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Our new approach to mobility measurement involves separating out the valuation
of positions in terms of individual status (using income, social rank, or other crite-
ria) from the issue of movement between positions. The quantification of move-
ment is addressed using a general concept of distance between positions and a
parsimonious set of axioms that characterize the distance concept and yield a
class of aggregative indices. This class of indices induces a superclass of mobility
measures over the different status concepts consistent with the same underlying
data. We investigate the statistical inference of mobility indices using two well-
known status concepts, related to income mobility and rank mobility. We also
show how our superclass provides a more consistent and intuitive approach to
mobility, in contrast to other measures in the literature, and illustrate its perfor-
mance using recent data from China.
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1. Introduction

Mobility is an important concept in several branches of social science and economics.
The way it has been conceived has depended on the particular application or even the
particular data set under consideration. Different parts of the literature have focused on
income or wealth mobility, wage mobility, educational mobility, and mobility in terms
of social class. As a consequence of this diversity, the measurement of mobility is an
intellectual problem that has been addressed from many different standpoints.1 Mo-
bility measures are sometimes defined, explicitly or implicitly, in relation to a specific
dynamic model,2 sometimes as an abstract distributional concept similar to inequality,
polarisation, dispersion, and so on.
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This paper focuses on the second interpretation of mobility measurement—mobility
measures in the abstract. It develops an approach that is sufficiently flexible to cover in-
come or wealth mobility on the one hand, and on the other, various types of “rank” mo-
bility including cases where the underlying data are categorical. There are two reasons
why such an approach is needed.

First, simple pragmatic approaches to mobility can be seriously misleading. As an
example, consider the commonly used measure of mobility 1 − β, where β is an elas-
ticity coefficient, computed as the ordinary least-squares estimation of the slope coeffi-
cient from a linear regression of log-income in period 1 on log-income on period 0. It has
been used in almost every empirical study of intergenerational income mobility (Jäntti
and Jenkins (2015)). However, this index has a major drawback. Even if a large value of
1 −β may provide evidence of significant mobility, a low value does not necessarily im-
ply low mobility. To see why, take three persons with log-incomes equal to, respectively,
(1�1�5�2) in period 0 and (1�3�2) in period 1. In this case, the index 1−β is equal to zero,
suggesting there is no mobility, while there is clear evidence of income mobility (the sec-
ond person’s log-income doubles, while the others remain unchanged). As a further ex-
ample, consider another widespread mobility measure, 1− r, where r is the Pearson cor-
relation coefficient. This has the same drawback: if log-incomes are (1�1�5�2) in period 0
and (1�2�3) in period 1, then this would give a mobility measurement equal to zero. The
problem comes from the fact that elasticity and correlation coefficients are designed to
capture a linear relationship between two variables: nonlinear relationships may remain
undetected. The two examples show that the elasticity and correlation-based indices
are inadequate to measure income mobility; they illustrate the need to develop mobility
measures with appropriate properties.

Second, some of the extensive literature3 on mobility confounds issues in the anal-
ysis that should be kept distinct. For example, in some contributions mobility is tied
specifically to income (Fields and Ok (1999b)), in others mobility is exclusively in terms
of position in the distribution. However, this way of approaching mobility analysis mixes
up the definition of mobility along with the definition of an individual’s status. As a
further example, in some approaches the distinction between mobility and income
volatility becomes fuzzy. This is unfortunate since mobility is essentially something that
characterizes society, or the individual’s relationship to the society (Dardanoni (1993))
whereas volatility can be seen as something that could relate to a single individual; mo-
bility would be meaningless for Robinson Crusoe, but income volatility might be very
important.

In setting out our approach, let us make a brief list of the essential ingredients of a
theory of mobility measurement:

1. a time frame of two or more periods;

2. a measure of an individual’s status within society;

3. an aggregation of changes in individual status over the time frame.

3We examine the performance of some of the principal mobility measures in Section 7.



Quantitative Economics 9 (2018) Measuring mobility 867

In this paper, we consider a standard two-period problem4 and focus on the interplay
between ingredients 2 and 3, the status measure, and the basis for aggregation of move-
ments.

The contribution of the paper is, first, to characterize mobility comparisons for an
arbitrary definition of status, using an axiomatic framework, and second, to show how
to implement our new approach using sample data and applying different concepts
of status. Our approach separates out the fundamental components of the mobility-
measurement problem, proposes a parsimonious set of axioms for the core theoretical
issues, and examines the statistical properties of several classes of measures that emerge
from the implementation of the theory. The paper is organized as follows. Section 2 sets
out in detail the basic ideas underlying our approach. Section 3 contains the theoretical
foundations of the approach and the formal derivation of a “superclass”—a collection of
classes—of mobility indices. The properties of the superclass are discussed in Section 4
and statistical inference for key members of the superclass are discussed in Sections 5
and 6. In Section 7, we examine the performance of other mobility measures suggested
in the literature and consider a real-world application of our approach. The conclusion
is presented in Section 8.

2. Individual status and mobility

The concept of “status” is important in an analysis of mobility: it may be defined in a
variety of ways, depending on the focus of interest of a particular study. Status could be
something that is directly observable and measurable for each individual, independent
of information about anyone else, such as a person’s income or wealth. Alternatively, it
could be that an individual’s status is only well defined in relation to information about
others—one’s location in the income distribution, for example. Our approach is suffi-
ciently flexible to cover either of these interpretations.

Because mobility is inherently quite a complex phenomenon, it is common to find
it broken down into constituent parts, for example, into structural and exchange mobil-
ity.5 However, this traditional breakdown is not so important here. What is crucial in our
approach is the notional separation of the status concept from the aggregation method.
Nevertheless, there is a link to the structural/exchange distinction as presented in the
literature. Exchange mobility can be characterized as an average of individual distances
“traveled” in the reranking process (Ayala and Sastre (2008), Van de gaer, Schokkaert,
and Martinez (2001)).6 The method of aggregation that we will apply is also based on an
elementary distance concept that could have a similar natural interpretation in terms of

4The two-period case is taken as standard in almost every empirical study of intergenerational income
mobility and in discussion of the concepts such as the Great Gatsby Curve (Corak (2006, 2013), Jäntti and
Jenkins (2015)).

5For an illuminating discussion, see Van Kerm (2004). On the definition of exchange mobility, see Tsui
(2009).

6Several ad hoc measures of income mobility pursue the idea of average distance (Mitra and Ok (1998)).
Fields and Ok (1996, 1999b) proposed a mobility index whose distance concept is based on the absolute
differences of logarithms of incomes.
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exchange mobility. As a consequence, different implementations of our classes of mobil-
ity measure would allow different ways of breaking down overall mobility into exchange
and structural mobility.

We will introduce a simple framework that allows for a variety of definitions of sta-
tus that may be useful in different contexts of mobility analysis. Assume that there is
some quantity, to be called “income,” that is cardinally measurable and interpersonally
comparable. However, this is used only as a device to show the range of possibilities with
our approach; in fact, the informational requirements for our approach are very modest:
only ordinal data are required. We need to characterize in a general way a set of classes
and a way of representing individual movements between the classes. So the word “in-
come” here is just a convenient shorthand for initiating the discussion; in what follows,
“income” can be replaced with any other quantity that is considered to be interperson-
ally comparable.

Let there be an ordered set of K income classes; each class k is associated with in-
come level xk where xk < xk+1, k= 1�2� � � � �K−1. Let k(i) be the income class occupied
by person i; then the information about a distribution is completely characterized by the
vector (xk(1)� xk(2)� � � � � xk(n)) where n is the size of the population. Clearly, this includes
the special case where classes are individual incomes if the number in each class is zero
or one and the individual is assumed to be at the lower bound of the class.

To represent mobility, we need income distributions in two time periods 0 and 1
(“before” and “after”) and the location of any person i in the two distributions. Let k0(i)

and k1(i) be the classes occupied by person i at periods 0 and 1, respectively. Mobility
is completely characterized by (xk0(1)� xk0(2)� � � � � xk0(n)) and (xk1(1)� xk1(2)� � � � � xk1(n)).
However, this does not necessarily mean that we should use some simple aggregation
of the xk or aggregation of a transformation of the xk in order to compute a mobility
index. We could instead carry out a relabeling of the income classes using information
from the income distribution. For example, we could do this using the number of per-
sons in, or below, each income class, according to the distribution in period 0:

N0(xk) :=
k∑
h=1

n0h� k= 1� � � � �K� (1)

where n0k ∈ R+ denotes the number of persons in period 0 who are in class k,
k = 1�2� � � � �K, and

∑K
k=1 n0k = n. We could also do a similar relabeling using informa-

tion about the 1-distribution. Suppose that the class sizes (n01� n02� � � � � n0K) in period
0 change to (n11� n12� � � � � n1K) in period 1, Then the new way of relabeling the income
classes is given by

N1(xk) :=
k∑
h=1

n1h� k= 1� � � � �K� (2)

where n1k ∈ R+ denotes the number of persons in period 1 who are in class k,
k= 1�2� � � � �K, and

∑K
k=1 n1k = n.

This gives a method of dealing with the second of the essential ingredients of the
mobility problem mentioned in the Introduction: how to measure an individual’s status
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within society. The combination of the two-period framework and the different types of
information about the classes enables us to specify a number of status concepts that can
be used to generate different types of mobility measure. Use ui and vi to denote individ-
ual i’s status in the 0-distribution and the 1-distribution, respectively. In this approach,
the set of status distributions is given by

U := {u|u ∈Rn+�u1 ≤ u2 ≤ · · · ≤ un
}

(3)

and person i’s history is given the ordered pair zi := (ui� vi); then consider four examples
of status concepts:

• Distribution-independent, static (1). The simplest and, perhaps, most obvious case
is where we just use the x values to evaluate individual status:

zi = (xk0(i)� xk1(i))� (4)

The information about distribution (before or after) is irrelevant to the evaluation of
individual status. This simple case results in a model of the movements of incomes.

• Distribution-independent, static (2). Clearly, case 1 can be extended to include any
case that involves a simple transformation of income:

zi =
(
ϕ(xk0(i))�ϕ(xk1(i))

)
� (5)

where the monotonic increasing function ϕ could be chosen for arbitrary conve-
nience (such as log or exp), economic interpretation (utility of x), or to insure that the
transformed variable has appropriate statistical properties. The ϕ function is used to
“revalue” the income concept and in general one would expect the mobility index to be
dependent upon the choice of ϕ; this amounts to requiring that mobility be character-
ized as a cardinal concept. But such an approach is inappropriate for some types of mo-
bility problems: if one is studying social status or educational attainment, then any one
particular cardinalization may appear to be arbitrary. To require that a mobility index be
based on purely ordinal concepts—to be independent of the cardinalization ϕ—might
seem rather demanding and to imply a somewhat vague approach to the measurement
problem. However, there is a way forward that leads to sharp conclusions: this uses the
distribution itself as a means of valuing the K classes. There are two important further
cases that we will consider.

• Distribution-dependent, static. If we wish to use information from the income dis-
tribution to evaluate a person’s status, then we might take the number of persons with
incomes no greater than that of i:

zi =
(
N0(xk0(i))�N0(xk1(i))

)
� (6)

Here, we use the cumulative numbers in class to “value” the class. It results in a concept
that is consistent with a purely ordinal approach to mobility—one that it is independent
of arbitrary monotonic, order-preserving transformations of the xk. As an aside note
that this case can be naturally extended to the case where the 1-distribution is used to
evaluate the classes: just replaceN0 withN1 in both parts of the right-hand side of (6).
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• Distribution-dependent, dynamic. An extension of the previous case that is arguably
more important is where bothN0 andN1 are used in status evaluation:

zi =
(
N0(xk0(i))�N1(xk1(i))

)
� (7)

In (7), we are taking into account the change in “valuation” of each status class that arises
from the changing income distribution.7

Status is, in principle, distinct from “income”: we could, if we wish, define status as
equal to income, but that would be an explicit normative assumption. It is also clear
that different status concepts could produce different interpretations of mobility from
the same basic data. In particular, the meaning of zero mobility depends on the way
individuals’ status is defined. For example, in each of the cases (4) to (7) it makes sense,
say, that there is zero mobility if

vi = ui� i= 1� � � � � n� (8)

Consider the n = 3 scenario depicted in Table 1: three individuals A, B, C move up the
income classes from period 0 to period 1. If status is defined as (7), then there is zero
mobility; if it is defined as (6), it is clear that mobility is positive. Now suppose that

xk = λxk−1� k= 2� � � � �K�λ > 1� (9)

Then, in the cases (4) and (5), it may make sense to consider

vi = λui� i= 1� � � � � n�λ > 0 (10)

as representing zero mobility; this would apply, for example, if one made the judgment
that uniform proportional income growth for all members of society is irrelevant for mo-
bility. Each of these answers makes sense in its own way. As a second example, suppose
that there is pure exchange mobility as far as income positions are concerned: is the mo-
bility involved in going from the situation in period 0 to that in period 1′ the same as the

Table 1. Mobility patterns.

Period 0 Period 1 Period 1′ Period 1′′

x1 A – C –
x2 B A A C
x3 C B B A
x4 – C – B
x5 – – – –

7If there was an exogenous revaluation of the K classes so that (x1� � � � � xK) in period 0 changes to
(y1� � � � � yK) in period 1—perhaps because of inflation or economic growth—then clearly one could also
consider a distribution-independent, dynamic case where zi = (xk0(i)� yk1(i)). However, this is intrinsically
less interesting and cases where the income scale changes are probably better handled as in the next para-
graph.
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mobility involved in going from period 0 to period 1′′? Again we can imagine sensible
approaches to mobility that would respond affirmatively to this question and sensible
approaches that would respond negatively.

It is also clear that allowing for different definitions of status will induce different
types of mobility measure. Moreover, the four illustrative examples of status concepts
are not exhaustive. What we will see in the theoretical development of Section 3 is that
for any given definition of status we can derive an associated class of mobility measures.
Taking this with the diversity of status concepts that may be derived from a given data
set we are, in effect, characterizing a superclass of classes of mobility measures. We will
also see that, in a practical implementation (Section 7.2 below), for a given data set very
different conclusions can be drawn about mobility trends, just by changing the status
concept while keeping the structure of the mobility measure the same.

To make progress, we exploit the separability of the concept of status from the con-
cepts of individual and aggregate mobility.

3. Mobility measures: Theory

3.1 Aggregation of histories

Let us address the third essential ingredient of the mobility problem mentioned in the
Introduction: the aggregation of the changes in status encapsulated in individual histo-
ries.8 For the analysis that follows, the status measure that is imputed can be arbitrary,
subject only that it be weakly increasing in the income levels xk: for example, it does not
matter whether it is dependent on the cardinalization of income. Assume that a mea-
sure of individual status has been agreed, determined by the information available from
the income distribution at any moment; also assume that there is an observation of the
status of each person i in periods 0 and 1; we need a coherent method of quantifying the
implicit status changes as “mobility.”

Individual movements or changes in status are completely characterized by the his-
tories zi, i = 1�2� � � � � n as defined in Section 2. The set of possible status movements Z
depends on the nature of status: if status is income, consumption, or wealth, then Z
would be a connected subset of R × R; but if status is determined by the person’s po-
sition in the distribution (in terms of absolute numbers or proportions), then Z would
equal Q+ × Q+ where Q+ is the set of nonnegative rationals; our analysis will take care
of both of these cases. Furthermore, define

Zn :=Z ×Z × · · · ×Z;
we may refer to any z ∈ Zn as a movement profile. Clearly, overall mobility for a given
profile could be described in terms of the status changes of each individual i: the in-
formation encapsulated in i’s history zi. In the Introduction, we argued that mobility is

8An early treatment of this type of problem for the specific case where status equals income is given in
Cowell (1985). However, the present treatment is more general in two ways. First, the axiomatization here
does not require differentiability or additivity; second, the current paper deals with any arbitrary represen-
tation of status (including ordinal status) rather than being specific to income; this requires a treatment of
the case where the mobility measure is defined on categorical data.
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essentially a social rather than individual concept. So, rather than trying to give mean-
ing to an “individual mobility function,” applying this to each person’s history and then
applying an aggregation function to all n observations of “individual mobility,” a more
direct approach will be used. We just need to specify a set of principles for comparing
the elements of Zn: stating these principles as formal axioms we may characterize an
aggregate mobility ordering and the ordering may yield a family of mobility measures.
To be useful, the principles underlying the ordering should respect the mobility implicit
in an individual history, but the exact form in which individual status changes are to be
quantified will emerge from the aggregate mobility ordering.

A particular advantage of our approach is that the formal axiomatization of the mo-
bility ordering (presented in Sections 3.2 and 3.3) can be completely separated from the
specification of the status concepts. Of course, it will be the case that some axioms are
particularly appropriate in the case of certain types of status measure and we will dis-
cuss these on a case-by-case basis.

3.2 Mobility ordering: Basic structure

In this section and Section 3.3, we characterize an ordering that enables us to compare
movement profiles. Use � to denote a weak ordering on Zn; denote by � the strict re-
lation associated with � and denote by ∼ the equivalence relation associated with �.
We first consider the interpretation of five axioms that underpin the approach; we then
state a basic result that follows from them.9

Axiom 1 (Continuity). � is continuous on Zn.

Axiom 2 (Monotonicity). If z�z′ ∈Zn differ only in their ith component and u′
i = ui then,

if vi > v′
i ≥ ui, or if vi < v′

i ≤ ui, z � z′.

Suppose we know that, with the sole exception of person i, each person’s history in
profile z is the same as it is in profile z′. Person i’s history can be described as follows: i
starts with the same period-0 status in z and in z′ and then moves up to a higher status
in period 1; but i’s period-1 status in profile z is even higher than it is in z′. Then Ax-
iom 2 implies that mobility would be higher in z than in z′ (a corresponding story can
be told for downward movement). Note that, in particular Axiom 2 will ensure that the
ordering � satisfies a “minimal mobility” requirement. If one starts with a profile repre-
senting complete stasis (∀i : ui = vi), then a change in any person’s status must increase
mobility.10

Axiom 3 (Independence). Let z(ζ� i) denote the profile formed by replacing the ith com-
ponent of z by the history ζ ∈ Z. For z�z′ ∈ Zn suppose that z ∼ z′ and zi = z′

i for some i:
then z(ζ� i)∼ z′(ζ� i) for all ζ ∈Z.

9The proof is in the Appendix.
10It was shown by example in the Introduction that the regression coefficient violates this minimal-

mobility property.
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Suppose that the profiles z and z′ are equivalent in terms of overall mobility and that
there is some person i with the same history zi in both z and z′. Then the same change
�zi in i’s history in both z and z′ leaves the two modified profiles as equivalent in terms
of overall mobility.

Axiom 4 (Local Immobility). Let z�z′ ∈ Zn where for some i, ui = vi, v′
i = u′

i, and for all
j 	= i, u′

j = uj , v′
j = vj . Then z ∼ z′.

Consider a profile z in which person i is immobile: change i’s status by the same
amount in both the 0-distribution and the 1-distribution (so that i is still immobile after
the change in status). Then the new profile z′ should exhibit the same mobility as the
original z.

Theorem 1. Given Axioms 1 to 4, then ∀z ∈ Zn the mobility ordering � is representable
by an increasing monotonic transform of

n∑
i=1

φi(zi)� (11)

where the φi are continuous functions Z → R, defined up to an affine transformation,
each of which is increasing (decreasing) in vi if vi >(<) ui and that has the property
φi(u�u)= biu, where bi ∈R.

3.3 Mobility ordering: Scale

Theorem 1, the first part of the characterization of the mobility ordering, shows that it
can be represented as the sum of the evaluation of individual histories where φi is the
history-evaluation function for i; but Theorem 1 leaves the specification ofφi open. The
second part of our characterization of the mobility ordering involves the comparison of
profiles at different levels of status. To do this, let us use the notation z × (λ0�λ1) for the
movement profile that is derived from z if all the 0-components (ui) are multiplied by
λ0 and all the 1-components (vi) are multiplied by λ1. Then we can introduce one more
axiom that encapsulates the idea that the ordering of profiles remains unchanged by
some scale change to status in both periods.

We then have a theorem (proof in the Appendix) showing that the evaluation func-
tion φi in (11) takes a particularly convenient form.

Axiom 5 (Status Scale Irrelevance). For any z�z′ ∈Zn such that z ∼ z′, z × (λ0�λ1)∼ z′ ×
(λ0�λ1), for all λ0�λ1 > 0.

Axiom 5 is completely natural in the case of distribution-dependent measures of
status such as (6) or (7) since it enables one to characterize mobility rankings in terms
of population proportions rather than absolute numbers. In the case where status is
given by x, one is clearly making a judgment about the mobility implications of across-
the-board changes in real income but it is a judgment that is often seen as perfectly
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unremarkable: suppose we consider that China and the US show the same mobility over
a given time interval; if we rescale the incomes in both countries at the beginning of the
interval, then China and the US still show the same mobility; the same thing is true of the
incomes at the end of the interval. However, scale irrelevance of the mobility ordering
clearly does not mean that the resulting mobility index is independent of scale changes:
more is required for this, as discussed in Section 3.4.

Theorem 2. Given Axioms 1 to 5 � is representable by (11), where φi is given by

φi(u�v)= ci
[
uαv1−α − αu− [1 − α]v]� (12)

where α�ci ∈R.

3.4 Aggregate mobility index

Theorem 2 means that the mobility ordering � implied by the five axioms in Sections 3.2
and 3.3 can be represented by the expression

∑n
i=1φi(u�v), with the φi given by (12).

Since � is an ordering, it is also representable by some continuous increasing transfor-
mation of this expression. We now examine what normalization is appropriate in order
to construct an aggregate inequality index. There are three steps.

First, it is arguable that mobility should be blind as to individual identity. If the def-
inition of status incorporates all relevant information about an individual, the labeling
i = 1� � � � � n is irrelevant and anonymity is an innocuous assumption. It simply means
that mobility depends only on individual status histories; switching the personal labels
from one history to another within a movement profile has no effect on mobility rank-
ings: if a profile z′ can be obtained as a permutation of the components of another profile
z, then they should be treated as equally mobile. If so, then all the ci should be equal and
mobility can be represented as a transform of

c

n∑
i=1

[
uαi v

1−α
i − αui − [1 − α]vi

]
� (13)

Second, consider the effect of population size. A simple replication of profiles z does
not change the essential facts of mobility. Clearly, α cannot depend on the size of the
population, but the constant c may depend on n. If any profile is replicated r times and
the index remains unchanged under replication, we have

c(n)

n∑
i=1

[
uαi v

1−α
i − αui − [1 − α]vi

]= c(nr)r n∑
i=1

[
uαi v

1−α
i − αui − [1 − α]vi

]
�

So, to ensure that the representation of � is in a form that is constant under replication,
we need to have c proportional to 1/n. Choosing for convenience the constant of pro-
portionality as 1

α[α−1] , we may write the index as some transform of this “basic-form”
mobility index:

1
α[α− 1]

[
1
n

n∑
i=1

uαi v
1−α
i − αμu − [1 − α]μv

]
� (14)
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where

μu := 1
n

n∑
i=1

ui� (15)

μv := 1
n

n∑
i=1

vi� (16)

Notice that (14) is strictly increasing (decreasing) in ui if ui > vi (ui < vi) and (14) is
strictly decreasing (increasing) in vi if ui < vi (ui > vi); this behavior is natural in view
of monotonicity (Axiom 2). Furthermore, it is clear that the basic form (14) has the prop-
erty that mobility is zero if vi = ui for all i.

Third, we may wish to normalize so that the index remains unchanged under a scale
change λ0 > 0 in the 0-distribution and under a scale change λ1 > 0 in the 1-distribution.
Whether one takes this third step or not depends on the way in which the mobility
concept is characterized, as we highlighted in the discussion of Table 1: simple income
growth may or may not be counted as mobility. If we accept that simple income growth
counts as mobility, then expression (14) gives us a complete class of measures that are
normalized to ensure anonymity and independence of population size. But if we do not,
then scale normalization is appropriate: we strengthen the scale-irrelevance property
(Axiom 5) already imposed on mobility orderings to scale-independence of the resulting
mobility index.

A transformation of (14) that involves the meansμu,μv, and that preserves the “zero”
property must take the form

ψ

(
1
n

n∑
i=1

uαi v
1−α
i − θ(μu�μv)�μu�μv

)
� (17)

where ψ is monotonic in its first argument and has the property that ψ(0�μu�μv) = 0,
and where θ is a function that is homogeneous of degree 1 with the property that
θ(μ�μ)= μ. Setting λ0 = 1/μu and λ1 = 1/μv, it is clear that (17) becomes

ψ

(
1
n

n∑
i=1

[
ui
μu

]α[ vi
μv

]1−α
− θ(1�1)�1�1

)
=ψ

(
1
n

n∑
i=1

[[
ui
μu

]α[ vi
μv

]1−α
− 1
])
� (18)

where ψ(t) :=ψ(t�1�1). A suitable cardinalization11 of ψ in (18) gives the aggregate mo-
bility measure

Mα := 1
α[α− 1]n

n∑
i=1

[[
ui
μu

]α[ vi
μv

]1−α
− 1
]
� α ∈R�α 	= 0�1� (19)

11This cardinalization ensures that Mα is well defined and nonnegative for all values of α and that, for
any profile z,Mα is continuous in α.
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where we have the following limiting forms for the cases α= 0 and α= 1, respectively,

M0 = − 1
n

n∑
i=1

vi
μv

log
(
ui
μu

/ vi
μv

)
� (20)

M1 = 1
n

n∑
i=1

ui
μu

log
(
ui
μu

/ vi
μv

)
� (21)

Expressions (19)–(21) constitute the class of aggregate mobility measures that are inde-
pendent of population size and independent of the scale of status. An individual mem-
ber of the class is characterized by the choice of α: a high positive α produces an index
that is particularly sensitive to downward movements and a negative α yields an index
that is sensitive to upward movements; see Section 4. If we refer back to the illustrative
sketch in Table 1, it is clear that Mα has the property that the change from period 0 to
period 1 in Table 1 will register zero mobility if (9) holds; but this is purely a matter of
normalisation—as we have just seen, an alternative normalization could be chosen if we
want uniform growth in status to register as positive mobility. However, the change from
period 0 to period 1′—pure exchange mobility—will produceMα > 0.

As we have just noted, this third step should not be treated as simply a minor techni-
cality. Normalization by mean status in order to ensure scale independence introduces
a complication: the type of status variation considered in the statement of Axiom 2 will
change the mean of u and/or the mean of v. This would mean, for example, that such a
status variation will affect not only the numerator of each fraction in (19)–(21), but also
the denominator. Such normalized indices still have minimal-mobility property: start-
ing from a situation of zero mobility, changing any one person’s status will result in pos-
itive mobility. But to cover cases where mobility is not close to zero, for the normalized
index we need to reconsider the monotonicity principle. This can be done by replacing
Axiom 2 with the following Axiom 6.

Axiom 6 (Monotonicity-2). If z�z′ ∈ Zn differ only in their ith and jth components and
u′
i = ui, u′

j = uj , v′
i − vi = vj − v′

j , then if vi > v′
i ≥ ui and if vj < v′

j ≤ uj , z � z′.

Note that the modified version of monotonicity in Axiom 6 will again ensure that
minimal-mobility property is satisfied. Also, Axiom 6 is clearly satisfied by the normal-
ized index. Consider, for example, the case where an infinitesimal change in period-1
status is given by dvi = v′

i − vi < 0, dvj = −dvi > 0 then the result of this infinitesimal
change on mobility is given by

nμv

[
∂Mα

∂vi
− ∂Mα

∂vj

]
= 1
α

[
μv

μu

]α[[uj
vj

]α
−
[
ui
vi

]α]
� (22)

If all the conditions on the components of the profiles in Axiom 6 are satisfied, then the
change in mobility given in (22) is clearly negative, as required.12

12There is a parallel with welfare analysis and inequality measurement. In that context, let the v-
distribution denote a distribution individual utilities, where each person’s utility is independent of anyone
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4. Discussion

The nature of the superclass referred to in the Introduction is now clear: expressions
(19)–(21) characterize a class of indices, for a given definition of the status variables u
and v; the superclass is the collection of all such classes for the different status concepts
that are supported by the data. We can generate a different class of mobility indices just
by replacing the status concept, for example, by choosing a different specification from
Section 2. Let us briefly review the issues raised by the structure of our superclass in the
light of the mobility-measurement literature.

4.1 Ordinal status

First, is there a good argument for taking an ordinal-status class of indices from the su-
perclass? Insofar as mobility is concerned with ranks rather than income levels, then
making status an ordinal concept is exactly the thing to do (Chakravarty (1984), Van
Kerm (2009)). However, there is a variety of ways of introducing an ordinal concept of
status. For example, a large section of the mobility adopts a “mobility table” or “transi-
tion matrix” approach to mobility.13 This focuses attention on the size nk of each class k
and the number of the nk that move to other classes.

To see how our approach can be reconciled with the standard transition-matrix
approach consider the following. Let there be income classes Xk := [xk�xk+1), k =
1� � � � �K. The transition matrix is Π := ‖πk�‖, where each element πk� is the conditional
probability that an individual moves to class � of the 1-distribution given that he was
initially in class k of the 0-distribution:

πk� = Pr(y0 ∈Xk�y1 ∈X�)
Pr(y0 ∈Xk) �

So
∑K
�=1πk� = 1, Pr(y0 ∈Xk)= πk and the initial income distribution (in grouped form)

is given by (Xk�πk), k= 1� � � � �K. The estimate of πk� is given by mk�/n0k, where mk� is
the number of persons who are in class k in period 0 and in class � in period 1, and n0k
is (as in Section 2) the total number of people in class k in period 0; so

∑K
j=1mkj = n0k.

The estimate of πk is given by n0k/n. Commonly used summary statistics to capture the
mobility implied byΠ are

S0(Π)=
K −

K∑
k=1

mkk/n0k

K − 1
� (23)

S1(Π)=
K −K

K∑
k=1

mkk/n

K − 1
� (24)

else’s utility; the u-distribution is irrelevant. Then the counterpart of Axiom 2 for a social-welfare function is
the Pareto principle; if utility is cardinal (so that the mean is well defined), then the counterpart of Axiom 6
is the principle of progressive transfers.

13See, for example, Atkinson (1981, 1983), Bibby (1975), D’Agostino and Dardanoni (2009), Kearl and
Pope (1984), and Shorrocks (1978b).
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S2(Π)=

1
n

K∑
k=1

K∑
�=1

mk�|k− �|

K − 1
; (25)

see Formby, Smith, and Zheng (2004). We can also use our mobility index. Let there be
income classesXk as defined above and the status of any individual in classXk in period
0 being denoted by uk, and by vk in period 1, then (19) becomes

Mα = 1
α[α− 1]

1
n

K∑
k=1

K∑
�=1

mk�

[
uk
μu

]α[ v�
μv

]1−α
− 1
α[α− 1] � (26)

The two mobility indices S2(Π) andMα are closely related: the weights |k− �| in (25) are
replaced by [uk/μu]α[v�/μv]1−α in (26) and the normalization is different.

However, the transition-matrix approach could be sensitive to the merging or split-
ting of classes or the adjustment of class boundaries. If there is a spike in the distribution
at xk−ε and the interval boundaries are changed so that xk becomes xk−δwhere δ≥ ε,
then we can get a big change in estimated mobility.

4.2 Decomposability

Our axioms induce an additive structure for the mobility index, which might be thought
to be restrictive. Mobility depends only on the individual’s status in the before- and after-
distributions. Should mobility perhaps also depend on the person’s rank relative to oth-
ers? (See, e.g., Demuynck and Van de gaer (2012).) As explained above, i’s status may
depend on i’s relative position in the distribution according to some formulations of u
and v. So, rank can enter into the formulation of the mobility index, but only through
the definition of status. In fact, the additive structure makes it particularly straightfor-
ward to interpret the underlying composition of mobility; the reason for this is that the
expressions in (19)–(21) are clearly decomposable by arbitrary population subgroups.

Let there be K groups and let the proportion of population falling in group k be pk,
the class of scale-independent mobility measures (19) can be expressed as

Mα =
K∑
k=1

pk

[
μu�k
μu

]α[μv�k
μv

]1−α
Mα�k + 1

α2 − α

(
K∑
k=1

pk

[
μu�k
μu

]α[μv�k
μv

]1−α
− 1

)
(27)

for α 	= 0�1, where μu�k (μv�k) is the mean status in period 0 (period 1) in group k,
and μu, μv are the corresponding population means defined in (15), (16) (so that μu =
K−1∑K

k=1pkμu�k, μv = K−1∑K
k=1pkμv�k). In particular, notice that in the case where

u = x and v = μx, we obtain the standard formula of decomposability for the class of
GE inequality indices (Cowell (2011)). We have the following limiting forms for the cases
α= 0 and α= 1, respectively,

M0 =
K∑
k=1

pk

[
μv�k
μv

]
M0�k −

K∑
k=1

pk

[
μv�k
μv

]
log
(
μu�k
μu

/μv�k
μv

)
� (28)
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M1 =
K∑
k=1

pk

[
μu�k
μu

]
M1�k +

K∑
k=1

pk

[
μu�k
μu

]
log
(
μu�k
μu

/μv�k
μv

)
� (29)

This means, for example, that we may partition U in (3) unambiguously into an up-
ward status group U (for ui ≤ vi) and a downward status group D (for ui > vi), and using
an obvious notation, express overall mobility as

Mα =wUMU
α +wDMD

α +Mbtw
α � (30)

where the weights wU, wD, and the between-group mobility component Mbtw
α are func-

tions of the status-means for each of the two groups and overall; comparingMU
α andMD

α

enables one to say precisely where mobility has taken place.

4.3 Choice of α

Let us consider a sample where every individual’s upward mobility is matched by a sym-
metric downward mobility of someone else (∀i, ∃j such that uj = vi, vj = ui).

In this particular case of (perfect) symmetry between downward and upward sta-
tus movements, we have μu = μv. Then it is clear from (19) that a high positive α
produces an index that is particularly sensitive to downward movements (where u ex-
ceeds v) and a negative α yields an index that is sensitive to upward movements (where v
exceeds u).14

To go further, let us consider the upward status group U (for ui ≤ vi) and the down-
ward status group D (for ui > vi), as defined in (30). From (19), we have15

MU
α =MD

1−α� (31)

It suggests that the mobility measurement of upward movements and of symmetric
downward movements would be identical with α = 0�5 (MU

0�5 =MD
0�5). Furthermore, the

mobility measurement of upward movements with α= 1 would be identical to the mo-
bility measurement of symmetric downward movements with α= 0 (MU

1 =MD
0 ).

In the mobility index Mα, the weights given to upward mobility and to downward
mobility can be studied through its decomposability property. With symmetric up-
ward/downward status movements, from (27) and (30), we can see that:16

1. for α= 0�5, we have wU =wD,

2. for α< 0�5, we have wU >wD,

3. for α> 0�5, we have wU <wD.

14With the symmetric downward/upward mobility,Mα = 1
α[α−1]n

∑n
i=1(

vi
μv

[ uivi ]α − 1).
15More generally, if we generate a “reverse profile” z′(z) := {z′

i = (vi�ui)|zi = (ui� vi)� i = 1� � � � � n} by re-
versing each person’s history—swapping the us and vs in (19)—we haveMα(z′(z))=M1−α(z).

16From (27) and (30), we havewU = p1(μu�1/μu)
α(μv�1/μv)

1−α andwD = p2(μu�2/μu)
α(μv�2/μv)

1−α. With
symmetric downward/upward mobility, we also have p1 = p2, μu�1 = μv�2 <μv�1 = μu�2, and μu = μv . Then
wU/wD = (μu�2/μv�2)1−2α, which is greater (less) than one if 1 − 2α>(<) 0.



880 Cowell and Flachaire Quantitative Economics 9 (2018)

In other words, α = 0�5 puts the same weight on both upward and downward mobility
components in (27), while α < 0�5 (α > 0�5) puts more weights on upward (downward)
mobility component. The sensitivity parameter α enables us to capture directional sen-
sitivity in the mobility context:17 high positive values result in a mobility index that is
more sensitive to downward movements from period 0 to period 1; negative α is more
sensitive to upward movements. Picking a value for this parameter is a normative choice.

4.4 Homotheticity

The axioms also induce a homothetic structure, which once again might be thought to
be rather restrictive for some interpretations of u and v. Furthermore, the normaliza-
tions introduced in Section 3.4 impose scale independence which could be considered
unobjectionable when u and v are evaluated in terms of numbers of persons, but might
be questioned if u and v are to be interpreted in terms of income or wealth: why not have
a translation-independent mobility index? However, the fact that our approach defines
a superclass, not just a single class, of mobility measures can be used to handle this is-
sue. As we have discussed, the methodology is valid for arbitrary methods of valuing the
K classes. So, for example, we may replace the u and v by u + c and v + c where c is a
nonnegative constant. In which case, (19) will be replaced by

θ(c)

n

n∑
i=1

[[
ui + c
μu + c

]α(c)[ vi + c
μv + c

]1−α(c)
− 1
]
� α(c) ∈R�α(c) 	= 0�1� (32)

where γ ∈ R, β ∈ R+, the term α(c) indicates that the sensitivity parameter may depend
upon the location parameter c, and θ(c) is a normalization term given by

θ(c) := 1 + c2

α(c)2 − α(c) ; (33)

for α(c) = 0 and α(c) = 1, there are obvious special cases of (32) corresponding to (20)
and (21). If we take a given value of c, then we have generated an “intermediate” ver-
sion of the mobility index (borrowing the terminology of Bossert and Pfingsten (1990),
Eichhorn (1988)). However, by writing

α(c) := γ+βc (34)

and analyzing the behavior as c→ ∞, we may say more. Consider the main expression
inside the summation in (32); taking logs we may write this as

log

⎛⎜⎝ 1 + v

c

1 + μv

c

⎞⎟⎠+ α(c)
[

log
(

1 + u

c

)
+ log

(
1 + μv

c

)
− log

(
1 + v

c

)
− log

(
1 + μu

c

)]
� (35)

17See also Bhattacharya and Mazumder (2011), Corak, Lindquist, and Mazumder (2014), Demuynck and
Van de gaer (2012), and Schluter and Van de gaer (2011).
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Using the standard expansion,

log(1 + t)= t − t2

2
+ t3

3
− · · · (36)

and (34) we find that (35) becomes

log

⎛⎜⎝ 1 + v

c

1 + μv

c

⎞⎟⎠+
[
β+ γ

c

][
u+μv − v−μu − u2

2c
− μ2

v

2c
+ v2

2c
+ μ2

u

2c
· · ·
]
� (37)

For finite γ, β, u, v, μu, μv, we find that (37) becomes

β[u−μu − v+μv] (38)

and

lim
c→∞θ(c)= lim

c→∞

1 + 1

c2[
β+ γ

c

]2
− 1
c

[
β+ γ

c

] = 1

β2 � (39)

From (38) and (39), we can see that in the limit (32) becomes18

M ′
β := 1

nβ2

n∑
i=1

[
eβ[ui−μu−vi+μv] − 1

]
(40)

for any β 	= 0. Let qi := ui −μu − vi +μv so that (40) can be written

1

nβ2

n∑
i=1

[
eβqi − 1

]= 1

nβ2

n∑
i=1

[
1 +βqi + 1

2!β
2q2
i + 1

3!β
3q3
i + 1

4!β
4q4
i + · · · − 1

]
� (41)

using a standard expansion. Noting that 1
n

∑n
i=1 qi = 0, the right-hand side of (41) be-

comes

1
n

n∑
i=1

[
1
2!q

2
i + 1

3!βq
3
i + 1

4!β
2q4
i + · · ·

]
� (42)

As β→ 0, it is clear that (42) tends to 1
2n
∑n
i=1 q

2
i . So the limiting form of (40) for β= 0 is

M ′
0 := 1

2
var(ui − vi)� (43)

So expressions (40) and (43) show that a class of translation-independent mobility
measures—where mobility is independent of uniform absolute additions to/
subtractions from everyone’s income—is also contained within our superclass. The im-
portance of this is that, because we may redefine status arbitrarily, Axiom 5 only re-
quires a weak structural assumption, where all the contours are homothetic to the point
(c� c� � � � � c), a property that is satisfied by almost all mobility indices.

18See also equation (56) of Cowell (1985).
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5. Statistical inference

If we carry out a simple computation of the values of a mobility measure, computed
from two different samples, we are almost always going to find greater mobility in one
sample, even if the two samples come from the same population. Clearly, simple com-
putation alone is not enough in order to draw useful conclusions from the raw data:
statistical methods are required to test the hypothesis that the two values are not statis-
tically different. In this section, we establish the asymptotic distribution of our mobility
measures, taking the situation where there are as many classes as there are observations.
For two well-known status concepts, associated with movements of incomes and with
rank mobility, we show thatMα is asymptotically Normal.

5.1 Income mobility

Let us consider the distribution-independent, static status, as defined in (4). The income
values at periods 0 and 1 are used to evaluate individual status,

ui = x0i and vi = x1i; (44)

it corresponds to a model of movement of incomes in society as a whole. Let us define
the following moment: μg(u�v) = n−1∑n

i=1 g(ui� vi), where g(·) is a specific function. We
proceed by taking the cases (19)–(21) separately.

CaseMα (α 	= 0�1). We can rewrite the index (19) as

Mα = 1
α(1 − α)

[n−1
∑

uαi v
1−α
i

μαuμ
1−α
v

− 1
]

from which we obtainMα as a function of three moments:

Mα = 1
α(α− 1)

[
μuαv1−α

μαuμ
1−α
v

− 1
]
� (45)

Under standard regularity conditions, the central limit theorem can be applied, and thus
the Mα index will follows asymptotically a Normal distribution. Under these circum-
stances, the asymptotic variance can be calculated by the delta method. Specifically, if
Σ̂ is the estimator of the covariance matrix of μu, μv, and μuαv1−α , the variance estimator
forMα is

V̂ar(Mα)= 1
n
DΣ̂D� withD=

[
∂Mα

∂μu
; ∂Mα

∂μv
; ∂Mα

∂μuαv1−α

]
� (46)

where the matrixD can be written as functions of sample moments. We have

D=
[−μuαv1−αμ−α−1

u μα−1
v

(α− 1)
; μuαv1−αμ−α

u μα−2
v

α
; μ

−α
u μα−1

v

α(α− 1)

]
�
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The covariance matrix Σ̂ is defined as follows:19

Σ̂=
⎡⎢⎣ μu2 − (μu)2 μuv −μuμv μu1+αv1−α −μuμuαv1−α

μuv −μuμv μv2 − (μv)2 μuαv2−α −μvμuαv1−α
μu1+αv1−α −μuμuαv1−α μuαv2−α −μvμuαv1−α μu2αv2−2α − (μuαv1−α)2

⎤⎥⎦ � (47)

We can use this variance estimator of Mα to compute a test statistic or a confidence
interval.20

Similar developments permit us to derive the variance estimators of the limiting
forms of the mobility index.

CaseM0. We can rewriteM0 as a function of four moments:

M0 = μv logv −μv logu

μv
+ log

(
μu

μv

)
� (48)

The variance estimator of this index is defined as follows:

V̂ar(M0)= 1
n
D0Σ̂0D

�
0 withD0 =

[
∂M0

∂μu
; ∂M0

∂μv
; ∂M0

∂μv logv
; ∂M0

∂μv logu

]
� (49)

We have

D0 =
[

1
μu

; −μv logv +μv logu −μv
μ2
v

; 1
μv

;− 1
μv

]
�

and the estimator of the covariance matrix of the four moments Σ̂0 is equal to⎡⎢⎣ μu2 − (μu)2 μuv −μuμv μuv logv −μuμv logv μuv logu −μuμv logu

μuv −μuμv μv2 − (μv)2 μv2 logv −μvμv logv μv2 logu −μvμv logu

μuv logv −μuμv logv μv2 logv −μvμv logv μ(v logv)2 − (μv logv)
2 μv2 logu logv −μv loguμv logv

μuv logu −μuμv logu μv2 logu −μvμv logu μv2 logu logv −μv loguμv logv μ(v logu)2 − (μv logu)
2

⎤⎥⎦ �
CaseM1. We can rewriteM1 as a function of four moments:

M1 = μu logu −μu logv

μu
+ log

(
μv

μu

)
� (50)

The variance estimator of this index is defined as follows:

V̂ar(M1)= 1
n
D1Σ̂1D

�
1 withD1 =

[
∂M1

∂μu
; ∂M1

∂μv
; ∂M1

∂μu logu
; ∂M1

∂μu logv

]
� (51)

We have

D1 =
[−μu logu +μu logv −μu

μ2
u

; 1
μv

; 1
μu

;− 1
μu

]
�

19If the observations are assumed independent, we have Ĉov(μu�μv)= 1
n Ĉov(ui� vi). In addition, we use

the fact that, by definition Cov(U�V )=E(UV )−E(U)E(V ).
20Note that we assume that the observations are independent, in the sense that Cov(ui�uj) = 0 and

Cov(vi� vj)= 0 for all i 	= j, but this independence assumption is not between the two samples: Cov(ui� vi)
can be different from 0.
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and the estimator of the covariance matrix of the four moments Σ̂1 is equal to⎡⎢⎣ μu2 − (μu)2 μuv −μuμv μu2 logu −μuμu logu μu2 logv −μuμu logv

μuv −μuμv μv2 − (μv)2 μuv logu −μvμu logu μuv logv −μvμu logv

μu2 logu −μuμu logu μuv logu −μvμu logu μ(u logu)2 − (μu logu)
2 μu2 logu logv −μu loguμu logv

μu2 logv −μuμu logv μuv logv −μvμu logv μu2 logu logv −μu loguμu logv μ(u logv)2 − (μu logv)
2

⎤⎥⎦�

5.2 Rank mobility

Let us consider the distribution-dependent, dynamic status, as defined in (7), that is, ui
(resp., vi) is the number of individuals with incomes less or equal to the income of i at
period one (resp., at period 2). In other words, ranks are used to evaluate individual sta-
tus. Because of the scale-independence property of Mα, we may use proportions rather
than numbers to define status,

ui = F̂0(x0i) and vi = F̂1(x1i)� (52)

where F̂0(·) and F̂1(·) are the empirical distribution functions of individual incomes in
periods 0 and 1,

F̂k(x)= 1
n

n∑
j=1

I(xkj ≤ x)� (53)

where k= 1�2 and I(·) is an indicator function, equal to 1 if its argument is true and to
0, otherwise. So ui (resp., vi) is the rank of i’s income in the set of incomes at period 0
(resp., 1), divided by the total number of incomes n. Let us consider that we have no ties
in the sample; u and v are thus defined by two differently ordered sets of the same values
{ 1
n �

2
n � � � � �1}. The values in u and v are non-i.i.d., and thus, the method of moments used

previously in the case of income mobility does not apply.
Ruymgaart and van Zuijlen (1978) have established the asymptotic normality in the

non-i.i.d. case of the following multivariate rank statistic:

Tn = 1
n

n∑
i=1

cinφ1(ui)φ2(vi)� (54)

where cin are given real constants, φ1 and φ2 are (scores) functions defined on (0�1),
which are allowed to tend to infinity near zero and one but not too quickly. Indeed, the
following assumption is required: there exists positive numbersK1, a1, and a2, such that

φ1(t)≤ K1[
t(1 − t)]a1

and φ2(t)≤ K1[
t(1 − t)]a2

with a1 + a2 <
1
2

(55)

for t ∈ (0�1). This condition implies that φ1(t) and φ2(t) should tend to infinity near
zero at a rate slower than the functions t−a1 and t−a2 . Moreover, they have shown that
the variance of Tn is finite, even if not analytically tractable.
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In the following, we show that Mα can be written as a function of Tn and we check
when the condition defined in (55) is respected. Let us first notice that

μu = μv = 1
n

n∑
i=1

i

n
= n+ 1

2n
� (56)

CaseMα (α 	= 0�1). From (45) and (56), we obtainMα as a function of one moment:

Mα = 1
α(α− 1)

[
2n
n+ 1

μuαv1−α − 1
]
� (57)

From (54) and (57), it is clear that

Mα = 1
α(α− 1)

[Tn − 1]� (58)

with cin = 2n
n+1 ,φ1(ui)= uαi , andφ2(vi)= v1−α

i . The condition defined in (55) is respected
for α ∈ ]−0�5�1�5[. Indeed, for α > 0, we have 0<φ1(ui)≤ 1 and we can use a1 = 0. Then
the condition requires a2 < 1/2, that is, −(1 − α) < 1/2. For α< 0, we have 0<φ2(vi)≤ 1
and we can use a2 = 0; the condition requires a1 < 1/2, that is, −α< 1/2. Note that, when
0<α< 1, the two functions φ1 and φ2 are bounded; they both provide values in (0�1).

CaseM0. From (48), (54), and (56), we have

M0 = 2n
n+ 1

(k−μv logu)= l− Tn� (59)

where k and l are real constants21 and cin = 2n
n+1 , φ1(ui) = logui, and φ2(vi) = vi. The

condition (55) is respected because φ2(vi)≤ 1 and φ1(ui) tends to infinity near zero at a
slower rate than −1/

√
ui, which implies a1 < 1/2.

CaseM1. From (50), (54), and, (56) we have

M1 = 2n
n+ 1

(k−μu logv)= l− Tn� (60)

where cin = 2n
n+1 ,φ1(ui)= ui, andφ2(vi)= logvi. The condition (55) is respected because

φ1(ui) ≤ 1 and φ2(vi) tends to infinity near zero at a slower rate than −1/
√
vi, which

implies a2 < 1/2.
Our rank mobility indices Mα can be rewritten as linear functions of Tn and the

condition (55), required to establish the asymptotic normality of Tn, is respected for
−0�5<α< 1�5. It follows thatMα is asymptotically normal, for −0�5<α< 1�5. Even if the
asymptotic variance is not analytically tractable, the existence of the asymptotic distri-
bution provides an asymptotic justification for using the bootstrap to perform statistical
inference.

21k= μv logv = μu logu = n−1∑n
i=1

i
n log i

n and l= 2nk
n+1 .
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6. Finite sample performance

We now turn to the way mobility indices within the superclass perform in practice. We
study the finite sample properties of Mα for the two families of measures within the su-
perclass: a family of income-mobility measures and a family of rank-mobility measures.
We do this for the case where there are as many classes as observations.

The coverage error rate of a confidence interval is the probability that the random
interval does not include, or cover, the true value of the parameter. A method of con-
structing confidence intervals with good finite sample properties should provide a cov-
erage error rate close to the nominal rate. For a confidence interval at 95%, the nominal
coverage error rate is equal to 5%. In this section, we use Monte-Carlo simulation to ap-
proximate the coverage error rate of asymptotic and bootstrap confidence intervals in
several experimental designs.

Three methods are considered to calculate confidence intervals: asymptotic, per-
centile bootstrap, and studentized bootstrap methods. The asymptotic confidence in-
terval is equal to

CI asym = [Mα − c0�975V̂ar(Mα)
1/2�Mα + c0�975V̂ar(Mα)

1/2]� (61)

where c0�975 is a critical value obtained from the Student distribution T(n− 1). Asymp-
totic confidence intervals do not always perform well in finite samples. When asymp-
totic confidence intervals give poor coverage, bootstrap confidence intervals can be
expected to perform better. A variety of bootstrap intervals can be used; for a compre-
hensive discussion, see Davison and Hinkley (1997). A first method, called the percentile
bootstrap method, does not require the computation and the use of the (asymptotic)
standard error of the mobility measure estimated. We generate B bootstrap samples, by
resampling in the original data, and then, for each resample, we compute the mobility
index. We obtain B bootstrap statistics, Mb

α , b= 1� � � � �B. The percentile bootstrap con-
fidence interval is equal to

CI perc = [cb0�025� c
b
0�975

]
� (62)

where cb0�025 and cb0�975 are the 2�5 and 97�5 percentiles of the EDF of the bootstrap
statistics. A second method, called the studentized bootstrap method, makes use of the
asymptotic standard error of the mobility measure estimated. We generate B bootstrap
samples, by resampling in the original data, and then, for each resample, we compute
a t-statistic. We obtain B bootstrap t-statistics tbα = (Mb

α −Mα)/V̂ar(Mb
α)

1/2, b= 1� � � � �B,
where Mα is the mobility index computed with the original data. The studentized boot-
strap confidence interval is equal to

CI stud = [Mα − c∗0�975V̂ar(Mα)
1/2�Mα − c∗0�025V̂ar(Mα)

1/2]� (63)

where c∗0�025 and c∗0�975 are the 2�5 and 97�5 percentiles of the EDF of the bootstrap t-
statistics. It is also called a bootstrap-t or a percentile-t confidence interval. The main
difference between the two bootstrap methods is that the studentized bootstrap confi-
dence interval is based on an asymptotically pivotal statistic, not the percentile boot-
strap confidence interval. Indeed, the t-statistics follow asymptotically a known distri-
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bution, which does not depend on unknown parameters. This property is known to pro-
vide superior statistical performance of the bootstrap over asymptotic confidence in-
tervals (Beran (1987)). Note that both bootstrap confidence intervals are asymmetric.
So they should provide more accurate confidence intervals than the asymptotic confi-
dence interval when the exact distribution of the statistic is not symmetric. For well-
known reasons—see Davison and Hinkley (1997) or Davidson and MacKinnon (2000)—
the number of bootstrap resamples B should be chosen so that (B+ 1)/100 is an integer.
In what follows, we set B= 199.

In our experiments, samples are drawn from a Bivariate Lognormal distribution with
parameters

(x0�x1)∼LN(μ�Σ) with μ= (0�0) and Σ=
(

1 ρ

ρ 1

)
� (64)

where μ and Σ are the mean and the square root of the covariance matrix of the vari-
able’s natural logarithm. The case ρ = 1 corresponds to zero mobility and the case
ρ = 0 corresponds to incomes in periods 0 and 1 (resp., x0 and x1) being indepen-
dently generated. Then mobility should increases as ρ decreases. The asymptotic dis-
tribution is undefined for the case of zero mobility (ρ = 1); it is thus interesting to
study the statistical properties in case of “nearly” zero mobility (ρ = 0�99). In the ex-
periments, we consider different mobility indices (α = −1�−0�5�0�0�5�1�1�5�2), dif-
ferent sample sizes (n = 100�200�500�1000�5000�10,000), and different mobility levels
(ρ= 0�0�2�0�4�0�6�0�8�0�9�0�99).22

For fixed values of α, n, and ρ, we draw 10,000 samples from the Bivariate Lognormal
distribution. For each sample, we compute Mα and its confidence interval at 95%. The
coverage error rate is computed as the proportion of times the true value of the mobility
index is not included in the confidence intervals. The true value of the mobility index
is approximated from a sample of a million observations. Confidence intervals perform
well in the finite sample if the coverage error rate is close to the nominal value, that is,
close to the value 0�05.

6.1 Income mobility

Let us consider the distribution-independent, static status, as defined in (44). Here, the
income values are used to evaluate individual status.

Table 2 shows coverage error rates of asymptotic confidence intervals at 95%. If the
asymptotic distribution is a good approximation of the exact distribution of the statistic,
the coverage error rate should be close to the nominal error rate, 0�05. From Table 2, we
can see that:

• asymptotic confidence intervals always perform poorly for α= −1�2,

• the coverage error rate is stable as ρ varies (for α= 0�0�5�1, and n= 100),

22Finite sample performance of estimators of inequality measures based on Lognormal distributions,
with a variance equals to one or greater, are as problematic as with Singh–Maddala distributions; see Cowell
and Flachaire (2015, Table 6.6, page 414).
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Table 2. Coverage error rate of asymptotic confidence intervals at
95% of income mobility measures. The nominal error rate is 0�05,
10,000 replications.

α

−1 0 0�5 1 2

n= 100, ρ= 0 0�3686 0�1329 0�1092 0�1357 0�3730
n= 100, ρ= 0�2 0�3160 0�1334 0�1136 0�1325 0�3194
n= 100, ρ= 0�4 0�2664 0�1353 0�1221 0�1351 0�2889
n= 100, ρ= 0�6 0�2175 0�1346 0�1275 0�1361 0�2263
n= 100, ρ= 0�8 0�1718 0�1349 0�1304 0�1345 0�1753
n= 100, ρ= 0�9 0�1528 0�1321 0�1308 0�1329 0�1531
n= 100, ρ= 0�99 0�1355 0�1340 0�1331 0�1324 0�1333

n= 200, ρ= 0 0�3351 0�1077 0�0923 0�1107 0�3153
n= 500, ρ= 0 0�2594 0�0830 0�0696 0�0818 0�2631
n= 1000, ρ= 0 0�2164 0�0703 0�0609 0�0726 0�2181
n= 5000, ρ= 0 0�1713 0�0554 0�0469 0�0522 0�2066
n= 10,000, ρ= 0 0�1115 0�0532 0�0527 0�0534 0�1151

• the coverage error rate decreases as n increases,

• the coverage error rate is close to 0�05 for n≥ 5000 and α= 0�0�5�1.

These results suggest that asymptotic confidence intervals perform well in very large
samples, with α ∈ [0�1].

The dismal performance of asymptotic confidence intervals for small and moderate
samples is sufficient to motivate the use of bootstrap methods. Table 3 shows coverage
error rates of asymptotic and bootstrap confidence intervals at 95%. We select the value
ρ= 0�8, because it gives the poorest results for asymptotic confidence intervals with α ∈
[0�1] in Table 2. It is clear from Table 3 that:

• percentile bootstrap and asymptotic confidence intervals perform similarly,

• studentized bootstrap confidence intervals outperform other methods,

These results show that studentized bootstrap confidence intervals provide significant
improvements over asymptotic confidence intervals.

6.2 Rank mobility

Let us consider the distribution-dependent, dynamic status, as defined in (52). Here,
ranks (the income positions) are used to evaluate individual status; it corresponds to a
model of rank mobility. Since the variance ofMα is not analytically tractable, we cannot
use asymptotic and studentized bootstrap confidence intervals. We use the percentile
bootstrap method.

Table 4 shows coverage error rates of percentile bootstrap confidence intervals at
95% with n= 100 observations. We can see that:
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Table 3. Coverage error rate of asymptotic and bootstrap confi-
dence intervals at 95% of income mobility measures. 10,000 replica-
tions, 199 bootstraps.

α

−1 0 0�5 1 2

n= 100, ρ= 0�8
Asymptotic 0�1718 0�1349 0�1304 0�1345 0�1753
Boot-perc 0�1591 0�1294 0�1215 0�1266 0�1552
Boot-stud 0�0931 0�0751 0�0732 0�076 0�0952

n= 200, ρ= 0�8
Asymptotic 0�1315 0�0973 0�0927 0�0973 0�1276
Boot-perc 0�1222 0�0943 0�0900 0�0950 0�1176
Boot-stud 0�0794 0�0666 0�0660 0�0688 0�0791

n= 500, ρ= 0�8
Asymptotic 0�1127 0�0847 0�0828 0�0857 0�1124
Boot-perc 0�1054 0�0814 0�0813 0�0843 0�1036
Boot-stud 0�0765 0�0641 0�0629 0�0630 0�0779

n= 1000, ρ= 0�8
Asymptotic 0�0880 0�0678 0�0659 0�0672 0�0864
Boot-perc 0�0862 0�0672 0�0661 0�0689 0�0851
Boot-stud 0�0680 0�0585 0�0589 0�0596 0�0693

• the coverage error rate can be very different for different values of ρ and α,

• it decreases as ρ increases, except for the case of “nearly” zero mobility (ρ= 0�99).

• the coverage error rate is close to 0�05 for ρ= 0�8�0�9, and α= 0�0�5�1.

These results suggest that percentile bootstrap confidence intervals perform well in
small sample in the presence of low but significant mobility levels (ρ= 0�8�0�9) and for
α ∈ [0�1].

Table 4. Coverage error rate of percentile bootstrap confidence in-
tervals at 95% of rank-mobility measures. 10,000 replications, 199
bootstraps, and 100 observations.

α

−0�5 0 0�5 1 1�5

ρ= 0 0�5592 0�1575 0�1088 0�1583 0�5282
ρ= 0�2 0�3176 0�1122 0�0884 0�1135 0�3231
ρ= 0�4 0�1883 0�0931 0�0755 0�0913 0�1876
ρ= 0�6 0�1122 0�0767 0�0651 0�0741 0�1118
ρ= 0�8 0�0671 0�0593 0�0555 0�0590 0�0652
ρ= 0�9 0�0432 0�0430 0�0431 0�0441 0�0446
ρ= 0�99 0�0983 0�0985 0�0981 0�0984 0�0992
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Table 5. Coverage error rate of percentile bootstrap confidence in-
tervals at 95% of rank-mobility measures. 10,000 replications, 199
bootstraps.

α

−0�5 0 0�5 1 1�5

n= 100, ρ= 0 0�5592 0�1575 0�1088 0�1583 0�5282
n= 200 0�4613 0�1143 0�0833 0�1180 0�4723
n= 500 0�3548 0�0868 0�0645 0�0814 0�3644
n= 1000 0�3135 0�0672 0�0556 0�0735 0�3170

n= 100, ρ= 0�9 0�0432 0�0430 0�0431 0�0441 0�0446
n= 200 0�0454 0�0441 0�0456 0�0454 0�0459
n= 500 0�0500 0�0499 0�0485 0�0480 0�0483
n= 1000 0�0511 0�0509 0�0539 0�0538 0�0538

n= 100, ρ= 0�99 0�0983 0�0985 0�0981 0�0984 0�0992
n= 200 0�0981 0�0971 0�0970 0�0974 0�0977
n= 500 0�0855 0�0838 0�0833 0�0822 0�083
n= 1000 0�0788 0�0777 0�0762 0�0767 0�0771

Table 5 shows coverage error rates of percentile bootstrap confidence intervals at
95% as the sample size increases. We can see that:

• the coverage error rate gets closer to 0�05 as the sample size increases,

• the coverage error rate is smaller when α= 0�0�5�1.

These results show that percentile bootstrap confidence intervals have better statistical
properties as the sample size increases.

7. Mobility measures: Comparison and assessment

Why use the approach discussed in Sections 3–5? In this section, we address this ques-
tion in two ways. First, in Section 7.1, we examine the behavior of other mobility mea-
sures in the light of the foregoing analysis. Then, in Section 7.2 we examine the perfor-
mance of our family of mobility indices in a real-world application.

7.1 Properties of mobility indices

Let us now compare our family of measures to other approaches in the literature. We
show that the Mα family has appropriate properties and performs better than other
widely used indices. In particular, we show that our scale-independent income mobil-
ity index, defined in (19)–(21), shares the same desirable properties as the elasticity and
correlation based measures, without having the major drawback noted in the Introduc-
tion.

In addition to the well-known mobility measures based on the elasticity and cor-
relation coefficients discussed in the Introduction, we consider the following mobility
measures:
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• Fields and Ok (1996) provided a measure of mobility based on income differ-
ences:23

FO1 = 1
n

∑
i=1

|x0i − x1i|�
 • Fields and Ok (1999b) provided a measure of mobility based on differences in log
incomes:24

FO2 = 1
n

∑
i=1

| logx1i − logx0i|�
 • Shorrocks (1978a) provided mobility measures related to inequality:

SI = 1 − I(x0 + x1)
μx0

μx0+x1

I(x0)+ μx1

μx0+x1

I(x1)
�

where I(·) is a predefined inequality measure.

• We consider our scale-independent M0 and our translation-independent M ′
0

measures, defined, respectively, in (20) and (43):

M0 = − 1
n

n∑
i=1

x1

μx1

log
(
x0μx1

x1μx0

)
and M ′

0 = 1
2

var(x0 − x1)�

• We also consider rank mobility measures: (1) 1 − ρ, where ρ is the Spearman cor-
relation coefficient, and (2) our mobility measure M0 where incomes are replaced by
ranks divided by the number of individuals, as defined in (52), denotedMr

0 hereafter.

Table 6 presents values of these mobility measures in different situations. We consider a
three-person world (A, B, C), with always the same incomes in period 0, x0 = (e� e1�5� e2),
and several scenarios in period 1, with shifted, rescaled, and/or reranked incomes.

Elasticity and correlation coefficients are independent of units of measurement
of the variables. So mobility indices based on these coefficients respect the scale-
independence property. It is clear from Table 6, where scenario 1a gives a zero value
(1 − β= 0), and scenarios 1c and 1d provide the same value (1 − β= 1�5). Furthermore,
the major drawback provided in the Introduction is also clear, since zero mobility is ob-
tained with scenarios 1f or 1g. It follows that a low value of these measures cannot be
associated to low mobility.

The Cowell–Flachaire scale-independent measure M0 behaves similar to elasticity
and correlation based measures, 1 − β and 1 − r, but it exhibits nonzero values in sce-
narios 1f and 1g. So it shares their unit-free independence property, but it does not share
their major drawback.

The Cowell–Flachaire translation-independent measure M ′
0 behaves similar to M0

but it is insensitive to an absolute shift of incomes rather than to a scale factor. It exhibits
zero value in 1b and it provides the same value in 1c and 1e.

23No mobility is defined when incomes at both periods are shifted by the same value.
24No mobility is defined when incomes at both periods are multiplied by the same value.
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Table 6. Income and rank mobility measures in different scenarios.

Period

0 1a 1b 1c 1d 1e 1f 1g

A e1�0 2e1�0 e1�0 + 2 e1�5 2e1�5 e1�5 + 2 e1 e1

B e1�5 2e1�5 e1�5 + 2 e2�0 2e2�0 e2�0 + 2 e3 e2

C e2�0 2e2�0 e2�0 + 2 e1�0 2e1�0 e1�0 + 2 e2 e3

Income-mobility measures
Elasticity 1 −β 0 0�312 1.500 1.500 1�318 0 −1�000
Pearson corr. 1 − r 0 0�001 1.500 1.500 1�461 0�500 0
Cowell–Flachaire M0 0 0�007 0.221 0.221 0�164 0�271 0�060
Cowell–Flachaire M ′

0 2�782 0 8.345 19�471 8.345 40�580 22�123
Fields–Ok FO1 4�863 2�000 3�114 6�165 3�781 5.201 5.201
Fields–Ok FO2 0�693 0�387 0�667 0�898 0�686 0.500 0.500
Shorrocks STheil 0 0�031 0�743 0�679 0�751 0�281 0�069
Shorrocks SGini 0 0 0.500 0�459 0.500 0�132 0

Rank-mobility measures
Spearman corr. 1 − ρ 0 0 1.500 1.500 1.500 0�500 0
Cowell–Flachaire Mr

0 0 0 0.251 0.251 0.251 0�068 0

The Fields–Ok mobility measures are not scale-independent in the sense explained
in Section 3.4, they have values different from zero in scenario 1a (FO1 = 4�863 and FO2 =
0�693) and they have different values in 1c and 1d . In Table 6, we can see that the same
value is given to Fields–Ok measures in scenarios 1f and 1g, who share the same income
values, with the same ranking at the two periods in 1g and a reranking in 1f .

The Shorrocks’ measures are not scale-independent (scenarios 1c and 1d provide
different values). In addition, they are sensitive to the choice of the inequality index. In-
deed, Table 6 gives very different results with the Theil and Gini indices (STheil, SGini).
At first sight, the Shorrocks’ index based on the Gini may appear to be an appropriate
measure of rank mobility (Aaberge, Björklund, Jäntti, Pedersen, Smith, and Wennemo
(2002)), because it is equal to zero when no individual position shifts takes place (scenar-
ios 1a, 1b, and 1g). However, it should not be used to measure rank mobility, because two
similar reranking scenarios (1c and 1d) give different values of the index (0�5 vs. 0�459).

When we turn to rank mobility measures, we can see that our mobility measure be-
haves similar to the Spearman correlation based mobility measure. A nice feature of our
rank mobility index is that it shares similar foundations as our income mobility mea-
sures.

7.2 Empirical application

Chen and Cowell (2017) examined the evidence on rank and income mobility in China
during the decades immediately preceding and immediately following the millennium,
using data from the China Health and Nutrition Survey.

Table 7 presents some of their results: the transition matrices pre- and post-
millennium, where groupings 1� � � � �5 are equal-sized 20% slices of the distribution.
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Table 7. Mobility in China: decade rank transition matrices and Cowell–Flachaire summary in-
dex. Numbers in brackets are 95% confidence intervals.

2000 2011

1 2 3 4 5 1 2 3 4 5

1 0.29 0�23 0�21 0�15 0�12 1 0.34 0�26 0�18 0�13 0�08

19
89

2 0�25 0.25 0�21 0�17 0�12

20
00

2 0�24 0.25 0�23 0�16 0�13
3 0�18 0�23 0.21 0�23 0�15 3 0�18 0�23 0.22 0�20 0�17
4 0�14 0�15 0�21 0.22 0�27 4 0�13 0�14 0�22 0.27 0�24
5 0�13 0�14 0�16 0�22 0.34 5 0�11 0�13 0�15 0�24 0.37

M0(Π)= 0�197 M0(Π)= 0�176
[0.177, 0.216] [0.157, 0.197]

Rank mobility appears to have fallen from the pre-millennium to the post-millennium
decade, because the values of the diagonal elements increased over time. However, tak-
ing into account statistical inference, the authors find two diagonal values significantly
different between the two matrices only (π11 = 0�29�0�34, and π44 = 0�22�0�27). It is not
so easy to compare two matrices with many different values. Such comparisons do not
always provide clear results.

A convenient way to capture the mobility implied by a transition matrix is to use a
summary statistic. In the case of a quantile transition matrix, the proportion of individ-
uals in each class is the same and our summary index defined in (26) becomes:25

Mα(Π)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
α(α− 1)

[
2

K(K + 1)

K∑
k=1

K∑
�=1

πk�k
α�1−α − 1

]
� α 	= 0�1�

−2
K(K + 1)

K∑
k=1

K∑
�=1

πk�� log
(
k

�

)
� α= 0�

2
K(K + 1)

K∑
k=1

K∑
�=1

πk�k log
(
k

�

)
� α= 1�

We compute this index for α= 0, with 95% confidence intervals: values are given in Ta-
ble 7.26 At first sight, rank mobility seems to fall between the two periods, because the
values of the index decrease (0�197 vs. 0�176). However, taking into account statistical in-
ference, there is no significant difference between the two values before and after the
millennium (confidence intervals intersect).

25With a K × K transition matrix, and thus K ordered classes, we can define status uk and v� by class
numbers k and � and we have μ0 = μ1 = (K + 1)/2.

26Let us define a n-vector u composed by 20% of each of the following values: 1�2�3�4�5. We generate
a vector v� = {v�1� � � � � v�n} where v�i is equal to 1�2�3�4�or 5 with probabilities πui�1�πui�2�πui�3�πui�4�πui�5
(row i from the transition matrix). We generate B = 999 bootstrap samples (u� v�) from which we com-
pute B transition matrices Π(1)� � � � �Π(B) and B bootstrap statistics, M(1)

0 � � � � �M
(B)
0 . The 95% confidence

interval is given by the 2�5% and 97�5% empirical quantiles obtained from the set of B bootstrap statistics,
M(1)

0 � � � � �M(B)
0 . We use n= 2840 in 1989–2000 and n= 2600 in 2000–2011.
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Table 8. Mobility in China: Cowell–Flachaire rank and income mobility measures, with 95%
confidence intervals.

Rank Mobility Income Mobility

1989–2000 2000–2011 1989–2000 2000–2011

α= 0
Overall 0�3776 0�3356 0�4729 0�5555

[0.3571, 0.3969] [0.3153, 0.3558] [0.4408, 0.5155] [0.5076, 0.6205]

Downward 0�1687 0�1464 0�1772 0�1780
[0.1480, 0.1894] [0.1247, 0.1695] [0.1575, 0.2018] [0.1562, 0.2034]

Upward 0�2493 0�2352 0�2689 0�3545
[0.2269, 0.2701] [0.2137, 0.2550] [0.2416, 0.3069] [0.3160, 0.4152]

α= 0�5
Overall 0.3399 0.3077 0.4489 0.5148

[0.3241, 0.3556] [0.2907, 0.3241] [0.4230, 0.4812] [0.4762, 0.5603]

Downward 0�1879 0�1591 0�2066 0�1990
[0.1645, 0.2099] [0.1342, 0.1849] [0.1826, 0.2378] [0.1733, 0.2285]

Upward 0�2039 0�1970 0.2251 0.2912
[0.1885, 0.2185] [0.1816, 0.2121] [0.2053, 0.2529] [0.2641, 0.3336]

α= 1�0
Overall 0�3858 0�3493 0�5110 0�5796

[0.3641, 0.4056] [0.3275, 0.3692] [0.4773, 0.5533] [0.5371, 0.6315]

Downward 0�2437 0�1997 0�2694 0�2432
[0.2062, 0.2734] [0.1622, 0.2328] [0.2313 0.3239] [0.2082, 0.2964]

Upward 0�1901 0�1858 0�2039 0�2643
[0.1763 0.2037] [0.1717, 0.2007] [0.1871, 0.2269] [0.2407, 0.2971]

The transition matrix is a convenient way of providing a simple snapshot of rank-
movements in the sample. However, it provides a rather crude snapshot of an income
distribution. This illustrates the more general point that, when information is available
on the income history of households, it is better to employ the entire information with
the appropriate mobility measures.

Table 8 presents several values of our rank and income mobility measures, with
α = 0�0�5�1, with household data at pre- and post-millennium, as well as bootstrap
95% confidence intervals in brackets. Let us consider the case of α = 0�5, which gives
the same weight to upward and to downward status movements of the same magni-
tude (see Section 4.3). The results suggest that rank mobility decreased and income mo-
bility increased from pre- to post-millennium (0�3399 vs. 0�3077 and 0�4489 vs. 0�5148).
A downward/upward decomposition shows that upward income mobility significantly
increased between the two periods (0�2251 vs. 0�2912), not downward income mobil-
ity.27 Similar results are obtained with α= 0 and α= 1, from which we can see that more
weight is given, respectively, to upward and downward movements.

27The overall mobility index can be computed with the upward and downward mobility indices using
(27). If we consider upward income movements defining the first group (k = 1) and downward income
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Finally, the use of our mobility measures shows that rank mobility decreased from
pre- to post-millennium. By contrast, income mobility has carried on increasing; so
has income inequality. The differences in the two stories arise, not from a differ-
ent structure of the mobility index, but from the use of different status concepts. An
upward/downward decomposition for the income-status case shows that the story that
emerges is mainly due to upward income movements that significantly increased be-
tween the two periods. In the Chinese context, it would be important to look also at
rural and urban subpopulations separately as well as together. We refer to the paper of
Chen and Cowell (2017) for a detailed empirical study.

8. Conclusion

What makes our approach to mobility measurement novel is not the introduction of a
new specific index but rather a way of rethinking the representation of the problem and
then the theoretical and statistical treatment of this representation of mobility. The key
step involves a logical separation of fundamental concepts, (1) the measure of individual
status and (2) the aggregation of changes in status.

The status concept is derived directly from information available in the marginal dis-
tributions. It could involve the simplest derivation—the assumption that status equals
income. Or it could involve something more sophisticated, incorporating the person’s
location in the income distribution. This is a matter for normative judgment. The differ-
ent types of status space also require different types of modeling of the basic mobility
ordering.

The aggregation of changes in status involves the application of standard principles
to individual histories. From this, one derives a superclass of mobility measures—a class
of classes of measures. As we have seen, this is generally applicable to a wide variety of
status concepts and, for any given status concept, the members of the class are indexed
by a parameter α that determines the type of mobility measure. Each measure in each
class of the superclass involves a kind of averaging of each individual’s contribution to
mobility, where each of these contributions depends on status in the two periods, but no
more (in our approach rank may be important for status but not for quantifying move-
ment). Every measure in the superclass has attractive scale properties that imply struc-
tural regularity, but no more than that; once again this is because status can be separated
from—if not divorced from—income and wealth.

We have shown that the principal status types that are likely to be adopted in practice
will result in statistically tractable mobility indices. Bootstrap confidence intervals per-
form well in moderate sample sizes for α in the interval [0�1], in the cases of both income
mobility and rank mobility, where the α values enable the observer to apply his/her own
judgment as to whether greater weight should be placed on upward or downward move-
ment.

We have also shown that the empirical performance of the mobility measures in
our Mα-family accords well with intuitive understanding of mobility, whereas some

movements defining the second group (k= 2), in 2000–2011, we also have p1 = 0�7818898, μu�1 = 8417�185,
μv�1 = 27,815�95, p2 = 0�2181102, μu�2 = 15,378�68, μv�2 = 7071�294, μu = 9935�559, μv = 23,291�33.
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commonly-used mobility measures in the literature do not (for some measures a low
value of measured mobility does not, in fact, mean low mobility). Furthermore, because
our approach can capture income mobility and rank mobility within the same frame-
work, it becomes possible to examine side-by-side mobility comparisons for each of the
two underlying status concepts. As illustrated by the example of China around the mil-
lennium, this enables us to see more clearly the contrasting patterns of mobility through
time with different interpretations according to the type of mobility (up or down) and
according to the status concept.

Appendix: Proofs

Proof of Theorem 1. In both cases where Z is a connected subset of R × R and the
case where Z is Q+ × Q+ Theorem 5.3 of Fishburn (1970) can be invoked to show that
Axioms 1 to 3 imply that � can be represented as

n∑
i=1

φi(zi)� ∀z ∈Zn� (65)

where φi is continuous, defined up to an affine transformation, and by Axiom 2 is in-
creasing in vi if vi > ui and vice versa. Using Axiom 4 in (65), we have

φi(ui�ui)=φi(ui + δ�ui + δ)� (66)

where δ := u′
i − ui. Equation (66) implies that φi must take the form φi(u�u)= ai + biu.

Sinceφi is defined up to an affine transformation, we may choose ai = 0 and so we have

φi(u�u)= biu� (67)

�

Proof of Theorem 2. The proof proceeds by considering two cases of (λ0�λ1).
Case 1: λ0 = λ1 = λ > 0. Theorem 1 implies that if z ∼ z′ then

n∑
i=1

φi(zi)=
n∑
i=1

φi
(
z′
i

)
� (68)

Axiom 5 further implies that

n∑
i=1

φi(λzi)=
n∑
i=1

φi
(
λz′
i

)
�

These two equations imply that the function (11) is homothetic so that we may write

n∑
i=1

φi(λzi)= θ
(
λ�

n∑
i=1

φi(zi)

)
� (69)

where θ : R2 → R is increasing in its second argument. Consider the case where, for
arbitrary distinct values j and k, we have vi = ui = 0 for all i 	= j�k. This implies that
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φi(ui� vi)= 0 for all i 	= j�k and so, for given values of vj , vk, λ, (69) can be written as the
functional equation:

fj(uj)+ fk(uk)= h(gj(uj)+ gk(uk)
)
� (70)

where fi(u) := φi(λu�λvi), gi(u) := φi(u�vi), i = j�k, and h(x) := θ(λ�x). Alternatively,
for given values of uj , uk, λ, (69) can be written as the functional equation

fj(vj)+ fk(vk)= h(gj(vj)+ gk(vk)
)
� (71)

with fi(v) := φi(λui�λv), gi(v) := φi(ui� v), i = j�k, and h(x) := θ(λ�x). Take first the
functional equation (70): it has the solution

fi(u) = a0gi(u)+ ai� i= j�k�
h(x) = a0x+ aj + ak�

where a0, aj , ak, are constants that may depend on λ , vj , vk (Polyanin and Zaitsev (2004),
Supplement S.5.5). Therefore,

φj(λuj�λvj) = a0(λ� vj� vk)φj(uj� vj)+ aj(λ� vj� vk)� (72)

φk(λuk�λvk) = a0(λ� vj� vk)φk(uk� vk)+ ak(λ�vj� vk)� (73)

Since j and k are arbitrary, we could repeat the analysis for arbitrary distinct values j and
� and vi = ui = 0 for all i 	= j� �, where � 	= k; then we would have

φj(λuj�λvj) = a′
0(λ� vj� vk)φj(uj� vj)+ a′

j(λ� vj� v�)� (74)

φk(λu��λv�) = a′
0(λ� vj� vk)φ�(u�� v�)+ a′

�(λ� vj� v�)� (75)

where a′
0, a′

j , a�, are constants that may depend on λ, vj , v�. The right-hand sides of (72)
and (74) are equal and so aj must be independent of vj and a0 must be independent of
vj , vk. Therefore, because j and k are arbitrary we have

φi(λui�λvi) = a0(λ)φi(ui� vi)+ ai(λ� vi)� i= 1� � � � � n� (76)

In the case where vi = ui, (67) and (76) yield

biλvi = a0(λ)bivi + ai(λ� vi)
so that

ai(λ� vi)= [λ− a0(λ)
]
bivi

and (76) can be rewritten

φ′
i(λui�λvi)− bivi = a0(λ)φ

′
i(ui� vi)� i= 1� � � � � n� (77)

where φ′
i(ui� vi) :=φi(λui�λvi)− bivi. From Aczél and Dhombres (1989, page 346) there

must exist β ∈R and a function h : R+ → R such that φ′
i(ui� vi)= uβi hi(vi/ui), so that

φi(ui� vi)= uβi hi
(
vi
ui

)
+ biui� (78)
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From (67), we see that (78) implies hi(1) = 0. Now return to the alternative functional
equation (71): following the same argument this must have a solution of the form

φi(ui� vi)= uβ′
i h

′
i

(
vi
ui

)
+ bivi� (79)

Case 2: λ0 = 1, λ1 = λ 	= 1. Again if z ∼ z′ then (68) holds. Now Axiom 5 implies

n∑
i=1

φi(ui�λvi)=
n∑
i=1

φi
(
ui�λv

′
i

)
� (80)

Equations (68) and (80) imply that the function (11) is homothetic in v so that we may
write

n∑
i=1

ψi(λvi)= θ
(
λ�

n∑
i=1

ψi(vi)

)
� (81)

whereψi(v) :=φi(ui� v) and θ : R2 →R is increasing in its second argument. By the same
argument as before, we have

ψi(λvi) = a0(λ)ψi(vi)+ ai(λ)� i= 1� � � � � n� (82)

Putting vi = 0 in (82), we see that

ai(λ)=ψi(0)
[
1 − a0(λ)

]
and so we may rewrite (82) as

ψ′
i(λv) = a0(λ)ψ

′
i(v)� where (83)

ψ′
i(v) := ψi(v)−ψi(0)� (84)

Equation (83) can be expressed as f (x+ y)= g(y)+ f (x) wheref (·) := log(ψ′
i(·)), g(·) :=

log(a0(·)), x = logv, y = logλ. This Pexider equation has the solution f (x) = bx + c,
g(y)= αy,

logψ′
i(v)= a+ b logv� log

(
a0(λ)

)= b(logλ)�

where the constant amay depend on i and ui. This implies

φi(ui� vi)=Ai(ui)vbi +φi(ui�0)� (85)

whereAi(ui)= exp(a). Putting vi = ui in (78) and (85), we find

Ai(ui)u
b
i +φi(ui�0)= biui�

since the RHS is linear in ui we must haveAi(ui) proportional to u1−b
i . Therefore,

φi(ui� vi)= civbi u1−b
i +φi(ui�0)� (86)
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Now combine the results from the two cases. Since (78), (79), and (86) are true for arbi-
trary ui, vi this implies that

φi(ui� vi)= ciuαi v1−α
i + c′iui + c′′i vi� (87)

where α := 1 − b. Differentiating (87), we have

∂φi(ui� vi)

∂ui
= αciuα−1

i v1−α
i + c′i� (88)

∂φi(ui� vi)

∂vi
= [1 − α]ciuαi v−α

i + c′′i � (89)

In view of Axiom 2, (88) and (89) must be zero when vi = ui: this requires c′i = −αci and
c′′i = −[1 − α]ci. This in turn implies (12). �
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