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11. Outline

References to sections, theorems, and lemmas with section numbers less than 11 refer
to sections and results in the main paper.

Section 12 of this Online Supplementary Material 1 (OSM1) provides expressions
for the densities fQ(q;β∗�β0�λ�Ω), fQ1|QT (q1|qT ), and fQ(q;ρuv�λv), expressions for
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the POIS2 test statistic and critical value of AMS, and expressions for the one-to-one
transformations between the reduced-form and structural variance matrices. Section 13
provides one-sided power bounds for invariant similar tests as β0 → ±∞, where β0 de-
notes the null hypothesis value. Section 14 corrects (4.1) of AMS, which concerns the
two-point weight function that defines AMS’s two-sided AE power envelope.

Section 15 proves Lemma 6.1. Section 16 proves Theorem 5.1 and its Comment (v).
Section 17 proves Theorem 6.2 and its Comment (iv), Corollary 6.3 and its Comment (ii),
and Theorem 6.4. Section 18 proves Theorem 8.1. Section 19 proves Theorem 13.1 and
Lemmas 14.1 and 14.2.

Section 20 computes the structural error variance matrices in scenarios 1 and 2 con-
sidered in (9) and (10) in Section 4.

Section 21 shows how the model is transformed to go from a testing problem ofH0 :
β= β0 versusH1 : β= β∗ for π ∈Rk and fixedΩ to a testing problem ofH0 : β= 0 versus
H1 : β= β∗ for some π ∈Rk and some fixedΩwith diagonal elements equal to one. This
links the model considered here to the model used in the Andrews, Moreira, and Stock
(2006) (AMS) numerical work.

Section 22 shows how the model is transformed to go from a testing problem ofH0 :
β = β0 versus H1 : β = β∗ for π ∈ Rk and fixed Ω to a testing problem of H0 : β = β0
versusH1 : β= 0 for someπ ∈Rk and some fixedΩwith diagonal elements equal to one.
These transformation results imply that there is no loss in generality in the numerical
results of the paper to taking ω2

1 = ω2
2 = 1, β∗ = 0, and ρuv ∈ [0�1] (rather than ρuv ∈

[−1�1]).
Section 23 considers a variant of the CLR test, which we denote the CLR2n test, and

computes probabilities that it has infinite length. It is not found to improve upon the
CLR test.

Section 24 considers the linear IV model that allows for heteroskedasticity and auto-
correlation in the errors, as in Moreira and Ridder (2017). It extends Theorem 5.1 to this
model. Thus, it gives formulae for the probabilities that a CI has infinite right length,
infinite left length, and infinite length in this model.

12. Definitions

12.1 Densities ofQ when β= β∗ and when β0 → ±∞
In this subsection, we provide expressions for (i) the density fQ(q;β∗�β0�λ�Ω) of Q
when the true value of β is β∗, and the null value β0 is finite, (ii) the conditional density
fQ1|QT (q1|qT ) ofQ1 givenQT = qT , and (iii) the limit of fQ(q;β∗�β0�λ�Ω) as β0 → ±∞.

Let

ξβ∗(q)= ξβ∗(q;β0�Ω) := c2
β∗qS + 2cβ∗dβ∗qST + d2

β∗qT � (24)

where cβ∗ = cβ∗(β0�Ω) and dβ∗ = dβ∗(β0�Ω). As in Section 6, fQ(q;β∗�β0�λ�Ω) denotes
the density ofQ := [S : T ]′[S : T ] when [S : T ] has the multivariate normal distribution in
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(3) with β= β∗ and λ= μ′
πμπ . This noncentral Wishart density is

fQ(q;β∗�β0�λ�Ω) = K1 exp
(−λ(c2

β∗ + d2
β∗

)
/2

)
det(q)(k−3)/2 exp

(−(qS + qT )/2
)

× (
λξβ∗(q)

)−(k−2)/4
I(k−2)/2

(√
λξβ∗(q)

)
� where (25)

q =
[
qS qST
qST qT

]
� q1 =

(
qS
qST

)
∈R+ ×R� qT ∈R+�

K−1
1 = 2(k+2)/2pi1/2
((k − 1)/2), Iν(·) denotes the modified Bessel function of the

first kind of order ν, pi = 3�1415 � � � , and 
(·) is the gamma function. This holds by
Lemma 3(a) of AMS with β= β∗.

By Lemma 3(c) of AMS, the conditional density of Q1 given QT = qT when [S : T ] is
distributed as in (3) with β= β0 is

fQ1|QT (q1|qT ) :=K1K
−1
2 exp(−qS/2)det(q)(k−3)/2q

−(k−2)/2
T � (26)

which does not depend on β0, λ, orΩ.
By Lemma 6.1, the limit of fQ(q;β∗�β0�λ�Ω) as β0 → ±∞ is the density fQ(q;ρuv�

λv). As in Section 6, fQ(q;ρuv�λv) denotes the density of Q := [S : T ]′[S : T ] when [S : T ]
has a multivariate normal distribution with means matrix in (18), all variances equal to
one, and all covariances equal to zero. This is a noncentral Wishart density that has the
following form:

fQ(q;ρuv�λv) = K1 exp
(−λv(1 + r2

uv

)
/2

)
det(q)(k−3)/2 exp

(−(qS + qT )/2
)

× (
λvξ(q;ρuv)

)−(k−2)/4
I(k−2)/2

(√
λvξ(q;ρuv)

)
� where (27)

ξ(q;ρuv) := qS + 2ruvqST + r2
uvqT �

This expression for the density holds by the proof of Lemma 3(a) of AMS with means
matrix μπ · (1/σv� ruv/σv) in place of the means matrix μπ · (cβ�dβ).

12.2 POIS2 test

Here, we define the POIS2(q1� qT ;β0�β∗�λ) test statistic of AMS, which is analyzed in
Section 6, and its conditional critical value κ2�β0(qT ).

Given (β∗�λ), the parameters (β2∗�λ2) are defined in (19), which is the same as (4.2)
of AMS. By Corollary 1 of AMS, the optimal average-power test statistic against (β∗�λ)
and (β2∗�λ2) is

POIS2(Q;β0�β∗�λ) := ψ(Q;β0�β∗�λ)+ψ(Q;β0�β2∗�λ2)

2ψ2(QT ;β0�β∗�λ)
� where

ψ(Q;β0�β�λ) := exp
(−λ(c2

β + d2
β

)
/2

)(
λξβ(Q)

)−(k−2)/4
I(k−2)/2

(√
λξβ(Q)

)
� (28)

ψ2(QT ;β0�β�λ) := exp
(−λd2

β/2
)(
λd2

βQT
)−(k−2)/4

I(k−2)/2

(√
λd2

βQT

)
�
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Q and QT are defined in (4), cβ = cβ(β�Ω) and dβ = dβ(β�Ω) are defined in (3), Iν(·) is
defined in (25), ξβ(Q) is defined in (24) withQ andβ in place of q andβ∗, and λ := μ′

πμπ .
Note that ψ2(QT ;β∗�λ)=ψ2(QT ;β2∗�λ2) by (19).

Let κ2�β0(qT ) denote the conditional critical value of the POIS2(Q;β0�β∗�λ) test
statistic. That is, κ2�β0(qT ) is defined to satisfy

PQ1|QT
(
POIS2(Q;β0�β∗�λ) > κ2�β0(qT )|qT

) = α (29)

for all qT ≥ 0, where PQ1|QT (·|qT ) denotes probability under the density fQ1|QT (·|qT ) de-
fined in (26). The critical value function κ2�β0(·) depends on (β0�β∗�λ�Ω) and k (and
(β2∗�λ2) through (β∗�λ)).

12.3 Structural and reduced-form variance matrices

Let ui, v1i, and v2i denote the ith elements of u, v1, and v2, respectively. We have

v1i := ui + v2iβ and Ω=
[
ω2

1 ω12

ω12 ω2
2

]
� (30)

where β denotes the true value.
Given the true value β and some structural error variance matrix Σ, the correspond-

ing reduced-form error variance matrixΩ(β�Σ) is

Ω(β�Σ) := Var

((
v1i

v2i

))
= Var

((
ui + v2iβ

v2i

))

=
[

1 β

0 1

]
Σ

[
1 0
β 1

]
=

[
σ2
u + 2σuvβ+ σ2

vβ
2 σuv + σ2

vβ

σuv + σ2
vβ σ2

v

]
� where (31)

Σ =
[
σ2
u σuv

σuv σ2
v

]
�

Given the true value β and the reduced-form error variance matrixΩ, the structural
variance matrix Σ(β�Ω) is

Σ(β�Ω) := Var

((
ui
v2i

))
= Var

((
v1i − v2iβ

v2i

))

=
[

1 −β
0 1

]
Ω

[
1 0

−β 1

]
=

[
ω2

1 − 2ω12β+ω2
2β

2 ω12 −ω2
2β

ω12 −ω2
2β ω2

2

]
� (32)

Let σ2
u(β�Ω), σ

2
v (β�Ω), and σuv(β�Ω) denote the (1�1), (2�2), and (1�2) elements of

Σ(β�Ω). Let ρuv(β�Ω) denote the correlation implied by Σ(β�Ω).
In the asymptotics as β0 → ±∞, we fix β∗ and Ω and consider the testing prob-

lem as β0 → ±∞. Rather than fixing Ω, one can equivalently fix the structural variance
matrix when β = β∗, say at Σ∗. Given β∗ and Σ∗, there is a unique reduced-form error
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variance matrix Ω=Ω(β∗�Σ∗) defined using (31). Significant simplifications in certain
formulae occur when they are expressed in terms of Σ∗, rather than Ω, for example, see
Lemma 15.1(e) below.

For notational simplicity, we denote the (1�1), (2�2), and (1�2) elements of Σ∗ by σ2
u,

σ2
v , and σuv, respectively, without any ∗ subscripts. As defined in (15), ρuv := σuv/(σuσv).

Thus, ρuv is the correlation between the structural and reduced-form errors ui and v2i

when the true value of β is β∗. Note that ρuv does not change when (β∗�Σ∗) is fixed
(or, equivalently, (β∗�Ω) = (β∗�Ω(β∗�Σ∗)) is fixed) and β0 is changed. Also, note that
σ2
v =ω2

2 because both denote the variance of v2i under β= β∗ and β= β0.

13. One-sided power bound as β0 → ±∞
In this section, we provide one-sided power bounds for invariant similar tests as β0 →
±∞ for fixed β∗. The approach is the same as in Andrews, Moreira, and Stock (2004)
(AMS04) except that we consider β0 → ±∞; also see Mills, Moreira, and Vilela (2014).

13.1 Point optimal invariant similar tests for fixed β0 and β∗

First, we consider the point null and alternative hypotheses:

H0 : β= β0 and H1 : β= β∗� (33)

where π ∈Rk (or, equivalently, λ≥ 0) underH0 andH1.
Point optimal invariant similar (POIS) tests for any given null and alternative param-

eter valuesβ0 andβ∗, respectively, and any givenΩ are constructed in AMS04, Section 5.
Surprisingly, the same test is found to be optimal for all values of π underH1, that is, for
all strengths of identification. The optimal test is constructed by determining the level α
test that maximizes conditional power givenQT = qT among tests that are invariant and
have null rejection probability α conditional onQT = qT , for each qT ∈R.

By AMS04 (Comment 2 to Corollary 2), the POIS test of H0 : β = β0 versus H1 : β =
β∗, for any π ∈Rk (or λ≥ 0) underH1, rejectsH0 for large values of

POIS(Q;β0�β∗) :=QS + 2
dβ∗(β0�Ω)

cβ∗(β0�Ω)
QST � (34)

The critical value for the POIS(Q;β0�β∗) test is a conditional critical value given QT =
qT , which we denote by κβ0(qT ). The critical value κβ0(qT ) is defined to satisfy

PQ1|QT
(
POIS(Q;β0�β∗) > κβ0(qT )|qT

) = α (35)

for all qT ≥ 0, where PQ1|QT (·|qT ) denotes probability under the conditional density
fQ1|QT (q1|qT ) defined in (26). Although the density fQ1|QT (q1|qT ) does not depend on
β0, κβ0(qT ) depends on β0, as well as (β∗�Ω�k), because POIS(Q;β0�β∗) does.

Note that, although the same POIS(Q;β0�β∗) test is best for all strengths of identifi-
cation, that is, for all λ= μ′

πμπ > 0, the power of this test depends on λ.
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13.2 One-sided power bound when β0 → ±∞
Now we consider the best one-sided invariant similar test as β0 → ±∞ keeping (β∗�Ω)
fixed. Lemma 15.1 below implies that

lim
β0→±∞

dβ∗(β0�Ω)

cβ∗(β0�Ω)
=

(
∓ ρuv

σv
(
1 − ρ2

uv

)1/2

)
/(∓1/σv)= ρuv(

1 − ρ2
uv

)1/2 � (36)

where ρuv, defined in (15), is the correlation between the structural and reduced-form
errors ui and v2i under β∗. Hence, the limit as β0 → ±∞ of the POIS(Q;β0�β∗) test
statistic in (34) is

POIS(Q;∞�ρuv) := lim
β0→±∞

(
QS + 2

dβ∗(β0�Ω)

cβ∗(β0�Ω)
QST

)
=QS + 2

ρuv(
1 − ρ2

uv

)1/2QST � (37)

Notice that (i) this limit is the same for β0 → +∞ and β0 → −∞, (ii) the POIS(Q;∞�

ρuv) statistic depends on (β∗�Ω) = (β∗�Ω(β∗�Σ∗)) only through ρuv := Corr(Σ∗), and
(iii) when ρuv = 0, the POIS(Q;∞�ρuv) statistic is the AR statistic (times k). Some intu-
ition for result (iii) is that EQST = 0 under the null and lim|β0|→∞EQST = 0 under any
fixed alternative β∗ when ρuv = 0 (see the discussion in Section 6.2). In consequence,
QST is not useful for distinguishing betweenH0 andH1 when |β0| → ∞ and ρuv = 0.

Let κ∞(qT ) denote the conditional critical value of the POIS(Q;∞�ρuv) test statistic.
That is, κ∞(qT ) is defined to satisfy

PQ1|QT
(
POIS(Q;∞�ρuv) > κ∞(qT )|qT

) = α (38)

for all qT ≥ 0. The density fQ1|QT (·|qT ) of PQ1|QT (·|qT ) only depends on the number of
IVs k; see (26). The critical value function κ∞(·) depends on ρuv and k.

Let φβ0(Q) denote a test of H0 : β = β0 versus H1 : β = β∗ based on Q that rejects
H0 when φβ0(Q)= 1. In most cases, a test depends on β0 because the distribution of Q
depends on β0 (see (3) and (4)), and not because φβ0(·) depends on β0. For example,
this is true of the AR, LM, and CLR tests in (6) and (7). However, we allow for depen-
dence of φβ0(·) on β0 in the following result in order to cover all possible sequences of
(nonrandomized) tests ofH0 : β= β0.

Theorem 13.1. Let {φβ0(Q) : β0 → ±∞} be any sequence of invariant similar level α tests
ofH0 : β= β0 versusH1 : β= β∗ whenQ has density fQ(q;β�β0�λ�Ω) for some λ≥ 0 and
Ω is fixed and known. For fixed true (β∗�λ�Ω), the POIS(Q;∞�ρuv) test satisfies

lim sup
β0→±∞

Pβ∗�β0�λ�Ω

(
φβ0(Q)= 1

) ≤ Pρuv�λv
(
POIS(Q;∞�ρuv) > κ∞(QT )

)
�

Comments. (i). Theorem 13.1 shows that the POIS(Q;∞�ρuv) test provides an
asymptotic power bound as β0 → ±∞ for any invariant similar test for any fixed (β∗�
λ�Ω). This power bound is strictly less than one. The reason is that limβ0→±∞ |cβ∗(β0�

Ω)| � ∞. This is the same reason that the AR test does not have power that converges to
one in this scenario; see Section 4. Hence, the bound in Theorem 13.1 is informative.
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(ii). The power bound in Theorem 13.1 only depends on (β∗�λ�Ω) through ρuv, the
magnitude of endogeneity under β∗, and λv, the concentration parameter.

(iii). As an alternative to the power bound given in Theorem 13.1, one might con-
sider developing a formal limit of experiments result, for example, along the lines of van
der Vaart (1998, Chapter 9). This approach does not appear to work for the sequence
of experiments consisting of the two unconditional distributions of [S : T ] (or Q) for
β = β0�β∗ and indexed by β0 as β0 → ±∞. The reason is that the likelihood ratio of
these two distributions is asymptotically degenerate as β0 → ±∞ (either 0 or ∞ de-
pending on which density is in the numerator) when the truth is taken to be β = β0.
This occurs because the length of the mean vector of T diverges to infinity as β0 → ±∞
(provided λ = μ′

πμπ > 0) by (3) and Lemma 15.1(c) below. For the sequence of condi-
tional distributions of Q given QT = qT , it should be possible to obtain a formal limit
of experiments result, but this would not very helpful because we are interested in the
unconditional power of tests and a conditional limit of experiments result would not
deliver this.

(iv). The proof of Theorem 13.1 is given in Section 19 below.

14. Equations (4.1) and (4.2) of AMS

This section corrects (4.1) of AMS, which concerns the two-point weight function that
defines AMS’s two-sided AE power envelope.

Equation (4.1) of AMS is:10 given (β∗�λ), the second point (β2∗�λ2) solves

λ
1/2
2 cβ2∗ = −λ1/2cβ∗ (
= 0) and λ

1/2
2 dβ2∗ = λ1/2dβ∗ � (39)

AMS states that provided β∗ 
= βAR , the solutions to the two equations in (4.1) satisfy the
two equations in (4.2) of AMS, which is the same as (19) and which we repeat here for
convenience:11

β2∗ = β0 − dβ0(β∗ −β0)

dβ0 + 2rβ0(β∗ −β0)
and λ2 = λ

(
dβ0 + 2rβ0(β∗ −β0)

)2

d2
β0

� where

rβ0 := e′1Ω−1a0 · (a′
0Ω

−1a0
)−1/2

and e1 := (1�0)′�

(40)

Equation (4.2) is correct as stated, but (4.1) of AMS is not correct. More specifically, it
is not complete. It should be: given (β∗�λ), the second point (β2∗�λ2) solves either (39)
or

λ
1/2
2 cβ2∗ = λ1/2cβ∗ (
= 0) and λ

1/2
2 dβ2∗ = −λ1/2dβ∗ � (41)

For brevity, we write the “either or” conditions in (39) and (41) as

λ
1/2
2 cβ2∗ = ∓λ1/2cβ∗ (
= 0) and λ

1/2
2 dβ2∗ = ±λ1/2dβ∗ � (42)

10Note that (β∗�λ) and (β2∗�λ2) in this paper correspond to (β∗�λ∗) and (β∗
2�λ

∗
2) in AMS.

11The formulae in (19) and (40) only hold forβ∗ 
= βAR , whereβAR := (ω2
1 −ω12β0)/(ω12 −ω2

2β0) provided
ω12 −ω2

2β0 
= 0 (which necessarily holds for |β0| sufficiently large because ω2
2 > 0).
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The reason (4.1) of AMS needs to be augmented by (41) is that for some (β∗�λ), β0,
and Ω, (4.1) has no real solutions (β2∗�λ2) and the expressions for (β2∗�λ2) in (4.2) of
AMS do not satisfy (4.1). Once (4.1) of AMS is augmented by (41), there exist real so-
lutions (β2∗�λ2) to the augmented conditions and they are given by the expressions in
(4.2) of AMS, that is, by (40). This is established in the following lemma.

Lemma 14.1. The conditions in (42) hold iff the conditions in (4.2) of AMS hold, that is,
iff the conditions in (40) holds.

With (4.1) of AMS replaced by (42), the results in Theorem 8(b) and (c) of AMS
hold as stated. That is, the two-point weight function that satisfies (42) leads to a two-
sided weighted average power (WAP) test that is asymptotically efficient under strong
IVs. And, all other two-point weight functions lead to two-sided WAP tests that are not
asymptotically efficient under strong IVs.

Lemma 14.2. Under the assumptions of Theorem 8 of AMS, that is, Assumptions SIV-

LA and 1–4 of AMS, (a) if (β2∗�λ2) satisfies (42), then LR∗(Q̂1�n� Q̂T�n;β∗�λ)= e−
1
2 (τ

∗)2 ×
cosh(τ∗LM 1/2

n ) + op(1), where τ∗ = λ1/2cβ∗ , which is a strictly-increasing continuous
function of LMn, and (b) if (β2∗�λ2) does not satisfy (42), then LR∗(Q̂1�n� Q̂T�n;β∗�λ) =
η2(QST�n/Q

1/2
T�n)+ op(1) for a continuous function η2(·) that is not even.

Comments. (i). Lemma 14.2(a) is an extension of Theorem 8(b) of AMS; while
Lemma 14.2(b) is a correction to Theorem 8(c) of AMS.

(ii). The proofs of Lemma 14.1 and 14.2 are given in Section 19 below.
Having augmented (4.1) by (41), the two-point weight function of AMS does not

have the property that β2∗ is necessarily on the opposite side of β0 from β∗. However, it
does have the properties that (i) for any (β∗�λ), (β2∗�λ2) is the only point that yields
a two-point WAP test that is asymptotic efficient in a two-sided sense under strong
IVs, (ii) the marginal distributions of QS , QT� and QST are the same under (β∗�λ) and
(β2∗�λ2), and (iii) the joint distribution of (QS�QST �QT ) under (β∗�λ) is the same as
that of (QS�−QST �QT ) under (β2∗�λ2).

15. Proof of Lemma 6.1

The proof of Lemma 6.1 and other proofs below use the following lemma.
The distributions of [S : T ] under (β0�Ω) and (β∗�Ω) depend on cβ(β0�Ω) and

dβ(β0�Ω) for β = β0 and β∗. The limits of these quantities as β0 → ±∞ are given in
the following lemma.12

Lemma 15.1. For fixed β∗ and positive definite matrixΩ, we have:

(a) limβ0→±∞ cβ0(β0�Ω)= 0.

(b) limβ0→±∞ cβ∗(β0�Ω)= ∓1/σv.

12Throughout, β0 → ±∞ means β0 → ∞ or β0 → −∞.
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(c) limβ0→±∞ dβ0(β0�Ω)= ∞.

(d) dβ0(β0�Ω)/|β0| = ω2
(ω2

1ω
2
2−ω2

12)
1/2 + o(1)= 1

σu(1−ρ2
uv)1/2

+ o(1) as |β0| → ∞.

(e) limβ0→±∞ dβ∗(β0�Ω)= ± ω2
2β∗−ω12

ω2(ω
2
1ω

2
2−ω2

12)
1/2 = ∓ ρuv

σv(1−ρ2
uv)1/2

.

Comment. The limits in parts (d) and (e), expressed in terms of Σ∗, only depend on
ρuv, σu, and σv and their functional forms are of a relatively simple multiplicative form.
The latter provides additional simplifications of certain quantities that appear below.

Proof of Lemma 15.1. Part (a) holds because cβ0(β0�Ω)= 0 for all β0. Part (b) holds by
the following calculations:

lim
β0→±∞ cβ∗(β0�Ω) = lim

β0→±∞(β∗ −β0) · (b′
0Ωb0

)−1/2

= lim
β0→±∞(β∗ −β0) · (ω2

1 − 2ω12β0 +ω2
2β

2
0
)−1/2

= ∓1/ω2

= ∓1/σv� (43)

Now, we establish part (e). Let b∗ := (1�−β∗)′. We have

lim
β0→±∞dβ∗(β0�Ω) = lim

β0→±∞b
′∗Ωb0 · (b′

0Ωb0
)−1/2 det(Ω)−1/2

= lim
β0→±∞

ω2
1 −ω12β∗ −ω12β0 +ω2

2β∗β0(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2(

ω2
1ω

2
2 −ω2

12
)1/2

= ± ω2
2β∗ −ω12

ω2
(
ω2

1ω
2
2 −ω2

12
)1/2 � (44)

Next, we write the limit in (44) in terms of the elements of the structural error variance
matrix Σ∗. The term in the square root in the denominator of (44) satisfies

ω2
1ω

2
2 −ω2

12 = (
σ2
u + 2σuvβ∗ + σ2

vβ
2∗
)
σ2
v − (

σuv + σ2
vβ∗

)2 = σ2
uσ

2
v − σ2

uv� (45)

where the first equality uses ω2
2 = σ2

v (since both denote the variance of v2i), ω2
1 = σ2

u +
2σuvβ∗ +σ2

vβ
2∗, andω12 = σuv +σ2

vβ∗ (which both hold by (31) with β= β∗ and Σ= Σ∗),
and the second equality holds by simple calculations. The limit in (44) in terms of the
elements of Σ∗ is

± ω2
2β∗ −ω12

ω2
(
ω2

1ω
2
2 −ω2

12
)1/2 = ±σ

2
vβ∗ − (

σuv + σ2
vβ∗

)
σv

(
σ2
uσ

2
v − σ2

uv

)1/2 = ∓ ρuv

σv
(
1 − ρ2

uv

)1/2 � (46)

where the first equality uses (45), ω2
2 = σ2

v , and ω12 = σuv + σ2
vβ∗, and the second in-

equality holds by dividing the numerator and denominator by σuσv. This establishes
part (e).
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For part (c), we have

lim
β0→±∞dβ0(β0�Ω) = lim

β0→±∞
(
b′

0Ωb0
)1/2 det(Ω)−1/2

= lim
β0→±∞

(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2(

ω2
1ω

2
2 −ω2

12
)1/2

= ∞� (47)

Part (d) holds because, as |β0| → ∞, we have

dβ0(β0�Ω)/|β0| =
(
ω2

1/β
2
0 − 2ω12/β0 +ω2

2
)1/2(

ω2
1ω

2
2 −ω2

12
)1/2

= ω2(
ω2

1ω
2
2 −ω2

12
)1/2 + o(1)

= 1

σu
(
1 − ρ2

uv

)1/2 + o(1)� (48)

where the last equality uses (45) and ω2 = σv.

Next, we prove Lemma 6.1, which states that for any fixed (β∗�λ�Ω), limβ0→±∞ fQ(q;
β∗�β0�λ�Ω)= fQ(q;ρuv�λv).

Proof of Lemma 6.1. By Lemma 15.1(b) and (e) and (17), we have limβ0→±∞ cβ∗ =
∓1/σv and limβ0→±∞ dβ∗ = ∓ruv/σv. In consequence,

lim
β0→±∞λ

(
c2
β∗ + d2

β∗
) = λ

(
1/σ2

v

)(
1 + r2

uv

) = λv
(
1 + r2

uv

)
and

lim
β0→±∞λξβ∗(q) = lim

β0→±∞λ
(
c2
β∗qS + 2cβ∗dβ∗qST + d2

β∗qT
)

(49)

= λ
(
1/σ2

v

)(
qS + 2ruvqST + r2

uvqT
) = λvξ(q;ρuv)�

using the definitions of λv and ξ(q;ρuv) in (17) and (27), respectively, where the first
equality in the third line uses (∓1)(∓ruv)= ruv. Combining this with (25) and (27) proves
the result of the lemma.

16. Proof of Theorem 5.1

The proof of Theorem 5.1 uses the following lemma.13 Let

S±∞(Y) := (
Z′Z

)−1/2
Z′Ye2 · ∓1

σv
�

T±∞(Y) := (
Z′Z

)−1/2
Z′YΩ−1e1 · (±(

1 − ρ2
uv

)1/2
σu

)
� and (50)

13The proof of Comment (v) to Theorem 5.1 is the same as that of Theorem 5.1(a) and (b) with
[Sβ0(Y)�Tβ0(Y)] and Tβ0(Y) in place of Qβ0(Y) andQT�β0(Y), respectively.
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Q±∞(Y) :=

⎡⎢⎢⎢⎣
e′2Y

′PZYe2 · 1

σ2
v

−e′2Y ′PZYΩ−1e1 ·
(
1 − ρ2

uv

)1/2
σu

σv

−e′2Y ′PZYΩ−1e1 ·
(
1 − ρ2

uv

)1/2
σu

σv
e′1Ω

−1Y ′PZYΩ−1e1 · (1 − ρ2
uv

)
σ2
u

⎤⎥⎥⎥⎦ �

where ρuv := Corr(ui� v2i), PZ := Z(Z′Z)−1Z′, e1 := (1�0)′, e2 := (0�1)′, and Q±∞(Y) is
the same for +∞ and −∞. Let QT�±∞(Y) denote the (2�2) element of Q±∞(Y). As de-
fined in (17), ruv = ρuv/(1 − ρ2

uv)
1/2.

Lemma 16.1. For fixed β∗ and positive definite matrixΩ, we have

(a) limβ0→±∞ Sβ0(Y)= S±∞(Y),
(b) S±∞(Y)∼N(∓ 1

σv
μπ� Ik),

(c) limβ0→±∞ Tβ0(Y) = T±∞(Y) = (Z′Z)−1/2Z′YΩ−1e1 · (±(1 − ρ2
Ω)

1/2ω1), where
ρΩ := Corr(v1i� v2i),

(d) T±∞(Y)∼N(∓ ruv
σv
μπ� Ik),

(e) S±∞(Y) and T±∞(Y) are independent,

(f ) limβ0→±∞Qβ0(Y)=Q±∞(Y), and

(g) Q±∞(Y) has a noncentral Wishart distribution with means matrix μπ( 1
σv
� ruvσv ) ∈

Rk×2, identity variance matrix, and density given in (27).

Comment. The convergence results in Lemma 16.1 hold for all realizations of Y .

Proof of Theorem 5.1. First, we prove part (a). We have

1
(
RLength

(
CSφ(Y)

) = ∞)
= 1

(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

) ∀β0 ≥K(Y) for someK(Y) <∞)
= lim
β0→∞ 1

(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

))
� (51)

where the second equality holds provided the limit as β0 → ∞ on the right-hand side
(rhs) exists, the first equality holds by the definition of CSφ(Y) in (11)–(13) and the def-
inition of RLength(CSφ(Q)) = ∞ in (14), and the second equality holds because its rhs
equals one (when the rhs limit exists) iff T (Qβ0(Y)) ≤ cv(QT�β0(Y)) for ∀β0 ≥K(Y) for
someK(Y) <∞, which is the same as its left-hand side.

Now, we use the dominated convergence theorem (DCT) to show

lim
β0→∞Eβ∗�π�Ω1

(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

))
=Eβ∗�π�Ω lim

β0→∞ 1
(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

))
� (52)

The DCT applies because (i) the indicator functions in (52) are dominated by the
constant function equal to one, which is integrable, and (ii) limβ0→∞ 1(T (Qβ0(Y)) ≤
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cv(QT�β0(Y)) exists a.s.[Pβ∗�π�Ω] and equals 1(T (Q±∞(Y))≤ cv(QT�±∞(Y)) a.s.[Pβ∗�π�Ω].
The latter holds because the assumption that T (q) and cv(qT ) are continuous at positive
definite (pd) q and positive qT , respectively, coupled with the result of Lemma 16.1(f)
(that Qβ0(Y) → Q±∞(Y) as β0 → ∞ for all sample realizations of Y , where Q±∞(Y)
is defined in (50)), imply that (a) limβ0→∞ T (Qβ0(Y)) = T (Q±∞(Y)) for all realizations
of Y for which Q±∞(Y) is pd, (b) limβ0→∞ cv(QT�β0(Y)) = cv(QT�±∞(Y)) for all real-
izations of Y with QT�±∞(Y) > 0, and hence (c) limβ0→∞ 1(T (Qβ0(Y))≤ cv(QTβ0(Y))=
1(T (Q±∞(Y)) ≤ cv(QT�±∞(Y)) for all realizations of Y for which
T (Q±∞(Y)) 
= cv(QT�±∞(Y)). We have Pβ∗�π�Ω(T (Q±∞(Y)) = cv(QT�±∞(Y))) = 0 by
assumption, and Pβ∗�π�Ω(Q±∞(Y) is pd &QT�±∞(Y) > 0) = 1 (because Q±∞(Y) has a
noncentral Wishart distribution by Lemma 16.1(g)). Thus, condition (ii) above holds
and the DCT applies.

Next, we have

1 − lim
β0→∞Pβ∗�β0�λ�Ω

(
φ(Q)= 1

)
= lim
β0→∞Eβ∗�π�Ω1

(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

))
=Eβ∗�π�Ω lim

β0→∞ 1
(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

))
= Pβ∗�π�Ω

(
RLength

(
CSφ(Y)

) = ∞)
� (53)

where the first equality holds because the distribution of Q under Pβ∗�β0�λ�Ω(·) equals
the distribution of Qβ0(Y) under Pβ∗�π�Ω(·) and φ(Q) = 0 iff T (Qβ0) ≤ cv(QT ) by (12),
the second equality holds by (52), and the last equality holds by (51). Equation (53) es-
tablishes part (a).

The proof of part (b) is the same as that of part (a), but with LLength, ∀β0 ≤ −K(Y),
and β0 → −∞ in place of RLength, ∀β0 ≥K(Y), and β0 → ∞ respectively.

The proof of part (c) is as follows:

1
(
RLength

(
CSφ(Y)

) = ∞ & LLength
(
CSφ(Y)

) = ∞)
= 1

(
T

(
Qβ0(Y)

) ≤ cv
(
QTβ0(Y)

) ∀β0 ≥K(Y) & ∀β0 ≤ −K(Y) for someK(Y) <∞)
= lim
β0→∞ 1

(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

)
& T

(
Q−β0(Y)

) ≤ cv
(
QT�−β0(Y)

))
= 1(T

(
Q±∞(Y)

) ≤ cv
(
QT�±∞(Y)

)
= lim
β0→∞ 1(T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

)
� (54)

where the first two equalities hold for the same reasons as the equalities in (51), the third
equality holds a.s.[Pβ∗�π�Ω] by result (ii) that follows (52) and the same result with −β0 in
place ofβ0 sinceQ±∞(Y) is the same limit whetherβ0 → ∞ or −∞, and the last equality
holds by result (ii) that follows (52).

Now, we have

Pβ∗�π�Ω
(
RLength

(
CSφ(Y)

) = ∞ & LLength
(
CSφ(Y)

) = ∞)
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=Eβ∗�π�Ω lim
β0→∞ 1

(
T

(
Qβ0(Y)

) ≤ cv
(
QT�β0(Y)

))
= 1 − lim

β0→∞Pβ∗�β0�λ�Ω

(
φ(Q)= 1

)
� (55)

where the first equality holds by (54) and the second equality holds by the first three lines
of (53). This establishes the equality in part (c) when β0 → ∞. The equality in part (c)
when β0 → −∞ holds because (54) and (55) hold with β0 → ∞ replaced by β0 → −∞
since the indicator function on the rhs of the second equality in (54) depends on β0 only
through |β0|.

Proof of Lemma 16.1. Part (a) holds because

lim
β0→±∞Sβ0(Y) = lim

β0→±∞
(
Z′Z

)−1/2
Z′Yb0 · (b′

0Ωb0
)−1/2

= (
Z′Z

)−1/2
Z′Y lim

β0→±∞

(
1

−β0

)
/
(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2

= (
Z′Z

)−1/2
Z′Ye2(∓1/σv)� (56)

where e2 := (0�1)′, the first equality holds by (3), the second equality holds because b0 :=
(1�−β0)

′, and the third equality holds using ω2 = σv.
Next, we prove part (b). The statistic S±∞(Y) has a multivariate normal distribution

because it is a linear combination of multivariate normal random variables. The mean
of S±∞(Y) is

ES±∞(Y)= (
Z′Z

)−1/2
Z′Z[πβ∗ : π]e2 · ∓1

σv
= (
Z′Z

)1/2
π · ∓1

σv
= μπ · ∓1

σv
� (57)

where the first equality holds using (2) with a= (β∗�1)′ and (50). The variance matrix of
S±∞(Y) is

Var
(
S±∞(Y)

) = Var
((
Z′Z

)−1/2
Z′Ye2

)
/σ2
v = Var

(
n∑
i=1

(
Z′Z

)−1/2
ZiY

′
i e2

)
/σ2
v

=
n∑
i=1

Var
((
Z′Z

)−1/2
ZiY

′
i e2

)
/σ2
v =

n∑
i=1

(
Z′Z

)−1/2
ZiZi

(
Z′Z

)−1/2
e′2Ωe2/σ

2
v

= Ik� (58)

where the third equality holds by independence across i and the last equality uses ω2
2 =

σ2
v . This establishes part (b).

To prove part (c), we have

lim
β0→±∞Tβ0(Y) = lim

β0→±∞
(
Z′Z

)−1/2
Z′YΩ−1a0 · (a′

0Ω
−1a0

)−1/2

= (
Z′Z

)−1/2
Z′YΩ−1 lim

β0→±∞

(
β0

1

)
/
(
ω11β2

0 + 2ω12β0 +ω22)1/2
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= (
Z′Z

)−1/2
Z′YΩ−1e1 · (±1/ω11)1/2

= (
Z′Z

)−1/2
Z′YΩ−1e1 · (±(

ω2
1ω

2
2 −ω2

12
)1/2

/ω2
)
� (59)

where ω11, ω12, and ω22 denote the (1�1), (1�2), and (2�2) elements of Ω−1, respec-
tively, e1 := (1�0)′, the first equality holds by (3), the second equality holds because
a0 := (β0�1)′, and the fourth equality holds by the formula for ω11. In addition, we have(

ω2
1ω

2
2 −ω2

12
)1/2

/ω2 = (
1 − ρ2

Ω

)1/2
ω1 = (

1 − ρ2
uv

)1/2
σu� (60)

where the first equality uses ρΩ := ω12/(ω1ω2) and the second equality holds because
ω2

1ω
2
2 −ω2

12 = σ2
uσ

2
v − σ2

uv by (45) and ω2 = σv. Equations (59) and (60), combined with
(50), establish part (c).

Now, we prove part (d). Like S±∞(Y), T±∞(Y) has a multivariate normal distribu-
tion. The mean of T±∞(Y) is

ET±∞(Y) = (
Z′Z

)−1/2
Z′Z[πβ∗ : π]Ω−1e1 · (±(

1 − ρ2
uv

)1/2
σu

)
= (
Z′Z

)1/2
π

(
β∗ω11 +ω12) · (±(

1 − ρ2
uv

)1/2
σu

)
� (61)

where the equality holds using (2) with a= (β∗�1)′ and (50). In addition, we have

β∗ω11 +ω12 = β∗ω2
2 −ω12

ω2
1ω

2
2 −ω2

12

= −σuv
σ2
uσ

2
v − σ2

uv

= −ρuv(
1 − ρ2

uv

)
σuσv

� (62)

where the second equality usesω2
1ω

2
2 −ω2

12 = σ2
uσ

2
v −σ2

uv by (45) and β∗ω2
2 −ω12 = −σuv

by (32) with β= β∗. Combining (61) and (62) gives

ET±∞(Y)= μπ · ∓ρuv
σv

(
1 − ρ2

uv

)1/2 = μπ · ∓ruv
σv

� (63)

The variance matrix of T±∞(Y) is

Var
(
T±∞(Y)

) = Var
((
Z′Z

)−1/2
Z′YΩ−1e1

) · (1 − ρ2
uv

)
σ2
u

= Var

(
n∑
i=1

(
Z′Z

)−1/2
ZiY

′
iΩ

−1e1

)
· (1 − ρ2

uv

)
σ2
u

=
n∑
i=1

Var
((
Z′Z

)−1/2
ZiY

′
iΩ

−1e1
) · (1 − ρ2

uv

)
σ2
u

=
n∑
i=1

(
Z′Z

)−1/2
ZiZi

(
Z′Z

)−1/2
e′1Ω

−1e1 · (1 − ρ2
uv

)
σ2
u

= Ik
ω2

2

ω2
1ω

2
2 −ω2

12

· (1 − ρ2
uv

)
σ2
u

= Ik
σ2
v

σ2
uσ

2
v − σ2

uv

· (1 − ρ2
uv

)
σ2
u = Ik�
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where the first equality holds by (50), the third equality holds by independence across i,
and the second last equality uses ω2

1ω
2
2 −ω2

12 = σ2
uσ

2
v − σ2

uv by (45) and ω2
2 = σ2

v .
Part (e) holds because

Cov
(
S±∞(Y)�T±∞(Y)

)
= −

n∑
i=1

Cov
((
Z′Z

)−1/2
ZiY

′
i e2�

(
Z′Z

)−1/2
ZiY

′
iΩ

−1e1
) · (1 − ρ2

uv

)1/2
σu/σv

=
n∑
i=1

(
Z′Z

)−1/2
ZiZi

(
Z′Z

)−1/2
e′2ΩΩ

−1e1 · (1 − ρ2
uv

)1/2
σu/σv = 0k� (64)

Part (f) follows from parts (a) and (c) of the lemma and (11).
Part (g) holds by the definition of the noncentral Wishart distribution and parts (b),

(d), and (e) of the lemma. The density ofQ±∞(Y) equals the density in (27) because the
noncentral Wishart density is invariant to a sign change in the means matrix.

17. Proofs of Theorem 6.2, Corollary 6.3, and Theorem 6.4

The following lemma is used in the proof of Theorem 6.2. As above, let Pβ∗�β0�λ�Ω(·) and
Pρuv�λv(·) denote probabilities under the alternative hypothesis densities fQ(q;β∗�β0�

λ�Ω) and fQ(q;ρuv�λv), which are defined in Section 12.1. See (25) and (27) for explicit
expressions for these noncentral Wishart densities.

Lemma 17.1. (a) limβ0→±∞ Pβ∗�β0�λ�Ω(POIS2(Q;β∗�β0�λ) > κ2�β0(QT )) =
Pρuv�λv(POIS2(Q;∞� |ρuv|�λv) > κ2�∞(QT )),

(b) limβ0→±∞ Pβ2∗�β0�λ2�Ω(POIS2(Q;β∗�β0�λ) > κ2�β0(QT )) = P−ρuv�λv(POIS2(Q;∞�

|ρuv|�λv) > κ2�∞(QT )),
(c) Pρuv�λv(POIS2(Q;∞� |ρuv|�λv) > κ2�∞(QT )) = P−ρuv�λv(POIS2(Q;∞� |ρuv|�λv) >

κ2�∞(QT )),
(d) limβ0→±∞β2∗ = −β∗ + 2ω12

ω2
2

= β∗ + 2σuρuvσv
, and

(e) limβ0→±∞ λ2 = λ.

The reason that Q has the density fQ(q;−ρuv�λv) (defined in (27)) in the limit ex-
pression in Lemma 17.1(b) can be seen clearly from the following lemma.

Lemma 17.2. For any fixed (β∗�λ�Ω), limβ0→±∞ fQ(q;β2∗�β0�λ2�Ω) = fQ(q;−ρuv�λv)
for all 2 × 2 variance matrices q, where β2∗ and λ2 satisfy (19) and ρuv and λv are defined
in (15) and (17), respectively.

Proof of Lemma 17.2. Given (β∗�λ∗), suppose the second point (β∗
2�λ

∗
2) solves (39). In

this case, by Lemma 15.1(b) and (e), we have

lim
β0→±∞λ

1/2
2 cβ2∗(β0�Ω)= lim

β0→±∞−λ1/2cβ∗(β0�Ω)= ±λ1/2/σv = ±λ1/2
v and

lim
β0→±∞λ

1/2
2 dβ2∗(β0�Ω)= lim

β0→±∞λ
1/2dβ∗(β0�Ω)= ∓λ1/2 ρuv

σv
(
1 − ρ2

uv

)1/2 = ∓λ1/2
v ruv�

(65)
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Using (24), (27), and (65), we obtain

lim
β0→±∞λ2

(
c2
β2∗ + d2

β2∗
) = λv

(
1 + r2

uv

)
and

lim
β0→±∞λ2ξβ2∗(q) := lim

β0→±∞λ2
(
c2
β2∗qS + 2cβ2∗dβ2∗qST + d2

β2∗qT
)

= λv
(
qS − 2ruvqST + r2

uvqT
)

=: λvξ(q;−ρuv)�

(66)

On the other hand, given (β∗�λ∗), suppose the second point (β∗
2�λ

∗
2) solves (41). In

this case, the minus sign on the rhs side of the first equality on the first line of (65) dis-
appears, the quantity on the rhs side of the last equality on the first line of (65) becomes
∓λ1/2

v , a minus sign is added to the rhs side of the first equality on the second line of (65),
and the quantity on the rhs side of the last equality on the second line of (65) becomes
±λ1/2

v ruv. These changes leave λ2c
2
β2∗ , λ2d

2
β2∗ , and λ2cβ2∗dβ2∗ unchanged from the case

where (β∗
2�λ

∗
2) solves (39). Hence, (66) also holds when (β∗

2�λ
∗
2) solves (41).

Combining (66) with (25) (with (β2∗�λ2) in place of (β∗�λ)) and (27) proves the result
of the lemma.

Proof of Theorem 6.2. By Theorem 3 of AMS, for all (β∗�β0�λ�Ω),

Pβ∗�β0�λ�Ω

(
φβ0(Q)= 1

) + Pβ2∗�β0�λ2�Ω

(
φβ0(Q)= 1

)
≤ Pβ∗�β0�λ�Ω

(
POIS2(Q;β0�β∗�λ) > κ2�β0(QT )

)
+ Pβ2∗�β0�λ2�Ω

(
POIS2(Q;β0�β∗�λ) > κ2�β0(QT )

)
� (67)

That is, the test on the rhs maximizes the two-point average power for testing β = β0

against (β∗�λ) and (β2∗�λ2) for fixed knownΩ.
Equation (67) and Lemma 17.1(a)–(c) establish the result of Theorem 6.2 by taking

the lim supβ0→±∞ of the left-hand side and the lim infβ0→±∞ of the rhs.

The proof of Comment (iv) to Theorem 6.2 is the same as that of Theorem 6.2,
but in place of (67) it uses the inequality in Theorem 1 of Chernozhukov, Hansen, and
Jansson (2009), that is,

∫
Pβ∗�β0�λ�μπ/‖μπ‖�Ω(φβ0(Q) = 1)dUnif(μπ/‖μπ‖) ≤∫

Pβ∗�β0�λ�μπ/‖μπ‖�Ω(POIS2(Q;β0�β∗�λ) > κ2�β0(QT ))dUnif(μπ/‖μπ‖), plus the fact
that the rhs expression equals Pβ∗�β0�λ�Ω(POIS2(Q;β0�β∗�λ) > κ2�β0(QT )) because the
distribution ofQ only depends on μπ through λ= μ′

πμπ .

Proof of Lemma 17.1. To prove part (a), we write

Pβ∗�β0�λ�Ω

(
POIS2(Q;β0�β∗�λ) > κ2�β0(QT )

)
=

∫ ∫
1
(
POIS2(q;β0�β∗�λ) > κ2�β0(qT )

)
φk(s− cβ∗μπ)φk(t − dβ∗μπ)ds dt� and

Pρuv�λv
(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(QT )

)
(68)
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=
∫ ∫

1
(
POIS2

(
q;∞� |ρuv|�λv

)
> κ2�∞(qT )

)
φk

(
s− (∓1/σv)μπ

)
×φk

(
t − (∓ruv/σv)μπ

)
ds dt�

whereφk(x) for x ∈Rk denotes the density of k i.i.d. standard normal random variables,
λ = μ′

πμπ , s� t ∈ Rk, q = [s : t]′[s : t], qT = t ′t, cβ∗ = cβ∗(β0�Ω), dβ∗ = dβ∗(β0�Ω), the ∓
signs in the last line are both + or both −, and the integral in the last line is the same
whether both ∓ signs are + or − (by a change of variables calculation).

We have

lim
β0→±∞φk

(
s− cβ∗(β0�Ω)μπ

)
φk

(
t − dβ∗(β0�Ω)μπ

)
=φk

(
s− (∓1/σv)μπ

)
φk

(
t − (∓ruv/σv)μπ

)
(69)

for all s� t ∈ Rk, by Lemma 15.1(b) and (e) and the smoothness of the standard normal
density function. By (20) and (28) and Lemma 15.1(b) and (e), we have

lim
β0→±∞ POIS2(q;β0�β∗�λ)= POIS2

(
q;∞� |ρuv|�λv

)
(70)

for all for 2 × 2 variance matrices q, for given (β∗�λ�Ω). In addition, we show below that
limβ0→±∞ κ2�β0(qT )= κ2�∞(qT ) for all qT ≥ 0. Combining these results gives the follow-
ing convergence result:

lim
β0→±∞ 1

(
POIS2(q;β0�β∗�λ) > κ2�β0(qT )

) ·φk
(
s− cβ∗(β0�Ω)μπ

)
φk

(
t − dβ∗(β0�Ω)μπ

)
= 1

(
POIS2

(
q;∞� |ρuv|�λv

)
> κ2�∞(qT )

)
·φk

(
s− (∓1/σv)μπ

)
φk

(
t − (∓ruv/σv)μπ

)
(71)

for all [s : t] for which POIS2(q;∞� |ρuv|�λv) > κ2�∞(qT ) or POIS2(q;∞� |ρuv|�λv) <
κ2�∞(qT ), where [s : t], q and (qS�qST �qT ) are functionally related by q= [s : t]′[s : t] and
the definitions in (25).

Given Lebesgue measure on the set of points (s′� t ′)′ ∈ R2k, the induced measure on
(qS�qST �qT )= (s′s� s′t� t ′t) ∈ R3 is absolutely continuous with respect to (wrt) Lebesgue
measure on R3 with positive density only for positive definite q. (This follows from
change of variables calculations. These calculations are analogous to those used to
show that if [S : T ] has the multivariate normal density φk(s − (∓1/σv)μπ)φk(t −
(∓ruv/σv)μπ), then Q has the density fQ(q;ρuv�λv), which, viewed as a function of
(qS�qST �qT ), is a density wrt Lebesgue measure on R3 that is positive only for positive
definite q.) The Lebesgue measure of the set of (qS�qST �qT ) for which POIS2(q;∞� |ρuv|�
λv)= κ2�∞(qT ) is zero. (This holds because (i) the definition of POIS2(q;∞� |ρuv|�λv) in
(20) implies that the Lebesgue measure of the set of (qS�qST ) for which POIS2(q;∞�

|ρuv|�λv) = κ2�∞(qT ) is zero for all qT ≥ 0 and (ii) the Lebesgue measure of the set of
(qS�qST �qT ) for which POIS2(q;∞� |ρuv|�λv)= κ2�∞(qT ) is obtained by integrating the
set in (i) over qT ∈R subject to the constraint that q is positive definite.) In turn, this im-
plies that the Lebesgue measure of the set of (s′� t ′)′ for which POIS2(q;∞� |ρuv|�λv) =
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κ2�∞(qT ) is zero. Hence, (71) verifies the a.s. (wrt Lebesgue measure onR2k) convergence
condition required for the application of the DCT to obtain part (a) using (68).

Next, to verify the dominating function requirement of the DCT, we need to show
that

sup
β0∈R

∣∣φk(s− cβ∗(β0�Ω)μπ
)
φk

(
t − dβ∗(β0�Ω)μπ

)∣∣ (72)

is integrable wrt Lebesgue measure on R2k (since the indicator functions in (71) are
bounded by one). For any 0< c <∞ andm ∈R, we have∫

sup
|m|≤c

exp
(−(x−m)2/2)

dx = 2
∫ ∞

0
sup

|m|≤c
exp

(−x2/2 +mx−m2/2
)
dx

≤ 2
∫ ∞

0
exp

(−x2/2 + cx)dx
= 2

∫ ∞

0
exp

(−(x− c)2/2 + c2/2
)
dx <∞� (73)

where the first equality holds by symmetry. This result yields the integrability of the
dominating function in (72) because φk(·) is a product of univariate standard nor-
mal densities and supβ0∈R |cβ∗(β0�Ω)| < ∞ and supβ0∈R |dβ∗(β0�Ω)| < ∞ are finite by
Lemma 15.1(b) and (e) and continuity of cβ∗(β0�Ω) and dβ∗(β0�Ω) in β0.

Hence, the DCT applies and it yields part (a).
It remains to show limβ0→±∞ κ2�β0(qT ) = κ2�∞(qT ) for all qT ≥ 0. As noted above,

limβ0→±∞ POIS2(q;β0�β∗�λ) = POIS(q;∞� |ρuv|�λv) for all 2 × 2 variance matrices q.
Hence, 1(POIS2(Q;β0�β∗�λ) ≤ x)→ 1(POIS2(Q;∞� |ρuv|�λv) ≤ x) as β0 → ±∞ for all
x ∈ R for which POIS2(Q;∞� |ρuv|�λv) 
= x. We have PQ1|QT (POIS2(Q;∞� |ρuv|�λv) =
x|qT ) = 0 for all qT ≥ 0 by the absolute continuity of POIS2(Q;∞� |ρuv|�λv) under
PQ1|QT (·|qT ) (by the functional form of POIS2(Q;∞� |ρuv|�λv) and the absolute conti-
nuity of Q1 under PQ1|QT (·|qT ), whose density is given in (26)). Thus, by the DCT, for all
x ∈R,

lim
β0→±∞PQ1|QT

(
POIS2(Q;β0�β∗�λ)≤ x|qT

)
= PQ1|QT

(
POIS2

(
Q;∞� |ρuv|�λv

) ≤ x|qT
)

and

POIS2(Q;β0�β∗�λ)→d POIS2
(
Q;∞� |ρuv|�λv

)
as β0 → ±∞ under PQ1|QT (·|qT )�

(74)

The second line of (74), coupled with the fact that POIS2(Q;∞� |ρuv|�λv) has a
strictly increasing distribution function at its 1 − α quantile under PQ1|QT (·|qT ) for all
qT ≥ 0 (which is shown below), implies that the 1 − α quantile of POIS2(Q;β0�β∗�λ)
under PQ1|QT (·|qT ) (i.e., κ2�β0(qT )) converges as β0 → ±∞ to the 1 − α quantile of
POIS2(Q;β0�β∗�λ) under PQ1|QT (·|qT ) (i.e., κ2�∞(qT )). This can be proved by contra-
diction. First, suppose δ := lim supj→∞ κ2�j(qT )− κ2�∞(qT ) > 0 (where each j ∈R repre-
sents some value of β0 here). Then there exists a subsequence {mj : j ≥ 1} of {j : j ≥ 1}
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such that δ= limj→∞ κ2�mj (qT )− κ2�∞(qT ). We have

α = lim
j→∞

PQ1|QT
(
POIS2(Q;mj�β∗�λ) > κ2�mj (qT )|qT

)
≤ lim
j→∞

PQ1|QT
(
POIS2(Q;mj�β∗�λ) > κ2�∞(qT )+ δ/2|qT

)
= PQ1|QT

(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(qT )+ δ/2|qT

)
< PQ1|QT

(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(qT )|qT

)
= α� (75)

where the first equality holds by the definition of κ2�β0(qT ), the first inequality holds
by the expression above for δ, the second equality holds by the first line of (74) with
x = κ2�∞(qT ) + δ/2, the second inequality holds because δ > 0 and the distribution
function of POIS2(Q;∞� |ρuv|�λv) is strictly increasing at its 1 − α quantile κ2�∞(qT )
under PQ1|QT (·|qT ) for all qT ≥ 0, and the last equality holds by the definition of
κ2�∞(qT ). Equation (75) is a contradiction, so δ ≤ 0. An analogous argument shows
that lim infβ0→∞ κ2�β0(qT ) − κ2�∞(qT ) < 0 does not hold. Hence, limβ0→∞ κ2�β0(qT ) =
κ2�∞(qT ). An analogous argument shows that lim infβ0→−∞ κ2�β0(qT )= κ2�∞(qT ).

It remains to show that the distribution function of POIS2(Q;∞� |ρuv|�λv) is strictly
increasing at its 1 − α quantile κ2�∞(qT ) under PQ1|QT (·|qT ) for all qT ≥ 0. This holds
because (i) POIS2(Q;∞� |ρuv|�λv) is a nonrandom strictly increasing function of (ξ(Q;
ρuv)�ξ(Q;−ρuv)) conditional on T = t (specifically, POIS2(Q;∞� |ρuv|�λv) = CqT ×∑∞
j=0[(λvξ(Q;ρuv))j + (λvξ(Q;−ρuv))j]/(4jj!
(ν + j + 1)), where CqT is a constant that

may depend on qT , ν := (k− 2)/2, and 
(·) is the gamma function, by (20) and (4.8) of
AMS, which provides an expression for the modified Bessel function of the first kind
Iν(x)), (ii) ξ(Q;ρuv) = (S + ruvT)

′(S + ruvT) and ξ(Q;−ρuv) = (S − ruvT)
′(S − ruvT)

have the same noncentral χ2
k distribution conditional on T = t (because [S : T ] has

a multivariate normal distribution with means matrix given by (18) and identity vari-
ance matrix), (iii) (ξ(Q;ρuv)�ξ(Q;−ρuv)) has a positive density on R2+ conditional
on T = t and also conditional on QT = qT (because the latter conditional density is
the integral of the former conditional density over t such that t ′t = qT ), and hence,
(iv) POIS2(Q;∞� |ρuv|�λv) has a positive density on R+ conditional on qT for all qT ≥ 0.
This completes the proof of part (a).

The proof of part (b) is the same as that of part (a), but with (i) −cβ∗ and ±1/σv in
place of cβ∗ and ∓1/σv, respectively, in (68), (69), and (71), and (ii) π2 in place of π,
where

π2 :=Me1�k� e1�k := (1�0� � � �)′ ∈Rk� M := λ1/2g(β0�β∗�Ω)(
e′1�kZ

′Ze1�k
)1/2 �

g(β0�β∗�Ω) := dβ0 + 2rβ0(β∗ −β0)

dβ0

� and λ2 := μ′
π2
μπ2 �

(76)

As defined, λ2 satisfies (19) because

λ2 := μ′
π2
μπ2 = π ′

2Z
′Zπ2 =M2e′1�kZ

′Ze1�k = λg2(β0�β∗�Ω)� (77)
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In addition, λ2 → λ as β0 → ±∞ by (81) below. With the above changes, the proof of
part (a) establishes part (b).

Part (c) holds because the test statistic POIS2(Q;∞� |ρuv|�λv) and critical value
κ2�∞(QT ) only depend on ρuv and qST through |ρuv| and |qST |, respectively, and the
density fQ(q;ρuv�λv) of Q only depends on the sign of ρuv through ruvqST . In conse-
quence, a change of variables from (qS�qST �qT ) to (qS�−qST �qT ) establishes the result
of part (c).

To prove part (d), we have

dβ0 = (
a′

0Ω
−1a0

)1/2 = ω2
2β

2
0 − 2ω12β0 +ω2

1

ω2
1ω

2
2 −ω2

12

(
a′

0Ω
−1a0

)−1/2
and

rβ0 = e′1Ω−1a0
(
a′

0Ω
−1a0

)−1/2 = ω2
2β0 −ω12

ω2
1ω

2
2 −ω2

12

(
a′

0Ω
−1a0

)−1/2
�

(78)

where the first equalities on lines one and two hold by (2.7) of AMS and (19), respectively.
Next, we have

β2∗ = β0 − dβ0(β∗ −β0)

dβ0 + 2rβ0(β∗ −β0)

= dβ0(2β0 −β∗)+ 2rβ0(β∗ −β0)β0

dβ0 + 2rβ0(β∗ −β0)

=
(
ω2

2β
2
0 − 2ω12β0 +ω2

1
)
(2β0 −β∗)+ 2

(
ω2

2β0 −ω12
)(
β∗β0 −β2

0
)(

ω2
2β

2
0 − 2ω12β0 +ω2

1
) + 2

(
ω2

2β0 −ω12
)
(β∗ −β0)

= β2
0
(−ω2

2β∗ − 4ω12 + 2ω2
2β∗ + 2ω12

) +O(β0)

β2
0
(
ω2

2 − 2ω2
2
) +O(β0)

=
(
ω2

2β∗ − 2ω12
) + o(1)

−ω2
2 + o(1)

= −β∗ + 2ω12

ω2
2

+ o(1)� (79)

where the third equality uses (78) and the two terms involving β3
0 in the numerator of

the rhs of the third equality cancel. Next, we have

−β∗ + 2ω12

ω2
2

= 2
(
ω12 −ω2

2β∗
) +ω2

2β∗
ω2

2

= 2σuv + σ2
vβ∗

σ2
v

= β∗ + 2
σuv

σ2
v

= β∗ + 2
σuρuv

σv
� (80)

where the second equality uses (32) with β= β∗ and ω2
2 = σ2

v .
Next, we prove part (e). We have(

λ2

λ

)1/2
=

∣∣∣∣dβ0 + 2rβ0(β∗ −β0)

dβ0

∣∣∣∣
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=
∣∣∣∣ω2

2β
2
0 − 2ω12β0 +ω2

1 + 2
(
ω2

2β0 −ω12
)
(β∗ −β0)

ω2
2β

2
0 − 2ω12β0 +ω2

1

∣∣∣∣
=

∣∣∣∣β2
0
(
ω2

2 − 2ω2
2
) +β0

(−2ω12 + 2ω2
2β∗ + 2ω12

) +ω2
1 − 2ω12β∗

ω2
2β

2
0 − 2ω12β0 +ω2

1

∣∣∣∣
= 1 + o(1)� (81)

where the first equality holds by (19) and the second equality uses (78).

Proof of Corollary 6.3. We have(
Pβ∗�λ�Ω

(
RLength

(
CSφ(Y)

) = ∞) + Pβ2∗�λ2�Ω

(
RLength

(
CSφ(Y)

) = ∞))
/2

= 1 − lim
β0→∞

[
Pβ∗�β0�λ�Ω

(
φ(Q)= 1

) + lim
β0→∞Pβ2∗�β0�λ2�Ω

(
φ(Q)= 1

)]
/2

≥ Pρuv�λv
(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(QT )

)
� (82)

where the equality holds by Theorem 5.1(a) with (β∗�λ) and (β2∗�λ2∗), Pβ∗�λ�Ω(·) is
equivalent to Pβ∗�π�Ω(·), which appears in Theorem 5.1(a) (because events determined
by CSφ(Y) only depend on π through λ, since CSφ(Y) is based on rotation-invariant
tests), and the inequality holds by Theorem 6.2(a). This establishes the first result of
part (a).

The second result of part (a) holds by the same calculations as in (82), but with
LLength and β0 → −∞ in place of RLength and β0 → ∞, respectively, using Theo-
rem 5.1(b) in place of Theorem 5.1(a).

Part (b) holds by combining Theorem 5.1(c) and Theorem 6.2 because, as noted in
Comment (iii) to Theorem 6.2, the lim sup on the left-hand side in Theorem 6.2 is the
average of two equal quantities.

Next, we prove Comment (ii) to Corollary 6.3. The proof is the same as that of Corol-
lary 6.3, but using∫

Pβ∗�λ�μπ/‖μπ‖�Ω
(
RLength

(
CSφ(Y)

) = ∞)
dUnif

(
μπ/‖μπ‖)

= 1 − lim
β0→∞Pβ∗�β0�λ�Ω

(
φ(Q)= 1

)
(83)

and likewise with (β2∗�λ2) in place of (β∗�λ) in place of the first equality in (82).
The proof of (83) is the same as the proof of Theorem 5.1(a) but with Qβ0(Y) and
QT�β0(Y) replaced by [Sβ0(Y)�Tβ0(Y)], and Tβ0(Y), respectively, throughout the proof,
with Eβ∗�π�Ω(·) replaced by

∫
Eβ∗�λ�μπ/‖μπ‖�Ω(·)dUniform(μπ/‖μπ‖) in (52), and using

Lemma 16.1(a) and (c) in place of Lemma 16.1(f) when verifying the limit property (ii)
needed for the DCT following (52).

Proof of Theorem 6.4. The proof is quite similar to, but much simpler than, the
proof of part (a) of Lemma 17.1 with POIS2(q;β0�β∗�λ) > κ2�β0(qT ) in (68) replaced
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by qS > χ2
k�1−α/k for the AR test, q2

ST /qT > χ
2
1�1−α for the LM test, and qS − qT + ((qS −

qT )
2 + 4q2

ST )
1/2 > 2κLR�α(qT ) for the CLR test. The proof is much simpler because for

the latter three tests neither the test statistics nor the critical values depend on β0.
The parameter β0, for which the limit as β0 → ±∞ is being considered, only enters
through the multivariate normal densities in (68). The limits of these densities and an
integrable dominating function for them have already been provided in the proof of
Lemma 17.1(a). The indicator function that appears in (71) is bounded by one regardless
of which test appears in the indicator function. In addition, Pβ∗�ρuv�λv(AR = χ2

k�1−α)= 0
andPβ∗�ρuv�λv(LM = χ2

1�1−α)= 0 because the AR statistic has a noncentralχ2
k distribution

with noncentrality parameter λv under Pβ∗�ρuv�λv (since S ∼N(μπ/σv� Ik) by Lemma 6.1
and (18)) and the conditional distribution of the LM statistic given T under Pβ∗�ρuv�λv is
a noncentral χ2 distribution.

Next, we show Pβ∗�ρuv�λv(LR = κLR�α(QT )) = 0. Let J = AR − LM . Then 2LR = J +
LM − QT + ((J + LM − QT)

2 + 4LM · QT)1/2. We can write Q = [S : T ]′[S : T ], where
[S : T ] has a multivariate normal distribution with means matrix given by (18) and iden-
tity variance matrix. As shown below, conditional on T = t, LM and J have indepen-
dent noncentral χ2 distributions with 1 and k − 1 degrees of freedom, respectively.
This implies that (i) the distribution of LR conditional on T = t is absolutely contin-
uous, (ii) Pβ∗�ρuv�λv(LR = κLR�α(QT )|T = t) = 0 for all t ∈ Rk, and (iii) Pβ∗�ρuv�λv(LR =
κLR�α(QT )) = 0. It remains to show that conditional on QT = qT , LM and J have inde-
pendent noncentral χ2 distributions. We can write LM = S′PTS and J = S′(Ik − PT )S,
where PT := T(T ′T)−1T ′ and S has a multivariate normal with identity variance matrix.
This implies that PTS and (Ik −PT )S are independent conditional on T = t and LM and
J have independent noncentral χ2 distributions conditional on T = t for all t ∈Rk. This
completes the proof.

18. Proof of Theorem 8.1

The proof of Theorem 8.1(a) uses the following lemma.

Lemma 18.1. Suppose b1x = 1 + δx/x and b2x = 1 − δx/x, where δx → δ∞ 
= 0 as x→ ∞,
Kj1x = (bjxx)η for some η ∈R for j = 1�2, and Kj2x →K∞ ∈ (0�∞) as x→ ∞ for j = 1�2.
Then (a) as x→ ∞,

log
(
K11xK12xe

b1xx +K21xK22xe
b2xx

) − x−η logx− logK∞

→ δ∞ + log
(
1 + e−2δ∞)

and

(b) the function s(y) := y + log(1 + e−2y) for y ∈ R is infinitely differentiable, symmetric
about zero, strictly increasing for y > 0, and hence, strictly increasing in |y| for |y|> 0.

Proof of Lemma 18.1. Part (a) holds by the following:

log
(
K11xK12xe

b1xx +K21xK22xe
b2xx

) − x−η logx− logK∞

= log
(
K11xK12xe

b1xx

(
1 + K21xK22x

K11xK12x
e(b2x−b1x)x

))
− x−η logx− logK∞
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= b1xx+ logK11x + log(K12x/K∞)+ log
(

1 + K21xK22x

K11xK12x
e(b2x−b1x)x

)
− x−η logx

= δx +η log(b1x)+ log(K12x/K∞)+ log
(

1 + K21xK22x

K11xK12x
e−2δx

)
→ δ∞ + log

(
1 + e−2δ∞)

� (84)

where the third equality uses b1xx−x= δx, logK11x = η log(b1xx)= η log(b1x)+η log(x),
and b2x − b1x = −2δx/x, and the convergence uses log(b1x) = log(1 + o(1)) → 0,
K12x/K∞ → 1,K21x/K11x = (b2x/b1x)

η = 1 + o(1), andK22x/K12x → 1.
The function s(y) is infinitely differentiable because log(x) and e−2y are. The func-

tion s(y) is symmetric about zero because

y + log
(
1 + e−2y) = −y + log

(
1 + e2y)

⇔ 2y = log
(
1 + e2y) − log

(
1 + e−2y) = log

(
1 + e2y

1 + e−2y

)
= log

(
e2y) = 2y�

(85)

The function s(y) is strictly increasing for y > 0 because

d

dy
s(y)= 1 − 2e−2y

1 + e−2y = 1 − e−2y

1 + e−2y = e2y − 1

e2y + 1
� (86)

which is positive for y > 0. We have s(y) = s(|y|) because s(y) is symmetric about zero,
and (d/d|y|)s(|y|) > 0 for |y|> 0 by (86). Hence, s(y) is strictly increasing in |y| for |y|> 0.

Proof of Theorem 8.1. Without loss in generality, we prove the results for the case
where sgn(dβ∗) is the same for all terms in the sequence as λd2

β∗ → ∞. Given (3), without
loss of generality, we can suppose that

S = cβ∗μπ +ZS and T = dβ∗μπ +ZT � (87)

where ZS and ZT are independentN(0k� Ik) random vectors.
We prove part (c) first. The distribution ofQ depends onμπ only through λ. In conse-

quence, without loss of generality, we can assume that Υ := μπ/λ
1/2 ∈Rk does not vary

as λd2
β∗ and λ1/2cβ∗ vary. The following establishes the a.s. convergence of the one-sided

LM test statistic: as λd2
β∗ → ∞ and λ1/2cβ∗ → c∞,

QST

Q
1/2
T

= (cβ∗μπ +ZS)′(dβ∗μπ +ZT )(
(dβ∗μπ +ZT )′(dβ∗μπ +ZT )

)1/2

= (cβ∗μπ +ZS)′(dβ∗μπ +ZT )(
d2
β∗λ

)1/2(1 + oa�s�(1)
)

=
(
cβ∗μπ/λ

1/2 +ZS/λ1/2)′
(sgn(dβ∗)μπ +Oa�s�

(
1/|dβ∗ |

)(
1 + oa�s�(1)

)
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=
(

sgn(dβ∗)Υ
′ZS + sgn(dβ∗)λ

1/2cβ∗ +Oa�s�

( (
λc2
β∗

)1/2(
λd2

β∗
)1/2

)
+Oa�s�

(
1(

λd2
β∗

)1/2

))
× (

1 + oa�s�(1)
)

→a�s� sgn(dβ∗)Υ
′ZS + sgn(dβ∗)c∞

=: LM 1∞ ∼N(
sgn(dβ∗)c∞�1

)
� (88)

where the first equality holds by (4) and (87), the second equality holds using dβ∗μπ +
ZT = (λd2

β∗)
1/2(dβ∗μπ/(λd

2
β∗)

1/2 + oa�s�(1)) since λd2
β∗ → ∞, the convergence holds

because λd2
β∗ → ∞ and λ1/2cβ∗ → c∞, and the limit random variable LM 1∞ has a

N(sgn(dβ∗)c∞�1) distribution because sgn(dβ∗)Υ
′ZS ∼ N(0�1) (since ZS ∼ N(0k� Ik)

and ‖Υ‖ = 1).
The a.s. convergence in (88) implies convergence in distribution by the DCT applied

to 1(QST /Q
1/2
T ≤ y) for any fixed y ∈R. In consequence, we have

P
(
LM >χ2

1�1−α
) = P((

QST /Q
1/2
T

)2
>χ2

1�1−α
)

→ P
(
LM 2

1∞ >χ2
1�1−α

) = P(
χ2

1
(
c2∞

)
>χ2

1�1−α
) (89)

as λd2
β∗ → ∞ and λ1/2cβ∗ → c∞, which establishes part (c).

To prove Theorem 8.1(a), we apply Lemma 18.1 to a realization of the random vectors
ZS and ZT with

x := (
λd2

β∗QT
)1/2

�

b1xx := (
λξβ∗(Q;β0�Ω)

)1/2 := λ1/2(c2
β∗QS + 2cβ∗dβ∗QST + d2

β∗QT
)1/2

�

b2xx := λ1/2(c2
β∗QS − 2cβ∗dβ∗QST + d2

β∗QT
)1/2

�

K11x := (b1xx)
−(k−1)/2� (90)

K12x := (b1xx)
1/2I(k−2)/2(b1xx)

eb1xx

K21x := (b2xx)
−(k−1)/2� and

K22x := (b2xx)
1/2I(k−2)/2(b2xx)

eb2xx
�

Thus, we take η := −(k− 1)/2.
We have

QT = (dβ∗μπ +ZT )′(dβ∗μπ +ZT )= λd2
β∗

(
1 + oa�s�(1)

)
� (91)

This implies that x= (λd2
β∗)(1 + oa�s�(1)). Thus, x→ ∞ a.s. since λd2

β∗ → ∞ by assump-
tion.

The conditions λd2
β∗ → ∞ and λ1/2cβ∗ → c∞ ∈R imply that b1xx→ ∞ and b2xx→ ∞

as x→ ∞. In consequence, by the properties of the modified Bessel function of the first
kind, I(k−2)/2(x) for x large, for example, see Lebedev (1965, p. 136),

lim
b1xx→∞

K12x = 1/(2π)1/2 and lim
b2xx→∞

K22x = 1/(2π)1/2� (92)
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Hence, the assumptions of Lemma 18.1 onKj2x for j = 1�2 hold withK∞ = 1/(2π)1/2.
Next, we have

b1x = (
λc2
β∗QS + 2λcβ∗dβ∗QST + λd2

β∗QT
)1/2

/x

=
(

1 + 2λcβ∗dβ∗QST(
λd2

β∗QT
)1/2

x
+ λc2

β∗QS

x2

)1/2

=
(

1 + 2λ1/2cβ∗ sgn(dβ∗)

x

QST

Q
1/2
T

+ λc2
β∗QS

x2

)1/2

= 1 + (
1 + oa�s�(1)

)−1/2
(

2λ1/2cβ∗ sgn(dβ∗)

x

QST

Q
1/2
T

+ λc2
β∗QS

x2

)
� (93)

where the fourth equality holds by the mean value theorem because λ1/2cβ∗ =O(1), x→
∞ a.s., and QST /Q

1/2
T =O(1) a.s. (by (88)) imply that the term in parentheses on the last

line of (93) is oa�s�(1).
From (93), we have

δx = (
1 + oa�s�(1)

)−1/2
(

2λ1/2cβ∗ sgn(dβ∗)
QST

Q
1/2
T

+ λc2
β∗QS

x

)
→ 2c∞ sgn(dβ∗)LM 1∞ =: δ∞ a.s.

(94)

using (88). This verifies the convergence condition of Lemma 18.1 on δx with δ∞ 
= 0 a.s.
(by the absolute continuity of ZS). Hence, Lemma 18.1 applies with x, b1x� � � � as in (90).

Let ξβ∗ abbreviate ξβ∗(Q;β0�Ω)= c2
β∗QS + 2cβ∗dβ∗QST + d2

β∗QT . Let ξβ2∗ = c2
β∗QS −

2cβ∗dβ∗QST + d2
β∗QT . So, b1xx= (λξβ∗)

1/2 and b2xx= (λξβ2∗)
1/2. Let

τ(β∗�λ�QT ) := −(
λd2

β∗QT
)1/2 + k− 1

2
log

((
λd2

β∗QT
)1/2) − logK∞

= −x−η logx− logK∞� (95)

where the equality holds using the definitions in (90) andK∞ = 1/(2π)1/2 by (92).
Given the definitions of POIS2(Q;β0�β∗�λ) and x, b1x� � � � in (28) and (90), respec-

tively, Lemma 18.1(a) gives

log
(
POIS2(Q;β0�β∗�λ)

) + log
(
2ψ2(QT ;β0�β∗�λ)

) + τ(β∗�λ�QT )

= log
(
(λξβ∗)

−(k−2)/4I(k−2)/2
(
(λξβ∗)

1/2) + (λξβ2∗)
−(k−2)/4I(k−2)/2

(
(λξβ2∗)

1/2))
+ τ(β∗�λ�QT )

= log
(
(λξβ∗)

−(k−1)/4 (λξβ∗)
1/4I(k−2)/2

(
(λξβ∗)

1/2)
e(λξβ∗ )1/2

e(λξβ∗ )1/2

+ (λξβ2∗)
−(k−1)/4 (λξβ2∗)

1/4I(k−2)/2
(
(λξβ2∗)

1/2)
e(λξβ2∗ )

1/2 e(λξβ2∗ )
1/2

)
+ τ(β∗�λ�QT )
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= log
(
K11xK12xe

b1xx +K21xK22xe
b2xx

) − x−η logx− logK∞

→a�s� δ∞ + log
(
1 + e−2δ∞)

= s(δ∞)

= s(2c∞|LM 1∞|)� (96)

where ψ2(QT ;β0�β∗�λ) is defined in (28), LM 2
1∞ ∼ χ2

1(c
2∞) is defined in (88), the first

equality holds by the definition of POIS2(Q;β0�β∗�λ) in (28), the third equality uses
the definitions in (90) and (95), the convergence holds by Lemma 18.1(a), the second
last equality holds by the definition of s(y) in Lemma 18.1(b), and the last equality
holds because δ∞ := 2c∞ sgn(dβ∗)LM 1∞ (see (94)), and s(y) is symmetric around zero
by Lemma 18.1(b).

Applied to 1(log(POIS2(Q;β0�β∗�λ))+ log(2ψ2(QT ;β0�β∗�λ))+ τ(β∗�λ�QT ) ≤ w)
for any w ∈R, equation (96) and the DCT give

log
(
POIS2(Q;β0�β∗�λ)

) + log
(
2ψ2(QT ;β0�β∗�λ)

) + τ(β∗�λ�QT )→d s(δ∞)

= s(2c∞|LM 1∞|)� (97)

Now we consider the behavior of the critical value function for the POIS2 test,
κ2�β0(qT ), where qT denotes a realization of QT . We are interested in the power of
the POIS2 test. So, we are interested in the behavior of κ2�β0(qT ) for qT sequences as
λd2

β∗ → ∞ and λ1/2cβ∗ → c∞ that are generated when the true parameters are (β∗�λ).
This behavior is given in (91) to be qT = λd2

β∗(1 + o(1)) a.s. under (β∗�λ).
Up to this point in the proof, the parameters (β∗�λ) have played a duel role. First,

they denote the parameter values against which the POIS2 test is designed to have op-
timal two-sided power and, hence, determine the form of the POIS2 test statistic. Sec-
ond, they denote the true values of β and λ (because we are interested in the power
of the POIS2 test when the (β∗�λ) values for which it is designed are the true values).
Here, where we discuss the behavior of the critical value function κ2�β0(·), (β∗�λ) only
play the former role. The true value of β is β0 and the true value of λ we denote by λ0.
The function κ2�β0(·) depends on (β∗�λ) because the POIS2 test statistic does, but the
null distribution that determines κ2�β0(·) does not depend on (β∗�λ). In spite of this,
the values qT which are of interest to us, do depend on (β∗�λ) as noted in the previous
paragraph.

The function κ2�β0(·) is defined in (29). Its definition depends on the conditional
null distribution of Q1 given QT = qT whose density fQ1|QT (·|qT ) is given in (26). This
density depends on k, but not on any other parameters, such asβ0, λ0 = μ′

π0
μπ0 , orΩ. In

consequence, for the purposes of determining the properties of κ2�β0(·)we can suppose
that β0 = 0, μπ0 = 1k/‖1k‖, λ0 = 1, andΩ= I2. In this case,

S =ZS ∼N(
0k� Ik

)
� T = μπ0 +ZT ∼N(μπ0� Ik)� (98)

and S and T are independent (using dβ0(β0�Ω) = b′
0Ωb0(b

′
0Ωb0)

−1/2 det(Ω)−1/2 = 1
since b0 = (1�β0)

′ = (1�0)′).
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We now show that κ2�β0(qT ) satisfies

log
(
κ2�β0(qT )

) + log
(
2ψ2(qT ;β0�β∗�λ)

) + τ(β∗�λ�qT )

→ s
(
2|c∞|(χ2

1�1−α
)1/2)

as qT → ∞ (99)

for any sequence of constants qT = λd2
β∗(1 + o(1)) as λd2

β∗ → ∞.
Suppose random variables {Wm :m≥ 1} andW satisfy: (i)Wm →d W asm→ ∞, (ii)W

has a continuous and strictly increasing distribution function at its 1 − α quantile κ∞,
and (iii) P(Wm > κm)= α for all m ≥ 1 for some constants {κm :m ≥ 1}. Then κm → κ∞.
This holds because if lim supm→∞ κm > κ∞, then there is a subsequence {vm} of {m} such
that limm→∞ κvm = κ∞+ > κ∞ and α= P(Wvm > κvm)→ P(W > κ∞+) < P(W > κ∞)= α,
which is a contradiction, and likewise lim infm→∞ κm < κ∞ leads to a contradiction.

We apply the result in the previous paragraph with (a) {Wm : m ≥ 1} given by
log(POIS2(Q;β0�β∗�λ))+ log(2ψ2(qT ;β0�β∗�λ))+ τ(β∗�λ�qT ) under the null hypoth-
esis and conditional on T = t with t = 1kq1/2

T /k1/2 for some sequence of constants qT =
λd2

β∗(1 +o(1))→ ∞ as λd2
β∗ → ∞, (b)W = s(2c∞|S′1k/k1/2|), where S′1k/k1/2 ∼N(0�1),

(c) κm equal to log(κ2�β0(qT )) + log(2ψ2(qT ;β0�β∗�λ)) + τ(β∗�λ�qT ), and (d) κ∞ =
s(2|c∞|(χ2

1�1−α)
1/2).

We need to show conditions (i)–(iii) above hold. Condition (ii) holds straightfor-
wardly for W as in (b) given the normal distribution of S, the functional form of s(y),
and c∞ 
= 0.

By definition of κ2�β0(qT ), under the null hypothesis, PQ1|QT (POIS2(Q;β0�β∗�λ) >
κ2�β0(qT )|qT ) = α for all qT ≥ 0; see (29). This implies that the invariant POIS2 test is
similar. In turn, this implies that under the null hypothesis P(POIS2(Q;β0�β∗�λ) >
κ2�β0(qT )|T = t)= α for all t ∈ Rk because Theorem 1 of Moreira (2009) shows that any
invariant similar test has null rejection probability α conditional on T . This verifies con-
dition (iii) because the log function is monotone and the last two summands of Wm and
κm defined in (a) and (c) above cancel.

Next, we show that condition (i) holds. Given (98) and t = 1kq1/2
T /k1/2, under the null

and conditional on T = t, we have

QST

Q
1/2
T

= S′t(
t ′t

)1/2 = S′1k/k1/2 ∼ χ2
1� (100)

which does not depend on λd2
β∗ or λ1/2cβ∗ . Hence, in place of the a.s. convergence result

for QST /Q
1/2
T as λd2

β∗ → ∞ and λ1/2cβ∗→c∞ in (88), which applies under the alternative

hypothesis with true parameters (β∗�λ), we have QST /Q
1/2
T = S′1k/k1/2 under the null

hypothesis for all λd2
β∗ and λ1/2cβ∗ . Using this in place of (88), the unconditional a.s. con-

vergence result in (96), established in (90)–(96), goes through as a conditional on T = t

a.s. result without any further changes. In consequence, the convergence in distribution
result in (97) also holds conditional on T = t a.s., but with s(2c∞|S′1k/k1/2|) in place of
s(2c∞|LM 1∞|). This verifies condition (i).

Given that conditions (i)–(iii) hold, we obtain κm → κ∞ as λd2
β∗ → ∞ for κm and κ∞

defined in (c) and (d), respectively, above. This establishes (99).
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Given (99), we have

Pβ∗�β0�λ�Ω

(
POIS2(Q;β0�β∗�λ) > κ2�β0(QT )

)
= Pβ∗�β0�λ�Ω

(
log

(
POIS2(Q;β0�β∗�λ)

) + log
(
2ψ2(QT ;β0�β∗�λ)

) + τ(β∗�λ�QT )

> log
(
κ2�β0(QT )

) + log
(
2ψ2(QT ;β0�β∗�λ)

) + τ(β∗�λ�QT )
)

→d P
(
s
(
2c∞|LM 1∞|)> s(2c∞

∣∣χ2
1�1−α

∣∣))
= P(

LM 2
1∞ >χ2

1�1−α
)

= P(
χ2

1
(
c2∞

)
>χ2

1�1−α
)
� (101)

where the second last equality uses the fact that s(y) is symmetric and strictly increasing
for y > 0 by Lemma 18.1(b). Equation (101) establishes part (a) of the theorem.

Now we establish part (b) of the theorem. Let

J := S′MTS� (102)

whereMT := Ik − PT and PT := T(T ′T)−1T ′. It follows from (6) that

LM = S′PTS and QS = LM + J� (103)

By (91), QT = λd2
β∗(1 + oa�s�(1)) → ∞ a.s. as λd2

β∗ → ∞ when the true parameters are

(β∗�λ). By (103) and some algebra, we have (QS −QT)2 + 4LM ·QT = (LM − J +QT)2 +
4LM · J. This and the definition of LR in (6) give

LR = 1
2
(
LM + J −QT +

√
(LM − J +QT)2 + 4LM · J)� (104)

Using a mean-value expansion of the square-root expression in (104) about (LM − J +
QT)

2, we have√
(LM − J +QT)2 + 4LM · J = LM − J +QT + (2√

ζ)−14LM · J (105)

for an intermediate value ζ between (LM − J +QT)2 and (LM − J +QT)2 + 4LM · J. It
follows that

LR = LM + o(1) a.s. (106)

because QT → ∞ a.s., LM = O(1) a.s., and J = O(1) a.s. as λd2
β∗ → ∞ and λ1/2cβ∗ →

c∞ ∈ R, which imply that (
√
ζ)−1 = o(1) a.s. These properties of LM and J hold be-

cause LM = S′PTS ≤ S′S, J = S′MTS ≤ S′S, and, using (87), we have S′S = (cβ∗μπ +
ZS)

′(cβ∗μπ +ZS)=O(1) a.s. because ‖cβ∗μπ‖2 = λc2
β∗ =O(1) by assumption.

The critical value function for the CLR test, κLR�α(·), depends only on k and α; see
Lemma 3(c) and (3.5) in AMS. It is well known in the literature that κLR�α(·) satisfies
κLR�α(qT )→ χ2

1�1−α as qT → ∞, for example, see Moreira (2003, Proposition 1). Hence,
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we have

Pβ∗�β0�λ�Ω

(
LR > κLR�α(QT )

) = Pβ∗�β0�λ�Ω

(
LM + oa�s�(1) > χ2

1�1−α + oa�s�(1)
)

= Pβ∗�β0�λ�Ω

(
LM + op(1) > χ2

1�1−α
)

→ P
(
χ2

1
(
c2∞

)
>χ2

1�1−α
)

(107)

as λd2
β∗ → ∞ and λ1/2cβ∗ → c∞, where the first equality holds by (106), QT → ∞ a.s.

by (91), and limqT→∞ κLR�α(qT ) = χ2
1�1−α and the convergence holds by part (c) of the

theorem. This establishes part (b) of the theorem.

Proof of Theorem 8.2. First, we establish part (a)(i) of the theorem. By (31) with β=
β∗ and Σ= Σ∗, we have

Ω(β∗�Σ∗)=
[
ω2

1 ω12

ω12 ω2
2

]
=

[
σ2
u + 2σuvβ∗ + σ2

vβ
2∗ σuv + σ2

vβ∗
σuv + σ2

vβ∗ σ2
v

]
� (108)

Using this, we obtain, as ρuv → ±1,

cβ∗ = cβ∗
(
β0�Ω(β∗�Σ∗)

)
= (β∗ −β0)

(
ω2

1 − 2β0ω12 +ω2
2β

2
0
)−1/2

= (β∗ −β0)
(
σ2
u + 2σuvβ∗ + σ2

vβ
2∗ − 2β0

(
σuv + σ2

vβ∗
) + σ2

vβ
2
0
)−1/2

= (β∗ −β0)
(
σ2
u + 2(β∗ −β0)σuσvρuv + (β∗ −β0)

2σ2
v

)−1/2

→ (β∗ −β0)
(
σ2
u ± 2(β∗ −β0)σuσv + (β∗ −β0)

2σ2
v

)−1/2

= (β∗ −β0)/
∣∣σu ± (β∗ −β0)σv

∣∣� (109)

where the second equality uses (3), the convergence only holds if σu ± (β∗ − β0)σv 
= 0,
and the fourth equality uses σuv = σuσvρuv. This proves part (a)(i).

To prove part (a)(ii), we have

dβ∗ = dβ∗
(
β0�Ω(β∗�Σ∗)

) = b′∗Ωb0
(
b′

0Ωb0
)−1/2 det(Ω)−1/2

= (
ω2

1 −ω12(β0 +β∗)+ω2
2β0β∗

) · (ω2
1 − 2β0ω12 +ω2

2β
2
0
)−1/2

· (ω2
1ω

2
2 −ω2

12
)−1/2

� (110)

where the second equality holds by (3). The second multiplicand on the rhs of (110)
converges to |σu ± (β∗ − β0)σv|−1 provided σu ± (β∗ − β0)σv 
= 0 by the calculations in
(109).

The first multiplicand on the rhs of (110) satisfies, as ρuv → ±1,

ω2
1 −ω12(β0 +β∗)+ω2

2β0β∗

= σ2
u + 2σuvβ∗ + σ2

vβ
2∗ − (

σuv + σ2
vβ∗

)
(β0 +β∗)+ σ2

vβ0β∗
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= σ2
u + σuσvρuv(β∗ −β0)

→ σu
(
σu ± σv(β∗ −β0)

)
� (111)

where the first equality uses (108) and the second equality holds by simple algebra and

σuv = σuσvρuv.

The reciprocal of the square of the third multiplicand on the rhs of (110) satisfies, as

ρuv → ±1,

ω2
1ω

2
2 −ω2

12 = (
σ2
u + 2σuσvρuvβ∗ + σ2

vβ
2∗
)
σ2
v − (

σuσvρuv + σ2
vβ∗

)2

→ (
σ2
u ± 2σuσvβ∗ + σ2

vβ
2∗
)
σ2
v − (±σuσv + σ2

vβ∗
)2

= (σu ± σvβ∗)2σ2
v − (±σu + σvβ∗)2σ2

v

= 0� (112)

where the first equality holds by (108) and σuv = σuσvρuv.

Combining (110)–(112) and λ > 0 proves part (a)(ii).

Next, we establish part (b) of the theorem. Using the definition of cβ(β0�Ω) in (3),

we have

lim
ρΩ→±1

cβ∗(β0�Ω) = lim
ρΩ→±1

(β∗ −β0)
(
b′

0Ωb0
)−1/2

= lim
ρΩ→±1

(β∗ −β0)
(
ω2

1 − 2β0ω1ω2ρΩ +ω2
2β

2
0
)−1/2

= (β∗ −β0)/|ω1 ∓ω2β0|� (113)

where the third equality holds providedω1 ∓ω2β0 
= 0. This establishes part (b)(i) of the

theorem.

Using the definition of dβ(β0�Ω) in (3) and b∗ := (1�β∗)′, we have

lim
ρΩ→±1

dβ∗(β0�Ω) = lim
ρΩ→±1

b′∗Ωb0
(
b′

0Ωb0
)−1/2 det(Ω)−1/2

= lim
ρΩ→±1

(
ω2

1 −ω1ω2ρΩ(β0 +β∗)+ω2
2β0β∗

)
· (ω2

1 − 2β0ω1ω2ρΩ +ω2
2β

2
0
)−1/2 · (ω2

1ω
2
2 −ω2

1ω
2
2ρ

2
Ω

)−1/2

= (ω1 ∓ω2β0)(ω1 ∓ω2β∗) · 1
|ω1 ∓ω2β0| · 1

ω1ω2
· lim
ρΩ→±1

1(
1 − ρ2

Ω

)1/2

= sgn
(
(ω1 ∓ω2β0)(ω1 ∓ω2β∗)

) · ∞� (114)

where the third and fourth equalities hold provided ω1 ∓ω2β0 
= 0 and ω1 ∓ω2β∗ 
= 0.

This and λ > 0 establish part (b)(ii) of the theorem.
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Part (c)(i) is proved as follows:

cβ∗ = β∗ −β0(
σ2
u + 2(β∗ −β0)σuσvρuv + (β∗ −β0)

2σ2
v

)1/2

→ ∓ 1
σv

as (ρuv�β0)→ (1�±∞)� (115)

where the first equality holds by (109) and the convergence holds by considering only the
dominantβ0 terms. The same result holds as (ρuv�β0)→ (1�±∞) because ρuv enters the
middle expression in (115) only through a term that does not affect the limit.

Part (c)(ii) is proved using the expression for dβ∗ in (110). By (112), the third multi-
plicand in (110), which does not depend on β0, diverges to infinity when ρuv → 1 or −1.
The product of the first two multiplicands on the rhs of (110) equals

ω2
1 −ω12(β0 +β∗)+ω2

2β0β∗(
ω2

1 − 2β0ω12 +ω2
2β

2
0
)1/2 = σ2

u + σuσvρuv(β∗ −β0)(
σ2
u + 2(β∗ −β0)σuσvρuv + (β∗ −β0)

2σ2
v

)1/2

→ ∓σuσv
σv

= ∓σu as (ρuv�β0)→ (1�±∞)� (116)

where the equality uses the calculations in the first three lines of (109) and (111) and
the convergence holds by considering only the dominant β0 terms. When (ρuv�β0)→
(−1�±∞), the limit in (116) is ±σu because ρuv enters multiplicatively in the dominant
β0 term in the numerator. In both cases, the product of the first two multiplicands on
the rhs of (110) converges to a nonzero constant and the third multiplicand diverges to
infinity. Hence, dβ∗ diverges to +∞ or −∞ and λd2

β∗ → ∞ since λ > 0, which completes
the proof.

Part (d)(i) holds because

cβ∗ = β∗ −β0(
ω2

1 − 2β0ω1ω2ρΩ +ω2
2β

2
0
)1/2 → ∓ 1

ω2
as (ρΩ�β0)→ (1�±∞)� (117)

where the equality uses (113). The same convergence holds as (ρΩ�β0)→ (1�±∞) be-
cause ρuv enters the middle expression in (117) only through a term that does not affect
the limit.

Part (d)(ii) is proved using the expression for dβ∗ in (114):

dβ∗ =
(
ω2

1 −ω1ω2ρΩ(β0 +β∗)+ω2
2β0β∗

)(
ω2

1 − 2β0ω1ω2ρΩ +ω2
2β

2
0
)1/2 · (ω2

1ω
2
2 −ω2

1ω
2
2ρ

2
Ω

)−1/2
�

(
ω2

1 −ω1ω2ρΩ(β0 +β∗)+ω2
2β0β∗

)(
ω2

1 − 2β0ω1ω2ρΩ +ω2
2β

2
0
)1/2 → ±(

ω2
2β∗ −ω1ω2

)
ω2

= ∓(ω1 −ω2β∗)� and

(
ω2

1ω
2
2 −ω2

1ω
2
2ρ

2
Ω

)−1/2 → ∞ as (ρΩ�β0)→ (1�±∞)�

(118)

Hence, λd2
β∗ → ∞ as (ρΩ�β0) → (1�±∞) provided ω1 − ω2β∗ 
= 0. When (ρΩ�β0) →

(−1�±∞), the limit in the second line of (118) is ±(ω2
2β∗ +ω1ω2)/ω2 = ±(ω1 +ω2β∗),

and hence, λd2
β∗ → ∞ provided ω1 +ω2β∗ 
= 0, which completes the proof.
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19. Proofs of Theorem 13.1 and Lemmas 14.1 and 14.2

Proof of Theorem 13.1. By Corollary 2 and Comment 2 to Corollary 2 of Andrews,
Moreira, and Stock (2004), for all (β∗�β0�λ�Ω),

Pβ∗�β0�λ�Ω

(
φβ0(Q)= 1

) ≤ Pβ∗�β0�λ�Ω

(
POIS(Q;β0�β∗) > κβ0(QT )

)
� (119)

That is, the test on the rhs is the (one-sided) POIS test for testing H0 : β = β0 versus
H1 : β= β∗ for fixed knownΩ and any λ≥ 0 underH1.

We use the DCT to show

lim
β0→±∞Pβ∗�β0�λ�Ω

(
POIS(Q;β0�β∗) > κβ0(QT )

)
= Pρuv�λv

(
POIS(Q;∞�ρuv) > κ∞(QT )

)
� (120)

Equations (119) and (120) imply that the result of Theorem 13.1 holds.
By (34), (37), and Lemma 15.1(b) and (e),

lim
β0→±∞ POIS(q;β0�β∗)= POIS(q;∞�ρuv) (121)

for all 2 × 2 variance matrices q, for given (β∗�π�Ω).
The proof of (120) is the same as the proof of Lemma 17.1(a), but with POIS(Q;β0�

β∗), κβ0(QT ), POIS(Q;∞�ρuv), and κ∞(QT ) in place of POIS2(Q;β0�β∗�λ), κ2�β0(QT ),
POIS2(Q;∞� |ρuv|�λv), and κ2�∞(QT ), respectively, using (121) in place of (70), and
using the results (established below) that (i) the Lebesgue measure of the set of
(qS�qST �qT ) for which POIS(q;∞�ρuv)= κ∞(qT ) is zero, (ii) PQ1|QT (POIS(Q;∞�ρuv)=
x|qT ) = 0 for all qT ≥ 0, and (iii) the distribution function of POIS(Q;∞�ρuv) is strictly
increasing at its 1 − α quantile κ∞(qT ) under PQ1|QT (·|qT ) for all qT ≥ 0.

Condition (i) holds because (a) POIS(q;∞�ρuv)= qS+2ruvqST (see (37)) implies that
the Lebesgue measure of the set of (qS�qST ) for which qS + 2ruvqST = κ∞(qT ) is zero for
all qT and (b) the Lebesgue measure of the set of (qS�qST �qT ) for which qS + 2ruvqST =
κ∞(qT ) is obtained by integrating the set in (a) over qT ∈R subject to the constraint that
q is positive definite.

Condition (ii) holds by the absolute continuity of POIS(Q;∞�ρuv) under PQ1|QT (·|
qT ) (by the functional form of POIS(Q;∞�ρuv) and the absolute continuity ofQ1 under
PQ1|QT (·|qT ), whose density is given in (26)).

Condition (iii) holds because we can write POIS(Q;∞�ρuv) = S′S + 2ruvS′T = (S +
ruvT)

′(S + ruvT) − r2
uvT

′T , where [S : T ] has a multivariate normal distribution with
means matrix given by (18) and identity variance matrix, and hence, POIS(Q;∞�ρuv)

has a shifted noncentral χ2 distribution conditional on T = t. In consequence, it has a
positive density on (r2

uvt
′t�∞)= (r2

uvqT �∞) conditional on T = t and also conditional on
QT = qT (because the latter conditional density is the integral of the former conditional
density over t such that t ′t = qT ). This completes the proof.

Proof of Lemma 14.1. First, we show that (42) implies the equation for λ2 in (40). By
the expression dβ = a′Ω−1a0(a

′
0Ω

−1a0)
−1/2 given in (2.7) in AMS, where a := (β�1)′ and
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a0 := (β0�1)′, for any β ∈R,

dβ − dβ0 = (a− a0)
′Ω−1a0

(
a′

0Ω
−1a0

)−1/2

= (β−β0)e
′
1Ω

−1a0
(
a′

0Ω
−1a0

)−1/2 := (β−β0)rβ0� (122)

where e1 := (1�0)′ and the last equality holds by the definition of rβ0 .
Substituting (122) into the second equation in (42) gives

λ
1/2
2 dβ2∗ = ±λ1/2dβ∗

iff λ
1/2
2

(
dβ0 + rβ0(β2∗ −β0)

) = ±λ1/2(dβ0 + rβ0(β∗ −β0)
)

(123)

iff λ
1/2
2 dβ0 = ±λ1/2(dβ0 + rβ0(β∗ −β0)

) − rβ0λ
1/2
2 (β2∗ −β0)�

Given the definition of cβ in (3), the first equation in (42) can be written as

λ
1/2
2 (β2∗ −β0)= ∓λ1/2(β∗ −β0)� (124)

Substituting this into (123) yields

λ
1/2
2 dβ2∗ = ±λ1/2dβ∗

iff λ
1/2
2 dβ0 = ±λ1/2(dβ0 + 2rβ0(β∗ −β0)

)
(125)

iff λ
1/2
2 = ±λ1/2 dβ0 + 2rβ0(β∗ −β0)

dβ0

�

The square of the equation in the last line in (125) is the equation for λ2 in (40).
Next, we show that (42) implies the equation for β2∗ in (40). Using (124), the first

equation in (42) can be written as

β2∗ = β0 ∓ λ1/2

λ
1/2
2

(β∗ −β0)� (126)

This combined with the equation for λ1/2/λ
1/2
2 obtained from the last line of (125) gives

β2∗ = β0 − dβ0

dβ0 + 2rβ0(β∗ −β0)
(β∗ −β0)� (127)

where a minus sign appears because the ∓ sign in (126) gets multiplied by the ± sign in
the last line of (125), which yields a minus sign in both cases. Equation (127) is the same
as the first condition in (40). This completes the proof that (42) implies (40).

Now, we prove the converse. We suppose (40) holds. Taking the square root of the
second equation in (40) gives

λ
1/2
2 = ±λ1/2 dβ0 + 2rβ0(β∗ −β0)

dβ0

� (128)
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where the ± sign means that this equation holds either with + or with −. Substituting
this into the first equation in (40) gives (126), which is the same as (124), and (124) is the
first equation in (42).

The second equation in (42) is given by (123). Given that the first equation in (42)
holds, the second equation in (42) is given in (125). The last line of (125) holds by (128).
This completes the proof that (40) implies (42).

Proof of Lemma 14.2. The proof of part (a) of the lemma is essentially the same as
that of Theorem 8(b) in AMS. The only change is to note that when (β2∗�λ2) satisfies
(41), we have τ∗ = τ∗

2 , δ∗ = −δ∗
2, and δmax = |δ∗| = |δ∗

2| (using the notation in AMS). Be-

cause δmax = |δ∗| = |δ∗
2|, we obtain

√
δ2 −

√
δ2

max = 0 and the remainder of the proof of
Theorem 8(b) goes through as is.

The proof of part (b) of the lemma is quite similar to the proof of Theorem 8(c) of
AMS. The latter proof first considers the case where “(β2∗�λ2) does not satisfy the sec-
ond condition of (39).” This needs to be changed to “(β2∗�λ2) does not satisfy the second
condition of (39) or (41).” With this change, the rest of that part of the proof of Theo-
rem 8(c) goes through unchanged.

The remaining cases (where both (39) and (41) fail) to consider are (i) when the sec-
ond condition in (39) holds and the first condition in (39) fails and (ii) when the sec-
ond condition in (41) holds and the first condition in (41) fails. These are mutually ex-
clusive scenarios because the second conditions in (39) and (41) are incompatible. The
proof of Theorem 8(c) of AMS considers case (i) and proves the result of Theorem 8(c)
for that case. The proof of Theorem 8(c) for case (ii) is quite similar to that for case (i)
using (A.21) in AMS because δ∗ = −δ∗

2, δmax = |δ∗| = |δ∗
2| > 0, and τ∗ 
= τ∗

2 imply that
sgn(δ∗)= − sgn(δ∗

2) and τ∗ sgn(δ∗) 
= −τ∗
2 sgn(δ∗

2). This last inequality shows that the ex-

pression in (A.21) in AMS is a continuous function of QSTQ
−1/2
T that is not even. (Note

that (A.21) in AMS has a typo: the quantity τ∗
2 sgn(δ∗) in its second summand should be

τ∗
2 sgn(δ∗

2).)

20. Structural error variance matrices under distant alternatives and

distant null hypotheses

Here, we compute the structural error variance matrices in scenarios 1 and 2 considered
in (9) and (10) in Section 4. By design, the reduced-form variance matrix Ω is the same
for β0 and β∗� and hence, does not vary between these two scenarios.

In scenario 1 in (9), the structural error variance matrix underH0 isΣ(β0�Ω), defined
in (32). UnderH1 : β= β∗, as |β∗| → ∞, we have

lim
β∗→±∞ρuv(β∗�Ω)= lim

β∗→±∞
ω12 −ω2

2β∗(
ω2

1 − 2ω12β∗ +ω2
2β

2∗
)1/2

ω2

= ∓1 and

lim|β∗|→∞σ
2
u(β∗�Ω)/σ2

v (β∗�Ω)= ω2
1 − 2ω12β∗ +ω2

2β
2∗

ω2
2

= ∞�

(129)
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where ρuv(β∗�Ω), σ2
u(β∗�Ω), and σ2

v (β∗�Ω) are defined just below (32). Equation (129)
shows that, for standard power envelope calculations, when the alternative hypothesis
value β∗ is large in absolute value the structural variance matrix under H1 exhibits cor-
relation close to one in absolute value and a large ratio of structural to reduced-form
variances.

In scenario 2 in (10), the structural error variance error matrix underH∗ is Σ(β∗�Ω).
Under H0 : β= β0, by exactly the same argument as in (129) with β0 in place of β∗, we
obtain

lim
β0→±∞ρuv(β0�Ω)= ∓1 and lim|β0|→∞σ

2
u(β0�Ω)/σ

2
v (β0�Ω)= ∞� (130)

So, in scenario 2, when the null hypothesis value β0 is large in absolute value the struc-
tural variance matrix under H0 exhibits correlation close to one in absolute value and a
large ratio of structural to reduced-form variances.

From a testing perspective, it is natural and time honored to fix the null hypothesis
value β0 and consider power as the alternative hypothesis value β∗ varies. On the other
hand, a confidence set is the set of null hypothesis values β0 for which one does not
reject H0 : β = β0. Hence, for a given true value β∗, the false coverage probabilities of
the confidence set equal one minus its power as one varies H0 : β= β0. Thus, from the
confidence set perspective, it is natural to fix β∗ and consider power as β0 varies.

21. Transformation of the β0 versus β∗ testing problem to a 0 versus β∗
testing problem

In this section, we transform the general testing problem of H0 : β= β0 versus H1 : β=
β∗ for π ∈Rk and fixed Ω to a testing problem of H0 : β= 0 versus H1 : β= β∗ for some
π ∈ Rk and some fixed Ω whose diagonal elements equal one. This is done using the
transformations given footnotes 7 and 8 of AMS, which argue that there is no loss in
generality in the AMS numerical results to take ω2

1 = ω2
2 = 1 and β0 = 0. These results

help link the numerical work done in this paper with that done in AMS.
Starting with the model in (1), we transform the model based on (y1� y2)with param-

eters (β�π) and fixed reduced-form variance matrixΩ to a model based on (̃y1� y2)with
parameters (β̃�π) and fixed reduced-form variance matrix Ω̃, where

ỹ1 := y1 − y2β0�

β̃ := β−β0� and

Ω̃ := Var

((
ỹ1

y2

))
= Var

([
1 −β0

0 1

](
y1

y2

))

=
[
ω2

1 − 2ω12β0 +ω2
2β

2
0 ω12 −ω2

2β0

ω12 −ω2
2β0 ω2

2

]
�

(131)

The transformed testing problem is H0 : β̃ = 0 versus H1 : β̃ = β̃∗, where β̃∗ = β∗ − β0,
with parameter π and reduced-form variance matrix Ω̃.



36 Andrews, Marmer, and Yu Supplementary Material

The matrix Ω̃ does not have diagonal elements equal to one, so we transform the
model based on (̃y1� y2)with parameters (β̃�π) and fixed reduced-form variance matrix
Ω̃ to a model based on (y1� y2) with parameters (β�π) and fixed reduced-form variance
matrixΩ, where14

y1 := ỹ1

ω̃1
= y1 − y2β0(

ω2
1 − 2ω12β0 +ω2

2β
2
0
)1/2

y2 := 1
ω̃2
y2 = 1

ω2
y2�

β := ω̃2

ω̃1
β̃= ω2(

ω2
1 − 2ω12β0 +ω2

2β
2
0
)1/2 (β−β0)� and

π := 1
ω̃2
π = 1

ω2
π�

(132)

In addition, we have

Ω := Var

(
y1
y2

)
= Var

([
1/ω̃1 0

0 1/ω̃2

](
ỹ1

y2

))

=
[

1/ω̃1 0
0 1/ω̃2

]
Ω̃

[
1/ω̃1 0

0 1/ω̃2

]

=
[

1/ω̃1 0
0 1/ω2

][
ω2

1 − 2ω12β0 +ω2
2β

2
0 ω12 −ω2

2β0

ω12 −ω2
2β0 ω2

2

][
1/ω̃1 0

0 1/ω2

]

=

⎡⎢⎢⎢⎢⎣
1

ω12 −ω2
2β0(

ω2
1 − 2ω12β0 +ω2

2β
2
0
)1/2

ω2
ω12 −ω2

2β0(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2

ω2

1

⎤⎥⎥⎥⎥⎦ � (133)

The transformed testing problem isH0 : β= 0 versusH1 : β= β∗, where

β∗ = ω2(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2 (β∗ −β0)� (134)

with parameter π and reduced-form variance matrixΩ.
Now, we consider the limit as β0 → ±∞ of the original model and see what it yields

in terms of the transformed model. We have

lim
β0→±∞β∗ = ∓1 and lim

β0→±∞Ω=
[

1 ∓1
∓1 1

]
� (135)

14The formula β := (ω̃2/ω̃1)β̃ in (132) comes from y1 := ỹ1/ω̃1 = (y2β̃ + u)/ω̃1 = y2β̃/ω̃1 + u/ω̃1 =
(y2/ω̃2)β̃(ω̃2/ω̃1)+ u/ω̃1 = y2β+ u, where the last equality holds when β := (ω̃2/ω̃1)β̃ and u := u/ω̃1.
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So, the asymptotic testing problem as β0 → ±∞ in terms of a model with a null hypoth-
esis β value of 0 and a reduced-form variance matrix Ω with ones on the diagonal is a
test ofH0 : β= 0 versusH1 : β= ∓1.

We get the same expression for the limits as β0 → ±∞ of cβ∗(β0�Ω) and dβ∗(β0�Ω)

written in terms of the transformed parameters (β0�β∗�π�Ω) as in Lemma 15.1 except
they are multiplied by σv. This occurs because μπ = μπ/σv. In consequence, the lim-
its as β0 → ±∞ of cβ∗(β0�Ω)μπ and dβ∗(β0�Ω)μπ written in terms of the transformed
parameters (β0�β∗�π�Ω) are the same as their limits without any transformation.

Lemma 21.1. Let β∗ = β∗(β0) and Ω=Ω(β0) be defined in (134) and (133), respectively.
Let β0(β0)= 0.

(a) limβ0→±∞ cβ∗(β0)
(β0(β0)�Ω(β0))= ∓1.

(b) limβ0→±∞ dβ∗(β0)
(β0(β0)�Ω(β0))= ∓ ρuv

(1−ρ2
uv)1/2

.

Comment. (i). By Lemmas 15.1 and 21.1, the distributions of all of the tests con-
sidered in this paper are the same in the model in Section 2 when β∗ and Ω are fixed
and the null hypothesis value β0 satisfies β0 → ±∞, and in the transformed model of
this section when the null hypothesis β0 is fixed at 0 and the alternative hypothesis
value β∗ = β∗(β0) and the reduced-form variance Ω = Ω(β0) converge as in (135) as
β0 → ±∞. (This uses the fact that σv = 1 in Lemma 21.1.)

(ii). AMS footnote 5 notes that there is a special parameter value β = βAR at which
the one-sided point optimal invariant similar test of H0 : β = β0 versus H1 : β = βAR is

the (two-sided) AR test. In footnote 5, βAR is defined to be βAR = ω2
1−ω12β0

ω12−ω2
2β0

. If we com-

puteβAR for the transformed model (y1� y2)with parameters (β�π�Ω), whereβ0 = 0, we
obtain

βAR = ω2
1 −ω12β0

ω12 −ω2
2β0

= 1
ω12

= ∓1� (136)

which is the same as the limit of β∗ = β∗(β0) as β0 → ±∞ in (132).

Proof of Lemma 21.1. First, we prove part (a). We have

cβ∗(β0�Ω) = (β∗ −β0)
(
b

′
0Ωb0

)−1/2

= ω2(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2 (β∗ −β0)

(
1 − 2ω12β0 +β2

0
)−1/2

= ω2(β∗ −β0)(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2

→ ∓1 as β0 → ±∞� (137)

where the second equality uses (134) and the third equality uses β0 = 0. Hence,
cβ∗(β0�Ω)μπ → ∓(1/σv)μπ asβ0 → ±∞ using the expression forπ in (132) andω2 = σv.
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Next, we prove part (b). Let b∗ = (1�−β∗)′ and b0 = (1�−β0)
′. We have

det(Ω) = 1 −ω2
12�

ω12 = ω12 −ω2
2β0(

ω2
1 − 2ω12β0 +ω2

2β
2
0
)1/2

ω2

� and (138)

b
′
∗Ωb0

(
b

′
0Ωb0

)−1/2 = 1 −ω12β0 −ω12β∗ +β0β∗(
1 − 2ω12β0 +β2

0
)1/2

= 1 −ω12β∗�

where the second equality on the third line uses β0 = 0. Next, we have

1 −ω12β∗ = 1 − ω12 −ω2
2β0(

ω2
1 − 2ω12β0 +ω2

2β
2
0
)1/2

ω2

ω2(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2 (β∗ −β0)

= 1 −
(
ω12 −ω2

2β0
)
(β∗ −β0)

ω2
1 − 2ω12β0 +ω2

2β
2
0

= ω2
1 − 2ω12β0 +ω2

2β
2
0 −ω12β∗ +ω12β0 +ω2

2β0β∗ −ω2
2β

2
0

ω2
1 − 2ω12β0 +ω2

2β
2
0

= ω2
1 −ω12β0 −ω12β∗ +ω2

2β0β∗
ω2

1 − 2ω12β0 +ω2
2β

2
0

� (139)

where the first equality uses (133) and (134).
In addition, we have

1 −ω2
12 = 1 −

(
ω12 −ω2

2β0
)2(

ω2
1 − 2ω12β0 +ω2

2β
2
0
)
ω2

2

= ω2
1ω

2
2 − 2ω12ω

2
2β0 +ω4

2β
2
0 −ω2

12 + 2ω12ω
2
2β0 −ω4β2

0(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)
ω2

2

= ω2
1ω

2
2 −ω2

12(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)
ω2

2

� (140)

where the first equality uses (138).
Using (138)–(140), we have

dβ∗(β0�Ω) = b
′
∗Ωb0

(
b

′
0Ωb0

)−1/2 det(Ω)−1/2

= ω2
1 −ω12β0 −ω12β∗ +ω2

2β0β∗
ω2

1 − 2ω12β0 +ω2
2β

2
0

(
ω2

1ω
2
2 −ω2

12(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)
ω2

2

)−1/2

=
(
ω2

1 −ω12β0 −ω12β∗ +ω2
2β0β∗

)(
ω2

1 − 2ω12β0 +ω2
2β

2
0
)1/2(

ω2
1ω

2
2 −ω2

12
)1/2ω2� (141)
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The rhs of (141) is the same as the expression on the second line of (44) multiplied
by ω2 = σv. In consequence, the calculations in (44)–(46) give the result of part (a) of
Lemma 21.1.

22. Transformation of the β0 versus β∗ testing problem to a β0 versus 0
testing problem

In this section, we transform the general testing problem of H0 : β= β0 versus H1 : β=
β∗ for π ∈ Rk and fixed reduced-form variance matrix Ω to a testing problem of H0 :
β = β0 versus H1 : β = 0 for some π ∈ Rk and some fixed Ω with diagonal elements
equal to one. These transformation results imply that there is no loss in generality in the
numerical results of the paper to takingω2

1 =ω2
2 = 1 and β∗ = 0. We also show that there

is no loss in generality in the numerical results of the paper to taking ρuv ∈ [0�1], rather
than ρuv ∈ [−1�1], where ρuv is the structural variance matrix correlation defined in (15).

We consider the same transformations as in Section 21, but with β∗ in place of β0 in
(131)–(133) and with the roles of β∗ and β0 reversed in (134) and (135). The transformed
testing problem given the transformations in (131) (with β∗ in place of β0) isH0: β̃= β̃0
versusH1 : β̃= 0, where β̃0 = β0 −β∗, with parameterπ and reduced-form variance ma-
trix Ω̃. The transformed testing problem given the transformations in (131)–(133) (with
β∗ in place of β0) is H0: β= β0 versus H1 : β= 0, where β̃0 = β0 − β∗, with parameters
β, π, andΩ defined in (132) and (133) (with the roles of β∗ and β0 reversed).

For example, a scenario in which a typical test has high power in the original scenario
of testing H0 : β= β0 versus H1 : β= β∗, such as β0 = 0 and |β∗| large, gets transformed
into the testing problem of H0: β= β0 versus H1 : β= 0 with correlation ω12 (the (1�2)
element of Ω) close to ±1, because by (135) (with the roles of β∗ and β0 reversed) we
have

lim
β∗→±∞Ω=

[
1 ∓1

∓1 1

]
� (142)

In this case, we also have limβ∗→±∞β0 = ∓1 by (135). Also, note that the reduced-form
and structural variances matrices are equal when the alternative hypothesis holds in the
testing problem H0: β = β0 versus H1 : β = 0, so the result in (142) also applies to the
structural variance matrix Σ(β�Ω)when β= 0 whose correlation we denote by ρuv, that
is, limβ∗→±∞ ρuv = ∓1. Here, the parameter ρuv is the parameter ρuv that appears in the
tables in the paper. These results are useful in showing how the numerical results of the
paper apply to general hypotheses of the formH0 : β= β0 versusH1 : β= β∗.

Next, we show that there is no loss in generality in the numerical results of the pa-
per to taking ρuv ∈ [0�1]. We consider the hypotheses H0 : β = β0 versus H1 : β = 0, as
in the numerical results in the paper. When the true β equals 0 and Ω has ones on its
diagonal, the reduced-form and structural variance matrices are equal; see (32). Hence,
the correlation ω12 given by Ω equals the structural variance correlation ρuv in power
calculations in the paper, and it suffices to show that there is no loss in generality in the
numerical results of the paper to taking ω12 ∈ [0�1].

By (3), the distributions of S and T only depend on cβ(β0�Ω), dβ(β0�Ω), and μπ :=
(Z′Z)1/2π. The vector μπ does not depend on β, β0, or Ω. First, note that ω12 enters
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cβ(β0�Ω) := (β − β0)(b
′
0Ωb0)

−1/2 = (β − β0)(ω
2
1 − 2ω12β0 + ω2

2β
2
0)

−1/2 only through
ω12β0. In consequence, the distribution of S is the same under (β0�ω12) as under
(−β0�−ω12). Second, by (2.8) of AMS, dβ(β0�Ω) can be written as b′Ωb0(b

′
0Ωb0)

−1/2 ×
det(Ω)−1/2, where b := (1�−β)′. The distribution of T when β = 0 depends on d0(β0�

Ω)= (1−ω12β0)(b
′
0Ωb0)

−1/2 det(Ω)−1/2. The first two multiplicands depend onω12 only
through ω12β0 and the third multiplicand only depends on ω12 through ω2

12 (because
det(Ω)= 1−ω2

12). In addition, S and T are independent. Hence, the distribution of [S : T ]
for given (β0�ω12) when β = 0 equals its distribution under (−β0�−ω12) when β = 0.
Thus, the power of a test of H0 : β= β0 versus H1 : β= 0 when ω12 < 0 equals its power
for testingH0 : β= −β0 versusH1 : β= 0 for −ω12 > 0.

23. Unknown variance CLR test

In this section, we consider a different form of the CLR test to see whether it has
smaller probabilities of infinite length than the CLR test defined in (6) and (7).15 By Mor-
eira (2003, pp. 1036, 1045), the likelihood ratio statistic under the assumption that the
reduced-form variance matrix is unknown is

LRU := n

2
ln

(
1 + b′

0YPZYb0

(n− k)b′
0Ω̂b0

)
− n

2
ln

(
1 + λmin

(
Ω̂−1/2YPZYΩ̂

−1/2)
n− k

)
� where

Ω̂ := YMZY/(n− k)�
(143)

(Note that Moreira (2003) denotes the statistic LRU by LR and the statistic LR in (6) above
by LR0.)

The probabilities that the CLR test has infinite length (given in Table 1 in Section 7)
are computed under the assumption that Ω is known. If we made comparisons of these
results to analogous results for the conditional test that employs the statistic LRU (com-
bined with the same conditional critical value as in (7)), the comparisons would be mis-
leading because LRU does not make use of the known value of Ω. To obtain a fair com-
parison, we alter the LRU statistic by replacing Ω̂ byΩ. The resulting statistic is

LR2n := n

2
ln

(
1 + b′

0YPZYb0

(n− k)b′
0Ωb0

)
− n

2
ln

(
1 + λmin

(
Ω−1/2YPZYΩ

−1/2)
n− k

)
= n

2
ln

(
1 + QS

(n− k)
)

− n

2
ln

(
1 + QS −LR

n− k
)
� (144)

where the second equality holds by the definition ofQS in (3) and (4) and the expression
LR0 = S

′
S − λmin on p. 1033 of Moreira (2003), which in the notation of this paper is

LR =QS − λmin for λmin := λmin(Ω
−1/2YPZYΩ

−1/2) by p. 1045 of Moreira (2003).
The conditional critical value for this statistic is the same as that in (7). We call the

resulting test the CLR2n test. Somewhat confusingly, or perhaps paradoxically, the form
of the LR2n statistic is determined by assuming Ω is unknown, which yields a test that
depends on an estimator Ω̂ of Ω, which we then replace by Ω, which yields a test for

15We thank Marcelo Moreira for suggesting that we consider the CLR2n tests considered in this section.
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the case where Ω is known. Note that the LR2n statistic depends on n, whereas the LR
statistic in (6) does not.

Table SM-VI in the Online Supplementary Material 2 reports differences in the prob-
abilities that the CLR2n and CLR CIs have infinite length for the same k, λ, and ρuv values
as in Table I, for three values of n: n= 100�500, and 1000. Note that the data generating
process depends only on k, λ, and ρuv, and not on n. The quantity n only enters through
the form of the LR2n statistic.

The results in Table SM-VI show that the CLR2n and CLR CIs perform very similarly.
This is especially true for n = 500 and 1000 in which cases all differences are less than
0�005. For n= 100, the differences exceed 0�005 in some scenarios where ρuv is small (0,
0�3, and 0�5) and k is large (k≥ 10 for ρuv = 0�0, 0�3 and k≥ 20 for ρuv = 0�5). The largest
difference is 0�0235 and is achieved when n= 100, ρuv = 0, k= 40, and λ= 20.

Based on these results, we do not find that the CLR2n test improves on the CLR test
in terms of its probabilities of having infinite length. The differences between the CLR2n
and CLR tests are quite small, especially for n= 500 and 1000.

24. Heteroskedastic and autocorrelated model

Theorem 5.1 gives formulae for the probabilities that certain CIs have infinite right
length, infinite left length, and infinite length in the homoskedastic Gaussian linear
IV model. In this section, we extend these results to the Gaussian linear IV model
that allows for heteroskedasticity and autocorrelation (HC) in the errors. We use the
specification and notation in Moreira and Ridder (2017). The reduced-form model is
Y = Zπa′ + V , as in (2), but without the assumption that the rows of V are i.i.d. with
distributionΩ. Rather, we assume that

vec(Ṽ ) := vec
((
Z′Z

)−1/2
Z′V

) ∼N(0�Σ)� (145)

where Ṽ ∈ Rk×2 and Σ is a positive definite 2k × 2k matrix. The matrix Σ can be
consistently estimated. In consequence, we focus on the case where Σ is known. Let
P1 := Z(Z′Z)−1/2 ∈ Rn×k and let P2 ∈ Rn×(n−k) be such that P := [P1 : P2] is orthogonal.
A one-to-one transformation of Y is (P ′

1Y�P
′
2Y). The matrix P ′

2Y is ancillary and the
variance of V is only restricted by Var(vec(P ′

1V ))= Σ. In consequence, we only consider
tests that are a function of P ′

1Y . We have

R := P ′
1Y = μπa′ + Ṽ � where μπ := (

Z′Z
)1/2

π and a := (β�1)′� (146)

For a given null hypothesis value β0, a one-to-one transformation of R is (Sβ0(R)�

Tβ0(R)), where

Sβ0(R) := [(
b′

0 ⊗ Ik
)
Σ(b0 ⊗ Ik)

]−1/2(
b′

0 ⊗ Ik
)

vec(R)�

Tβ0(R) := [(
a′

0 ⊗ Ik
)
Σ−1(a0 ⊗ Ik)

]−1/2(
a′

0 ⊗ Ik
)
Σ−1 vec(R)�

(147)
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a0 := (β0�1)′, and b0 := (1�−β0)
′. The statistics Sβ0(R) and Tβ0(R) are independent.

Their distributions are

Sβ0(R)∼N(
(β−β0)Cβ0μπ� Ik

)
and

Tβ0(R)∼N(Dβμπ� Ik)� where

Cβ0 := [(
b′

0 ⊗ Ik
)
Σ(b0 ⊗ Ik)

]−1/2
and

Dβ := [(
a′

0 ⊗ Ik
)
Σ−1(a0 ⊗ Ik)

]−1/2(
a′

0 ⊗ Ik
)
Σ−1(a⊗ Ik)�

(148)

As shown in the following lemma, the limits of Sβ0(R) and Tβ0(R) as β0 → ±∞ are

S±∞(R) := ∓Σ−1/2
22 R2 and

T±∞(R) := ±(
Σ11)−1/2(

e′1 ⊗ Ik
)
Σ−1 vec(R)�

(149)

where R2 denotes the second column of R, Σ22 denotes the lower right k× k block of Σ,
Σ11 denotes the upper left k× k block of Σ−1, and e1 := (1�0)′.

Lemma 24.1. For fixed true value β= β∗ and positive definite matrix Σ, we have

(a) limβ0→±∞ Sβ0(R)= S±∞(R),

(b) S±∞(R)∼N(∓Σ−1/2
22 μπ� Ik),

(c) limβ0→±∞ Tβ0(R)= T±∞(R),
(d) T±∞(R)∼N(±(Σ11)−1/2(e′1 ⊗ Ik)Σ−1 vec(μπa′∗)� Ik), where a∗ := (β∗�1)′, and

(e) S±∞(R) and T±∞(R) are independent.

Comments. (i). The convergence results in Lemma 24.1 hold for all realizations ofR.
(ii). In the homoskedastic case, where Σ = Ω⊗ Ik, we have S±∞(R) = S±∞(Y) and

T±∞(R)= T±∞(Y), where S±∞(Y) and T±∞(Y) are defined in (50) for the homoskedas-
tic model.

These results hold by the following calculations. In the homoskedastic case, Σ22 =
ω2

2Ik = σ2
v Ik, where ω2

2 denotes the (2�2) element of Ω and σ2
v := Var(v2i). This yields

S±∞(R)= ∓(1/σv)R2 = ∓(1/σv)(Z′Z)−1/2Z′Ye2 := S±∞(Y). In the homoskedastic case,
Σ11 = ω11Ik, where ω11 denotes the (1�1) element of Ω−1, Σ−1 = Ω−1 ⊗ Ik, and (e′1 ⊗
Ik)Σ

−1 vec(R)= (e′1Ω−1 ⊗ Ik) vec(R)=RΩ−1e1, where the last equality uses the formula
vec(ABC)= (C ′ ⊗A) vec(B). We have ω11 =ω2

2/(ω
2
1ω

2
2 −ω2

12) by the formula for the in-
verse of a 2 × 2 matrix, ω2

1ω
2
2 −ω2

12 = σ2
uσ

2
v − σ2

uv = σ2
uσ

2
v (1 − ρ2

uv), where the first equal-
ity holds by (45), and (ω11)−1/2 = σuσv(1 − ρ2

uv)
1/2/ω2 = σu(1 − ρ2

uv)
1/2, where the last

equality uses σv = ω2. Putting these results together gives T±∞(R) := ±(Σ11)−1/2(e′1 ⊗
Ik)Σ

−1 vec(R) = ±σu(1 − ρ2
uv)

1/2RΩ−1e1 = (Z′Z)−1/2Z′YΩ−1e1 · (±(1 − ρ2
uv)

1/2σu) :=
T±∞(R).

Let Pβ∗�π�Σ(·) denote the probability distribution of R when β∗, π, Σ are the true
values.

The HC model analogue of Theorem 5.1 is the following.
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Theorem 24.2. Suppose CSφ(R) is a CS based on level α tests φ(Sβ0(R)�Tβ0(R)) whose
test statistic and critical value functions, T (s� t) and cv(t), respectively, are continuous
at all k× 2 matrices [s : t] and k vectors t, Pβ∗�π�Σ(T (Sc(R)�Tc(R)) = cv(Tc(R))) = 0 for
c = +∞ in parts (a) and (c) below and c = −∞ in part (b) below. Then, for all (β∗�π�Σ)
with Σ positive definite,

(a) Pβ∗�π�Σ(RLength(CSφ(R))= ∞)= 1 − limβ0→∞ Pβ∗�π�Σ(φ(Sβ0(R)�Tβ0(R))= 1),

(b) Pβ∗�π�Σ(LLength(CSφ(R)) = ∞) = 1 − limβ0→−∞ Pβ∗�π�Σ(φ(Sβ0(R)�Tβ0(R)) = 1),
and

(c) if T (Sc(R)�Tc(R))≤ cv(Tc(R)) for c = +∞ iff the same inequality holds for c = −∞
a.s., then Pβ∗�π�Σ(Length(CSφ(R))= ∞)= 1 − limβ0→±∞ Pβ∗�π�Σ(φ(Sβ0(R)�Tβ0(R))= 1).

Proof of Theorem 24.2. The proof is essentially the same as that for Theorem 5.1 with
(i) (Sβ0(R)�Tβ0(R)) and Tβ0(R) in place of Qβ0(Y) and QT�β0(Y), respectively, using
(ii) Lemma 24.1 in place of Lemma 16.1, and using (iii) the assumption of the Theo-
rem that “T (s� t) and cv(t) are continuous at all k × 2 matrices [s : t] and k vectors t,”
in place of the assumption of Theorem 5.1 that “T (q) and cv(qT ) are continuous at all
positive definite 2 × 2 matrices q and positive constants qT .” (In the argument following
(52) in the proof of Theorem 5.1, the latter assumption is combined with the result of
Lemma 16.1(g), which implies that Q∞(Y) is pd a.s. and QT�∞(Y) > 0 a.s. In contrast,
in the proof of the present theorem, this part of the argument is not needed because
there is no restriction to positive definite matrices q and positive constants qT .) In the
proof of part (c), the second last equality in (54) in the proof of Theorem 5.1 holds (with
the changes listed in (i)–(iii) above) because the assumption imposed in part (c) of the
present theorem is the same as condition (iii) stated immediately above (54).

Proof of Lemma 24.1. We prove part (a) first. Dividing the components of Sβ0(R) in
(147) by |β0|, we obtain

Sβ0(R)= [((
b0/|β0|

)′ ⊗ Ik
)
Σ

((
b0/|β0|

) ⊗ Ik
)]−1/2((

b0/|β0|
)′ ⊗ Ik

)
vec(R)� (150)

We have

lim
β0±∞

((
b0/|β0|

)′ ⊗ Ik
)

vec(R)= (
(0�∓1)⊗ Ik

)
vec(R)= ∓R2 and

lim
β0±∞

((
b0/|β0|

)′ ⊗ Ik
)
Σ

((
b0/|β0|

) ⊗ Ik
) = (

(0�∓1)⊗ Ik
)
Σ

(
(0�∓1)⊗ Ik

) = Σ22�
(151)

using b0 := (1�−β0)
′, where R2 denotes the second column of R. Combining (150) and

(151) and using the positive definiteness of Σ22 gives limβ0±∞ Sβ0(R) = ∓Σ−1/2
22 R2 :=

S±∞(R), which proves part (a).
Part (b) holds by the definition of S±∞(R) in (149) because R2 ∼N(μπ�Σ22) by (145)

and (146).
To prove part (c), we divide the components of Tβ0(R) in (147) by |β0| to obtain

Tβ0(R)= [((
a0/|β0|

)′ ⊗ Ik
)
Σ−1((a0/|β0|

) ⊗ Ik
)]−1/2((

a0/|β0|
)′ ⊗ Ik

)
Σ−1 vec(R)� (152)
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where a0 = (β0�1)′. We have

lim
β0±∞

((
a0/|β0|

)′ ⊗ Ik
)
Σ−1 vec(R)= ±(

(1�0)⊗ Ik
)
Σ−1 vec(R) and

lim
β0±∞

((
a0/|β0|

)′ ⊗ Ik
)
Σ−1((a0/|β0|

) ⊗ Ik
) = (

(±1�0)⊗ Ik
)
Σ−1((±1�0)⊗ Ik

) = Σ11�
(153)

where Σ11 denotes the upper left k × k block of Σ−1. Combining (152) and (153)
and using the positive definiteness of Σ−1 gives limβ0±∞ Tβ0(R) = ±(Σ11)−1/2(e′1 ⊗
Ik)Σ

−1 vec(R) := T±∞(R), which establishes part (c) of the lemma.
Part (d) holds by the definition of T±∞(R) in (149) because R= μπa′∗ + Ṽ when β=

β∗ by (146), vec(Ṽ )∼N(0�Σ) by (145), and

Var
(
T±∞(R)

) = Var
((
Σ11)−1/2(

e′1 ⊗ Ik
)
Σ−1 vec(R)

)
= (
Σ11)−1/2(

e′1 ⊗ Ik
)
Σ−1ΣΣ−1(e1 ⊗ Ik)

(
Σ11)−1/2

= Ik� (154)

Part (e) holds because S±∞(R) and T±∞(R) are jointly normal with covariance

Cov
(
S±∞(R)�T±∞(R)

) = Cov
( ∓Σ−1/2

22

(
e′2 ⊗ Ik

)
vec(R)�±(

Σ11)−1/2(
e′1 ⊗ Ik

)
Σ−1 vec(R)

)
= −Σ−1/2

22

(
e′2 ⊗ Ik

)
Var

(
vec(R)

)
Σ−1(e1 ⊗ Ik)

(
Σ11)−1/2

= Ik� (155)

This implies that S±∞(R) and T±∞(R) are independent, which proves part (e).
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