect. Also let hk = (hk�1�hk�0), for k = 2�3�4 be
the pilot bandwidth to estimate the kth derivatives, where hk�1 and hk�0 are the band-
widths on the right and left of the cut-off point, respectively:21

τ̂bc
SRD(h�h2�h3)= τ̂SRD(c)− B̂SRD�1(h�h2)− B̂SRD�2(h�h2�h3)�

τ̂bc
SRK(h�h3�h4)= τ̂SRK(c)− B̂SRK�1(h�h3)− B̂SRK�2(h�h3�h4)�

where τ̂SRD(c) and τ̂SRK(c) are the SRD and SRK estimators discussed above,
B̂SRD�1(h�h2) and B̂SRK�1(h�h3) are the estimators of the first-order bias terms,
B̂SRD�2(h�h2�h3) and B̂SRK�2(h�h3�h4) are the estimators of the second-order bias terms
for the SRD and SRK, respectively.22 When the sign of the second derivatives of the con-
ditional mean functions, m(2)

1 (c) and m(2)
0 (c) are distinct in the case of the SRD, the esti-

mator of the first-order bias term plays a main role as in CCT. However, when the sign of
the second derivatives is the same, the estimator of the first-order bias term converges
to zero and then the estimator of the second-order bias term plays the main role. The
case for the SRK is analogous.

The next theorem shows asymptotic normality of the bias-corrected estimator and it
indicates how to construct the robust confidence interval. The estimators of the second-
order bias terms require the pilot estimates, f̂ (c) and f̂ (1)(c). We estimate them with the
bandwidths of optimal orders under the following assumption.23

Assumption 6. The Lebesgue density of Xi, denoted f , is an element of G3(D) where D is
an open neighborhood of c and is bounded above and strictly positive on D�

Theorem 3. Suppose that the conditions stated in Assumptions 1–4 and 6 hold:

(i) (Sharp RD Design) In addition, suppose that Assumption 5 with κ = 4 hold. As-
sume that, for the bandwidths on the right of the cut-off point, h1, h2�1, and h3�1,
nmin{h5

1�h
5
2�1�h

7
3�1/h

2
j } × max{h4

1�h
4
2�1�h

2
1h

2
3�1} → 0 and nmin{h1�h2�1�h3�1} → ∞ and as-

sume that the analogous conditions hold for the bandwidths on the left. Then

τ̂bc
SRD(h�h2�h3)− τSRD(c)√

V bc
SRD(h�h2�h3)

d→N(0�1)�

where the exact form of V bc
SRD(h�h2�h3) is given in Appendix C.

21As provided in the Supplemental Material, we use the bandwidths, hk�1 and hk�0, of the same order.
22The explicit forms of the bias-correction terms are provided in Appendix C. Our bias correction is

slightly different from the one by CCT. While CCT use the finite sample approximation for the compo-
nents related to the constants that depend solely on the kernel function, we use the constants directly to be
consistent for the construction of the MMSE.

23The pilot bandwidths to estimate f (c) and f (1)(c) are of order n−1/5 and n−1/7, respectively. The explicit
expressions are provided in the Supplemental Material. We use these bandwidths because they are natural
choices and simplify the proof. It is possible to generalize the results for a wide range of pilot bandwidths
at the cost of more notation in the proof.
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(ii) (Sharp RK Design) In addition, suppose that Assumption 5 with κ = 5 holds.
Assume that, for the bandwidths on the right of the cut-off point, h1, h3�1, and h4�1,
nmin{h7

1�h
7
3�1�h

9
4�1/h

2
1} × max{h4

1�h
4
3�1�h

2
1h

2
4�1} → 0 and nmin{h1�h2�1�h3�1} → ∞ and as-

sume that the analogous conditions hold for the bandwidths on the left. Then

τ̂bc
SRK(h�h3�h4)− τSRK(c)√

V bc
SRK(h�h3�h4)

d→N(0�1)�

where the exact form of V bc
SRK(h�h3�h4) is given in Appendix C.

The proof of Theorem 3 is provided in the Supplemental Material. This theorem is
an application of the CCT approach. The robust variances given in Theorem 3 consist
of three components. The first component is the conventional variance and the second
is the one due to the variability of the bias-correction term for the first-order bias. The
sum of the first and the second components is the robust variance in the context of CCT.
The third component shows up in the present case because of the variability related to
the bias-correction term for the second-order bias.

Theorem 3 suggests the following 100(1 − α)-percent confidence intervals for the
sharp RD design

Irbc
SRD(h�h2�h3)=

[
τ̂bc

SRD(h�h2�h3)± zα/2

√
V̂ bc

SRD(h�h2�h3)
]
� (12)

where zα/2 is α/2 percentile of the standard normal distribution. The same implications
hold for the sharp RK design and the 100(1 − α)-percent confidence intervals are given
by

Irbc
SRK(h�h3�h4) =

[
τ̂bc

SRK(h�h3�h4)± zα/2

√
V̂ bc

SRK(h�h3�h4)
]
�

As in the results given in CCT, Theorem 3 are flexible in terms of the choice of the band-
widths. For implementation, following CCT, we use the bandwidths of the same order
for h, h2, and h3 (h, h3, and h4) so that all components of the robust variance are of the
same order for the sharp RD design (sharp RK design). Again, following the current prac-
tice of CCT, we specifically set h= h2 = h3 for the sharp RD and h= h3 = h4 for the sharp
RK designs.

4. Simulation

To investigate the finite sample performance of the proposed method, we conducted
simulation experiments. Our simulation experiments demonstrate that the theoreti-
cal advantages of the proposed bandwidths have over the existing bandwidth selection
rules, such as the IK, IND, and CCT bandwidths, realize in the sample sizes relevant for
empirical studies in general, and especially so for the simulation designs taken directly
from empirical studies.
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4.1 Simulation designs

We consider four designs. Designs 1–3 are the ones used for simulation experiments
in the present context by IK and CCT. Designs 1 and 2 are motivated by the empirical
studies of Lee (2008) and Ludwig and Miller (2007), respectively. Design 4 mimics the
situation considered by Ludwig and Miller (2007) where they investigate the effect of
Head Start assistance on Head Start spending in 1968 on child mortality. This design
corresponds to Panel A of Figure II in Ludwig and Miller (2007, p. 176).24

The designs are depicted in Figure 3. For the first two designs, the sign of the product
of the second derivatives is negative so that the AMSE convergence rates for all band-
width selection rules are the same. For the next two designs, the sign is positive. For
these two cases, (h∗

1�h
∗
0) has the slower convergence rate compared to IND. Design 3,

examined by IK, however, has the same second derivatives on the right and on the left
of the cut of point, so that the convergence rate of the AMSE for IK is the same with that
for (h∗

1�h
∗
0).

For each design, the assignment variable Xi is given by 2Zi − 1 where Zi have a Beta
distribution with parameters α = 2 and β = 4. We consider a normally distributed addi-
tive error term with mean zero and standard deviation 0�1295. The specification for the
assignment variable and the additive error are exactly the same as that considered by
IK. We use data sets of 500 and 2000 observations and the results are drawn from 10,000
replications.

4.2 Results

Table 1 presents the simulation results regarding point estimation. The first column
shows the sample size and the second column explains the design. The third column re-
ports the method used to obtain the bandwidth(s). MMSE refers to the proposed band-
width selection rule based on MMSEp

n (h) in equation (4). IND is the independent band-
width. IK is the bandwidth denoted by ĥopt in Table 2 of IK.25 CCT is the bandwidth
proposed in Section 2.6 of Calonico, Cattaneo, and Titiunik (2014b).26 The CCT band-
width is the refined version of the IK bandwidth, which uses the nearest neighbor-type
variance and the general regularization term which depends on the variance of the LPR
estimator of the second derivatives.

The fourth and fifth columns report the mean (labeled “Mean”) and standard devia-
tion (labeled “SD”) of the bandwidths for MMSE, IND, IK, and CCT. For MMSE and IND,
these columns report the bandwidth obtained for the right side of the cut-off point. The

24We followed IK and CCT to obtain the functional form. We fit the fifth-order global polynomial with
different coefficients for the right and the left of the cut-off point after rescaling.

25Algorithms provided by Imbens and Kalyanaraman (2009) and IK differ slightly for computing the vari-
ances and the regularization terms. See Section 4.2 of Imbens and Kalyanaraman (2009) and Section 4.2 of
IK for more details. Given that they provide a Stata code for the former and that it is used in many empirical
researches, we show the result for the former. Our unreported simulation finds that two algorithms perform
very similarly except Design 2 where the former performs significantly better than the latter.

26Our Matlab code is constructed based on the R code developed by CCT. See Calonico, Cattaneo, and
Titiunik (2015) for details.
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(a) Design 1. Lee (2008) Data (b) Design 2. Ludwig and Miller I (2007) Data

(Design 1 of IK and CCT) (Design 2 of CCT)

m1(x) = 0�52 + 0�84x− 3�00x2 + 7�99x3 − 9�01x4 + 3�56x5 m1(x) = 0�26 + 18�49x− 54�8x2 + 74�3x3 − 45�02x4 + 9�83x5

m0(x) = 0�48 + 1�27x+ 7�18x2 + 20�21x3 + 21�54x4 + 7�33x5 m0(x) = 3�70 + 2�99x+ 3�28x2 + 1�45x3 + 0�22x4 + 0�03x5

(c) Design 3. Constant Additive Treatment Effect (d) Design 4. Ludwig and Miller II (2007, Figure II. B) Data

(Design 3 of IK)

m1(x) = 0�52 + 0�84x− 3�0x2 + 7�99x3 − 9�01x4 + 3�56x5 m1(x) = 0�09 + 5�76x− 42�56x2 + 120�90x3 − 139�71x4 + 55�59x5

m0(x) = 0�42 + 0�84x− 3�0x2 + 7�99x3 − 9�01x4 + 3�56x5 m0(z)= 0�03 − 2�26x− 13�14x2 − 30�89x3 − 31�98x4 − 12�1x5

Figure 3. Simulation Design. The dashed line in the panel for Design 1 denotes the density of
the forcing variable. The supports for m1(x) and m0(x) are x≥ 0 and x < 0, respectively.

sixth and seventh columns report the corresponding ones on the left sides for MMSE and
IND. The eighth and ninth columns report the bias (Bias) and the root mean squared er-
ror (RMSE) for the sharp RD estimate. Bias and RMSE are 5% trimmed versions since
unconditional finite sample variance of local linear estimators is infinite (see Seifert and
Gasser (1996)). The tenth column reports efficiency relative to the most efficient band-
width selection rule based on the RMSE. The eleventh and twelfth columns report RMSE
and efficiency based on the true objective functions for the respective bandwidth selec-
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Table 1. Bias and RMSE for τ̂SRD(c).

ĥ1 ĥ0 τ̂SRD

n Design Method Mean SD Mean SD Bias RMSE Eff RMSE* Eff*

500 1 MMSE 0�333 0�165 0�380 0�158 0�027 0�051 0�959 0�062 1
IND 0�767 0�574 0�590 0�402 0�039 0�049 1 0�063 0�981
IK 0�432 0�115 0�038 0�051 0�970 0�063 0�986
CCT 0�204 0�043 0�019 0�053 0�928 0�063 0�978

2 MMSE 0�074 0�005 0�187 0�033 0�038 0�076 1 0�081 1
IND 0�145 0�012 0�279 0�019 0�115 0�126 0�603 0�083 0�979
IK 0�177 0�010 0�138 0�148 0�513 0�088 0�913
CCT 0�097 0�011 0�047 0�085 0�886 0�088 0�913

3 MMSE 0�309 0�159 0�205 0�043 −0�022 0�053 0�942 0�046 1
IND 0�354 0�283 0�180 0�062 −0�007 0�050 1 0�047 0�988
IK 0�199 0�029 −0�014 0�051 0�988 0�046 0�998
CCT 0�154 0�014 −0�007 0�054 0�929 0�051 0�903

4 MMSE 0�259 0�091 0�701 0�203 0�009 0�054 1 0�039 1
IND 0�612 0�535 1�218 0�974 0�058 0�065 0�833 0�072 0�530
IK 0�337 0�073 0�074 0�083 0�654 0�077 0�494
CCT 0�139 0�025 0�027 0�066 0�823 0�079 0�496

2000 1 MMSE 0�322 0�193 0�264 0�125 0�021 0�033 0�973 0�035 1
IND 0�730 0�604 0�360 0�120 0�041 0�044 0�723 0�036 0�979
IK 0�359 0�083 0�036 0�041 0�780 0�036 0�987
CCT 0�181 0�040 0�016 0�032 1 0�036 0�984

2 MMSE 0�055 0�002 0�137 0�010 0�021 0�042 1 0�046 1
IND 0�109 0�004 0�200 0�009 0�066 0�072 0�589 0�047 0�979
IK 0�121 0�004 0�069 0�076 0�558 0�051 0�913
CCT 0�070 0�006 0�025 0�048 0�883 0�051 0�913

3 MMSE 0�299 0�155 0�166 0�026 −0�009 0�028 0�989 0�026 1
IND 0�288 0�217 0�148 0�067 −0�003 0�028 0�989 0�027 0�950
IK 0�160 0�024 −0�007 0�028 1 0�026 0�999
CCT 0�130 0�009 −0�004 0�029 0�965 0�028 0�903

4 MMSE 0�257 0�082 0�600 0�188 0�014 0�034 1 0�022 1
IND 0�528 0�442 0�994 0�837 0�054 0�057 0�604 0�041 0�520
IK 0�274 0�420 0�066 0�070 0�487 0�044 0�485
CCT 0�106 0�017 0�019 0�039 0�872 0�045 0�488

Note: n is the sample size. “Eff” stands for the efficiency based on RMSE relative to the method which performs best. RMSE*
and Eff* are based on the infeasible bandwidths which depend on the true values of parameters.

tion rules. These can be considered as the theoretical predictions based on asymptotic
analysis.27

We now discuss the simulation results. The sign of the product of the second deriva-
tives is negative for Designs 1 and 2. Thus, the AMSEs for all the bandwidth selection
rules converge in the same rate, n−4/5, where n is the sample size. For Design 1, theoret-
ical efficiency is not so different across different bandwidth selection rules. Reflecting

27A detailed procedure to obtain RMSE* is provided in the Supplemental Material.
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this, the simulation results show similar performances, for sample size 500, across differ-
ent bandwidth selection rules. As the sample size increases, however, the performance
of MMSE and CCT improve relative to IND and IK. Note that the relative efficiency of the
MMSE is higher than the asymptotic prediction for sample size 2000. This is attained by
the finite sample performance of MMSE, in terms of RMSE, realizing close to the theo-
retical prediction. We conjecture that the same reasoning holds for CCT.

For Design 2, the magnitude of the ratio of the second derivatives is larger for this
design compared with Design 1, so that the RMSE is larger relative to Design 1 for the
same sample size. For Design 2, we observe the same tendency as that of Design 1 with
greater difference. Relative performance of IK is worse for this design compared to the
performance in Design 1 reflecting the theoretical relative efficiency loss of IK for this
design. We note that CCT improve over IK significantly because of the refinement such
as the nearest neighbor variance and regularization term based on the LPR. The effi-
ciency gain of MMSE is about 10% relative to CCT and about 42% relative to IK. The
observations made for n = 500 also hold when n = 2000.

Next, we turn to Designs 3 and 4, in which the sign of the product of the second
derivatives is positive. In general, these cases should show the advantage of MMSE over
IND, as the AMSE for it converges with rate n−6/7 whereas IND’s AMSE converges with
rate n−4/5. For Design 4, the same rate advantage holds for MMSE over IK and CCT. How-
ever, the second derivatives are the same for Design 3, which corresponds to the excep-
tional case as discussed in Section 2.2.

For Design 3, while there are some variations when n = 500, the performances of all
bandwidth selection rules match the asymptotic theoretical predictions when n = 2000.

Design 4 is the design in which the theoretical prediction of the performance of the
MMSE clearly dominates other bandwidth selection rules. And the simulation results
demonstrate this. IND, IK, and CCT bandwidths tend to lead to larger biases. We em-
phasize here that the main advantage of using the proposed bandwidth selection rule
is to take advantage of situations like Design 4 without incurring much penalty in other
cases.

In summary, the simulation demonstrates (i) the performance of MMSE is close to
the theoretical prediction while IND and IK suffer from the finite sample approxima-
tion, (ii) CCT improves IK significantly, especially when the magnitude of the ratio of the
second derivatives is large, and (iii) MMSE dominates others when the magnitude of the
ratio of the second derivatives is large.

Note that the comparison based on the RMSE can understate the difference between
different bandwidth selection rules. This happens because large bias and very small vari-
ance can lead to reasonable size of the RMSE but this implies that RD estimators are
concentrated on the biased value. Figure 4 shows the simulated CDF of |τ̂ − τ| for dif-
ferent bandwidth selection rules for 10,000 simulations. Figure 4 visualizes the results
presented in Table 1 and confirms the observations made for Table 1.

Table 2 shows the simulation results analogous to those in Table 1 but based on the
bandwidths which are half and double the optimal bandwidths. This experiment con-
veys an implication of a robustness check, which are commonly implemented in em-
pirical research. We focus on the results of MMSE and CCT since they exhibit a clear



Q
u

an
titative

E
co

n
o

m
ics

9
(2018)

Sim
u

ltan
eo

u
s

selectio
n

o
fo

p
tim

alb
an

d
w

id
th

s
465

(a) Design 1, n = 500 (b) Design 2, n = 500 (c) Design 3, n = 500 (d) Design 4, n = 500

(e) Design 1, n = 2000 (f) Design 2, n= 2000 (g) Design 3, n = 2000 (h) Design 4, n = 2000

Figure 4. Simulated CDF of |τ̂ − τ| for different bandwidth selection rules for 10,000 simulations.
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Table 2. Bias and RMSE for τ̂SRD(c).

ĥ/2 2̂h

n Design Method Bias RMSE Eff Bias RMSE Eff

500 1 MMSE 0�015 0�058 0�846 0�028 0�040 1�219
IND 0�033 0�050 0�988 0�029 0�037 1�314
IK 0�023 0�050 0�986 0�027 0�037 1�332
CCT 0�007 0�066 0�747 0�035 0�049 1�008

2 MMSE 0�012 0�096 0�790 0�134 0�145 0�521
IND 0�033 0�075 1�011 0�360 0�365 0�207
IK 0�041 0�081 0�933 0�396 0�401 0�189
CCT 0�016 0�100 0�756 0�155 0�168 0�450

3 MMSE −0�004 0�062 0�799 −0�148 0�171 0�292
IND 0�001 0�064 0�782 −0�091 0�118 0�423
IK −0�002 0�066 0�757 −0�131 0�149 0�334
CCT −0�001 0�075 0�668 −0�058 0�071 0�700

4 MMSE −0�019 0�064 0�841 0�050 0�060 0�894
IND 0�025 0�051 1�059 0�053 0�060 0�908
IK 0�042 0�065 0�832 0�063 0�070 0�770
CCT 0�011 0�082 0�660 0�062 0�076 0�713

2000 1 MMSE 0�009 0�034 0�944 0�031 0�035 0�911
IND 0�023 0�031 1�016 0�028 0�031 1�019
IK 0�019 0�031 1�026 0�028 0�031 1�029
CCT 0�006 0�036 0�896 0�035 0�039 0�814

2 MMSE 0�006 0�052 0�813 0�078 0�083 0�508
IND 0�018 0�042 1�000 0�223 0�224 0�188
IK 0�019 0�046 0�919 0�223 0�225 0�187
CCT 0�006 0�056 0�752 0�088 0�095 0�455

3 MMSE −0�001 0�033 0�856 −0�072 0�078 0�359
IND 0�001 0�035 0�793 −0�046 0�065 0�428
IK −0�001 0�036 0�773 −0�066 0�076 0�370
CCT 0�000 0�040 0�707 −0�035 0�041 0�688

4 MMSE −0�011 0�033 1�043 0�053 0�056 0�612
IND 0�020 0�041 0�837 0�054 0�056 0�610
IK 0�032 0�043 0�796 0�068 0�070 0�484
CCT 0�006 0�046 0�738 0�050 0�057 0�600

Note: n is the sample size. “Eff” stands for the efficiency based on RMSE relative to the method which performs best in
Table 1.

pattern although IND and IK perform more or less similarly especially when n = 2000.
For all designs and sample sizes, the average bias decreases for ĥ/2 at the cost of more
variation, leading to increase in RMSE. For all designs and sample sizes except Design 1
with n= 500, the larger bandwidths, 2ĥ, increase bias, and consequently the efficiencies
in terms of RMSE deteriorate. This is more evident for the case of n = 2000 than n = 500.
For the case of n = 2000, the efficiency losses are at least 9% and can be as large as 64%.
These results imply that care must be taken in interpreting results of a commonly imple-
mented robustness check. Unless underlying functional forms of the estimand are close
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Table 3. Bias and RMSE for the conditional mean functions, n = 500.

m̂1(c) m̂0(c)

Design Method Bias RMSE Bias RMSE

1 MMSE 0�005 0�038 −0�021 0�037
IK 0�011 0�032 −0�027 0�037

2 MMSE 0�028 0�071 −0�010 0�040
IK 0�128 0�137 −0�010 0�039

3 MMSE 0�004 0�039 0�027 0�049
IK 0�007 0�039 0�021 0�045

4 MMSE 0�106 0�120 0�098 0�101
IK 0�139 0�145 0�066 0�074

to be linear, it is very natural to observe that the resulting point estimates are rather dif-
ferent from those based on the optimal bandwidths due to the increased variability for
ĥ/2 and bias for 2ĥ, and hence interpreting them is not straightforward at all. It would be
more sensible to use various optimal bandwidths for a robustness check. In this respect,
MMSE complements the existing optimal bandwidths nicely since MMSE is based on a
different principle from IK and CCT.

Next, we show that the proposed method also estimates not only the treatment ef-
fects but also each conditional mean function at the cut-off point reasonably well. The
discussion provided in the previous section might have made an impression that the
proposed method produces larger bias in estimating the conditional mean functions
when the sign of the products of the second derivatives is positive while keeping the
bias of the “difference” of the conditional mean functions small because removing the
first-order bias term could incur larger bandwidths. This could be true if the second-
order bias term does not work well as a penalty. Table 3 reports the bias and the RMSE
for the conditional mean functions, m1(c) and m0(c), at the cut-off point. There is no
evidence that the proposed method estimates the RD parameter with larger bias of the
estimates for the conditional mean functions.

Finally, we show the simulation results concerning confidence interval. Table 4
shows empirical coverage (EC) and average interval length (AL) for various methods.
“Nonvalid” stands for the 100(1 − α)% conventional confidence intervals given by

ISRD(h) = [
τ̂SRD(h)± zα/2

√
V̂SRD(h)

]
�

where τ̂SRD(h) is the bias-uncorrected sharp RD estimate and V̂SRD(h) is the commonly
used conventional variance using a bandwidth h.

“Conventional” stands for the 100(1 − α)% conventional confidence interval, com-
monly considered in the nonparametric literature, given by

ISRD(h) = [
τ̂bc

SRD(h�h2�h3)± zα/2

√
V̂SRD(h)

]
�
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Table 4. Empirical coverage and average length for 95% confidence interval.

Nonvalid Conventional US Robust

n Design MMSE CCT MMSE CCT MMSE MMSE CCT CCF

500 1 EC 0�861 0�902 0�743 0�812 0�937 0�970 0�934 0�931
AL 0�175 0�202 0�175 0�202 0�271 0�367 0�300 0�354

2 EC 0�898 0�876 0�660 0�810 0�913 0�958 0�936 0�935
AL 0�287 0�319 0�287 0�319 0�511 0�635 0�508 0�629

3 EC 0�922 0�929 0�734 0�806 0�947 0�970 0�929 0�922
AL 0�204 0�230 0�204 0�230 0�318 0�411 0�344 0�409

4 EC 0�837 0�878 0�765 0�790 0�898 0�956 0�923 0�921
AL 0�183 0�246 0�183 0�246 0�256 0�340 0�370 0�443

2000 1 EC 0�768 0�844 0�700 0�793 0�923 0�960 0�935 0�941
AL 0�095 0�107 0�095 0�107 0�164 0�195 0�157 0�189

2 EC 0�910 0�879 0�678 0�802 0�941 0�954 0�935 0�931
AL 0�161 0�170 0�161 0�170 0�297 0�321 0�251 0�306

3 EC 0�927 0�940 0�753 0�814 0�947 0�963 0�943 0�939
AL 0�110 0�124 0�110 0�124 0�182 0�207 0�182 0�221

4 EC 0�815 0�867 0�776 0�796 0�919 0�951 0�933 0�933
AL 0�094 0�138 0�094 0�138 0�140 0�163 0�203 0�247

Note: n is the sample size. EC and AL stand for empirical coverage (%) and average interval length, respectively. “Nonvalid”
and “Conventional” are constructed with the conventional standard error without and with bias correction, respectively, “US”
stands for undersmoothing, “Robust” stands for the CCT-type robust confidence interval. “MMSE,” “CCT,” and “CCF” stand for
bandwidths used to construct the confidence intervals.

where τ̂bc
SRD(h�h2�h3) is the bias-uncorrected sharp RD estimate. For both “Nonvalid”

and “Conventional,” MMSE uses the proposed bandwidths, ĥ, and CCT employs the
bandwidth, ĥCCT proposed by Section 2.6 of Calonico, Cattaneo, and Titiunik (2014b).

For MMSE, the confidence interval based on the undersmoothing idea denoted by
“US” is also presented. “US” is constructed as

IUS
SRD(h)= [

τ̂SRD(h)± zα/2

√
V̂SRD(h)

]
�

where h is the undersmoothed bandwidth, ĥ = n−1/6ĥMMSE. This multiplying factor
n−1/6 is ad hoc but turned out to produce reasonable coverage probability. Though the
“Nonvalid” confidence interval is asymptotically invalid because the nonnegligible bias
term is ignored, the “US” confidence interval is asymptotically valid.

“Robust” signifies the CCT-type robust confidence interval. The robust confidence
intervals by CCT and CCF are given by

Ibc
SRD�CCT(h�h2) =

[
τ̂bc

SRD�CCT(h�h2)± zα/2

√
V̂ bc

SRD�CCT(h�h2)
]
�

where the bias-corrected sharp RD estimate τ̂bc
SRD�CCT(h�h2) and the robust variance

V̂ bc
SRD�CCT(h�h2) are given in Theorem 1 of CCT. CCT is computed by using (ĥCCT� ĥCCT)
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for (h�h2) and CCF uses (n−1/20ĥCCT� n
−1/20ĥCCT) as discussed in Calonico, Cattaneo,

and Farrell (forthcoming).
For MMSE, the robust confidence interval is given by (12). The bandwidth we use for

(h�h2�h3) is (ĥMMSE� ĥMMSE� ĥMMSE) when the estimated signs of the second derivatives
are distinct as in CCT and n−1/25 × (ĥMMSE� ĥMMSE� ĥMMSE) otherwise. This modification
is due to the fact that the bandwidths are of order n−1/7 when the signs are the same.
When the bandwidths are of order n−1/7, the order of the asymptotically negligible com-
ponent in bias estimation is close to that of the sharp RD estimate and it affects the
performance of the confidence interval for Design 4.

Table 4 shows that the performance of the “Nonvalid” and “Conventional” confi-
dence intervals is unstable and tend to be lower than the nominal coverage probabil-
ity (95%). We observe that the CCT-type robust confidence intervals improve empirical
coverage. The CCT-type robust confidence intervals proposed in the previous section
perform reasonably well relative to those by CCT and Calonico, Cattaneo, and Farrell
(forthcoming). While the empirical coverages of CCT and CCF are below the nominal
coverage probability, those of MMSE tend to be conservative.

5. Empirical illustration

We illustrate how the proposed method in this paper can contribute to empirical re-
search. In doing so, we revisit the problem considered by Ludwig and Miller (2007). They
investigated the effect of Head Start (hereafter HS) on health and schooling. HS is the
federal government’s program aimed to provide preschool, health, and other social ser-
vices to poor children, age three to five and their families. They note that the federal
government assisted HS proposals of the 300 poorest counties based on the county’s
1960 poverty rate and find that the county’s 1960 poverty rate can become the assign-
ment variable where the cut-off value is given by 59�1984.28 They assess the effect of HS
assistance on numerous measures such as HS participation, HS spending, other social
spending, health, mortality, and education. The effect of HS on child mortality is exten-
sively reexamined by Cattaneo, Titiunik, and Vazquez-Bare (2017) using a local random-
ization framework as well as a nonparametric framework.

Here, we revisit the study on the effect of HS assistance on HS spending and mor-
tality provided in Tables II and III of Ludwig and Miller (2007). The outcome variables
considered in Tables II and III include HS spending per child in 1968 and 1972, and the
mortality rate for the causes of death that could be affected by the Head Start health
services to all and black children age five to nine. The 1972 HS spending per child and
the mortality rate for all children generated the simulation Designs 2 and 4 in the pre-
vious section, respectively. In obtaining the RD estimates, they employ the LLR using a
triangular kernel function as proposed by Porter (2003). For bandwidths, they use three
different bandwidths, 9, 18, and 36 in a somewhat ad-hoc manner rather than relying on
some bandwidths’ selection methods. This implies that the bandwidths and the number

28Since the poverty rate is based on the county level information, the sampling framework does not
exactly correspond to the one considered in the paper. However, in this illustration we follow the estimation
framework used by Ludwig and Miller (2007), which fits into our framework.
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of observations with nonzero weight used for estimation are independent of outcome
variables.

Columns 3 to 5 in Table 5 reproduce the results presented in Tables II and III of
Ludwig and Miller (2007) for comparison. The point estimates for 1968 HS spending
per child range from 114�711 to 137�251. Perhaps we may say that they are not very sen-
sitive to the choice of bandwidth in this case. However, the point estimates for 1972 HS
spending per child range from 88�959 to 182�396. What is more troubling would be the
fact that they produce mixed results in statistical significance. For 1968 HS spending per
child, the point estimate with the bandwidth of 36 produce the result, which is statis-
tically significant at the 5% level while the estimates with bandwidths of 9 and 18 are
not statistically significant even at the 10% level. The results for 1972 HS spending per
child are similar in the sense that the estimates based on the bandwidths of 9 and 36 are
statistically significant at the 10% level while the estimate based on the bandwidth of 18
is not at the same level. We also note that the 1% and 5% statistical significance denoted
by ∗ and ∗∗, respectively, for the LM are the ones reported in LM. They are based on the
percentile-T bootstrap and they may not be asymptotically valid as pointed by CCT.

The results on the mortality rate for all children age five to nine exhibit statistical sig-
nificance though the point estimates range from −1�895 to −1�114 depending on which
bandwidth to employ. The point estimate for the mortality rate for black children age
five to nine with bandwidth 18 is −2�719, which is statistically significant at the 5% level
while the point estimates with bandwidths 9 and 36 are −2�275 and −1�589, respectively,
which are not statistically significant even at 10% level. It would be meaningful to see
what sophisticated bandwidth selection methods can offer under situations where the
results based on ad-hoc approaches cannot be interpreted easily.

Columns 6 to 8 in Table 5 present the result based on the bandwidth selection meth-
ods based on MMSE, IK and CCT. The p-value and confidence interval are constructed
by the CCT-type robust approach in contrast to that used by LM. For 1968 and 1972
HS spending per child, the point estimates differ substantially but they are all statis-
tically insignificant. For the mortality rate for all children age five to nine, MMSE and
IK methods produce similar point estimates while the point estimate by CCT is slightly
bigger. They all agree on the statistical significance. For black children, the point esti-
mates differ but they are all statistically insignificant. To summarize, we found large but
statistically insignificant point estimates for HS spending and statistically significant es-
timates for mortality rates for all children but not for black children. What is comforting
is that MMSE, IK, and CCT agree on statistical significance although they produce the
different point estimates. The results presented in Table 5 alone do not imply any supe-
riority of the proposed method over the existing methods because we never know true
causal relationships. However, the results based on the proposed method should pro-
vide a meaningful perspective given the simulation experiments demonstrated in the
previous section especially when the curvatures of the conditional mean functions look
rather different.

Finally, we also present, in Table 6, the estimation results based on ĥ/2 and 2ĥ as pre-
sented in various empirical research as a robustness check. We can observe considerable
variation in the point estimates as well as statistical significance, which is expected by
the simulation results.
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Table 5. RD estimates of the effect of head start assistance.

Variable LM MMSE IK CCT

1968 HS Bandwidth 9 18 36 〈11�261�11�488〉 19�013 6�561
spending No. of obs. {310�217} {674�287} {1877�300} {385�238} {727�290} {222�178}

RD estimate 137�251 114�711 134�491∗∗ 139�333 108�128 137�035
Robust p-value 0�689 0�219 0�381
Robust 95% CI [−518�597�784�742] [−75�224�328�065] [−112�445�293�898]
US 95% CI [−194�963�417�464]

1972 HS Bandwidth 9 18 36 〈27�006�18�224〉 20�9235 6�917
spending No. of obs. [217�310] [287�674] [300�1877] [754�251] [824�294] [238�185]

RD estimate 182�119∗ 88�959 130�153∗ 106�338 89�102 118�593
Robust p-value 0�512 0�272 0�568
Robust 95% CI [−337�215�575�674] [−89�353�316�962] [−170�124�310�274]
US 95% CI [−293�484�383�256]

Child Bandwidth 9 18 36 〈16�028�6�346〉 7�074 5�225
mortality No. of obs. [217�310] [287�674] [300�1877] [587�170] [243�184] [177�147]
(All) RD estimate −1�895∗∗ −1�198∗ −1�114∗∗ −2�285 −2�359 −3�017

Robust p-value 0�030 0�007 0�008
Robust 95% CI [−6�108�−0�306] [−6�322�−0�981] [−6�390�−0�946]
US 95% CI [−6�043�−0�302]

Child Bandwidth 9 18 36 〈34�865�22�372〉 9�832 7�402
mortality No. of obs. [217�310] [287�674] [300�1877] [936�252] [312�209] [243�178]
(Black) RD estimate −2�275 −2�719∗∗ −1�589 −2�751 −1�394 −0�741

Robust p-value 0�748 0�735 0�230
Robust 95% CI [−6�132�4�404] [−5�803�4�093] [−8�268�1�986]
US 95% CI [−7�354�4�733]

Note: The results for LM is reproduced based on Tables II and III of Ludwig and Miller (2007) for reference. The 1% and 5% statistical significance denoted by ∗ and ∗∗, respectively, for
the LM are the ones reported in LM. They are based on the percentile-T bootstrap and they may not be asymptotically valid. The bandwidths on the left and right of the cut-off points are
presented in angle brackets for the MMSE. The numbers of observations with nonzero weight on the left and right of the cut-off are shown in curly brackets. “Robust p-value” is obtained
by the CCT-type robust t value based on the bias correction and robust standard error as in Cattaneo, Titiunik, and Vazquez-Bare (2017). For IK and CCT, the “Robust 95% CI” is computed
as in CCT. For MMSE, “Robust 95% CI” and “US 95% CI” are the CCT-type robust and undersmoothed CIs constructed by the method described in Section 3.2, respectively.
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Table 6. RD estimates of the effect of head start assistance.

ĥ/2 2ĥ

Variable MMSE IK CCT MMSE IK CCT

1968 HS Bandwidth 〈5�630�5�744〉 9�5063 3�2804 〈22�522�22�975〉 38�025 13�121
spending No. of obs. [186�162] [331�226] [100�96] [909�298] [2031�300] [463�250]

RD estimate 125�672 137�918 114�071 117�623 122�619 124�494
SE 357�771 102�96 100�781 364�667 102�055 100�193
Robust p-value 0�917 0�249 0�984 0�780 0�403 0�139
Robust 95% CI [−663�811�738�652] [−83�119�320�485] [−195�528�199�532] [−612�920�816�573] [−114�617�285�437] [−48�159�344�598]
US 95% CI [−299�201�323�115] [−159�142�438�088]

1972 HS Bandwidth 〈13�503�9�112〉 10�462 3�458 〈54�012�36�448〉 41�847 13�833
spending No. of obs. [342�180] [360�230] [107�101] [2123�299] [2321�300] [500�258]

RD estimate 92�860 150�714 134�262 108�645 119�644 119�936
SE 274�927 107�076 148�10 285�382 101�826 103�991
Robust p-value 0�848 0�432 0�096 0�857 0�492 0�144
Robust 95% CI [−486�087�591�627] [−125�777�293�960] [−43�879�536�674] [−508�023�610�673] [−129�678�269�481] [−52�001�355�644]
US 95% CI [−130�223�468�597] [−157�145�369�694]

Child Bandwidth 〈8�014�3�173〉 3�537 2�612 〈32�056�12�692〉 14�147 10�449
mortality No. of obs. [280�88] [108�103] [80�72] [1561�244] [509�260] [357�228]
(All) RD estimate −3�12 −3�435 −2�908 −1�71 −1�888 −2�03

SE 1�876 1�918 2�431 1�383 1�226 1�338
Robust p-value 0�095 0�201 0�389 0�033 0�048 0�03
Robust 95% CI [−6�806�0�548] [−6�209�1�308] [−6�857�2�671] [−5�654�−0�233] [−4�827�−0�021] [−5�524�−0�279]
US 95% CI [−6�591�2�012] [−5�127�−0�989]

Child Bandwidth 〈17�432�11�186〉 4�916 3�701 〈69�729�44�744〉 19�663 14�804
mortality No. of obs. [402�192] [153�126] [102�97] [2372�267] [663�263] [481�246]
(Black) RD estimate −2�029 −2�141 −3�188 −1�421 −2�407 −2�103

SE 4�248 3�270 3�993 5�178 1�514 2�065
Robust p-value 0�832 0�349 0�312 0�598 0�295 0�500
Robust 95% CI [−9�227�7�424] [−10�543�2�276] [−11�8611�3�790] [−12�880�7�418] [−4�554�1�381] [−5�441�2�653]
US 95% CI [−5�957�1�674] [−6�629�1�326]

Note: ĥ/2 and 2ĥ stand for the bandwidths which are half and twice as large as those in Table 5. The numbers of observations with nonzero weight on the left and right of the cut-off
are shown in curly brackets. “Robust p-value” is obtained by the CCT-type robust t value based on the bias correction and robust standard error as in Cattaneo, Titiunik, and Vazquez-Bare
(2017). For IK and CCT, the “Robust 95% CI” is computed as in CCT. For MMSE, “Robust 95% CI” and “US 95% CI” are the CCT-type robust and undersmoothed CIs constructed by the
method described in Section 3.2, respectively.
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6. Conclusion

In this paper, we proposed a new bandwidth selection method for the RD estimators.
A main feature of the proposed method is that we choose two bandwidths simultane-
ously. When we allow two bandwidths to be distinct, we showed that the minimization
problem of the AMSE exhibits dichotomous characteristics depending on the sign of the
product of the second derivatives of the underlying functions, but we also showed that
the proposed method automatically adapted to the underlying conditions.

We provided a discussion on the validity of the simultaneous choice of the band-
widths and their theoretical advantages and illustrated through simulations that the
proposed bandwidths produce results comparable to the theoretical results in the sam-
ple sizes relevant for empirical works. A simulation study based on designs motivated
by existing empirical literatures exhibits nonnegligible gain of the proposed method
over existing methods. We also demonstrated how the proposed method can be imple-
mented via an empirical example. In addition, we demonstrate that the common ro-
bustness check should not be appropriate and propose the robustness check based on
several optimal bandwidths.

We extended the proposed approach for the sharp RD design in two ways. First, we
proposed the bandwidth selection rule for the sharp RK design following the idea de-
veloped for the sharp RD design. Second, we proposed the robust confidence intervals
for the sharp RD and RK designs following CCT. We show that the general approach pro-
posed by CCT can be implemented for the LLR estimator based on the proposed band-
widths.

The bandwidths selection rule for the fuzzy RD design is not investigated in the pa-
per. The main obstacle to extend the idea developed in the paper is that we need to
choose four bandwidths simultaneously for the fuzzy RD design. While we discuss the
difficulty of the bandwidth selection problem for the sharp RD design when we allow
two distinct bandwidths, the difficulty is amplified significantly when we allow four dis-
tinct bandwidths for the fuzzy RD design.29 The extension is nontrivial, and hence left
as future research.

Appendix A: Generalization of Lemma 2

Lemma A.1. Suppose that the bias component is expanded up to (K − 1)th-order for any
integer K > 2 and it has the following form:(

α1�2h
2
1 − α0�2h

2
0
) + (

α1�3h
3
1 − α0�3h

3
0
) + · · · + (

α1�Kh
K
1 − α0�Kh

K
0

)
�

Also suppose α1�2α0�2 > 0. Then there exists a combination of h1 and h0 such that the
AMSE including up to the (K − 1)th-order bias term becomes

v

nh1f (c)

{
σ2

1 (c)+ σ2
0 (c)

[
α1�2

α0�2

]1/2}
+O

(
h2(�+K)

1

)
for an arbitrary nonnegative integer �.

29This difficulty is partially solved by reducing the selection of four bandwidths to that of two bandwidths
in Arai and Ichimura (2016). The development is based on the present paper.
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Proof. It suffices to show that the bias component can be made arbitrarily small.
Let h2

0 = C(h1�k)h
2
1 where C(h1�k) = C0 + C1h + · · · + Ckh

k for k > K − 2. Let Cj =
{C0�C1� � � � �Cj} and we write f (C0�C2� � � � �Cj) as f (Cj) for arbitrary function f which
has C1�C2� � � � �Cj as arguments. Observe that, for j > 2, C(h1�k)

j/2 can be written as

C(h1�k)
j/2 =

∞∑
s=0

φj�s(Cs)hs
1

for some φj�s . For even j, φj�s ≡ 0 when s > jk/2. We choose C0 such that α1�2 −α0�2C0 = 0
holds. This choice of C0 removes the first-order bias term. Next, we select C1 given C0 by

−C1α0�2 + (
α1�3 −φ3�0(C0)α0�3

) = 0�

This choice of C1 combined with C0 described above removes the second-order bias
term too. In general, given (C0�C1� � � � �Cj−1), we can choose Cj for j ≤K − 2 by setting

−Cjα0�2 −φ3�j−1(Cj−1)α0�3 − · · · −φj+1�1(C1)α0�j+1 + (
αj+2�1 −φj+2�0(C0)αj+2�0

) = 0�

For j satisfying K − 2 < j ≤ k, we can choose Cj successively by

−Cjα0�2 −φ3�j−1(Cj−1)α0�3 − · · · −φj+1�1(C1)α0�j+1 −φK�j−K+2(Cj−K+2)αK�0 = 0�

The choice (C0�C1� � � � �Ck) makes the order of bias O(hk+3
1 ). This completes the proof. �

Appendix B: Proofs of Theorem 1

Recall that the objective function is

MMSEp
n (h) =

{
b1

2
[
m̂(2)

1 (c)h2
1 − m̂(2)

0 (c)h2
0
]}2

+ [
b̂2�1(c)h

3
1 − b̂2�0(c)h

3
0
]2

+ v

nf̂ (c)

{
σ̂2

1 (c)

h1
+ σ̂2

0 (c)

h0

}
�

To begin with, we show that ĥ1 and ĥ0 satisfy Assumption 2. If we choose a sequence
of h1 and h0 to satisfy Assumption 2, then MMSEp

n (h) converges to 0. Assume to
the contrary that either one or both of ĥ1 and ĥ0 do not satisfy Assumption 2. Since
m(2)

0 (c)3b2�1(c)
2 
= m(2)

1 (c)3b2�0(c)
2 by assumption, m̂(2)

0 (c)3b̂2�1(c)
2 
= m̂(2)

1 (c)3b̂2�0(c)
2

with probability approaching 1. Without loss of generality, we assume this as well. Then
at least one of the first-order bias terms, the second-order bias term, and the vari-
ance term of MMSEp

n (ĥ) does not converge to zero in probability. Then MMSEp
n (ĥ) >

MMSEp
n (h) holds for some n. This contradicts the definition of ĥ. Hence ĥ satisfies As-

sumption 2.
We first consider the case in which m(2)

1 (c)m
(2)
0 (c) < 0. In this case, with proba-

bility approaching 1, m̂(2)
1 (c)m̂(2)

0 (c) < 0, so that we assume this without loss of gen-
erality. When this holds, note that the leading terms are the first term and the last
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term of MMSEp
n (ĥ) since ĥ1 and ĥ0 satisfy Assumption 2. Define the plug-in version

of AMSE1n(h) provided in (5) by

AMSEp
1n(h) =

{
b1

2
[
m̂(2)

1 (c)h2
1 − m̂(2)

0 (c)h2
0
]}2

+ v

nf̂ (c)

{
σ̂2

1 (c)

h1
+ σ̂2

0 (c)

h0

}
�

A calculation yields h̃1 = C̃1n
−1/5 and h̃0 = C̃0n

−1/5 where

C̃1 =
{

vσ̂2
1 (c)

b2
1f̂ (c)m̂

(2)
1 (c)

[
m̂(2)

1 (c)− λ̂2
1m̂

(2)
0 (c)

]
}1/5

� λ̂1 =
{
− σ̂2

0 (c)m̂
(2)
1 (c)

σ̂2
1 (c)m̂

(2)
0 (c)

}1/3
�

and C̃0 = C̃1λ̂1. With this choice, AMSEp
1n(h̃), and hence MMSEp

n (h̃) converges at the rate

of n−4/5. Note that if ĥ1 or ĥ0 converges at the rate slower than n−1/5, then the bias term
converges at the rate slower than n−4/5. If ĥ1 or ĥ0 converges at the rate faster than n−1/5,
then the variance term converges at the rate slower than n−4/5. Thus, the minimizer of
MMSEp

n (h), ĥ1, and ĥ0 converges to 0 at rate n−1/5.
Thus, we can write ĥ1 = Ĉ1n

−1/5 + op(n
−1/5) and ĥ0 = Ĉ0n

−1/5 + op(n
−1/5) for some

OP(1) sequences Ĉ1 and Ĉ0 that are bounded away from 0 and ∞ as n → ∞. Using this
expression,

MMSEp
n (ĥ) = n−4/5

{
b1

2
[
m̂(2)

1 (c)Ĉ2
1 − m̂(2)

0 (c)Ĉ2
0
]}2

+ v

n4/5f̂ (c)

{
σ̂2

1 (c)

Ĉ1
+ σ̂2

0 (c)

Ĉ0

}
+ op

(
n−4/5)�

Note that

MMSEp
n (h̃)= n−4/5

{
b1

2
[
m̂(2)

1 (c)C̃2
1 − m̂(2)

0 (c)C̃2
0
]}2

+ v

n4/5f̂ (c)

{
σ̂2

1 (c)

C̃1
+ σ̂2

0 (c)

C̃0

}
+OP

(
n−6/5)�

Since ĥ is the optimizer, MMSEp
n (ĥ)/MMSEp

n (h̃) ≤ 1. Thus,

{
b1

2
[
m̂(2)

1 (c)Ĉ2
1 − m̂(2)

0 (c)Ĉ2
0
]}2

+ v

f̂ (c)

{
σ̂2

1 (c)

Ĉ1
+ σ̂2

0 (c)

Ĉ0

}
+ op(1)

{
b1

2
[
m̂(2)

1 (c)C̃2
1 − m̂(2)

0 (c)C̃2
0
]}2

+ v

f̂ (c)

{
σ̂2

1 (c)

C̃1
+ σ̂2

0 (c)

C̃0

}
+OP

(
n−2/5) ≤ 1�

Note that the denominator converges to

{
b1

2
[
m(2)

1 (c)C∗2
1 −m

(2)
0 (c)C∗2

0
]}2

+ v

f (c)

{
σ2

1 (c)

C∗
1

+ σ2
0 (c)

C∗
0

}
�
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where C∗
1 and C∗

0 are the unique optimizers of

{
b1

2
[
m(2)

1 (c)C2
1 −m

(2)
0 (c)C2

0
]}2

+ v

f (c)

{
σ2

1 (c)

C1
+ σ2

0 (c)

C0

}
�

with respect to C1 and C0. This implies that Ĉ1 and Ĉ0 also converge to the same respec-
tive limit C∗

1 and C∗
0 because the inequality will be violated otherwise.

Next, we consider the case with m(2)
1 (c)m(2)

0 (c) > 0. In this case, with probability ap-

proaching 1, m̂(2)
1 (c)m̂

(2)
0 (c) > 0, so that we assume this without loss of generality.

When these conditions hold, define h0 = λ̂2h1 where λ̂2 = {m̂(2)
1 (c)/m̂(2)

0 (c)}1/2. This
sets the first-order bias term of MMSEp

n (h) equal to 0. Define the plug-in version of
AMSE2n(h) in (6) by

AMSEp
2n(h) = {

b̂2�1(c)h
3
1 − b̂2�0(c)h

3
0
}2 + v

nf̂ (c)

{
σ̂2

1 (c)

h1
+ σ̂2

0 (c)

h0

}
�

Choosing h1 to minimize AMSEp
2n(h), we define h̃1 = C̃1n

−1/7 and h̃0 = C̃0n
−1/7 where

θ̂2 =
{

v
[
σ̂2

1 (c)+ σ̂2
0 (c)/λ̂2

]
6f̂ (c)

[
b̂2�1(c)− λ̂3

2b̂2�0(c)
]2

}1/7
and C̃0 = C̃1λ̂2� (13)

Then MMSEp
n (h̃) can be written as

MMSEp
n (h̃)= n−6/7{b̂2�1(c)C̃

3
1 − b̂2�0(c)C̃

3
0
}2 + n−6/7 v

f̂ (c)

{
σ̂2

1 (c)

C̃1
+ σ̂2

0 (c)

C̃0

}
�

In order to match this rate of convergence, both ĥ1 and ĥ0 need to converge at the
rate slower than or equal to n−1/7 because the variance term needs to converge at the
rate n−6/7 or faster. In order for the first-order bias term to match this rate,

m̂(2)
1 (c)ĥ2

1 − m̂(2)
0 (c)ĥ2

0 ≡ B1n = n−3/7b1n�

where b1n = OP(1) so that under the assumption that m(2)
0 (c) 
= 0, with probability ap-

proaching 1, m̂(2)
0 (c) is bounded away from 0 so that assuming this without loss of gen-

erality, we have ĥ2
0 = λ̂2

2ĥ
2
1 −B1n/m̂

(2)
0 (c). Substituting this expression to the second term

and the third term of MMSEp
n , we have

MMSEp
n (ĥ) =

{
b1

2
B1n

}2
+ {

b̂2�1(c)ĥ
3
1 − b̂2�0(c)

[
λ̂2

2ĥ
2
1 −B1n/m̂

(2)
0 (c)

]3/2}2

+ v

nf̂ (c)

{
σ̂2

1 (c)

ĥ1
+ σ̂2

0 (c)[
λ̂2

2ĥ
2
1 −B1n/m̂

(2)
0 (c)

]1/2

}
�

Suppose ĥ1 is of order slower than n−1/7. Then because m̂
(2)
0 (c)3b̂2�1(c)

2 
=
m̂(2)

1 (c)3b̂2�0(c)
2 and this holds even in the limit, the second-order bias term is of order
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slower than n−6/7. If ĥ1 converges to 0 faster than n−1/7, then the variance term con-
verges at the rate slower than n−6/7. Therefore, we can write ĥ1 = Ĉ1n

−1/7 +op(n
−1/7) for

some OP(1) sequence Ĉ1 that is bounded away from 0 and ∞ as n → ∞ and as before
ĥ2

0 = λ̂2
2ĥ

2
1 −B1n/m̂

(2)
0 (c). Using this expression, we can write

MMSEp
n (ĥ) = n−6/7

{
b1

2
b1n

}2

+ n−6/7{b̂2�1(c)Ĉ
3
1 + op(1)− b̂2�0(c)

[
λ̂2

2Ĉ
2
1 + op(1)− n−1/7b1n/m̂

(2)
0 (c)

]3/2}2

+ n−6/7 v

f̂ (c)

{
σ̂2

1 (c)

Ĉ1 + op(1)
+ σ̂2

0 (c)[
λ̂2

2Ĉ
2
1 + op(1)− n−1/7b1n/m̂

(2)
0 (c)

]1/2

}
�

Thus, b1n converges in probability to 0. Otherwise, the first-order bias term remains and
that contradicts the definition of ĥ1.

Since ĥ is the optimizer, MMSEp
n (ĥ)/MMSEp

n (h̃) ≤ 1. Thus,

op(1)+ {
b̂2�1(c)Ĉ

3
1 − b̂2�0(c)

[
λ̂2

2Ĉ
2
1 + op(1)

]3/2}2 + v

f̂ (c)

{
σ̂2

1 (c)

Ĉ1 + op(1)
+ σ̂2

0 (c)[
λ̂2

2Ĉ
2
1 + op(1)

]1/2

}

{
b̂2�1(c)C̃

3
1 − b̂2�0(c)C̃

3
0

}2 + v

f̂ (c)

{
σ̂2

1 (c)

C̃1

+ σ̂2
0 (c)

C̃0

} ≤ 1�

If Ĉ1 − C̃1 does not converge to 0 in probability, then the ratio is not less than 1 at some

point. Hence Ĉ1 − C̃1 = op(1). Therefore, ĥ0/h̃0
p→ 1 as well.

The results shown above also imply that MMSEp
n (ĥ)/MSEn(h

∗) p→ 1 in both cases. �

Appendix C: Detailed description of bias correction and Theorem 3

This section describes the bias correction terms and Theorem 3 discussed in Sec-
tion 3.2. Let β̂1�p(h1) and β̂0�p(h0) be the LPR estimators of order p (p ∈ N) with
bandwidth h1 and h0 for the right and left of the cut-off point, respectively. Then
the LPR estimator on the right of the cut-off point can be expressed as β̂1�p(h1) =
(Xp(c)

′W1�h1(c)Xp(c))
−1Xp(c)

′W1�h1(c)Y , where Xp(c) is an n × (p + 1) matrix whose
ith row is given by (1�Xi − c� � � � � (Xi − c)p), Y = (Y1� � � � �Yn)

′, and W1�h(c) =
diag{K((Xi − c)/h)I{Xi ≥ c}/h}. The LPR estimator on the left of the cut-off point can be
written analogously with W0�h(c) = diag{K((Xi − c)/h)I{Xi < c}/h}.

Note that the LPR estimator of m(ν)
j (c) based on the LPR of order p can be written

as ν!eνβ̂j�p(hj), for j = 0�1, where eν is the conformable unit vector having one in the
(ν + 1)th entry and zero in the other entry. Define τ̂ν�p(h) = τ̂1�ν�p(h1)− τ̂0�ν�p(h0) where
τ̂j�ν�p(hj) = ν!e′

νβ̂j�p(hj). It follows that τ̂SRD(c) = τ̂0�1(h) and τ̂SRK(c) = τ̂1�2(h). Suppose
that we estimate the (p+ 1)th and (p+ 2)th derivatives by the LPR of order q (= p+ 2).
The bias-corrected estimator of τ̂ν�p(h), denoted τ̂bc

ν�p�q(h�hp+1�hp+2) is defined by

τ̂bc
ν�p�q(h�hp+1�hp+2)= τ̂bc

1�ν�p�q(h1�hp+1�1�hp+2�1)− τ̂bc
0�ν�p�q(h0�hp+1�0�hp+2�0)�
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where

τ̂bc
j�ν�p�q(hj�hp+1�j�hp+2�j) = τ̂j�ν�p(hj)

− h
p+1−ν
j Bj�ν�p�q(hp+1�j)− h

p+2−ν
j Cj�ν�p�q(hp+1�j�hp+2�j)�

Bj�ν�p�q(hr�j) = e′
p+1β̂j�q(hp+1�j)ϑj�ν�p�p+1�

Cj�ν�p�q(hp+1�j�hp+2�j) = e′
p+1β̂j�q(hp+1�j)

f̂ (1)(c)

f̂ (c)
ϕj�ν�p + e′

p+2β̂j�q(hp+2�j)ϑj�ν�p�p+2�

ϑj�ν�p�r = ν!e′
νS

−1
j�0�pcj�r�p�

ϕj�ν�p = ν!e′
νS

−1
j�0�p

(
cj�p+2�p − Sj�1�pS

−1
j�0�pcj�p+1�p

)
�

with Sj�k�p = (μj�k+�1+�2)0≤�1��2≤p, cj�k�p = (μj�k+�)0≤�≤p, μ1�s = ∫ ∞
0 usK(s)ds, μ0�s =∫ 0

−∞ us ds for j = 0�1. This implies that

B̂SRD�1(h�h2)= h2
1B1�0�1�3(h2�1)− h2

0B0�0�1�3(h2�0)�

B̂SRD�2(h�h2�h3)= h3
1C1�0�1�3(h2�1�h3�1)− h3

0C0�0�1�3(h2�0�h3�0)�

B̂SRK�1(h�h3)= h2
1B1�1�2�4(h3�1)− h2

0B0�1�2�4(h3�0)�

and

B̂SRK�2(h�h3�h4) = h3
1C1�1�2�4(h3�1�h4�1)− h3

0C0�1�2�4(h3�0�h4�0)�

Let the conditional variance of the bias-corrected estimators, τ̂bc
ν�p�q(h�hp+1�hp+2),

be V bc
ν�p�q(h�hp+1�hp+2). Then it follows that

V bc
ν�p�q(h�hp+1�hp+2) = V bc

1�ν�p�q(h�hp+1�hp+2)+ V bc
0�ν�p�q(h�hp+1�hp+2�j)�

where, for j = 0�1,

V bc
j�ν�p�q(hj�hp+1�j�hp+2�j)= V (0)

j�ν�p(hj)+ V (1)
j�ν�p�q(hj�hp+1�j)+ V (2)

j�ν�p�q(hj�hp+1�hp+2�j)

− 2C(0�1)
j�ν�p�q(hj�hp+1�j)− 2C(0�2)

j�ν�p�q(hj�hp+1�hp+2�j)

+ 2C(1�2)
j�ν�p�q(hj�hp+1�j�hp+2)�

V (0)
j�ν�p(hj)= ν!2e′

ν(hj)S
−1
j�0�p(hj)Tj�p�p(hj�hj)S

−1
j�0�p(hj)eν�

V (1)
j�ν�p�q(hj�hp+1�j)= h

2(p+1−ν)
j ϑ2

j�ν�p�p+1e
′
p+1S

−1
j�0�q(hp+1�j)

× Tj�q�q(hp+1�j�hp+1�j)S
−1
j�0�q(hp+1�j)ep+1�

V (2)
j�ν�p�q(hj�hp+1�hp+2�j)= h

2(p+2−ν)
j

× {(
f̂ (1)(c)/f̂ (c)

)2
e′
p+1S

−1
j�0�q(hp+1�j)

× Tj�q�q(hp+1�j�hp+1�j)S
−1
j�0�q(hp+1�j)ep+1
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+ϑ2
j�ν�p�p+2(hj)e

′
p+2S

−1
j�0�q(hp+2�j)

× Tj�q�q(hp+2�j�hp+2�j)S
−1
j�0�q(hp+2�j)ep+2

+ 2
(
f̂ (1)(c)/f̂ (c)

)
ϕj�ν�pϑj�ν�p�p+2e

′
p+1S

−1
j�0�q(hp+1�j)

× Tj�q�q(hp+1�j�hp+2�j)S
−1
j�0�q(hp+2�j)ep+2

}
�

C(0�1)
j�ν�p�q(hj�hp+1�j)= h

p+1−ν
j ν!ϑj�ν�p�r(hj)e

′
νS

−1
j�0�p(hj)

× Tj�p�q(hj�hp+1�j)S
−1
j�0�q(hp+1�j)ep+1�

C(0�2)
j�ν�p�q(hj�hp+1�j�hp+2�j)= h

p+2−ν
j ν!

× {(
f̂ (1)(c)/f̂ (c)

)
ϕj�ν�pe

′
νS

−1
j�0�p(hj)

× Tj�p�q(hj�hp+1�j)S
−1
j�0�q(hp+1�j)ep+1

+ϑj�ν�p�p+2e
′
νS

−1
j�0�p(hj)

× Tj�p�q(hj�hp+2�j)S
−1
j�0�q(hp+2�j)ep+2

}
�

C(1�2)
j�ν�p�q(hj�hp+1�j�hp+2�j)= h

2p+3−2ν
j

× {(
f̂ (1)(c)/f̂ (c)

)
ϕj�ν�pe

′
p+1S

−1
j�0�q(hp+1�j)

× Tj�q�q(hp+1�j�hp+1�j)S
−1
j�0�q(hp+1�j)ep+1

+ϑj�ν�p�p+2e
′
p+1S

−1
j�0�q(hp+1�j)

× Tj�q�q(hp+1�j�hp+2�j)S
−1
j�0�q(hp+2�j)ep+2

}
�

Sj�k�p(hj)= (sj�k+�1+�2(hj))0≤�1��2≤p, sj�k(h) = ∑n
i=1 Kj�h(Xi − c)(Xi − c)k, Tj�k��(b1� b2) =

σ̂2
j (c)Xk(c)

′Wj�b1(c)Wj�b2(c)X�(c), and σ̂2
j is the consistent estimator of σ2

j (c) and its
explicit form is provided in Section C of the Supplemental Material. Using the nota-
tion introduced in the Appendix, V bc

SRD(h�h2�h3) and V bc
SRK(h�h3�h4) can be expressed

as V bc
0�1�3(h�h2�h3) and V bc

0�2�4(h�h3�h4), respectively.
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