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We develop tests for deciding whether a large cross-section of asset prices obey
an exact factor structure at the times of factor jumps. Such jump dependence is
implied by standard linear factor models. Our inference is based on a panel of
asset returns with asymptotically increasing cross-sectional dimension and sam-
pling frequency, and essentially no restriction on the relative magnitude of these
two dimensions of the panel. The test is formed from the high-frequency returns
at the times when the risk factors are detected to have a jump. The test statistic
is a cross-sectional average of a measure of discrepancy in the estimated jump
factor loadings of the assets at consecutive jump times. Under the null hypothe-
sis, the discrepancy in the factor loadings is due to a measurement error, which
shrinks with the increase of the sampling frequency, while under an alternative
of a noisy jump factor model this discrepancy contains also nonvanishing firm-
specific shocks. The limit behavior of the test under the null hypothesis is non-
standard and reflects the strong-dependence in the cross-section of returns as
well as their heteroskedasticity which is left unspecified. We further develop es-
timators for assessing the magnitude of firm-specific risk in asset prices at the
factor jump events. Empirical application to S&P 100 stocks provides evidence for
exact one-factor structure at times of big market-wide jump events.

Keywords. Factor model, panel, high-frequency data, jumps, semimartingale,
specification test, stochastic volatility.
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1. Introduction

Asset prices often “jump” simultaneously in response to important market-wide events
such as macroeconomic announcements, political news, and natural disasters. Linear
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factor models which are widely used in asset pricing have strong implications regarding
this co-jump structure of assets in the cross-section. To fix ideas, consider a continuous-
time factor model given by

dYt = αt dt + BdFt + dỸt� (1.1)

where Yt is a N × 1 vector of asset prices, Ft is a r × 1 vector of factors capturing sys-
tematic risk, αt is a drift term due to the compensation for risk and time demanded by
investors for holding the stocks, B is a N × r matrix of factor loadings, and Ỹt is a N × 1
vector of idiosyncratic risks. Idiosyncratic risk is formally defined as being orthogonal
to the systematic one, that is, having zero quadratic covariation with it. Regarding the
jumps, this orthogonality condition means �Ft�Ỹt = 0 for every t, where for a generic
process Z we denote with �Zt =Zt −Zt− its jump at time t.1 Therefore, we have

�Yτ = B�Fτ� for τ such that �Fτ �= 0. (1.2)

That is, at the times of the factor jumps, the whole cross-section of asset prices follows
an exact factor model with no idiosyncratic risk, that is, Ỹ is not present in (1.2).2

Moreover, if the jumps in the components of the vector F are normalized such that
they are orthogonal to each other, that is, have zero quadratic covariation, then we also
have

�Yτ = b�Zτ� for τ ∈ T ≡ {t ∈ [0�T ] : �Zt �= 0
}
� (1.3)

where Zt is one of the elements of the vector Ft and b is the corresponding vector of
factor loadings in the matrix B.3 That is, we have an exact one-factor structure of the
jumps in Y at the jump times of the univariate factor Zt . This one-factor structure of
jumps in Y holds true for the jump times of each of the factors in F , but with different
factor loadings in general.

Our goal in this paper is to test whether a hypothesis of exact factor structure for
the systematic jumps in (1.3) is true.4 The test is based on a large cross-section of assets
sampled at high-frequency on a time interval of fixed length. In its most basic form,

1In many applications, orthogonality of systematic and idiosyncratic risk is defined in a much stronger
sense by imposing independence between F and Ỹ .

2Put differently, if τ1, τ2,. . . ,τk are the jump times of the systematic factors in the observation interval
[0�T ] (these times are in general random) and if without loss of generality we assume k > r and N > r, then
the matrix [�Yτ1 ��Yτ2 � � � � ��Yτk ] is of reduced-rank r and the same holds true for the quadratic variation
of Y at the factor jump times

∑k
i=1 �Yτi�Y

�
τi

. Only when we aggregate the quadratic variation of all jump
risk in Y over the interval [0�T ], given by

∑
t∈[0�T ] �Yt�Y

�
t , we restore the full rank of N . This is because∑

t∈[0�T ] �Yt�Y
�
t includes also the quadratic variation due to the jumps in the idiosyncratic component Ỹ

(which happen outside the set T of factor jump times) which is a diagonal matrix.
3Note that b is a N × 1 vector that contains the slope coefficients (i.e., betas) for the N assets. There is no

restriction on the relationship among individual assets’ betas.
4When the factors in the vector F do not have orthogonal jump components, then for τ ∈ T , we will have

in general an exact multifactor model. The analysis of the paper can be extended to cover this more general
setup but at the cost of significantly more involved derivations and notation. Given the empirical evidence
presented in Section 6, however, such an extension seems to be of little practical relevance.
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which will be generalized in our formal analysis, our test discriminates (1.3) from its
“noisy” counterpart given by

�Yτ = b�Zτ + χ̄τ� for τ ∈ T � (1.4)

where χ̄τ is a random N × 1 vector that captures deviations from the exact factor model
at the systematic jump events; we refer to (1.4) as the noisy linear factor model hence-
forth. This model can be equivalently written in the form of a random jump beta model
as

βτ ≡ �Yτ

�Zτ
= b+ χ̃τ� (1.5)

where χ̃τ ≡ χ̄τ/�Zτ .5 There are many reasons for the presence of χ̃τ in the jump fac-
tor loadings (i.e., betas). One of them is predictable time-variations in these loadings.
Indeed, factor loadings in asset pricing are often modeled as functions of assets’ char-
acteristics and/or macro state variables; see, for example, Connor, Hagmann, and Lin-
ton (2012) and Gagliardini, Ossola, and Scaillet (2016b), and the theoretical analysis of
Hansen and Richard (1987). Typically, such time-variation in the factor loadings hap-
pens at low frequencies and by performing our tests on intervals of short time span we
will minimize the possibility for such a violation of the null hypothesis in (1.3). Another
reason for χ̄τ in (1.4) is the presence of (locally unpredictable) firm-specific shocks in Y

even at the times of systematic jumps. In this case, we have Eτ−[χ̄τ�Zτ] = 0, that is, χ̄τ is
uncorrelated with the jump �Zτ conditional on the information prior to the jump time
τ, and (1.3) gets replaced by the weaker linear projection condition

Eτ−[�Yτ�Zτ] = bEτ−
[
�Z2

τ

]
� (1.6)

Obviously, (1.3) implies (1.6) but the reverse is generally not true. The test we propose
here will be able to discriminate (1.3) from alternatives under which we have firm-
specific shocks at the systematic jump events and only (1.6) holds.

From a practical point of view, separating the null from such an alternative hypoth-
esis is important as this has strong implications regarding the inference for the matrix of
jump factor loadings B. Indeed, if the null hypothesis holds, we can use a fixed (small)
number of systematic jump times to identify the (constant) jump factor loadings. On
the other hand, if only (1.6) holds, then we need to use a long span of data to identify
the permanent component of B, which would be further complicated by the possible
time-variation in the factor loadings at low frequencies. The separation of the null from
the alternative hypothesis is also important for practical risk management decisions and
more generally can help shed light on the sources of priced jump risk in the cross-section
of asset prices.

To motivate empirically our theoretical analysis, we show in Figure 1 the cross-
sectional relationship between stock returns versus their market jump betas for S&P

5The random jump betas may be viewed as “random coefficients” like in classical panel data analysis.
However, we note that the jump betas only concern the jump returns, which form a small subset of all
high-frequency returns.
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Figure 1. Stock jump returns versus jump beta. Note: The vertical axis is the time series average
2-minute stock return at times when a positive jump in the S&P 500 index futures is detected; the
horizontal axis is the average jump beta measured from 2-minute asset returns at times when a
negative jump in the index futures is detected. The straight line is a linear fit implied by the exact
linear jump factor model in (1.3) and the recovered jump betas. The panel comprises S&P 100
stocks, 2007–2015, and the market jump returns are selected according the thresholding proce-
dure described in Section 5.

100 stocks: the 2-minute average stock returns are computed at the times when a pos-
itive market jump is detected (i.e., �Zτ > 0), and the jump betas are calculated from
the 2-minute asset returns at the times when a negative market jump is detected (i.e.,
�Zτ < 0). We use negative jump betas because the estimation error is relatively lower
for negative jumps, while we measure average stock returns at times of positive market
jumps to maintain complete separation of the data sets for computing the variables on
the x and y axes of the figure. This cross-sectional relationship appears quite tight, even
though the market betas were computed from only forty-four 2-minute returns when
negative market jumps were detected in our sample—hence the question: Is this fit con-
sistent with the exact linear jump factor model (1.3)?

To address this question, we develop a formal test for deciding whether such hy-
pothesis is true and we further propose a measure for the magnitude of the firm-specific
risk at factor jump events. Our asymptotic theory employs a joint asymptotic setting in
which both the cross-sectional dimension of the panel and the sampling frequency in-
crease simultaneously, while keeping the time span of the sample fixed. To compute the
test statistic, we first use high-frequency returns to nonparametrically estimate the indi-
vidual assets’ betas at the jump times of Z; the test statistic is then formed as the cross-
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sectional average of the temporal variations in these beta estimates. Under the null hy-
pothesis, changes in the beta estimates across jump times are due to high-frequency
estimation error that shrinks to zero asymptotically, but is nondegenerate under the al-
ternative. We characterize theoretically the asymptotic behavior of the test statistic and
propose an easy-to-implement algorithm for computing its critical values.

The asymptotic theory underlying our test is nonstandard for several reasons.
First, we allow individual assets’ returns to be strongly dependent in the cross-section,
through their loadings on the common diffusive factors. Importantly, these systematic
shocks are not “averaged out” under the cross-sectional aggregation (only the loadings
on them are), but they remain to have nondegenerate distributions in the limit. As a
result, unlike conventional econometric settings, the limiting behavior of the aggre-
gated systematic shocks is not obtained from a central limit theory for weakly depen-
dent data; instead, it is implied by the local Gaussianity of diffusive processes. Second,
the limit distribution of our test statistic depends on the spot covariance process of the
latent diffusive factors and individual assets’ time-varying loadings on them within lo-
cal windows around jump times. Therefore, our feasible inference on the panel of jumps
actually involves estimating characteristics of the diffusive factor component as a by-
product. We provide novel theoretical results in this direction, which are further used
to construct critical values of our test. Third, the limit behavior of our test statistic is of
“mixing” type. More precisely, the limit distribution can be realized on an extension of
the original probability space and changes (in general) depending on the realizations of
various sources of randomness on the original space, for example, it depends on the re-
alized value of the systematic risk factors. Finally, we impose essentially no assumption
on the relative growth rates of the cross-section dimension with respect to the sam-
pling frequency. This accommodates situations in which either the cross-section or the
sampling frequency is much higher than the other dimension of our panel and is very
convenient empirically.

Going one step further, we develop an estimator for assessing the magnitude of the
firm-specific risk at the times of systematic jump events. In particular, we measure the
cross-sectional mean of the squared difference (χ̃j�τ − χ̃j�η)

2 for two jump times τ and
η, where χ̃j�τ denotes the jth element of χ̃τ . This measure provides an estimate of the
temporal variation in jump betas for a “representative” asset.

We examine the performance of our inference procedures on simulated data from a
model that captures salient features of typical financial data sets. In an empirical appli-
cation to high-frequency data on stocks in the S&P 100 index covering the period 2007–
2015, we test the exact jump factor model in (1.3) with the sole jump factor being the
market jump. Our results provide strong empirical support for the model with no statis-
tically significant role for firm-specific shocks in the assets at the market-wide extreme
events.6 These findings are consistent with the empirical results in Savor and Wilson
(2014) regarding the validity of CAPM around macroeconomic announcement days as
well as earlier empirical evidence; see, for example, Longin and Solnik (2001) and Ang
and Chen (2002), for increased asset correlation during extreme market events.

6We note, however, that our evidence is for the “big” jumps only as separating the “small” jumps from
the diffusive component of returns is statistically much harder.
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The theoretical results of the current paper are related to several strands of litera-
ture. First, the nonparametric separation of jumps from diffusive volatility using high-
frequency data was initiated in work by Barndorff-Nielsen and Shephard (2004, 2006)
and Mancini (2001, 2009).

Second, in Li, Todorov, and Tauchen (2017), we developed univariate methods for es-
timating and testing the validity of the exact jump factor model for a single asset, while
being silent about the co-jump behavior of the cross-section of assets. We further ex-
tended these results to a cross-section of fixed size in Li, Todorov, Tauchen, and Lin
(2017b). The asymptotics in these papers is of in-fill type for high-frequency data. By
sharp contrast, here we consider a joint asymptotic setup in which the number of assets
also grows asymptotically so as to accommodate the large cross-section. Relative to prior
work, a key theoretical challenge in the current paper is the strong dependence among
a large cross-section of asset returns resulting from the latent factor structure of the dif-
fusive price components. We address this problem by developing factor-analytical tools
in the spirit of Stock and Watson (2002) and Bai (2003, 2009) (see also the recent work
of Gagliardini, Ossola, and Scaillet (2016a)), but in the nonstandard (infill, nonergodic,
and nonstationary) setting for a large panel of high-frequency data. This theoretical in-
novation is absent from Li, Todorov, and Tauchen (2017) and Li et al. (2017b). The novel
econometric setup of the current paper thus leads to a very different inference proce-
dure and asymptotic theory than prior work, reflected in particular in the distinct roles
of the systematic and idiosyncratic diffusive shocks in the limiting behavior of the test.
In addition, unlike our prior work, the current setup allows us to study how the whole
cross-section of assets reacts to economy-wide events, and further make inference for
the firm-specific risk at the systematic factor jump times in the case when the null hy-
pothesis of an exact jump factor model is not satisfied.

Third, Pelger (2015, 2019) developed methods for determining the number of sys-
tematic jump factors and further proposes inference procedures for recovering the la-
tent systematic jump factors from a large cross-section of high-frequency return data.
The inference in Pelger (2015, 2019) is based on the quadratic variation of the jumps of
the assets over the observation interval. The latter includes the contribution of the id-
iosyncratic jump risks, and hence, it cannot be used to separate between the null in (1.3)
and alternatives that satisfy (1.6).

Fourth, our results are also related to the panel data literature but with very distinc-
tive features. Unlike conventional panel regressions, the identification strategy underly-
ing our inference for jump betas can be viewed as “identification-by-discontinuity.”7

An important consequence is that we can use high-frequency data at a fixed num-
ber of jump events to estimate firm-specific jump betas nonparametrically. The “error
terms” generated from this nonparametric measurement consist of diffusive returns in
the vicinity of jumps, which shrink with the sampling interval, and the asymptotics of
our statistics is mainly driven by their local Gaussianity (which is a generic property

7Identification-by-discontinuity is also widely used in microeconometric applications with regression
discontinuity designs (RDD); see, for example, Lee and Lemieux (2010) for a review. However, we use jumps
to identify the equilibrium relationship between asset prices, instead of a causal effect as is typically done
in the RDD.
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of Itô processes). Our in-fill asymptotic theory works under very weak conditions allow-
ing for essentially unrestricted nonstationarity and heteroskedasticity for the underlying
stochastic processes in a nonergodic setting. The theory in the current paper is thus very
different from conventional panel data settings where weakly dependent disturbance
terms in the regression equation are “averaged out” with a Gaussian limit distribution,
which in turn drives the asymptotics underlying the econometric inference.

Finally, since we allow the diffusive “error terms” to have a latent factor structure,
our results are closely related to the growing literature in panel data analysis with in-
teractive fixed effects; see, for example, Pesaran (2006) and Bai (2009). Besides the very
different settings mentioned above, we stress an important unique feature in our asymp-
totic theory relative to this literature. Unlike Bai (2009) where the asymptotic distribu-
tion of the estimator is only driven by the aggregated idiosyncratic shocks,8 here in our
setting systematic shocks in the error term also have a non-degenerate contribution to
the limit distribution. Intuitively, the systematic shocks are clearly not “averaged out” in
the cross-section and, because we consider a fixed number of jump events (as they are
rare), they also “survive” the time-series aggregation. Nevertheless, we show that feasi-
ble inference is still possible by relying on the local Gaussianity of the underlying Itô pro-
cess, formally represented as a stable convergence in law under the in-fill asymptotics.
In addition, we allow the latent diffusive factors to have general stochastic volatility and
the stocks’ loadings on them to be (nonparametrically) time-varying; indeed, we allow
these processes to jump, which leads to an additional source of “nondiversifiable” sam-
pling variability due to the indeterminacy of exact systematic jump times within a dis-
crete observation interval. Another useful feature of our theory is that it does not require
knowing exactly the number of latent diffusive factors; this feature is clearly desirable in
practice and has been recently studied by Moon and Weidner (2015) in standard linear
panel regressions with interactive fixed effects using different techniques.

The rest of this paper is organized as follows. In Section 2, we introduce the econo-
metric setting. Our main theoretical results are given in Section 3 where we propose a
pairwise test for the exact jump factor model and derive feasible limit theory for it. In
this section, we also develop estimators for assessing the magnitude of the firm-specific
risk in assets at the times of the systematic jump events. Section 4 proposes various ex-
tensions to our main theory. Section 5 contains results from a Monte Carlo study and
Section 6 presents our empirical application. Section 7 concludes. All proofs are given in
the Online Supplementary Material (Li, Todorov, and Tauchen (2019)).

2. The econometric setup and assumptions

2.1 The panel of jump betas

We start with introducing formally the asset price dynamics on the filtered probability
space (Ω�F� (Ft )t≥0�P). The dynamics for the vector of asset prices Yt , to which our
analysis applies, generalizes the linear factor model in (1.1) and is given by

dYj�t = αj�t dt + λ�
j�t dft + dJY�j�t + dεj�t� 1 ≤ j ≤N� (2.1)

8See Proposition A.3 of Bai (2009), which is used in the proofs of the main theorems in that paper.
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where as in the Introduction αj�t is a drift term in the asset price. Here, we denote with
ft a r-dimensional diffusive factor process and with λj�t the time-varying loading on it,
and JY�j�t denotes the jump component of Yj�t . Finally, εj�t is a one-dimensional diffusive
idiosyncratic component that is orthogonal to the systematic factor ft (in the sense that
it has zero quadratic covariation with ft ; see Assumption 3 below).

The main object of interest of the current paper is the factor structure of the jump
component JY�j�t . The diffusive component

∫ t
0 λ

�
j�s dfs + εj�t , on the other hand, plays

the role of a “disturbance” as in classical regression settings.9 We stress that these “dis-
turbance” terms in the asset prices are allowed to be strongly dependent in the cross-
section through their loadings on the common factors. This has important implications
for the asymptotic theory and is a nontrivial departure from classical panel data appli-
cations in econometrics.

Turning to the jump component JY�j�t , we will be interested in its behavior only at
the jump times of an one-dimensional reference asset (systematic factor) which we de-
note with Z. In our application, Z will be the market portfolio, and hence our atten-
tion will be on the co-jump behavior of the cross-section of assets during market-wide
events, located at times of “big” market jumps. Economically speaking, such jumps are
mostly due to important public news arrival, such as macroeconomic announcements,
major political events, and natural disasters. In addition to co-jumping with Z, we will
also allow Y to jump at different times. As the model in the Introduction, this can al-
low for asset prices to have idiosyncratic jumps as in Merton (1976) (in the sense that
these jumps are asset-specific and arrive at different times) as well as to have exposure
to systematic jump factors which jump at different times than Z.

The dynamics of the reference asset Z is given by

dZt = λ�
Z�t dft + dJZ�t� (2.2)

with JZ�t denoting its jump component. When Z is the market portfolio, it will typically
be one of the factors itself as in the market factor model and its extensions. Hence, in
this case, one can set the first element of f to be the continuous part of Z and λZ�t will
be a vector with the first entry being 1 and the rest being zero.

We collect the jump times of Z in the random set T ≡ {t ∈ [0�T ] : |�Zt | �= 0}. The rela-
tionship between the asset price jumps and those of the one-dimensional Z is succinctly
summarized by the jump betas of individual assets with respect to Z. At each jump time
τ ∈ T , the spot jump beta of asset j is simply defined by

βj�τ ≡ �Yj�τ

�Zτ
�

We note that these betas are defined in a nonparametric fashion and in general they
are random quantities. However, when a factor model as noted in the Introduction is in

9The diffusive component of returns can have different factor structure and factor loadings from that
of the jump component, and this can have asset pricing implications; see, for example, Bollerslev, Li, and
Todorov (2016) for the case when the factor is the return on the market portfolio. We leave for future work
the development of tests for deciding whether diffusive and jump factor loadings are the same and efficient
inference techniques under such a scenario.
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force, the above spot jump betas will be constant. That is, we will have

βj�τ = βj ⇐⇒ �Yj�τ = βj�Zτ for all τ ∈ T �

We note that for the above to be true, we do not require that Z is the only jump factor
that affects the asset prices in the vector Y . This is because the above exact one-factor
relationship only concerns the set of jump times T . Jumps of Y at times outside the set
T do not need to obey this exact factor structure.

In this paper, we are interested in testing whether the above constant beta restriction
holds jointly for a large cross-section of assets (N will be asymptotically increasing). This
is clearly a very strong hypothesis, especially when T involves many jump times. Hence,
we start with the shortest possible event horizon by focusing on pairs of consecutive
jump times of the systematic factor Z. That is, we examine, for the successful jump times
η�τ ∈ T with η< τ,

βj�s = βj� s ∈ {η�τ} all 1 ≤ j ≤N� (2.3)

The extension to the more general case with multiple jump times is discussed in Sec-
tion 4.1.

The hypothesis of the constant jump beta in (2.3) can be nested within a more gen-
eral alternative of the random jump beta model given by

βj�s = βj + χ̃j�s� 1 ≤ j ≤N� (2.4)

The constant beta model (2.3) is a special case of (2.4) with χ̃j�s = 0 identically. The ran-
dom term χ̃j�s captures the possible violation of an exact linear one-factor model for the
jumps {�Yj�s}s∈{η�τ}. In particular, if there are firm-specific shocks at the times when Z

jumps, then this risk will be reflected in χ̃j�s. Our test will be able to discriminate this
alternative from the exact jump factor model in (2.3).

We stress the importance of separating the null from the alternative hypothesis on a
practical level. If the null hypothesis is true, then one can in principle estimate consis-
tently the jump beta from a single jump event or, more generally from a fixed number
of jump events. Intuitively, by zooming into the short window around the big jump of
Z, we obtain high signal-to-noise measurement of the shocks to the underlying efficient
prices. This gives rise to a type of “identification-by-discontinuity.” On the other hand,
if χ̃j�s in (2.4) is nondegenerate, then we cannot estimate consistently the permanent
component βj from a fixed number of jump events. This is because χ̃j�s is Op(1), and
hence, one would need to appeal to long-span asymptotics in this case in order to “aver-
age out” χ̃j�s (this is exactly as in the first-step of the classical Fama–MacBeth regression
that is widely used in cross-sectional asset pricing).

By focusing on two jump times, the structure of (2.4) resembles that of the “large
N small T ” setting in microeconometric panel data analysis. In particular, the time-
invariant coefficient βj plays the role of a fixed effect (or the permanent component)
and χ̃j�s plays the role of a random shock (or the transitory component) in the spot jump
betas.
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The challenge in our analysis is that the jump betas (βj�η�βj�τ) are not directly ob-
served from discrete return data. We will use data sampled at high frequencies to re-
cover them nonparametrically. The econometric problem at hand may thus be classified
as one with large cross-sectional dimension, short, and fixed time span, and with non-
parametrically generated dependent variables (i.e., the high-frequency beta estimates).
In addition, due to the factor structure in the diffusive returns, the estimation errors
for these betas are strongly cross-sectionally dependent with nonstandard asymptotic
distribution, which further sets our study apart from prior work in microeconometric
panels.

We now describe our test statistic. If the jump betas were observed, we could use the
following (infeasible) statistic to detect deviations from the constant beta restriction:

V 

N ≡ 1

N

N∑
j=1

L
(|βj�τ −βj�η|)�

where L(·) is a loss function that we use to gauge the temporal variation in the jump
betas. In particular, if the innovation terms χ̃j�τ − χ̃j�η are nondegenerate, we expect V 


N

to converge to the cross-sectional mean of the loss L(|βj�τ − βj�η|), which summarizes
the temporal variation in beta for any “average” stock.

In this paper, we consider loss functions that are “quadratic near zero.” More pre-
cisely, we maintain the following assumption for the loss function.

Assumption 1. The function L : R 
→ [0�∞) satisfies the following: (i) for some fixed x̄ ∈
[0�∞], L(x) = x2 for all x ∈ [0� x̄); (ii) L(x) is nondecreasing in |x|; (iii) L(·) is Lipschitz on
bounded sets.

Assumption 1 ensures that L(·) behaves for our testing purposes like the quadratic
loss function under the null hypothesis. On the other hand, the finite-sample power of
the test naturally depends on the global shape of the loss function. In this way, Assump-
tion 1 provides some flexibility in “directing” the power of the test. For example, one may
consider a “Huber-like” loss function L(x) = min{|x|�x2} that is less sensitive to outliers
than the quadratic one (Huber (2004)).

Our feasible test statistic is constructed as a sample analogue of V 

N by replacing

the spot betas with their high-frequency estimates. We suppose that the processes Yj

and Z are observed at discrete times {i�n : 0 ≤ i ≤ [T/�n]}, where �n is the sampling
interval. For the limit theory that we develop below, we consider an asymptotic setting
in which the sample span T is fixed, but both �n → 0 and N → ∞ jointly. Since the
number of assets N also depends on the asymptotic stage n, we write Nn to emphasize
this dependency. Below, we index all estimators by n and all limits are for n → ∞.

For each τ ∈ T , we denote by i(n� τ) the unique integer i such that τ ∈ ((i−1)�n� i�n].
We then collect these indices using In = {i(n� τ) : τ ∈ T }, which is finite almost surely.
This set can be consistently recovered by

În ≡ {i : ∣∣�n
i Z
∣∣> un

}
�
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where the truncation threshold satisfies un 
 ��
n for some � ∈ (0�1/2).10 In light of this

jump detection result, we can assume that i(n� τ) is observed for each τ ∈ T without loss
of generality.

The spot jump beta estimator associated with each jump time τ is then given by

β̂n�j�τ = �n
i(n�τ)Yj

�n
i(n�τ)Z

� 1 ≤ j ≤Nn�

The corresponding feasible test statistic can be constructed naturally as

V̂ ∗
n ≡ 1

Nn

Nn∑
j=1

L(β̂n�j�τ − β̂n�j�η)� (2.5)

Under the null hypothesis of (2.3) and in the absence of idiosyncratic jumps in Yj , the
leading term of β̂n�j�τ − β̂n�j�η is due to the diffusive component in Yj −βjZ in the high-
frequency increments containing the two jumps. Therefore, this difference is of order
Op(

√
�n) under the null, and thus V̂ ∗

n should be Op(�n). On the other hand, under the
alternative hypothesis, β̂n�j�τ − β̂n�j�η will contain also the difference χ̃j�τ − χ̃j�η which
is Op(1), and hence so is V̂ ∗

n . This explains on an intuitive level how V̂ ∗
n can discrimi-

nate between the exact and noisy linear jump factor model. Below, we develop formal
statistical tests based on this intuition.

The situation becomes more complicated when individual assets also contain id-
iosyncratic jumps. Although the idiosyncratic jumps of each asset do not occur exactly
at systematic jump times, there is a small probability that these jumps occur in the same
high-frequency sampling interval containing the jump in Z. This effect would be asymp-
totically negligible if the number of assets were fixed, but this will generally not be the
case in the current setting in which the number of assets goes to infinity. This issue can
be addressed via winsorization. Formally, we consider a sequence qwn → 0 which speci-
fies the proportion of data to be winsorized. We denote by B̄n�η�τ the 1 − qwn quantile of
the variables (|β̂n�j�τ − β̂n�j�η|)1≤j≤Nn . The winsorized test statistic is then

V̂n = 1
Nn

Nn∑
j=1

L
(|β̂n�j�τ − β̂n�j�η| ∧ B̄n�η�τ

)
� (2.6)

Below, we focus on the asymptotic properties of the above winsorized statistic, while
noting that the unwinsorized statistic can be used equivalently if the jump arrivals in Y

outside of the set T are driven by a finite counting measure.11 We maintain the following
condition for the winsorization quantile qwn .

Assumption 2. qwn 
 �κ
n for some constant κ ∈ (0�1).

10It can be shown that În = In with probability approaching one; see Proposition 1 in Li, Todorov, and
Tauchen (2017).

11That is, when the total number of idiosyncratic jump times in all stocks is finite almost surely.
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2.2 Regularity conditions

We proceed with some regularity conditions that will be used throughout. We start with
some standard conditions regarding the pathwise regularities of the underlying pro-
cesses.

Assumption 3. The processes (Yj)1≤j≤Nn and Z are given by (2.1) and (2.2) such that the
following conditions hold:

(i) The jump processes JZ and (JY�j)1≤j≤Nn have the form

JZ�t =
∫ t

0

∫
E
δZ(s�u)μ(ds�du)� (2.7)

JY�j�t =
∫ t

0

∫
E
δY�j(s�u)μ(ds�du)+

∫ t

0

∫
E
δ̃Y�j(s�u)μ̃j(ds�du)� (2.8)

where μ is a Poisson random measure on R+ × E with compensator ν(ds�du) = ds ⊗
v′(du) for some finite measure v′ on a Polish space E; (μ̃j)1≤j≤Nn are Poisson random
measures that satisfy the same conditions as μ; and the jump size functions δZ , (δY�j)j≥1

and (δ̃Y�j)j≥1, which are mappings Ω × R+ × E 
→ R, are predictable. Moreover, the
jump processes J̃Y�j�s ≡ ∫ t0 ∫E δ̃Y�j(s�u)μ̃j(ds�du) are uniformly locally bounded and sat-
isfy �J̃Y�j�s�JZ�s = 0 almost surely for s ∈ [0�T ].

(ii) The diffusive factor process f is a r-dimensional continuous Itô semimartingale of
the form:

ft =
∫ t

0
bf�s ds +

∫ t

0
σf�s dWs�

where the processes bf and σf are locally bounded and W is a r-dimensional Brownian
motion. Moreover, the spot covariance process Σf = σfσ

�
f is nonsingular almost surely.

(iii) For each j, εj is a one-dimensional continuous local martingale given by

εj�t =
∫ t

0
σ̃j�s dW̃j�s�

where (W̃j)1≤j≤Nn are one-dimensional Brownian motions that are orthogonal to W and
the processes (σ̃j)1≤j≤Nn are locally uniformly bounded.12

(iv) The processes αj , λj , and λZ are locally bounded and the spot jump betas (βj�τ)τ∈T
are bounded, uniformly for 1 ≤ j ≤Nn.

(v) For an increasing sequence (Tm)m≥1 of stopping times that goes to infinity and a
sequence (Km)m≥1 of constants,

E

[
sup

s�t∈[0�T∧Tm]

(∣∣σ̃2
j�s − σ̃2

j�t

∣∣2 + |λj�s − λj�t |2 + |λZ�s − λZ�t |2
)]≤Km|s − t|�

uniformly in 1 ≤ j ≤Nn.

12That is, for a sequence (Tm)m≥1 of stopping times that increases to infinity, the processes σ̃j , 1 ≤ j ≤Nn,
are uniformly bounded on [0�T ∧ Tm].
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Assumption 3 imposes a set of regularity conditions that are commonly used in the
analysis of high-frequency data. Conditions (i)–(iii) mainly require that the price pro-
cesses are Itô semimartingales. We allow for leverage effect, price-volatility co-jumps,
as well as co-jumps between the factor volatility and idiosyncratic volatility. We further
allow for idiosyncratic jump risk in Y and multiple systematic jump factors (in addi-
tion to Z) in the jump component J̃Y�j�t . Condition (iv) requires (local) boundedness for
the factor loadings and the jump betas, which is reasonable from an empirical point of
view. Condition (v) requires that the idiosyncratic volatility and the factor loading pro-
cesses are (1/2)-Hölder continuous under the L2-norm and locally in time. Note that
these processes are allowed to have jumps in their sample paths with arbitrary activ-
ity. This condition holds for many stochastic processes such as Itô semimartingales and
long-memory processes driven by the fractional Brownian motion.

We note that Assumption 3 imposes a finite activity restriction on the jump measures
μ and μ̃j . Therefore, our analysis here applies for the “big” jumps in asset price. Allowing
for jumps of infinite activity is nontrivial and we leave such an extension for future work.

In order to obtain well-defined asymptotic limits, we shall assume that the factor
loadings and the idiosyncratic variances are “moderately heterogeneous” in the sense
that they are well-behaved under cross-sectional aggregation; see Assumption 4 below.
In the analysis that follows, it is convenient to introduce factor loadings for the residual
process that are defined as

λ̃j�τ± = λj�τ± −βj�τλZ�τ±� τ ∈ T � (2.9)

In particular, λ̃j�τ− and λ̃j�τ+ are the factor loadings on f for the residual process Yj −
βj�τZ before and after the jump time τ, respectively. For notational simplicity, below
we abuse our notation slightly by writing λ̃j�q in place of λ̃j�τ− (resp., λ̃j�τ+) with q = τ−
(resp., q = τ+) indicating the pre-jump (resp., post-jump) window; the same convention
also applies to other variables.

Assumption 4. For p�q ∈ {τ−� τ+�η−�η+}, the following hold:

(i) N−1
n

∑Nn
j=1 λ̃j�pλ̃

�
j�q

P−→ MΛ(p�q) for some F-measurable r × r random matrix
MΛ(p�q);

(ii) N−1
n

∑Nn
j=1 σ̃

2
j�q

P−→Mε(q) for some F-measurable random variable Mε(q).

(iii) The factor loadings (λ̃j�q)1≤j≤Nn are independent of the idiosyncratic diffusive
components (εj)1≤j≤Nn conditional on the jump times in T .

Conditions (i), (ii) in Assumption 4 concern the convergence of cross-sectional sam-
ple averages. These conditions can be verified with an appeal to the law of large numbers
provided that the loadings λ̃j and the idiosyncratic variances σ̃2

j are conditionally weakly
dependent in the cross-section. We note that these variables can still be unconditionally
strongly dependent, in which case the limiting variables MΛ(p�q) and Mε(q) are gen-
erally nondegenerate random variables. We allow this complication in our economet-
ric inference, which requires characterizing asymptotic distributions in terms of stable
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convergence in law. Condition (iii) appears to be mild; indeed, this assumption holds
automatically if the factor loadings are nonrandom, which is typically assumed in the
factor analysis literature.

Assumption 4 allows us to characterize precisely the aggregate behavior of the resid-
ual diffusive disturbances. Indeed, the cross-sectional average of the spot variances of
the residual returns (i.e., dYj�t − βj�t dZt ) before/after each jump time τ can be written
as

1
Nn

Nn∑
j=1

(
λ̃�
j�τ±Σf�τ±λ̃j�τ± + σ̃2

j�τ±
)= Trace

[
Σf�τ±

(
1
Nn

Nn∑
j=1

λ̃j�τ±λ̃�
j�τ±

)]
+ 1

Nn

Nn∑
j=1

σ̃2
j�τ±�

which converges in probability (under Assumption 4) to

Mtotal(τ±) ≡ Trace
[
Σf�τ±MΛ(τ±� τ±)

]+Mε(τ±)� (2.10)

The two components on the right-hand side of (2.10) are due to the diffusive factor com-
ponent in the residual process and the diffusive idiosyncratic components in Y , respec-
tively.

Finally, we maintain a very mild condition for the relative growth rates of �n and Nn.

Assumption 5. Nn grows to infinity at most polynomially in �−1
n , that is, Nn = O(�−k

n )

for some (arbitrary but fixed) constant k> 0.

Assumption 5 is very weak because it does not require any specific rate at which Nn

grows to infinity relative to �n. This assumption is used to show that the cross-section
of diffusive increments around the jump time fall uniformly in any fixed (small) neigh-
borhood around zero, so that the loss function L(·) behaves like the quadratic function
when acting on these returns. This assumption is not needed if the loss function is (glob-
ally) quadratic.

3. Testing the exact linear jump factor model

This section contains the core of our econometric analysis. We derive a feasible test on
the basis of the statistic V̂n to test the null hypothesis of the exact linear jump factor
model at two jump times of the systematic factor Z. We further derive a measure for the
magnitude of the firm-specific shocks in the jump betas when the null might be violated.

3.1 Asymptotic properties of the test statistic

We start with characterizing the asymptotic behavior of our test statistic. We first show
the convergence in probability of the test statistic under the general random jump beta
model (2.4), for which we need the following condition.

Assumption 6. The innovations in jump betas {χj�η�τ ≡ χ̃j�τ − χ̃j�η: 1 ≤ j ≤Nn} are Fη−-
conditionally independent on the cross-section.
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Assumption 6 mainly requires that the innovations in the jump beta (i.e., χj�η�τ) are
cross-sectionally independent conditional on the information set before the jumps oc-
cur. We can further accommodate in the analysis situations in which χj�η�τ are cross-
sectionally dependent. Such a situation can happen, if for example, there are extra fac-
tors at the jump times of Z (in addition to the jump size of Z). In this case, under some
weak regularity conditions for the factor loadings on the omitted factor(s), the asymp-
totic behavior of our test statistic L(χj�η�τ) will be similar to that under Assumption 6 in
terms of asymptotic order of magnitude. For ease of exposition, we do not consider this
situation here.

Proposition 1 below describes the first-order asymptotic behavior of the test statistic.

Proposition 1. Under Assumptions 1, 2, 3, and 6, V̂n = N−1
n

∑Nn
j=1 E[L(χj�η�τ)|Fη−] +

op(1). In particular, under the constant beta restriction (2.3), V̂n = op(1).

Proposition 1 shows that V̂n converges to the cross-sectional average of the condi-
tional expected loss that is due to the temporal variation in jump betas. This conver-
gence result readily accommodates cross-sectional heterogeneity in the data. Of course,
if the loss L(χj�η�τ) has identical conditional mean over the cross-section, the limit of V̂n
is simply E[L(χj�η�τ)|Fη−]. This proposition suggests that the test statistic V̂n is able to
detect on-average deviations from the exact jump factor model.

In view of Proposition 1, we can state the hypotheses to be tested precisely as follows.
The testing problem is to decide in which of the two events the observed sample path
falls:

Ω0 ≡ {βj�η = βj�τ = βj for all j}�

Ωa ≡
{

lim inf
n→∞

1
Nn

Nn∑
j=1

E
[
L(χj�η�τ)|Fη−

]
> 0

}
�

where Ω0 and Ωa play the role of the null and alternative hypotheses, respectively. Stat-
ing the hypotheses in terms of random events is typical in the infill asymptotic setting
because the “population” quantities are (random) sample paths; see Jacod and Protter
(2012) and Aït-Sahalia and Jacod (2014) for many similar examples. In addition, formu-
lating the alternative hypothesis in terms of the limit inferior is also common in testing
problems involving heterogeneous data (see, e.g., Giacomini and White (2006)).

In order to construct a proper test, we need to characterize the asymptotic distribu-
tion of the test statistic under the null hypothesis. Theorem 1, below, presents the result.
We need some additional notation to represent the limit distribution. To this end, we
consider random variables (κτ� ζτ−� ζτ+)τ∈T that, conditional on F , are mutually inde-
pendent with the following marginal distributions: κτ is uniformly distributed on [0�1]
and ζτ± are r-dimensional standard normal. With each s ∈ T , we associate the following
weights:

ws− ≡
√
κs

�Zs
� ws+ ≡

√
1 − κs

�Zs
� (3.1)
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Following our notational convention in Assumption 4, we write the weights in (3.1) as
wq indexed by q ∈ {s−� s+}; similarly, we denote for p�q ∈ {η−�η+� τ−� τ+},

MC(p�q)= Σ
1/2
f�pMΛ(p�q)Σ

1/2
f�q � (3.2)

Finally, we set⎧⎪⎪⎨⎪⎪⎩
A(s) ≡

∑
p�q∈{s−�s+}

wpwqζ
�
pMC(p�q)ζq +

∑
q∈{s−�s+}

w2
qMε(q)� s ∈ {η�τ}�

B(η�τ)≡
∑

p∈{τ−�τ+}

∑
q∈{η−�η+}

wpwqζ
�
pMC(p�q)ζq�

(3.3)

Theorem 1. Suppose that Assumptions 1–5 hold. In restriction to Ω0, the sequence �−1
n V̂n

of variables converges F-stably in law toward L(η�τ) given by

L(η�τ)≡ A(η)+A(τ)− 2B(η�τ)� (3.4)

Comments. (i) The limiting variable L(η�τ) given in (3.4) captures two types of sam-
pling variability. The first type is generated by the diffusive factor process and it takes the
form of quadratic functions of the Gaussian variables ζη± and ζτ±. The F-conditional
distributions of these terms are nondegenerate. Intuitively, the variable ζτ− (resp., ζτ+)
represents the asymptotic distribution of the normalized diffusive factor returns before
(resp., after) the jump time τ, that is,

Σ
−1/2
f�τ− (fτ − f(i(n�τ)−1)�n)√
τ − (i(n� τ)− 1

)
�n

(
resp.

Σ
−1/2
f�τ (fi(n�τ)�n − fτ)√

i(n� τ)�n − τ

)
�

Importantly, the factor diffusive returns represent systematic risk, and hence, they have
a nontrivial conditional distribution even after the cross-sectional aggregation. This is
in sharp contrast to conventional econometric settings, because the (mixed) normality
of the limiting variable here is not obtained from the aggregation of weakly dependent
variables via a central limit theorem, but is implied from the local Gaussianity of the
continuous Itô process f .

(ii) The second type of sampling variability reflected in L(η�τ) (more specifically the
second term

∑
q∈{s−�s+}w2

qMε(q) in the definition of A(s)) is attributed to the idiosyn-

cratic diffusive components of Y . Although the idiosyncratic Brownian shocks dW̃j are
“averaged out” in the cross-sectional averaging, this term can still have a nondegenerate
F-conditional distribution because of the variables (κη�κτ) that appear in the weights
wq for q = {η−�η+� τ−� τ+}. Intuitively, κτ represents the relative location of the ex-
act jump time τ within its observation interval. This source of sampling variability is,
again, systematic (as it is due to Z), so it “survives” the cross-sectional aggregation. In
the case when average idiosyncratic spot variance does not co-jump with the price (i.e.,
Mε(s−) =Mε(s+), for s = η�τ), the F-conditional distribution of this term becomes de-
generate.
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(iii) Jumps in the vector Y that happen outside the set T of jump times of Z play no
role in the limit result for our test statistic in Theorem 1. This is because jump arrivals
are “sparsely” scattered in time. Hence, with probability approaching one, each high-
frequency interval containing one of the jump times in the set T will not contain jump
times outside of T for “most” components in Y ; the number of exceptions is small and
their effect is “regularized” by the winsorization.

We note that the test statistic V̂n is nonnegative, and hence, the limiting variable
L(η�τ) concentrates on the positive line. We can gauge the relative contribution of
the components in (3.4) by computing their F-conditional means. It is easy to see that
E[B(η�τ)|F] = 0 and, for s ∈ {η�τ}, we have

E
[
A(s)|F]= Mtotal(s−)+Mtotal(s+)

2�Z2
s

�

where Mtotal(s±) is the (large-sample) cross-sectional average of individual stocks’
residual spot variances after/before the jump time s; recall (2.10). Consequently, the
limit distribution L(η�τ) has a strictly positive conditional mean depending on the rel-
ative magnitude of the residual spot variances with respect to the jump size. In the cur-
rent setting, it is therefore natural to define the signal-to-noise ratio for the post- and
pre-jump window as

SNRs± ≡ �Z2
s

Mtotal(s±)
� (3.5)

The F-conditional mean of the limiting variable can then be succinctly written as

E
[
L(η�τ)|F]= ∑

s∈{η�τ}

(
1

2 · SNRs−
+ 1

2 · SNRs+

)
� (3.6)

From this expression, we see that under the null hypothesis, the test statistic tends to
be centered “more positively” when the signal-to-noise ratios around the jump times
are lower. These are exactly the times when it will be more difficult to separate the null
hypothesis from the alternative.

In order to implement the test, we need to consistently estimate the critical values
defined as the F-conditional quantiles of the limiting variable L(η�τ). This is a nontriv-
ial task because the F-conditional distribution of L(η�τ) is highly nonstandard. Most
importantly, it depends on the unknown random quantities MC(·� ·) and Mε(·), which in
turn involve the spot covariance of the latent diffusive factor process f , the factor load-
ings of a large cross-section of assets and the average idiosyncratic spot variances, before
and after each jump time. The next subsection is devoted to addressing this problem.

3.2 Critical values

For a matrix A, we denote ‖A‖ =Trace[A�A]1/2. To proceed, we suppose that some pre-
liminary estimator β̃n�j�τ of the jump beta is available and it satisfies the following as-
sumption.
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Assumption 7. The following conditions hold for some variables (β∗
j�τ)1≤j≤Nn�τ∈T :

(i) N−1
n

∑Nn
j=1 |β̃n�j�τ −β∗

j�τ|2 = op(1);

(ii) for all τ ∈ T , β̃n�j�τ and β∗
j�τ are F-measurable and bounded with probability ap-

proaching one;

(iii) β∗
j�τ = βj in restriction to Ω0.

One possible choice for the preliminary beta estimators is to set β̃n�j�τ to be the
spot beta estimator β̂n�j�τ . In this case, β∗

j�τ = βj�τ over the entire sample space. Con-
dition (i) requires that these preliminary estimates are consistent in a cross-sectional
average sense, which is easy to verify; see Lemma SA3(b) for the formal result. More
generally, the variables β∗

j�τ in Assumption 7 are interpreted as pseudo-true parame-
ters in the sense that they coincide with the true parameter under the null hypothesis
but are allowed to differ from the latter under the alternative. For example, we can take
β̃n�j�η = β̃n�j�τ = (β̂n�j�η + β̂n�j�τ)/2 which corresponds to β∗

j�η = β∗
j�τ = (βj�η + βj�τ)/2.

This type of averaging typically produces less noisy preliminary estimates under the
null, which tends to have better size control in finite samples.13

We now describe how to calculate the critical values. The first step is to extract in-
formation concerning the spot covariance of the factors (i.e., Σf ) and the factor loadings
(i.e., λj and λZ) from the diffusive returns in local windows before and after the jump
times. We consider an integer sequence kn of local window sizes such that

kn → ∞ and kn�n → 0�

For each detected jump time τ, we denote i(n� τ−) ≡ i(n� τ) − kn − 1 and i(n� τ+) ≡
i(n� τ). We use X∗

n(τ±) to denote the Nn × kn matrix whose (j� l) element is given by

X∗
n(τ±)j�l ≡

�n
i(n�τ±)+lYj −β∗

j�τ�
n
i(n�τ±)+lZ√

�n

� (3.7)

These matrices collect the (scaled) residual diffusive returns of the assets in the local
windows.

We note that X∗
n(τ±) have an approximate factor structure

X∗
n(τ±)j�l ≈

(
λj�τ± −β∗

j�τλZ�τ±
)��n

i(n�τ±)+lf√
�n

+ �n
i(n�τ±)+lεj√

�n

� (3.8)

This is only an approximation because the (time-varying) factor loadings (λj�λZ) be-
fore and after each jump time τ are only approximately (λj�τ−�λZ�τ−) and (λj�τ�λZ�τ),
respectively.14 It is convenient to rewrite (3.8) in matrix form as

X∗
n(τ±) ≈Λ∗

n(τ±)Fn(τ±)� + En(τ±)�

13We can similarly use an average of jump betas over a larger number of systematic jump events, pro-
vided we are willing to assume the null hypothesis of the exact jump factor model holds true for this larger
number of events.

14The approximation error is also contributed by the drift and the idiosyncratic jump terms in Yj . All of
these approximation errors are accounted for in our analysis.
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where we denote⎧⎪⎪⎨⎪⎪⎩
Fn(τ±) ≡ �

−1/2
n

(
�n
i(n�τ±)+1f� � � � ��

n
i(n�τ±)+kn

f
)�

�

Λ∗
n(τ±) ≡ (λ1�τ± −β∗

1�τλZ�τ±� � � � � λNn�τ± −β∗
Nn�τ

λZ�τ±
)�

�

En(τ±) ≡ �
−1/2
n

[
�n
i(n�τ±)+lεj

]
1≤j≤Nn�1≤l≤kn

�

(3.9)

Assumption 8 extends Assumption 4 in order to accommodate the more general situa-
tion with pseudo-true parameters.

Assumption 8. (i) For p�q ∈ {η−�η+� τ−� τ+}, N−1
n Λ∗

n(p)
�Λ∗

n(q)
P−→ M∗

Λ(p�q) for
some F-measurable r × r random matrix M∗

Λ(p�q).

(ii) For each q ∈ {η−�η+� τ−� τ+}, the eigenvalues of M∗
Λ(q�q) are distinct almost

surely.

(iii) The factor loadings in Λ∗
n(τ±) are independent of the idiosyncratic diffusive com-

ponents (εj)1≤j≤Nn .

Since β∗
j�τ = βj for each τ ∈ T under the null hypothesis, the matrix M∗

Λ(p�q) coin-
cides with MΛ(p�q) as well (recall Assumption 4). With this notation, we further com-
plement the definition in (3.2) by setting

M∗
C(p�q)≡ Σ

1/2
f�pM

∗
Λ(p�q)Σ

1/2
f�q � (3.10)

Then the key to conducting feasible inference is to consistently estimate M∗
C(p�q). To

do this, we assume that the dimension r of the diffusive factors is bounded by a known
constant r̄. This assumption is much weaker than knowing the exact value of r. Since
the number of the diffusive factors is not the main object of interest in our analysis of
jumps, we aim to be agnostic on its exact value. Instead, we only assume that a bound
r̄ is known, for which the vast empirical literature provides reliable guidance. We shall
show theoretically that knowing the upper bound is enough for constructing valid criti-
cal values for our test statistic.15

We now introduce our estimator for M∗
C(p�q). We denote the sample analogue of

X∗
n(q) by X̂n(q), which is constructed as

X̂n(τ±)j�l ≡
(
�n
i(n�τ±)+lYj ∧ un ∨ (−un)− β̃n�j�τ�

n
i(n�τ±)+lZ√

�n

)
� (3.11)

where we recall that un is the sequence of threshold used for winsorizing jumps. We set
F̂n(q) as the kn × r̄ matrix that consists of the eigenvectors associated with the r̄ largest

15The number of diffusive factors may be consistently estimated by adapting the general strategy of Bai
and Ng (2002). Like our setting, such methods also assume the availability of an upper bound for the num-
ber of factors (see the recent work of Gagliardini, Ossola, and Scaillet (2016a) which proposes a diagnostic
criterion that does not need such a bound), subject to which a criterion function is minimized for estimat-
ing the number of factors. The resulting estimate may differ when using different methods (often associated
with different penalty functions for model complexity). We avoid this potential ambiguity by only relying
on the upper bound.
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eigenvalues of X̂n(q)
�X̂n(q) under the normalization F̂n(q)

�F̂n(q)/kn = Ir̄ , where Ir̄ de-
notes the r̄-dimensional identity matrix. We then set

Λ̂n(q)≡ X̂n(q)F̂n(q)/kn� (3.12)

Due to the normalization of the eigenvector matrix F̂n(q), it no longer “carries” informa-
tion concerning the spot covariance Σf�q of the factor process f . Instead, this informa-

tion is now embedded in the estimator Λ̂n(q), which also contains information about
the loading matrix Λ∗

n(q). With this intuition in mind, we shall show that M∗
C(p�q) can

be estimated (in a proper sense) using

M̂C�n(p�q)≡ 1
Nn

Λ̂n(p)
�Λ̂n(q)� p�q ∈ {η−�η+� τ−� τ+}� (3.13)

It is interesting to note that the above estimator is the cross-variation of the extracted
diffusive factor loadings across (possibly) different local windows, on which our feasi-
ble inference is based. Subsequently, the average idiosyncratic variance Mε(q) can be
estimated by

M̂ε�n(q)≡ 1
Nnkn

∥∥X̂n(q)
∥∥2 − Trace

[
M̂C�n(q�q)

]
� (3.14)

In Theorem 2 below, we describe the asymptotic properties of the estimators
Λ̂n, M̂C�n, and M̂ε�n. We present explicitly the intermediate result for Λ̂n in order to
streamline the intuition underlying our constructions. Below, we partition Λ̂n(q) =
[Λ̂∗

n(q)
���Λ̂0

n(q)] where the two blocks contain r and r̄ − r columns, respectively. Sim-

ilarly, we partition F̂n(q) = [F̂∗
n(q)

���F̂0
n(q)]. We denote the sign function by sign(x) =

1{x≥0} − 1{x<0} and apply it component-wise on matrices.

Theorem 2. Suppose that Assumptions 3, 4, 7, and 8 hold. For p�q ∈ {η−�η+� τ−� τ+},
we have the following:

(a) N−1
n ‖Λ̂∗

n(q)−Λ∗
n(q)Σ

1/2
f�qHqS

∗
n(q)‖2 = op(1) where

S∗
n(q) = diag

(
sign
(
F̂∗
n(q)

�Fn(q)
(
Fn(q)

�Fn(q)/kn
)−1/2

Hq
))
�

and Hq is the ordered orthogonal eigenvector matrix of M∗
C(q�q);16

(b) N−1
n ‖Λ̂0

n(q)‖2 = op(1);

(c) the r̄ × r̄ matrix M̂C�n(p�q) satisfies

M̂C�n(p�q)=
(
S∗
n(p)H

�
pM

∗
C(p�q)HqS

∗
n(q) 0

0 0

)
+ op(1)�

where we note that the upper-left block S∗
n(p)H

�
pM

∗
C(p�q)HqS

∗
n(q) is r × r dimensional;

(d) M̂ε�n(q)
P−→Mε(q).

16That is, M∗
C(q�q) = HqDH�

q , where D is the diagonal matrix that collects the eigenvalues of M∗
C(q�q)

in descending order.
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Comments. (i) Part (a) shows that, in a cross-sectional average sense, Λ̂∗
n(q) approx-

imates Λn(q)Σ
1/2
f�q , up to the transformation HqS

∗
n(q). Despite the presence of the latter

“unobserved nuisance,” this result is sufficient for our purpose of estimating the critical
values. This is because the law of an F-conditional standard normal vector is invariant
to the transformation associated with the orthogonal matrix HqS

∗
n(q).17

(ii) Part (b) shows that the “null” columns collected by Λ̂0
n(q) are “asymptotically

small.” Hence, estimating the factor structure conservatively by (potentially over-) ex-
tracting factors leads to no effect asymptotically.

(iii) Parts (c), (d) follow from parts (a), (b) and establish a type of consistent estima-
tion result for M̂C�n and M̂ε�n. Again, we note that the result of part (c) is sufficient for
our feasible inference described below in spite of the appearance of the transformation
HqS

∗
n(q). We also note that when p �= q, M̂C�n(p�q) estimates the cross-variation of fac-

tor loadings between two distinct blocks of data. For example, M̂C�n(η−� τ+) concerns
data blocks before the η-jump and after the τ-jump. This type of estimation is needed
because we allow the factor loadings to change across jump times and actually we also
allow them to co-jump with Z. This is why we need to characterize precisely the behav-
ior of Λ̂∗

n(q) in the form of part (a). Such analysis is not common in conventional factor
analysis (cf. Stock and Watson (2002), Bai (2003)).18

We remind the reader that our analysis is not about the diffusive factors per se.
Rather, Theorem 2 is an intermediate (but important) step for making inference regard-
ing the cross-sectional behavior of jump betas, which is the focus of the current paper.
We are now ready to introduce the critical value cvn�α for our test statistic V̂n at some
nominal level α ∈ (0�1). Algorithm 1 below provides the details and is quite intuitive as
it follows closely from Theorem 1. The asymptotic validity of this algorithm is provided
in Theorem 3 that follows.

Algorithm 1. Step 1. Simulate (κ̃s� ζ̃s−� ζ̃s+)s∈{η�τ} independently such that κ̃s ∼
Uniform[0�1] and ζ̃s± ∼ N (0� Ir̄).

Step 2. Set w̃n�s− = √
κ̃s/�

n
i(n�s)Z and w̃n�s+ = √

1 − κ̃s/�
n
i(n�s)Z for s ∈ {η�τ}. Then

compute⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ãn(s) =
∑

p�q∈{s−�s+}
w̃n�pw̃n�qζ̃

�
p M̂C�n(p�q)ζ̃q +

∑
q∈{s−�s+}

w̃2
n�qM̂ε�n(q)� s ∈ {η�τ}�

B̃n(η�τ)=
∑

p∈{τ−�τ+}

∑
q∈{η−�η+}

w̃n�pw̃n�qζ̃
�
p M̂C�n(p�q)ζ̃q�

L̃n(η�τ) = Ãn(η)+ Ãn(τ)− 2B̃n(η�τ)�

Step 3. Repeat step 1 and step 2 for a large number of times and report the critical value
cvn�α as the 1 − α quantile of L̃n(η�τ) in the Monte Carlo sample.

17In Bai (2003) and Pelger (2015), the transformation matrix is only known to be invertible. Such a result
would be sufficient for the consistency of the column space spanned the estimator, but is not enough for
the inference problem considered here.

18See also Pelger (2015, 2019) and Aït-Sahalia and Xiu (2018) for recent development in the high-
frequency setting.
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Theorem 3. The following statements hold under Assumptions 1–8:

(a) The sequence cvn�α of critical values is Op(1). Moreover, in restriction to Ω0,

cvn�α
P−→ cvα where cvα is the F-conditional 1 − α quantile of L(η�τ).

(b) The test associated with the critical region {�−1
n V̂n > cvn�α} has asymptotic level α

under the null hypothesis and has asymptotic power one under the alternative hypothesis,
that is,

P
(
�−1
n V̂n > cvn�α|Ω0

)→ α� P
(
�−1
n V̂n > cvn�α|Ωa

)→ 1�

Comment. Part (a) of Theorem 3 shows that the critical value cvn�α consistently esti-
mates the corresponding F-conditional quantile of the limit distribution L(η�τ) of the
test statistic, and it remains stochastically bounded (i.e., tight) under the alternative. As a
direct consequence, part (b) shows that the proposed test has correct size control under
the null hypothesis, and is consistent under the alternative hypothesis.

3.3 Measuring temporal variation in jump betas

We have so far developed tests for the exact jump factor model in the cross-section.
The test detects positive cross-sectional average losses resulting from innovations in the
jump beta, that is, χj�η�τ = χ̃j�τ − χ̃j�η. From an estimation point of view, this loss also
serves naturally as a measure for the variation of jump beta for a “representative” asset.
Since this measure is of economic interest in its own, we further develop in this subsec-
tion an estimator for it. We focus on the quadratic loss function, in which case the test
statistic is given by

V̂n = 1
Nn

Nn∑
j=1

(|β̂n�j�τ − β̂n�j�η| ∧ B̄n�η�τ
)2
�

As shown in equation (3.6), in the boundary case with χj�η�τ = 0 (i.e., when jump
betas are time-invariant), the “raw” estimator V̂n is not asymptotically centered, but has
a positive bias that is high in situations with low signal-to-noise ratio. While this bias
term is accounted for in the critical values of the test described in Theorem 3, it is of
course more conventional from an estimation point of view to use a centered estimator
in practice. To this end, we consider a bias-corrected estimator given by

v̂n ≡ 1
Nn

Nn∑
j=1

(|β̂n�j�τ − β̂n�j�η| ∧ B̄n�η�τ
)2 −�nb̂n(η�τ)� (3.15)

where the correction term b̂n(η�τ) is defined as

b̂n(η�τ) ≡ 1
Nnkn

∑
s∈{η�τ}

(∥∥X̂n(s−)
∥∥2 + ∥∥X̂n(s+)

∥∥2

2
(
�n
i(n�s)Z

)2
)
� (3.16)
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We note that b̂n(η�τ) is constructed as the sample analogue of the asymptotic bias de-
scribed in (3.6).19 In fact, as an intermediate step in the proof of Theorem 2, we have
shown that

1
Nnkn

∥∥X̂n(s±)
∥∥2 P−→ M∗

total(s±) ≡ Trace
[
Σf�s±M∗

Λ(s±� s±)
]+Mε(s±)�

We note that M∗
total =Mtotal holds under the null hypothesis, and hence,

b̂n(η�τ)
P−→ E
[
L(η�τ)|F]� (3.17)

The estimator v̂n is consistent for the cross-sectional average (conditional) second mo-
ment of χj�η�τ .

4. Extensions

In this section, we briefly discuss two extensions of the main theoretical results devel-
oped in Section 3 above. Section 4.1 proposes a test for the joint hypothesis of constant
jump beta involving multiple jump times. Section 4.2 describes how to use a mixed-scale
approach to address the issue of gradual response to systematic jump events of individ-
ual stock prices, which is relevant for empirical studies about jumps of less liquid assets.

4.1 Joint tests at multiple jump times

The test described in Theorem 3 involves only a pair of jump times. The corresponding
pairwise test can be easily extended to a joint analysis involving multiple jump times.20

Among many possibilities, we describe here a specific implementation in which we sim-
ply compute the consecutive pairwise test statistics and then take their average. The the-
oretical justification for this procedure can be adapted straightforwardly from the main
theory in Section 3; we thus omit the formal statements and instead provide only the
algorithm for conducting the test.

To fix ideas, we consider P+1 jump times {τ1� � � � � τP+1} of Z. The pairwise test statis-
tic for the pth pair of consecutive jump times {τp�τp+1}, 1 ≤ p ≤ P , is denoted by

V̂n(τp� τp+1) ≡ 1
Nn

Nn∑
j=1

L
(|β̂n�j�τp+1 − β̂n�j�τp | ∧ B̄n�τp�τp+1

)
�

19The correction term �nb̂n(η�τ) in (3.15) is of order Op(�n). This rate is consistent with that in Theo-
rem 1, because this bias term is asymptotically relevant only when the jump betas are constant. That said,
this correction should also be effective in finite-samples when innovations in jump betas are “local to zero,”
though a complete analysis under drifting sequences of data generating processes is beyond the scope of
the current paper.

20We consider a Kolmogorov-type test. Another approach is to use multiple-testing techniques for con-
trolling the false discovery rate; see, for example, Barras, Scaillet, and Wermers (2010) and Bajgrowicz, Scail-
let, and Treccani (2016) for this type of applications on jumps.
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The null asymptotic distribution of �−1
n V̂n(τp� τp+1) is L(τp�τp+1) as shown in Theo-

rem 1. By a simple extension of that theorem, we can show that these convergences hold
jointly, that is, (

�−1
n V̂n(τp� τp+1)

)
1≤p≤P

L-s−→ (L(τp�τp+1)
)

1≤p≤P
� (4.1)

where
L-s−→ denotes stable convergence in law. Importantly, the limiting variables are

represented using the same variables (κτp� ζτp−� ζτp+)1≤p≤P+1 that are described in Sec-
tion 3.1; in particular, L(τp−1� τp) and L(τp�τp+1) are F-conditionally dependent be-
cause they both involve (κτp� ζτp−� ζτp+).

One possibility to implement a joint test is to “combine” the pairwise test statistics
by taking their average, P−1∑P

p=1 V̂n(τp� τp+1). One drawback of this (joint) test statistic,
however, is that it is not scale-invariant. In particular, it will tend to put a lot of weight to
the pairwise tests which happen in very volatile periods and much less weight to those
during calm periods within the testing time window.

For this reason, we consider instead a scaled statistic. In view of (3.6), we use the
conditional mean of the limit distribution L(τp�τp+1) as the scaling factor of the pair-

wise test, which can be estimated by b̂n(τp� τp+1) as shown in (3.17). The resulting joint
test statistic becomes

ĴT n ≡ 1
P

P∑
p=1

V̂n(τp� τp+1)

b̂n(τp� τp+1)
�

By the joint convergence (4.1), we see that under the joint null hypothesis, �−1
n ĴT n con-

verges stably in law to

1
P

P∑
p=1

L(τp�τp+1)

E
[
L(τp�τp+1)|F

] �
Under the alternative, �−1

n ĴT n diverges to +∞ in probability. We reject the joint null
hypothesis at significance level α ∈ (0�1) if �−1

n ĴT n > cvJTn�α, where the critical value cvJTn�α
is computed using the following algorithm.

Algorithm 2. Step 1. Simulate independent (κ̃s� ζ̃s±)s∈{τ1�����τP+1} such that κ̃s ∼
Uniform[0�1] and ζ̃s± ∼ N (0� Ir̄).

Step 2. Compute L̃n(τp� τp+1) as in Algorithm 1 and set L̃JT
n = P−1∑P

p=1 L̃n(τp�

τp+1)/b̂n(τp� τp+1).
Step 3. Repeat step 1 and step 2 for a large number of times and report the critical

value cvJTn�α as the 1 − α quantile of L̃JT
n in the Monte Carlo sample.

We note that for the joint test we can take β̃n�j�τp = P−1∑P
p=1 β̂n�j�τp in the construc-

tion of X̂n(τ±) (see (3.11)) which in turn is used for computing M̂C�n(p�q). This is be-
cause the hypothesis now is that the jump beta remains constant across the P + 1 jump
events.



Quantitative Economics 10 (2019) Jump factor models 443

4.2 Gradual jumps and the mixed-scale approach

In practice, the analysis of the co-jump behavior among assets is often complicated
by the so-called “gradual jump” phenomenon (Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2009)). That is, jumps in the efficient price (e.g., due to a surprising macroe-
conomic announcement) may take a longer time to be fully incorporated in the ob-
served prices of less liquid stocks than is the case for the highly liquid market index.
Clearly, the resulting asynchronicity between jumps can lead to (downward) biases in
the jump beta estimates, and thus distort our testing results. In the jump regression
setting, Li, Todorov, Tauchen, and Chen (2017a) proposed a mixed-scale approach to
address this issue. The idea is to precisely detect jump times in the market portfolio at
the fine time scale �n, and then to analyze the relationship between individual assets’
price jumps with market jumps at a coarse time scale k�n so as to mitigate the afore-
mentioned asynchronicity. Li et al. (2017a) documented the empirical effectiveness of
this simple approach. In this subsection, we introduce the mixed-scale strategy into our
current problem of testing and estimating the noisy linear factor model. The theory un-
derlying the mixed-scale extension is straightforward, and hence, we only focus on the
implementation but we leave out the technical details for brevity.

The mixed-scale version of our econometric procedure goes as follows. As in Sec-
tion 2.1, we detect the jumps in the systematic factor Z at the (fine) scale �n. However,
we estimate the jump betas at a (possibly) coarse scale k�n for some k ≥ 1. A larger k

makes the procedure more robust against the presence of gradual jumps, but at the cost
of reducing the signal-to-noise ratio for making inference about the jumps.21 We denote
the coarsely sampled returns of Yj by �n

i�kYj = Yj�(i+k−1)�n − Yj�(i−1)�n and define �n
i�kZ

similarly. The corresponding jump beta estimates are given by

β̂
(k)
n�j�τ ≡ �n

i(n�τ)�kYj

�n
i(n�τ)�kZ

�

where we emphasize the degree k of mixed-scale in our notation. Analogous to (2.5), we
can define the mixed-scale test statistic V̂ (k)

n using these mixed-scale beta estimates.
The null asymptotic distribution of V̂ (k)

n is similar to that of V̂n, except that it uses dif-
ferent weights in the before/after jump windows as we now describe. We first generalize
the definitions in (3.1) and (3.3) by setting⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

w(k)
s− ≡

√
κs

�Zs
� w(k)

s+ ≡
√
k− κs

�Zs
� s ∈ T �

A(k)(s) ≡
∑

p�q∈{s−�s+}
w(k)
p w(k)

q ζ�
pMC(p�q)ζq +

∑
q∈{s−�s+}

(
w(k)
q

)2
Mε(q)�

B(k)(η�τ)≡
∑

p∈{τ−�τ+}

∑
q∈{η−�η+}

w(k)
p w(k)

q ζ�
pMC(p�q)ζq�

(4.2)

21Empirically, we find that taking the coarse scale to be 3 minutes is often sufficiently conservative. For
robustness, it is also advisable to report results for different levels of mixed-scales which we do in our em-
pirical section.
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By a straightforward adaptation of Theorem 1, we can show that under the null hypoth-
esis, the normalized mixed-scale test statistic �−1

n V̂ (k)
n converges F-stably in law toward

L(k)(η�τ)≡ A(k)(η)+A(k)(τ)− 2B(k)(η�τ)�

In the general case with mixed-scale k, the F-conditional mean of this limiting variable
is now

E
[
L(k)(η�τ)|F]= ∑

s∈{η�τ}

(
1
2

1
SNRs−

+
(
k− 1

2

)
1

SNRs+

)
� (4.3)

with the signal-to-noise ratio SNR defined as in (3.5). From (4.3), we see that the condi-
tional mean of mixed-scaled test statistic depends more on the signal-to-noise ratio in
the post-jump than the pre-jump window.

The critical values for the mixed-scaled test can be calculated by modifying the
procedure in Section 3.2 as follows. First, we extend the definition of residual return
matrices X̂n(τ±) to the k-mixed-scale version X̂(k)

n (τ±) by replacing i(n� τ+) with
i(n� τ+) + k − 1 in equation (3.11). Note that this actually only affects the definition
of X̂(k)

n (τ+) while leaving X̂(k)
n (τ−) = X̂n(τ−). The estimators M̂C�n and M̂ε�n are then

modified correspondingly. Second, we change the weights w̃n�s± in Algorithm 1 as fol-
lows:

w̃(k)
n�s− =

√
κ̃s

�n
i(n�s)�kZ

� w̃(k)
s+ =

√
k− κ̃s

�n
i(n�s)�kZ

�

With these modifications, we can follow the same steps as in Algorithm 1 to compute
the critical values for the mixed-scale test statistic V̂ (k)

n .
Next, we describe how to adapt the estimator v̂n for the variance of beta innovations

(recall (3.15)) to the mixed-scale setting. Besides using the mixed-scale jump beta esti-
mates, we also need to adjust the bias-correction term in view of (4.3). The mixed-scale
generalization of v̂n is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v̂(k)n ≡ 1
Nn

Nn∑
j=1

(
β̂(k)
n�j�τ − β̂(k)

n�j�η

)2 −�nb̂
(k)
n � where

b̂(k)n ≡ 1
Nnkn

∑
s∈{η�τ}

(
1
2

∥∥X̂(k)
n (s−)

∥∥2(
�n
i(n�s)�kZ

)2 +
(
k− 1

2

)∥∥X̂(k)
n (s+)

∥∥2(
�n
i(n�s)�kZ

)2
)
�

(4.4)

Similar to v̂n, the estimator v̂(k)n is consistent for the cross-sectional average (conditional)
second-moment of χj�η�τ.

5. Monte Carlo study

We now examine the finite-sample performance of the proposed test in simulation set-
tings that are calibrated to match some key features of the data that is used in our em-
pirical analysis.
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5.1 Simulation settings

We start with describing the Monte Carlo setup. We consider N = 100 and �n = 1/400
which are very close to the corresponding numbers for the data set used in the empirical
application. The unit of time is one day, so this sampling frequency corresponds roughly
to sampling every minute. The log returns of the assets are generated from the following
model: {

dYj�t = λ�
j dft + σ̃j�t dW̃j�t +βj�tϕt dNt�

dZj�t = λ�
Z dft +ϕt dNt�

(5.1)

where the process Nt is a counting process for the jumps. The diffusive systematic factor
process f is a three-factor model given by

dft = Σ
1/2
f�t dWt� Σf�t = diag

(
σ2
f�1�t �σ

2
f�2�t �σ

2
f�3�t
)
�

and Wt = (W1�t �W2�t �W3�t)
� is a three-dimensional standard Brownian motion. The log-

variance process of factor k ∈ {1�2�3} is generated from an Ornstein–Uhlenbeck process
of the form

d log
(
σ2
f�k�t

) = 0�3
(
log
(
σ̄2
f�k

)− log
(
σ2
f�k�t

))
dt

+ 0�3
(
ρ(dW1�t + dW2�t + dW3�t)+

√
1 − ρ2 dBk�t

)+ ϕ̃k�t dNt�

where ρ = −0�6 captures the so-called leverage effect between the volatility and the price
process and (Bk�t)1≤k≤3 are standard Brownian motions that are independent of W . We
set (

σ̄2
f�1� σ̄

2
f�2� σ̄

2
f�3
)= (0�92�0�21�0�07)�

and draw the log-volatility jump sizes ϕ̃k�t independently from a Uniform[0�0�2] distri-
bution. We draw the price jump size ϕt independently from

ϕt ∼ Uniform[−ϕ− 0�4�−ϕ] ∪ [ϕ�ϕ+ 0�4]�

We set the lower bound ϕ= 0�4, which is about 8 times of the local diffusive standard de-
viation of Z for �n = 1/400. This is close to what we observe in the empirical application.
The frequency of jump arrivals is set to one jump per month.

In each simulation, we draw the diffusive factor loadings λj independently from

λj�1 ∼ Uniform[0�3�1�7]� λj�2�λj�3 ∼ Uniform[−1�1],

and the factor loading of Z is fixed at λZ = (1�0�0)�.
Turning next to the idiosyncratic diffusive component of Y , we set

σ̃2
j�t = γ̃j

(
σ2
f�1�t + σ2

f�2�t + σ2
f�3�t
)
� (5.2)

In this setting, the idiosyncratic variances co-move with the factor variances, which is
empirically realistic. The “variance betas” γ̃j are drawn independently from a
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Uniform[0�8�1�2] distribution. We note that the idiosyncratic diffusive variance in our
simulation is quite sizable; indeed, it is equal to the sum of all diffusive factor variances
on average, so it is greater, in particular, than the variance of the leading factor Z. This
simulation setting thus corresponds to a low signal-to-noise scenario for estimating the
spot jump betas and, hence, presents a nontrivial challenge to the proposed test.

The above specification of Z and the diffusive part of Y is designed to mimic key
features of the data set that we use in the empirical application. In particular, the volatil-
ity dynamics of Z, the frequencies of jumps and their magnitude in the Monte Carlo
match approximately those of the market portfolio which we use in the next section as
the reference process Z. Further, the diffusive factor structure and the magnitude of the
idiosyncratic variance in Y match those of the empirical data set (recall that these quan-
tities determine the limiting distribution of our test statistic).22

Finally, our specification of the jump betas is as follows. At the first jump time τ1, the
jump betas are drawn independently from

βj�τ1 ∼ Uniform[0�7�1�3]�
Under the null hypothesis, we set βj�τp = βj�τ1 for p > 1, and under the alternative we
set:

βj�τp = βj�τp−1 +χj�τp−1�τp� χj�τp−1�τp ∼ N (0� vτp−1�τp)�

vτp−1�τp =
{

0�1 Alternative 1,

0�2 Alternative 2.

Note that Alternative 2 implies larger deviation from the null hypothesis than Alterna-
tive 1.

Below, we examine the test specified in Theorem 3 and refer to it as the baseline test.
We also consider the mixed-scale versions implemented at scales k = 2 and k = 3 as
described in Section 4.2. We remind the reader that the baseline test is a special case of
the mixed-scale test with k = 1. In the empirical analysis, the mixed-scale approach is
more robust to the presence of gradual jumps, but at the cost of lowering the signal-to-
noise ratio; we aim to examine this trade-off in the simulation exercise. Finally, we also
assess the performance of the joint test of Section 4.1. We use nine consecutive jumps
for the construction of this test which is similar to the average number of jumps used in
our empirical implementation. The joint test is expected to have more power relative to
the pairwise test and we will study this in our Monte Carlo experiment.

The simulation results are based on 1000 sample paths in total and the tuning pa-
rameters of the test are as follows. We set the loss function L(x) = min{|x|�x2}, which will
also be used in our empirical analysis below. With the true number of diffusive factors
being 3, we consider r̄ ∈ {1�3�5} in our Monte Carlo experiments. The benchmark case
is r̄ = 3, which coincides with the true number of factors. The case with r̄ = 1 is generally
not justified by our asymptotic theory, but it allows us to understand the consequence

22More specifically, the eigenvalues of the matrix MC(τ±� τ±) decay on average as those in the real data
and the ratio Mε(τ±)/Trace[MC(τ±� τ±)] is similar to that in the data as well.
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Table 1. Rejection rates of pairwise constant beta tests.

Null Alternative 1 Alternative 2

Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Case r̄ = 3 (correct number of diffusive factors)
k= 1 9�7 3�8 0�5 99�9 99�9 98�5 100 100 99�9
k= 2 9�4 4�2 0�6 98�9 97�0 84�4 99�7 99�1 96�2
k= 3 7�9 2�6 0�7 93�8 87�6 64�5 99�7 99�1 96�2

Panel B: Case r̄ = 1 (underestimated number of diffusive factors)
k= 1 15�2 7�1 1�5 100 100 99�6 100 99�9 99�8
k= 2 10�8 5�4 0�7 98�6 96�9 87�7 99�7 99�2 96�5
k= 3 8�6 3�5 0�6 93�7 87�6 65�0 98�2 96�6 86�0

Panel C: Case r̄ = 5 (overestimated number of diffusive factors)
k= 1 10�5 5�5 0�9 100 100 99�4 100 100 99�8
k= 2 7�1 3�0 0�3 99�0 97�0 84�7 99�5 99�1 96�0
k= 3 6�6 2�9 0�2 93�3 86�6 60�2 97�8 95�1 83�5

Note: The table presents rejection rates of pairwise tests for constant beta in the setting with kn = 30. Critical values are
based on Algorithm 1 with 1000 simulations.

of “undershooting” the number of diffusive factors. The case r̄ = 5 is justified by our the-
ory and shows the effect of conservatively including “non-factors” in finite-samples. The
local window parameter kn is taken from {25�30}. The algorithm for computing critical
values is implemented using 1000 simulations.

Finally, we set the truncation un in an adaptive way. In particular, for determining the
jumps in Z, un is equal to 7×�0�49

n ×√
RV ∧BV , where RV and BV denote the daily real-

ized variance and so-called bipower variation (Barndorff-Nielsen and Shephard (2004)),
respectively.23 The former is a measure of total daily quadratic variation and the latter is
a measure of the continuous part of the quadratic variation. The above high threshold
minimizes the probability of erroneously classifying a diffusive increment as one con-
taining a jump. For the truncation of the elements in Y in the calculation of X̂n(τ±) in
(3.11), we use twice the threshold for Z in order to account for the additional idiosyn-
cratic risk in Y .

5.2 Simulation results for the pairwise test

We start with the case with kn = 30. Table 1 presents the Monte Carlo rejection rates for
testing βj�τ = βj�η, 1 ≤ j ≤ N . We report rejection rates at nominal levels 10%, 5%, and
1%. Panel A shows results for the case when r̄ coincides with the number of diffusive
factors (i.e., r̄ = 3). Under the null hypothesis, the finite-sample rejection rates for our
baseline test are very close to the nominal levels. We also see similarly good performance
at mixed-scale k = 2. These results are in line with our asymptotic theory. The test at
mixed-scale k = 3 appears to be somewhat undersized under null hypothesis, reflecting
the cost of using a larger mixed-scale.

23We use a relatively stringent jump detection rule so as to avoid misclassifying diffusive returns as
jumps. This is particularly important in our current testing context, because the asymptotic theory depends
crucially on using only the jump returns.
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Turning to the power analysis, we first observe that the baseline test rejects essen-
tially with probability one under Alternative 1, which is consistent with the asymptotic
theory. The mixed-scale tests are more conservative but still exhibit good power prop-
erties. The somewhat lower rejection rate at k = 3 is expected, because the jump signal
gets weaker relative to the disturbance from the diffusive part, rendering sharp infer-
ence concerning the jumps more difficult. As the data generating process further de-
viates away from the null hypothesis (i.e., Alternative 2), the rejection rates of all tests
become very close to one, even for the more conservative k= 3 mixed-scale test.

We now examine the effect of misspecifying the number of diffusive factors. Panel
B of Table 1 shows the rejection rates when we “undershoot” the number of diffusive
factors by setting r̄ = 1. We remind the reader that our asymptotic theory does not justify
the validity of this implementation. Under the null hypothesis, the baseline test slightly
overrejects at the 5% and 1% levels, but the overrejection appears to be more severe at
the 10% level. For the mixed-scale tests with k= 2 and 3, the overrejection is offset by the
underrejection seen in Panel A; such “offsetting” of course needs to be taken with a grain
of salt. By contrast, Panel C of Table 1 shows that “overshooting” the number of diffusive
factors does not lead to overrejection under the null. Indeed, the baseline test with k = 1
has rejection rates that are very close to the nominal levels, and the mixed-scale tests
underreject only slightly in comparison with the same tests implemented using r̄ = 3.
Under the alternative, results in Panel C are quite similar to those in Panel A, suggesting
that the test has desirable power properties even if we set r̄ conservatively.

Next, we investigate the sensitivity of the rejection rates with respect to the local
window parameter kn. To do so, we repeat the exercise in Table 1 except that we replace
kn = 30 with kn = 25. The rejection rates are presented in Table 2, which are generally
very similar to those in Table 1. These results suggest that reducing moderately the win-
dow size does not have much of an effect on the test. We hence focus on the case kn = 30
in our numerical work below.

In summary, we find that the proposed test controls size well under the null hypoth-
esis and has high rejection rates under the alternatives. The performance of the baseline
test is closely in line with our asymptotic theory. The mixed-scale approach with k = 2
performs very similarly as the baseline test. When we increase the mixed-scale to k = 3,
the test tends to be slightly undersized but it still has nontrivial power under the alter-
native. Finally, we find that the test is robust with respect to the choice of r̄ and the local
window kn. Overall, we have seen that the finite-sample performance of the proposed
test is satisfactory in empirically realistic settings.

5.3 Simulation results for the joint test

We finish this section with presenting simulation results for the performance of the joint
test in Table 3. For brevity, we only consider the case with kn = 30. Compared to the pair-
wise test, the under-rejection under the null hypothesis now becomes more significant
for the mixed-scale k = 3. Intuitively, the small finite-sample biases in the pairwise test
play a more prominent rule in the joint test as pooling the pairwise tests across the dif-
ferent jump times reduces the sampling variability without affecting these biases. On the
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Table 2. Rejection rates of pairwise constant beta tests.

Null Alternative 1 Alternative 2

Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Case r̄ = 3 (correct number of diffusive factors)
k= 1 11�1 5�0 0�9 100 100 99�0 100 100 99�8
k= 2 7�3 3�3 0�4 98�3 96�4 84�8 99�8 99�3 96�3
k= 3 7�5 3�3 0�5 90�5 83�3 56�1 98�3 96�1 84�0

Panel B: Case r̄ = 1 (underestimated number of diffusive factors)
k= 1 14�6 6�8 1�4 100 100 99�4 100 100 99�9
k= 2 12�3 4�5 0�9 98�4 97�4 85�9 99�7 99�4 96�7
k= 3 9�9 4�6 0�5 94�4 86�7 63�9 98�2 96�1 87�0

Panel C: Case r̄ = 5 (overestimated number of diffusive factors)
k= 1 9�4 4�5 0�5 99�9 99�9 98�3 99�9 99�9 99�9
k= 2 9�2 3�4 0�1 98�7 95�8 84�0 99�7 99�3 95�3
k= 3 6�8 2�9 0�4 93�4 84�3 59�0 97�3 94�7 82�4

Note: The table presents rejection rates of pairwise tests for constant beta in the setting with kn = 25. Critical values are
based on Algorithm 1 with 1000 simulations.

other hand, and as expected, we now have uniformly significantly more power to reject
the two alternatives.

6. Empirical application

We now apply the econometric techniques developed above to a data set from the U.S.
equity market. Our interest in this analysis will be the factor structure and presence of
firm-specific risk in the cross-section of asset returns during market-wide jump events.

Table 3. Rejection rates of joint constant beta tests.

Null Alternative 1 Alternative 2

Level 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Case r̄ = 3 (correct number of diffusive factors)
k= 1 10�0 4�1 0�8 100 100 100 100 100 100
k= 2 8�3 4�3 0�5 100 100 99�5 100 100 100
k= 3 4�3 1�0 0�0 99�3 97�7 85�6 99�9 99�6 97�5

Panel B: Case r̄ = 1 (underestimated number of diffusive factors)
k= 1 12�6 6�1 1�3 100 100 100 100 100 100
k= 2 9�2 3�2 0�3 100 100 99�7 100 100 99�8
k= 3 6�2 3�0 0�4 99�4 97�6 84�0 99�8 99�3 94�6

Panel C: Case r̄ = 5 (overestimated number of diffusive factors)
k= 1 11�0 5�0 1�2 100 100 100 100 100 100
k= 2 6�5 2�8 0�3 100 100 98�9 100 100 100
k= 3 4�5 1�5 0�1 99�4 97�1 85�0 99�7 99�1 94�3

Note: The table presents rejection rates of joint tests for constant beta in the setting with kn = 30. The number of jump
times included in the test is 9. Critical values are based on Algorithm 2 with 1000 simulations.
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6.1 Data

We start with describing the data. Our sample consists of 1-minute returns for a panel
of 93 stocks that were in the S&P 100 index for the entire period 2007–2015.24 The data is
from the Trade and Quote (TAQ) database. Standard cleaning procedures were used in
assembling the data. Our proxy for the market (which is our systematic factor Z) is the
S&P 500 E-Mini futures Index on the nearest contract with appropriate rollovers. The
futures data were obtained from Tick Data. Of course, nothing in our theory requires
Z to be the market factor, and empirical extensions could consider alternative sets of
interesting event times such as macro and/or monetary announcement times, volatility
jumps, as well as jumps in the various S&P 500 industry subcomponents, among others.

The detection of jumps in Z as well as the truncation needed for the construction
of X̂n(τ±) in (3.11) is done exactly as in the Monte Carlo, with the only difference being
the scaling of the threshold by a time-of-day function in order to account for the well-
known diurnal intraday pattern in volatility. We find 91 putative jump moves in Z in our
sample. We further filter these moves based on the following criteria: remove detections
that occur within 5 minutes of each other and remove detections of size less than 0�10
(i.e., 10 basis points); the latter occurred only in the very late part of the sample with
exceptionally low volatility. These steps yield 83 (1-minute) jump returns over the 2007–
2015 period.25 Evidently, the 83 jump returns are very large moves in the futures index
relative to its local volatility. Our analysis below will be based on these 83 market jump
events in the sample.

6.2 Test outcomes

We first perform tests for the constant jump beta hypothesis to each of the 82 consecu-
tive pairs of market jump events in our sample. As in the simulations, we use the Huber-
type loss function L(x) = min{|x|�x2} and take the local window parameter to be kn = 30.
This exercise consists of testing 82 hypotheses independently, and we summarize the
results by reporting the proportion of tests that reject the null hypothesis at the 5% and
1% nominal levels when averaged over the whole sample. These separate pairwise tests
are for the null hypothesis of no variation in adjacent jump betas. To further increase
power, we also implement the joint test of Section 4.1 for the jumps in each of the calen-
dar years in our sample and report the average of the p-values across the 9 years in the
data set. As shown in our simulation experiment, the joint test is expected to have more
power to detect violations of the null hypothesis as those considered in the Monte Carlo.
We choose the time span of one calendar year for the joint test in order to avoid viola-
tions of the null hypothesis of the exact jump factor model that are due to predictable

24There are 107 ticker symbols that were in the S&P 100 Index for at least 4 years over the same period.
Our inference techniques do not require a balanced panel, but we retained the 93 stocks mainly for trans-
parency and ease of exposition. In initial work, we did the pairwise tests for all 107 stocks with essentially
no difference in outcomes relative to those reported here.

25Similar to Bajgrowicz, Scaillet, and Treccani (2016), we do not find much evidence for clustering of
these very big jumps although the statistical power for detection of such clustering is probably not very
high given the rare nature of these jumps.
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Table 4. Test results for U.S. equity data.

r̄ = 3 r̄ = 5

Mixed Rejection Rate Joint Test Rejection Rate Joint Test

Scale 5% Level 1% Level Mean P-value 5% Level 1% Level Mean P-value

Panel A: Full Sample (qwn = 0)
k= 1 0�94 0�76 0�00 0�91 0�72 0�00
k= 2 0�38 0�23 0�04 0�35 0�21 0�05
k= 3 0�18 0�00 0�37 0�17 0�00 0�37

Panel B: Winsorized Sample (qwn = 0�05)
k= 1 0�89 0�66 0�00 0�89 0�63 0�00
k= 2 0�32 0�21 0�08 0�32 0�21 0�08
k= 3 0�13 0�00 0�44 0�10 0�00 0�45

Note: Note: P-values are computed using Algorithm 1 based on 1000 simulations. The joint test is done by grouping jumps
in periods of calendar years.

changes in the factor loadings. Indeed, the latter are typically associated with changes in
the firms’ characteristics and they are not expected to change much over periods of one
year.26 Therefore, violations of the null hypothesis in our setting will be more likely due
to the presence of unpredictable firm-specific shocks at the market-wide jump events.

For implementing the tests, we choose r̄ = 3 as motivated by the popular Fama–
French model (Fama and French (1993)) and consider r̄ = 5 as a more conservative ro-
bustness check. Since the results are not sensitive to the choice of r̄, below we focus the
discussion on the case r̄ = 3. Finally, we present results with and without winsorization;
the winsorization is implemented at the 0�05 level (i.e., qwn = 0�05). Recall from Section 2
that the winsorization is needed in order to guard against the possible occurrence of
idiosyncratic jumps in the high-frequency increment at which a systematic jump event
has been detected. In finite samples, the winsorization also provides robustness against
possible presence of outliers in the data.

We turn now to a discussion of the test results. From Panel A of Table 4, the base-
line test at the 1-minute frequency (i.e., k = 1) rejects the constant beta hypothesis for
a majority of consecutive jump pairs: the rejection rate is 0�94 at the 5% level and 0�76
at the 1% level. The average p-value of the joint test is very low, suggesting a strong re-
jection of the joint hypothesis. However, as recognized in Li et al. (2017a), the constant
beta hypothesis at a fine scale will be rejected if there is a gradual response in individ-
ual assets to a market jump event due to less liquidity in the trading process of some
of the stocks in the cross-section at such frequency. The mixed-scale version of our test
described in Section 4.1 mitigates the effect of such microstructure issues, and we con-
sider it therefore as the more reliable method. By “zooming out” and measuring returns
at the 2-minute sampling interval (i.e., k = 2), we find that the rejection rate drops sub-
stantially: for example, only 23% of the tests reject at the 1% level, which is far below
the rejection rate of the baseline test with k = 1. In addition, the averaged p-value of

26Our pairwise test is most “conservative” in this regard as the time between the market jumps is typically
around 1 month.
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the joint test is slightly below the conventional significance level of 5%, suggesting only
borderline rejection for the joint hypothesis. When we further zoom out by increasing
the mixed-scale parameter to k = 3, the majority of pairwise tests no longer reject the
constant beta hypothesis. Furthermore, the p-value for the joint test is far above the
conventional significance level.

As seen from Panel B of Table 4, after performing winsorization, the rejection rates of
the tests drop uniformly across all considered settings. However, qualitatively the results
are the same as in the case of no winsorization.

Overall, the significant drop in the rejection rate of both the pairwise and joint tests,
when going from k = 1 to k = 3 observed in our data, is inconsistent with the behav-
ior of the tests under a typical alternative hypothesis of a noisy jump factor model as
illustrated in our simulation experiments. Instead, such behavior is consistent with a
null hypothesis of exact jump factor model which is “clouded” at the fine time scale of
1-minute by liquidity-related microstructure issues.27

We can further contrast this result for the jumps with the factor structure of the
diffusive returns before and after the systematic jump events. The cross-sectional
average contribution of idiosyncratic diffusive risk in the total return variation of
the residual component X∗

n(τ±)j�l in (3.7) (computed as the time series of the ratio
M̂ε�n/(Trace[M̂C�n(q�q)] + M̂ε�n) for r̄ = 3) is a nontrivial 67%. This decomposition of
systematic and idiosyncratic variance in X∗

n(τ±)j�l reveals also that the market cannot
solely account for the cross-sectional dependence in asset returns before and after the
systematic jump events which is in sharp contrast to our empirical evidence in support
of the exact jump factor model at market jump times.

6.3 The magnitude of firm-specific shocks at market-wide jump events

We next estimate the variance v(η�τ) of the innovations in jump betas using the estima-
tor v̂n (see (3.15)), as well as the mixed-scaled version v̂(k)n (see (4.4)). Although the es-
timand v(η�τ) is nonnegative, the bias-corrected estimator v̂(k)n occasionally takes neg-
ative values in finite-samples because of the subtraction of the positive bias-correction
term. Therefore, we report results for a sign-regularized version of v̂(k)n given by

v̂(k)+n = max
{
v̂(k)n �0

}
� (6.1)

To evaluate economically the relative magnitude of these estimates, we also report the
following measure:

Normalized v̂(k)+n ≡ v̂(k)+n

((�n
i(n�τ)�kZ

)2 + (�n
i(n�η)�kZ

)2
2

)/
Dn� (6.2)

where

Dn ≡ 1
Nn

Nn∑
j=1

(
�n
i(n�τ)Yj

)2 + 1
Nn

Nn∑
j=1

(
�n
i(n�η)Yj

)2 + 1
2

∑
s∈{τ�η}

1
knNn

Nn∑
j=1

kn∑
l=1

(
�n
i(n�s−)+lYj

)2
27Of course, such a behavior of the test can be also consistent with very short-lived volatility bursts which

are confused for jumps; see, for example, Bajgrowicz, Scaillet, and Treccani (2016).
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�

The ratio in (6.2) measures an average stock’s price variation due to time-varying jump
beta (i.e., the numerator) relative to the total price variation during market jump times
(i.e., Dn).

Panel A of Table 5 displays the empirical quantiles (across jumps and stocks) of
the estimates v̂(k)+n and the normalized v̂(k)+n for all 82 pairs of consecutive jumps; the
quantiles are invariant to the monotonic transformation used in the regularization (6.1).
Panel A1 suggests that the median value of v̂(k)+n is about 0�17 and this estimate varies lit-
tle across various levels of mixed-scales. To gauge their relative magnitudes, we observe
in Panel A2 that the median value of the normalized measure at mixed-scale k= 1�2, and
3 are 7�70%, 6�80%, and 5�38%, respectively. This means, for example, for jump returns
measured at the 2-minute frequency, return variance due to the temporal variation of
the jump betas explains only about 6�80% of the total jump return variation. This rather
small percent is consistent with our testing result that the majority of pairwise tests do
not reject the null hypotheses at the conventional significance levels (for k= 2).

In Panel B of Table 5, we report the same statistics but after performing winsoriza-
tion in the cross-section. This winsorization is to guard against distortions resulting
from the idiosyncratic jump risk. Indeed, the estimators of variance can be very sen-
sitive to outliers and the estimates in Panel A may be overly influenced by a few stocks,
which makes them of less interest as measures of jump beta variations for the majority
of stocks. Clearly, the estimates after winsorization are much smaller than those based
on the full sample, suggesting that the estimates in Panel A have likely exaggerated the
variations in jump betas for a typical stock because of a few influential observations.

The estimates reported in Panel B1 of Table 5 indicate that between consecutive
large rare jumps the typical betas differ randomly with a variance of about 0�02, based on
the estimate for k = 3. For perspective on this estimate, the corresponding normalized
measure (6.2) indicates that such variation of beta explains only 0�99% of the total return
variation of the median stock in our sample at the systematic jump event. By contrast,
the relative contribution of idiosyncratic risk in the total diffusive return variation in the
local windows before and after the systematic jump events (based on r̄ = 3) is a rather
nontrivial 48%.

Taken together, the results in Table 5 document a rather small role for firm-specific
shocks in asset returns at the times of market-wide jump events. This evidence is in line
with the support for the exact jump factor model reported earlier.

7. Conclusion

In this paper, we develop a formal test for deciding whether an exact factor model holds
for asset returns in a large cross-section at the jump times of discretely-observed sys-
tematic risk factors. The inference is based on a panel of high-frequency asset returns
in which the cross-sectional dimension and the sampling frequency increase simulta-
neously but with no restriction on their relative asymptotic order. The test is based on
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Table 5. Idiosyncratic risk at market-wide jump events.

Mixed Percentiles Percentiles

Scale 10% 25% 50% 75% 90% 10% 25% 50% 75% 90%

Panel A: Full Sample (qwn = 0)

(A1) v̂(k)+n (A2) Normalized v̂
(k)+
n (%)

k= 1 0�09 0�12 0�17 0�23 0�30 3�92 5�11 7�70 11�26 14�91
k= 2 0�04 0�09 0�19 0�34 0�70 1�31 3�64 6�80 11�74 22�43
k= 3 0�00 0�03 0�16 0�30 0�85 0�00 0�91 5�38 11�58 24�04

Panel B: Winsorized Sample (qwn = 0�05)

(B1) v̂(k)+n (B2) Normalized v̂(k)+n (%)

k= 1 0�06 0�09 0�13 0�19 0�22 2�51 3�61 5�84 8�37 10�86
k= 2 0�00 0�04 0�11 0�18 0�37 0�00 1�42 4�33 7�79 11�97
k= 3 0�00 0�00 0�02 0�15 0�35 0�00 0�00 0�99 6�11 10�64

comparing temporal variation of estimates for the factor loadings from detected con-
secutive jump times of the risk factor. This difference in factor loading estimates shrinks
asymptotically when the null hypothesis is true and is Op(1) otherwise. The limit distri-
bution of the test is nonstandard and depends on systematic and idiosyncratic diffusive
risks around the jump times of the factors in distinct ways. We further develop an esti-
mator that allows the econometrician to formally assess the magnitude of firm-specific
shocks in assets at the times of systematic factor jump events. Empirical application
to stocks in the S&P 100 index provides support for an exact market jump model over
the period 2007–2015. This stands in sharp contrast to our evidence for the presence of
multiple systematic risk factors in the asset returns prior to and following the systematic
jump events.
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