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In this Online Appendix, we present the Euler conditions of the model, we develop
the pricing Calvo block, we introduce the stationary representation of the model, we
define the variables that we include in our simulation, and we develop a simple example
of how to implement Taylor projection in comparison with perturbation and projection.

Appendix A: Euler conditions

Define the household’s maximization problem as follows:

max
ct �k

∗
t �xt �lt

{
U

1−ψ
t +βEt

(
V

1−γ
t+1

) 1−ψ
1−γ }

s.t. ct + xt −wtlt − rtkt − Ft − Tt = 0�

k∗
t − (1 − δ)kt −μt

(
1 − S

[
xt

xt−1

])
xt = 0�

kt+1 = k∗
t exp(−dt+1θt+1)�

The value function Vt depends on the household’s actual stock of capital kt and on past
investment xt−1, as well as on aggregate variables and shocks that the household takes
as given. Thus, let us use Vk�t and Vx�t to denote the derivatives of Vt with respect to
kt and xt−1 (assuming differentiability). These derivatives are obtained by the envelope
theorem:

(1 −ψ)V −ψ
t Vk�t = λtrt +Qt(1 − δ)� (27)

(1 −ψ)V −ψ
t Vx�t−1 =QtμtS′

[
xt

xt−1

](
xt

xt−1

)2
� (28)

where λt andQt are the Lagrange multipliers associated with the budget constraint and
the evolution law of capital (they enter the Lagrangian in negative sign). We exclude the
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third constraint from the Lagrangian and substitute it directly in the value function or
the other constraints, whenever necessary.

Differentiating the Lagrangian with respect to ct , k∗
t , xt , and lt yields the first-order

conditions:

(1 −ψ)U−ψ
t Uc�t = λt� (29)

(1 −ψ)βEt
(
V

1−γ
t+1

) γ−ψ
1−γ Et

(
V

−γ
t+1Vk�t+1 exp(−dt+1θt+1)

) =Qt� (30)

λt =Qtμt
[(

1 − S
[
xt
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])
− S′

[
xt
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]
xt

xt−1

]
(31)

+ (1 −ψ)βEt
(
V

1−γ
t+1

) γ−ψ
1−γ Et

(
V

−γ
t+1Vx�t+1

)
�

(1 −ψ)U−ψ
t Ul�t = −λtwt� (32)

Substituting the envelope conditions (27)–(28) and defining

qt = Qt

λt

yields equations (6)–(8) in the main text.

Appendix B: The calvo block

The intermediate good producer that is allowed to adjust prices maximizes the dis-
counted value of its profits. Fernández-Villaverde and Rubio-Ramírez (2009, pp. 12–13)
derive the first-order conditions of this problem for expected utility preferences, which
yield the recursion:

ḡ1
t = λtmctyt +βθpEt

(
Π
χ
t

Πt+1

)−ε
ḡ1
t+1�

ḡ2
t = λtΠ∗

t yt +βθpEt
(
Π
χ
t

Πt+1

)1−ε( Π∗
t

Π∗
t+1

)
ḡ2
t+1�

To adjust these conditions to Epstein–Zin preferences, divide by λt to have

ḡ1
t

λt
= mctyt +βθpEt λt+1

λt

(
Π
χ
t

Πt+1

)−ε ḡ1
t+1

λt+1
� (33)

ḡ2
t

λt
=Π∗

t yt +βθpEt
λt+1

λt

(
Π
χ
t

Πt+1

)1−ε( Π∗
t

Π∗
t+1

)
ḡ2
t+1

λt+1
� (34)

Note that βλt+1
λt

is the stochastic discount factor in expected utility preferences. In
Epstein–Zin preferences, the stochastic discount factor is given instead by the expres-

sion presented in Section 2.1 in the main text. Substituting and defining g1
t = ḡ1

t
λt

, g2
t = ḡ2

t
λt

yields (11)–(16). The other conditions in the Calvo block follow directly from Fernández-
Villaverde and Rubio-Ramírez (2009, pp. 12–13).
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Appendix C: The stationary representation of the model

To stationarize the model, we define: c̃t = ct
zt

, λ̃t = λtz
ψ
t , r̃t = rtμt , q̃t = qtμt , x̃t = xt

zt
,

w̃t = wt
zt

, k̃t = kt
ztμt

, k̃∗
t = k∗

t
ztμt

, ỹt = yt
zt

, Ũt = Ut
zt

, Ũl�t = Ul�t
zt

, Ṽt = Vt
zt

, Ât = At
At−1

, μ̂t = μt
μt−1

,

ẑt = zt
zt−1

. Other rescaled endogenous variables will be introduced below when we list the
model conditions. Last, the detrended utility variables are normalized by their steady-
state value to avoid scaling problems.

We define the following exogenous state variables to make them linear in the
shocks:

dt+1 = μd + (
εd�t+1 −μd)� (35)

logθt+1 = (1 − ρθ) log θ̄+ ρθ logθt + σθεθ�t+1� (36)

zA�t+1 = σAεA�t+1� (37)

log μ̂t+1 =Λμ + σμεμ�t+1� (38)

mt+1 = σmεm�t+1� (39)

ξt+1 = ρξξt + σξεξ�t+1� (40)

The disaster state variable, dt , is determined by the disaster shock εd�t+1, which takes
the values 1 or 0. The mean of this shock is μd . Since the mean is nonzero, the shock is
demeaned in (35). The state variable logθt is the log disaster size. The state variable zA�t
is introduced to capture Gaussian productivity innovations to log Ât . The state variable
log μ̂t denotes the growth of investment technology. Finally, mt and ξt are the monetary
shock and the time preference shock, respectively.

The following variables depend only on the exogenous variables:

log Ât =ΛA + zA�t − (1 − α)dtθt�

log ẑt = 1
1 − α log Ât + α

1 − α log μ̂t �

The model conditions are given by the following equations:

(
Ṽt

Ṽ ss

)1−ψ
=

(
Ũt

Ũss

)1−ψ(
Ũss

Ṽ ss

)1−ψ
+βEt

((
Ṽt+1

Ṽ ss

)1−γ
ẑ

1−γ
t+1

) 1−ψ
1−γ
� (41)

Ũt = c̃t (1 − lt)νeξt � (42)

Uc�t = (1 − lt)νeξt � (43)

Ũl�t = −νc̃t(1 − lt)ν−1eξt � (44)

(1 −ψ)(Ũt)−ψŨl�t = −λ̃t w̃t � (45)

(1 −ψ)(Ũt)−ψUc�t = λ̃t � (46)

Mt+1 = βλ̃t+1

λ̃t
(ẑt+1)

−ψ
(
Ṽt+1/Ṽ

ss
)ψ−γ

(ẑt+1)
ψ−γ

Et
((
Ṽt+1/Ṽ

ss
)1−γ

(ẑt+1)
1−γ)ψ−γ

1−γ
� (47)
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Et

(
Mt+1 exp(−dt+1θt+1)

1
μ̂t+1

[
r̃t+1 + q̃t+1(1 − δ)]) = q̃t � (48)
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[
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]
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]
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(49)

ỹt = c̃t + x̃t � (50)

k̃∗
t − (1 − δ)k̃t −

(
1 − S

[
x̃t

x̃t−1
ẑt

])
x̃t = 0� (51)

k̃t =
k̃∗
t−1

ẑt μ̂t
exp(−dtθt)� (52)

q̃et = Et
(
Mt+1ẑt+1

( ˜divt+1 + q̃et+1
))
� (53)

d̃ivt = ỹt − w̃t lt − x̃t � (54)

q
f
t = EtMt+1� (55)

g̃1
t = mct ỹdt + θpEtMt+1

(
Π
χ
t

Πt+1

)−ε
g̃1
t+1ẑt+1� (56)
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t =Π∗

t ỹ
d
t + θpEtMt+1

(
Π
χ
t

Πt+1

)1−ε( Π∗
t

Π∗
t+1

)
g̃2
t+1ẑt+1� (57)

εg̃1
t = (ε− 1)g̃2

t � (58)

1 = θp
(
Π
χ
t−1

Πt

)1−ε
+ (1 − θp)

(
Π∗
t

)1−ε
� (59)

mct =
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1
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)1−α( 1
α

)α
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t r̃αt � (60)

k̃t

lt
= α

1 − α
w̃t

r̃t
� (61)
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Ât

ẑt

(
k̃∗
t−1 exp(−dtθt)
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(
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R
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R
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Π

)γΠ( ỹt
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exp(Λy)
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1 = EtMt+1
Rt

Πt+1
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We define the state of the economy by the endogenous variables log k̃∗
t−1×ª log x̃t−1,

logΠt−1, logvpt−1, log ỹt−1, and logRt−1, and the exogenous variables dt� logθt� zA�t� log μ̂t ,
mt , and ξt .

In the flexible price versions of the model, we use the following pricing conditions
instead of (56)–(60):

r̃t = αÂtμ̂t
(
k̃∗
t−1 exp(−dtθt)

)α−1
l1−α
t � (66)

w̃t = (1 − α)Ât
ẑt

(
k̃∗
t−1 exp(−dtθt)

)α
l−αt � (67)

ỹt = Ât

ẑt

(
k̃∗
t−1 exp(−dtθt)

)α
l1−α
t −φ� (68)

Appendix D: Simulation variables

The benchmark version of the model approximates the endogenous control variables:

logEt((
Ṽt+1

Ṽ SS
ẑt+1)

1−γ), log lt
1−lt , log q̃et , logqft , and log k̃∗

t . The first variable is an auxiliary
variable introduced into the system. The other model variables can be expressed as
functions of the approximated variables and the given state variables. We apply a change
of variables to ensure that variables are bound within their natural domain. For instance,
if x > 0, we approximate logx. Similarly, labor lt must be between 0 and 1 so we approx-
imate log lt

1−lt instead.
The second version with capital adjustment costs approximates, in addition, the

variables log q̃t and log x̃back
t+1 , which are both determined in period t. The notation back

denotes the past value of the variable, for example, x̃back
t ≡ x̃t−1. This is required when

the past value of a control variable (e.g., past investment) is an endogenous state vari-
able.

The third version with Calvo pricing approximates, in addition, the variables: log w̃t ,
log x̃t , log g̃1

t , logΠt + logΠ∗
t , logΠback

t+1 , and logvp�back
t+1 , all determined in period t. We

approximate logΠt + logΠ∗
t instead of approximating separately logΠt and logΠ∗

t . It
can be shown that this transformation ensures that Πt is always positive, while keeping
the number of approximated variables as small as possible.

The fourth version with a Taylor rule that depends on output growth approximates,
in addition, log ỹback

t+1 , which is determined in period t.
The fifth version with a smoothed Taylor rule approximates, in addition, the variable

logRback
t+1 , which is determined in period t.

The other versions add only exogenous variables, so the number of approximated
variables does not change.

Appendix E: Perturbation versus Taylor projection: A simple example

As we mention in the main text, in standard perturbation, we find a solution for the vari-
ables of interest by perturbing a volatility of the shocks around zero. In comparison, in
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Taylor projection (as we would do in a projection), we take account of the true volatility
of the shocks.

An example should clarify this point. Imagine that we are dealing with the stochastic
neoclassical growth model with fixed labor supply, full depreciation, and no persistence
of the productivity shock (these two assumptions allows us to derive simple analytic
expressions).

The social planner problem of this model can be written as

maxE0

∞∑
t=0

βt log ct

s.t. ct + kt+1 = eztkαt � zt ∼ N (0�σ)�

where E0 is the conditional expectation operator,β is the discount factor, ct is consump-
tion, kt is capital, and zt is the productivity shock with volatility σ .

To ease the presentation, we will switch now to the recursive notation, where we
drop the time subindex and where for an arbitrary variable x, we have that x′ = xt+1.
Thus, consumption can be written in terms of the policy function ct = c(k� z) and from
the resource constraint of the economy k′ = ezkα − c(k� z).

If we substitute c(k� z) and k′ = ezkα− c(k� z) in the Euler equation of the model, we
get

− 1
c(k� z)

+ αβEt e
z′(
ezkα − c(k� z))α−1

c
(
ezkα − c(k� z)� z′) = 0�

From this Euler equation, we can find the deterministic steady state of the model:

kss = (αβ) 1
1−α �

css = kαss − kss�

In a first-order perturbation, we postulate an approximation for the policy function
of the form

c(k� z)= θ0 + θ1(k− kss)+ θ2z�

where we are already taking advantage of the certainty equivalence property of first-
order approximations to drop the term on σ .

If we plug this policy function into the equilibrium conditions before, we get

− 1
θ0 + θ1(k− kss)+ θ2z

+ αβEt ez
′(
ezkα − θ0 − θ1(k− kss)− θ2z

)α−1

θ0 + θ1
(
ezkα − θ0 − θ1(k− kss)− θ2z− kss

) + θ2z
′ = 0�

To find θ0, we first evaluate the previous expression at the deterministic steady-state
value of the state variables (k= kss and z = 0):

− 1
θ0

+ αβEt
ez

′(
kαss − θ0

)α−1

θ0 + θ1
(
kαss − θ0 − kss

) + θ2z
′ = 0�
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and then take σ → 0 to get

− 1
θ0

+ αβ
(
kαss − θ0

)α−1

θ0 + θ1
(
kαss − θ0 − kss

) = 0�

This equation has a zero at θ0 = css = kαss−kss . This result is natural: the leading con-
stant term of a perturbation around the deterministic steady state of the policy function
of an endogenous variable is just the steady-state value of such a variable (in practice,
this result is just assumed without solving for it explicitly).

To find θ1 and θ2, we take derivatives of the Euler equation with respect to capital
and productivity, evaluate them at the deterministic steady state, take σ → 0, and solve
for the unknown coefficients. The algebra is straightforward, but tedious. Note, however,
that the procedure is recursive: we solve first for θ0, and when this coefficient is known,
for θ1 and θ2.

In a Taylor projection, up to first order, we also postulate:

c = θ0 + θ1(k− kss)+ θ2z�

In this Taylor projection, we will take our approximation around (kss�0) to make the
comparison with perturbation easier, but other approximation points are possible.

As before, we substitute in the equilibrium condition:

− 1
θ0 + θ1(k− kss)+ θ2z

(69)

+ αβEt
ez

′(
ezkα − θ0 − θ1(k− kss)− θ2z

)α−1

θ0 + θ1
(
ezkα − θ0 − θ1(k− kss)− θ2z− kss

) + θ2z
′ = 0�

and evaluate it at the deterministic steady-state value of the state variables (k= kss and
z = 0):

− 1
θ0

+ αβEt ez
′(
kαss − θ0

)α−1

θ0 + θ1
(
kαss − θ0 − kss

) + θ2z
′ = 0�

But now we do not let σ → 0. Note, in particular, that this means we still have an
expectation operator Et and a z′. Furthermore, it also means that we must simultane-
ously solve for θ0, θ1, and θ2, and not recursively as in perturbation. To do so, we take
derivatives of equation (69) with respect to k and z and evaluate them at the determinis-
tic steady state. This operation gives us three equations ((69) and the two derivatives) on
three unknowns (θ0, θ1, and θ2) that can be solved with a standard Newton algorithm.

In general, the presence of the expectation operator will imply that the θ0 from first-
order perturbation and the θ0 from Taylor projection will be different. To see this, we can
plug θ0 = css after equation (69) and verify that

− 1
css

+ αβkα−1
ss Et

ez
′

css + θ2z
′ �= 0

unless σ = 0.
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Table 27. Solution for θ’s.

Parameter Taylor Projection Perturbation

θ0 0.4872 0.4176
θ1 0.9326 0.7417
θ2 0.5252 0.4176

To further illustrate this point, we will implement a simple calibration of the model
with α= 0�3 and β= 0�96. Productivity, instead of being a normal distribution as before,
is now a two-point process:

z =
[

log(0�4)�−0�1
0�9

∗ log(0�4)
]
�

Prob = [0�1�0�9]�
This calibration assumes 10% probability of a 60% fall in TFP and 90% probability of a
10�7% increase (the mean of z is still zero).

The solutions for the θ’s are reported in Table 27. Note the difference between the
Taylor projection θ’s and the perturbation θ’s.

Appendix F: Taylor projection versus projection: A simple example

We can continue our previous example with the stochastic neoclassical growth model
with full depreciation, but now comparing Taylor projection with a standard projection.

The first steps of a Taylor projection and a standard projection are the same. In both
cases, we postulate a policy function:

c = θ0 + θ1(k− kss)+ θ2z�

For this example and to make the comparison with perturbation easier, we center the
policy function around kss , even if other approximation points are possible.

As we did in previous cases, we substitute in the equilibrium condition to get a resid-
ual function:

R(k�z�θ0� θ1� θ2)

= − 1
θ0 + θ1(k− kss)+ θ2z

(70)

+ αβEt
ez

′(
ezkα − θ0 − θ1(k− kss)− θ2z

)α−1

θ0 + θ1
(
ezkα − θ0 − θ1(k− kss)− θ2z− kss

) + θ2z
′ �

but we do not impose that this residual function is zero. Instead, we express it as an
explicit function of k, z, θ0, θ1, and θ2.

In Taylor projection, we find the values of θ0, θ1, and θ2 that solve

R(kss�0� θ0� θ1� θ2)= 0� (71)
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∂R(k�z�θ0� θ1� θ2)

∂k

∣∣∣
kss�0

= 0� (72)

∂R(k�z�θ0� θ1� θ2)

∂z

∣∣∣
kss�0

= 0� (73)

In comparison, projection selects three points (k1� z1), (k2� z2), and (k3� z3) (one of
these points can be (kss�0); there are different choices of how to undertake this selec-
tion) and finds the values of θ0, θ1, and θ2 that solve

R(k1� z1� θ0� θ1� θ2)= 0� (74)

R(k2� z2� θ0� θ1� θ2)= 0� (75)

R(k3� z3� θ0� θ1� θ2)= 0� (76)

In both cases, we have three equations (71)–(73) for Taylor projection and (74)–
(76) for projection in three unknowns (θ0� θ1� θ2) that come from the residual function
R(k�z�θ0� θ1� θ2), but in the former case we deal with the level and two partial deriva-
tives of the function at one point, and in the latter, we deal with the level of the function
at three different points.
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