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Appendix A: Consumer expectations, dynamics, and subsidies

While several prominent recent papers on solar PV adoption have used reduced form
approaches, rather than dynamic discrete choice models (see, e.g., Rogers and Sexton
(2014), Hughes and Podolefsky (2015)), many economists may instinctively consider the
purchase of a solar PV system as a “buy-or-wait” decision that is best modeled with a
dynamic discrete choice model. For example, consumers may recognize that subsidies
are about to change in the near future and time their purchase to ensure the higher sub-
sidy. Indeed, in California, Rogers and Sexton (2014) found intriguing evidence of such
dynamics in consumer behavior, with a considerable “bunching” of adoptions just be-
fore a step decline in the subsidy. Papers such as Hendel and Nevo (2006) point out that
static demand elasticities are overestimated in the context of temporary sales or price
reductions that lead to large increases in the quantity sold due to consumer recognition
of the temporary nature of the price increases. Burr (2014) and Bollinger and Gillingham
(2016) implemented structural dynamic discrete choice models of solar PV demand to
attempt to model such features of consumer decision making in California.

However, it is quite likely that the California setting may not transfer to many other
settings around the country and around the world. In California, the subsidies were
phased out in a way that depended on the total amount of installed PV capacity, which
allows consumers and firms to reasonably anticipate the timing of subsidy declines.
Moreover, the subsidy changes were large and firms occasionally advertised using the
upcoming subsidy change as the key message. Such features do not exist in Connecticut
(or most other states).

The changes in rebates in Connecticut were abrupt and not easily forecastable. In
some cases, they changed with votes in the state legislature. In others, they changed due
to the budget for that set of incentives running out. These end dates are very plausibly
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random. Equally important, unlike in California, consumers and firms could not pre-
cisely time purchases, since consumers and firms had little information about when the
change would occur. In Connecticut, there was no messaging or advertising about future
subsidy declines. The only case where timing of any sort occurred is when CGB explic-
itly timed two rounds of Solarize programs to end just before a change in the incentive
(others ended at a different time).

This Appendix provides two types of evidence supporting the contention that dy-
namics are a dominant force in this context. First, we show that there is no obvious
bunching in the Connecticut data that would come about due to consumers treating
the solar PV adoption decision as an optimal stopping problem. Second, we provide ev-
idence from a survey of consumers that highlights the key factors in the solar adoption
decision process and suggests that expectations of future changes in subsidies–or other
dynamic factors–are not likely to be key influences in the decision process for most solar
PV adopters in Connecticut.

A.1 No obvious bunching in Connecticut

Figure A1 shows the number of installations per month (the most disaggregated our data
permits with any accuracy). The red lines in the figure indicate the dates of changes in
incentives. After early 2012, the figure shows several months of very large numbers of
installations, which correspond to months at the end of Solarize programs. Sometimes
they correspond to steps that decline, but more often they do not, with months of high
sales before, during, and after changes in steps. In general, there is no clear pattern of
bunching before changes in incentives in Connecticut. The high levels of installations
in the Solarize months are due to the Solarize programs, rather than the changing in-
centives (there is no uptick in non-Solarize municipalities). These high levels of instal-

Figure A1. The number of installations over time does not show bunching at the steps of in-
centive declines (red lines) except for during times of Solarize campaigns.
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lations during those months underscore the value of performing our analysis both with
and without the Solarize programs included.

Examining the data in this way is useful for it demonstrates that there is no obvi-
ous bunching or “harvesting” effect (Rogers and Sexton (2014)) in our data, which could
confound identification of the demand elasticity. Furthermore, by aggregating our data
to the yearly level, as we do for our estimation, we can be even more confident that har-
vesting is not an identification concern in our setting.

A.2 Consumer expectations

Our evidence of a lack of bunching indicates that consumers in Connecticut are not ob-
viously making decisions considering the expectations of future subsidy declines. We
can also examine survey evidence to better understand how consumers are making de-
cisions.

We use survey data that was conducted in Connecticut just shortly after each of the
first three Solarize rounds. The surveys were conducted online in March 2013, Septem-
ber 2013, and June 2014 using the Qualtrics survey tool. Respondents were contacted via
e-mail. The e-mail addresses were obtained from the Solarize campaigns. The response
rate for those who had solar or signed a contract to install was approximately 40%. The
response rate for those who expressed interest, but did not adopt, was approximately
17%. We received 1392 full responses, 36% of whom either had installed or had signed a
contract to install solar PV.

The responses provided deep insight into how consumers make decisions about so-
lar PV. A few survey questions are most relevant for the question at hand here: do con-
sumers in Connecticut appear to time their decision to adopt? While this evidence is
certainly only suggestive, the short answer is no, it appears that timing is not a domi-
nant factor in the decision process.

Our first evidence of this is in an open-ended qualitative question at the end of
the survey where respondents were asked to provide any further thoughts about so-
lar PV. Typical responses from those who did not install a panel are “My house faces
in wrong direction and my age (79) would not see return on investment” or “Had my
home evaluated—roof wasn’t large enough, so the only other option was a large array
structure in my backyard” or “I just can’t justify cutting beautiful, old trees down to be-
come more environmentally friendly” or “took too long to get back investment in solar.”
Typical responses from those who did install are “LOVE IT!” or “Great program! Keep up
with incentives so that more people can access solar power” or “Communication by the
town is critical in getting the word out about the Solarize program.” Notably, not a single
response mentions anything about timing the installation in any way (e.g., before incen-
tives dropped). Some responses mentioned that they are interested but the numbers do
not work out for solar to be financially attractive on their home right now and that they
would consider solar PV in the future if the cost comes down. But this is very different
than households anticipating the expiration of subsidies and timing their installations.
If such timing was a critical factor in this market, it stands to reason that at least one
consumer would have mentioned this in their comments.
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Further evidence is from a question that asks consumers who did not install to rate
the importance of different factors in their decision not to install. Respondents could
rate each of the factors on a scale from “not at all important” to “extremely important.”
The two factors that rose to the top: whether their home is suitable for solar and the cur-
rent cost of solar. 46% of the respondents indicated that whether their home is suitable
for solar was extremely important for their choice not to install solar PV. 41%of the re-
spondents indicated that the current cost of solar is extremely important for their choice
not to install solar. In contrast, only 23%of the respondents indicated that future costs
of solar were extremely important. 100% of those who indicated that future costs of so-
lar PV were extremely important also indicated that the current costs of solar were ex-
tremely important in their decision. This evidence suggests that at most only a relatively
small group of potential consumers did not install due to expectations of lower future
prices, and that these consumers also simply saw current prices as a dominant factor.

While this survey evidence is by no means definitive, when considered along with the
evidence of a lack of bunching just before subsidy declines and the fact that there was no
easy way for consumers to know that the subsidies were about decline, it builds a reason-
able case that our estimated static demand elasticities are not substantially biased from
neglecting dynamics. To be clear, we cannot rule out that the consumers in our setting
are forward-looking, we just have not found evidence consistent with forward-looking
behavior in our explorations of the data. If there was very substantial forward-looking
behavior, we would expect the true elasticity to be closer to zero than our elasticity.

Appendix B: Monte Carlo simulations

In what follows, we describe three different data generation processes used in our Monte
Carlo simulations. In particular, we generate panel data from a random Poisson model,
a hurdle model with individual fixed effects and an endogenous regressor, and a Poisson
model with individual fixed effects and an endogenous regressor.

B.1 Random Poisson model

We use the following model in this set of Monte Carlo simulations:

yit ∼ Po(λit)� (B.1)

λit = exp(αit + δxit)� (B.2)

xit = 2 + uit� (B.3)

αit = −5 + eit� (B.4)

uit |= eit� uit ∼ Unif(0�2)� eit ∼ Unif(0�10)� (B.5)

where i = 1� � � � �N , and t = 1� � � � �T . In other words, the Poisson parameter λit is affected
by an individual- and time-specific shock αit which is unobserved, but also uncorrelated
with the observed regressor xit .

To generate data, we first draw uit and eit from the distributions shown in (B.5). We
then construct the variables αit and xit as shown in (B.4) and (B.3), respectively. Next, we
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Figure B1. Data distribution under a random Poisson specification.

calculate λit using the formula in (B.2). Finally, we draw yit from the Poisson distribution

shown in (B.1). We set the parameter values as δ= −1, N = 5000, and T = 4, and replicate

the estimation 5000 times, each time redrawing different uit and eit .

Such data generation process can give rise to a distribution of the outcome count

variable y with most of its mass centered around zero and variance vastly exceeding the

sample mean. Figure B1 displays the distribution of the data from one of the random

draws. The thick line traces the true distribution of the outcome variable under the ran-

dom Poisson data generation process. Note that more than 70% of the outcomes are

zeros. Furthermore, the sample mean for the data is 0�86 and the variance 4�85, indi-

cating overdispersion relative to the standard Poisson model. Hence, in general, a ran-

dom Poisson model can yield a distribution similar to the data in our analysis. Figure B1

also shows how a hurdle model distribution would fit through the generated data. Aside

from a slightly lower mass at low counts, the hurdle model comes quite close to the ac-

tual distribution. We found this trend to hold under a number of different parameter

values.

In each replication of the above data generation process, we estimate the logit and

truncated Poisson components of a hurdle model with a single exogenous regressor xit .

Using the estimated coefficient on the regressor and the formulas in Section 5.4, we then

derive the implied elasticity from each component of the model, as well as the combined

hurdle model elasticity. As shown in Table B1, the average elasticity estimate from the

5000 replications is very close to the true value (also averaged over 5000 replications) of

−3. The bias is less than 0�6%, which lends support to the use of a Poisson hurdle model

even in instances where the true model is a random Poisson.
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Table B1. Random Poisson simulation results.

Elasticity

Implied
True
ValueSpecification Estimated Bias

Logit n/a −1�1727 n/a
Truncated Poisson n/a −1�8091 n/a
Poisson hurdle −3 −2�9818 0�0182

B.2 Hurdle model with fixed effects and endogeneity

We use the following model:

ιit =
{

1 if lit > κit�

0 if lit ≤ κit�
(B.6)

lit = exp(αi + δ1wit + uit)

1 + exp(αi + δ1wit + uit)
� (B.7)

κit ∼ Unif[0�1]� (B.8)

yit = 0� if ιit = 0� (B.9)

yit ∼ tr Po(λit)� if ιit = 1� (B.10)

λit = exp(βi + δ2wit + vit)� (B.11)

wit = τ1αi + τ2βi +πzit + ρ1uit + ρ2vit + eit� (B.12)

uit |= vit� (uit � vit � eit) |= zit�
uit ∼N(0�σu)� vit ∼N(0�σv)� eit ∼N(0�σe)� (B.13)

where i = 1� � � � �N , and t = 1� � � � �T . Note that wit is correlated both with the error terms
uit and vit , as well as with the individual-specific parameters αi and βi, with the mag-
nitude of correlation determined by parameters ρk and τk, k ∈ {1�2}, respectively. The
variable zit is exogenous to the model and is used to instrument for wit . The parameter
π measures the strength of this instrument.

The data generation process is as follows. First, we draw each αi and βi from a
uniform distribution with support [0�1]. Next, we generate a random variable zit ∼
Unif[0�5]. After drawing the random error terms uit , vit , and eit from the distributions
shown in (B.13), we plug them into (B.12), (B.11), and (B.7) to obtain wit , λit , and lit , re-
spectively. Finally, we proceed to generate the outcome variable in each of the two stages
of the hurdle model. We draw κit from the distribution shown in (B.8) and then follow
the decision rule in (B.6) to generate ιit . We set yit to equal zero for all observations
where ιit = 0, as indicated in (B.9). Then, if ιit = 1, yit is drawn from the truncated Pois-
son distribution in (B.10). To obtain the truncated Poisson draws, we follow Cameron
and Trivedi (2013) by drawing from a Poisson distribution with parameter λit and then
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replacing each zero draw with another draw from the same distribution until all draws
are positive.

The parameters to be chosen are δ1, δ2, τ1, τ2, π, ρ1, ρ2, σu, σv, σe, N , and T . We
set δ1 = δ2 = −0�1, τ1 = τ2 = 0�2, π = 0�8, ρ1 = ρ2 = 0�5, σu = σv = σe = 0�5, N = 5000,
and T = 4. We replicate the estimation 5000 times, each time redrawing different uit , vit ,
and eit .

B.3 Poisson model with fixed effects and endogeneity

This Monte Carlo simulation shows that even if the true data generating process was
simply Poisson (with endogeneity), our hurdle model performs well in recovering the
true values. We use the following model:

yit ∼ Po(λit)� (B.14)

λit = exp(αi + δwit + uit)� (B.15)

wit = ταi +πzit + ρuit + vit� (B.16)

uit |= vit� (uit � vit) |= zit�
uit ∼N(0�σu)� vit ∼ N(0�σv)� (B.17)

where i = 1� � � � �N , and t = 1� � � � �T . Note that wit is correlated with the error term uit and
with the individual-specific parameter αi, with the magnitude of correlation determined
by parameters ρ and τ, respectively. The variable zit is exogenous to the model and is
used to instrument for wit . The parameter π measures the strength of this instrument.

The data generation process is as follows. First, we draw each αi from a uniform dis-
tribution with support [−1�1]. Next, we generate a random variable zit ∼ Unif[0�5]. After
drawing uit and vit from the distributions shown in (B.17), we plug them into (B.16) and
(B.15) to obtain wit and λit , respectively. Finally, we draw yit from the Poisson distribu-
tion shown in (B.14). The parameters to be chosen are δ, τ, π, ρ, σu, σv, N , and T . We set
δ = −0�5, τ = 0�2, π = 0�8, ρ = 0�5, σu = σv = 0�5, N = 5000, and T = 4. We replicate the
estimation 5000 times, each time redrawing different uit and vit .

In each replication, we estimate a fixed effects logit CF and a fixed effects truncated
Poisson GMM model with the data, using zit as an instrument for the endogenous vari-
able wit . We then calculate the corresponding elasticity values in each of the two compo-
nents of the hurdle model and add them up to obtain the total elasticity implied by the
model. The true elasticity from the Poisson model, averaged over 5000 replications, is
approximately −1. As shown in Table B2, the average elasticity estimate from the hurdle
model lies very close to the true value, with bias of less than 0�7%.



8 Gillingham and Tsvetanov Supplementary Material

Table B2. FE Poisson with endogeneity simulation results.

Elasticity

Implied
True
ValueSpecification Estimated Bias

Logit CF n/a −0�7776 n/a
Tr. Poisson GMM n/a −0�2293 n/a
Poisson hurdle −1�0001 −1�0069 −0�0068

Appendix C: First-stage instrumental variable results

To demonstrate the strength of our instruments, Table C1 shows the results of a first-
stage regression of the post-incentive PV system price per W on all instruments for both
the full and truncated sample. The coefficients on incentives are highly statistically sig-
nificant. A joint F-test of statistical significance of the excluded instruments provides a
test statistic of 43�06 in the full sample and 117�52 in the truncated sample.

Table C1. First-stage instrumental variable regression results.

Variable Full Sample Truncated Sample

Incentive level −0�453*** −0�574***
(0�0515) (0�038)

Wage rates 0�00036** 0�00008
(0�00017) (0�00045)

Solarize −0�134 −0�27***
(0�0838) (0�0805)

Pop. density 7 × 10−6 0�00016
(3 × 10−5) (0�00014)

Income −0�0007 −0�00179
(0�001) (0�00136)

Age −0�00217 −0�00666
(0�00331) (0�00427)

% (some) college −0�00049 0�00198
(0�00193) (0�00385)

% grad/professional −0�00043 0�00541
(0�00309) (0�00448)

% Republican 0�0154 0�0159
(0�0285) (0�0271)

% Democrat −0�00886 −0�00158
(0�0214) (0�0219)

BG FE yes yes
Year Dummies yes yes

F-statistic 43�06 117�52

Observations 10,738 3238

Note: Dependent variable is post-incentive PV system price per W. Unit of observation is block group-year. Specification is
a linear least squares regression. BG FE refers to block group fixed effects. Standard errors clustered on town in parentheses. All
other variables are the same as in Table 6. p< 0�1 (*), p< 0�05 (**), p< 0�01 (***).
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Appendix D: Noninstrumented regression output

Table D1. Noninstrumented regression results.

Hurdle

Linear Poisson Logit Truncated Poisson

OLSi MLEii CMLEii CMLEi

Variable (1) (2) (3) (4)

Price 0�119*** 0�223*** 0�572*** −0�123**
(0�0162) (0�0497) (0�0787) (0�0574)

Solarize 0�953*** 0�962*** 0�948*** 0�897***
(0�24) (0�15) (0�2) (0�161)

Pop. density −0�00001 −0�00019** −0�00021** 0�00024
(0�00001) (0�00008) (0�00009) (0�00042)

Income 0�00101 0�00084 −0�00055 0�00273
(0�000738) (0�00139) (0�00142) (0�00269)

Age −0�0026 −0�0099** −0�0084 −0�00926
(0�0025) (0�0045) (0�0052) (0�0119)

% (some) college 0�00077 0�00193 0�0045 0�00348
(0�00129) (0�00299) (0�00365) (0�00626)

% grad/prof degree 0�00108 −0�0002 0�00582 −0�00743
(0�00153) (0�00405) (0�00483) (0�00791)

% Republican 0�0542** 0�0545 −0�0005 0�159***
(0�0239) (0�0397) (0�0443) (0�0592)

% Democrat 0�0263** 0�0433* 0�0107 0�109***
(0�0125) (0�0222) (0�0252) (0�0377)

BG FE yes yes yes yes
Year Dummies yes yes yes yes
Instruments no no no no

Price elasticityiii 0�935*** 0�84 1�504*** −0�052**
(0�128) (0�186) (0�207) (0.024)

Observations 10,738 10,738 10,738 2636

Note: Dependent variable is number of residential PV installations. Unit of observation is block group-year. BG FE refers to
block group fixed effects. All other variables are the same as in Table 6. p< 0�1 (*), p< 0�05 (**), p< 0�01 (***).
i Clustered standard errors at the town level in parentheses.
ii Block bootstrapped standard errors (100 replications), clustered at the town level, in parentheses.
iii Standard errors of price elasticity coefficients obtained by the delta method.
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Appendix E: Including third-party-owned systems

Table E1. Regression results with purchased and third-party-owned systems.

Hurdle

Variable Linear Poisson Logit Truncated Poisson

2SLSi CFii CFii GMMi

(1) (2) (3) (4)

Price 0�037 −0�0503 −0�00323 −0�156
(0�0429) (0�104) (0�109) (0�133)

Solarize 1�294*** 0�724*** 0�678*** 0�794***
(0�333) (0�111) (0�2) (0�119)

TPO −0�335*** −0�210** 0�155 −0�429***
(0�107) (0�0912) (0�102) (0�126)

Pop. density 3�7 × 10−5*** −9�9 × 10−5* −0�00015 0�00079**
(8�8 × 10−6) (0�00006) (0�00009) (0�00038)

Income 0�00259*** 0�00049 −0�0016 0�00313
(0�000827) (0�00124) (0�00154) (0�00252)

Age 0�00035 −0�0101** −0�0119** −0�00149
(0�00244) (0�00412) (0�00553) (0�0097)

% (some) college 0�00067 0�00057 0�00283 0�00173
(0�00133) (0�00293) (0�00441) (0�00503)

% grad/prof degree −0�00169 −0�00803** 0�00321 −0�0201***
(0�00173) (0�0032) (0�00498) (0�0073)

% Republican 0�0942*** 0�0417 0�0203 0�0806*
(0�0363) (0�0364) (0�0418) (0�0484)

% Democrat 0�0341* 0�0307 0�00735 0�0694**
(0�0197) (0�023) (0�0284) (0�0313)

BG FE yes yes yes yes
Year Dummies yes yes yes yes
Instruments yes yes yes yes

Price elasticityiii 0�204 −0�194 −0�008 −0�097
(0�2364) (0�4025) (0�2787) (0�083)

Observations 13,510 13,510 13,510 4513

Note: Dependent variable is number of residential PV installations. Unit of observation is block group-year. TPO measures
the fraction of new installations that are third-party-owned. The number of observations increases from our primary results
because TPO systems are included. All other variables are the same as in Table 6. p< 0�1 (*), p< 0�05 (**), p< 0�01 (***).
i Clustered standard errors at the town level in parentheses.
ii Block bootstrapped standard errors (100 replications), clustered at the town level, in parentheses.
iii Standard errors of price elasticity coefficients obtained by the delta method.
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Table F1. Input values for policy simulations.

Parameter/Variable Value

Change in average system cost from Jan 1, 2015 to Dec 31, 2015 (%) −5�30
Number of block groups 1534
Average number of installations per block group in 2014 1�287
Average system capacity (kW) in 2014 7�819
Average system price ($/W) in 2014 2�946
Average rebate rate ($/W) in 2014 0�935
Average town permit fee ($/W) in 2014 0�0518

Appendix F: Inputs for the policy simulations

Table F1 lists the values of the main parameters and variables used in our policy simu-
lations in Section 7. As an estimate of system costs in 2015, we assume that the trend of
declining module and inverter costs continues. In order to derive the predicted change
in pre-incentive average system costs (i.e., the sum of installer reported module, in-
verter, labor, and permitting costs) during 2015, we extrapolate the trend from 2008 to
2014. More specifically, we calculate the year-to-year percentage change in the average
preincentive cost per W (calculated as the ratio of the average cost to the average system
size) over this time period and fit a simple exponential curve through these percentage
changes. We then take the extrapolated 2015 value as our forecasted cost per W in 2015.
This value is shown in the top row of Table F1.

The average 2014 values of all installation-related variables are obtained directly
from our core dataset. In addition, the average EPBB/HOPBI rate is derived using the
mean system capacity value in 2014 at Step 4 and Step 5 incentive levels and taking the
average of the two resultant rates. Lastly, our data contains information on the struc-
ture of municipal solar PV system permit fees. While some CT towns charge a flat fee
per installation, in most towns the fee depends on the capacity of the installation. In
those towns, we use our system size data for each installation in 2014 to obtain the fee
for that installation. We average across all installations to derive an average town fee per
installation and then average across all towns. After dividing the resultant number by
average system capacity, we obtain the average town fee per W, reported in the last row
of Table F1.
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