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11. OUTLINE

References to sections, theorems, and lemmas with section numbers less than 11 refer
to sections and results in the main paper.

fo

Section 12 of this Online Supplementary Material 1 (OSM1) provides expressions
r the densities fp(q; Bx, Bo, A, 2), fo,10+(q1lqT), and fo(q; puv, Av), expressions for
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the POIS2 test statistic and critical value of AMS, and expressions for the one-to-one
transformations between the reduced-form and structural variance matrices. Section 13
provides one-sided power bounds for invariant similar tests as By — o0, where B, de-
notes the null hypothesis value. Section 14 corrects (4.1) of AMS, which concerns the
two-point weight function that defines AMS’s two-sided AE power envelope.

Section 15 proves Lemma 6.1. Section 16 proves Theorem 5.1 and its Comment (v).
Section 17 proves Theorem 6.2 and its Comment (iv), Corollary 6.3 and its Comment (ii),
and Theorem 6.4. Section 18 proves Theorem 8.1. Section 19 proves Theorem 13.1 and
Lemmas 14.1 and 14.2.

Section 20 computes the structural error variance matrices in scenarios 1 and 2 con-
sidered in (9) and (10) in Section 4.

Section 21 shows how the model is transformed to go from a testing problem of H :
B = Bg versus Hy : B = B, for 7 € R and fixed (2 to a testing problem of Hj : 8 = 0 versus
H, : B =B, for some 7 € R¥ and some fixed (2 with diagonal elements equal to one. This
links the model considered here to the model used in the Andrews, Moreira, and Stock
(2006) (AMS) numerical work.

Section 22 shows how the model is transformed to go from a testing problem of H) :
B = Bo versus H; : B = B, for 7 € R¥ and fixed Q to a testing problem of Hy : B = B,
versus H; : B = 0 for some 7 € R and some fixed (2 with diagonal elements equal to one.
These transformation results imply that there is no loss in generality in the numerical
results of the paper to taking w% = w% =1, B, =0, and py, € [0, 1] (rather than p,, €
[—1,1D.

Section 23 considers a variant of the CLR test, which we denote the CLR2,, test, and
computes probabilities that it has infinite length. It is not found to improve upon the
CLR test.

Section 24 considers the linear IV model that allows for heteroskedasticity and auto-
correlation in the errors, as in Moreira and Ridder (2017). It extends Theorem 5.1 to this
model. Thus, it gives formulae for the probabilities that a CI has infinite right length,
infinite left length, and infinite length in this model.

12. DEFINITIONS
12.1 Densities of Q when B = B, and when By — +oo

In this subsection, we provide expressions for (i) the density fp(q; Bx, Bo, A, 2) of O
when the true value of 8 is B, and the null value g is finite, (ii) the conditional density

fo110:(q11qr) of Oy given Or = gr, and (iii) the limit of fo(q; Bx, Bo, A, £2) as By — *oo.
Let

£p.(q) = £p.(q: Bo, Q) :=cj _qs +2cp,dp,qsT + dj_qr, (24)

where cg, = cg, (Bo, {2) and dg, = dp, (B, {2). Asin Section 6, fp(q; Bx, Bo, A, £2) denotes
the density of Q :=[S: T1[S : T]when [S : T has the multivariate normal distribution in
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(3) with 8 = B, and A = p/_u,. This noncentral Wishart density is
f0(q; B> Bo, A, 2) = Ky exp(—A(cp, +dj,)/2) det(q)* )72 exp(—(gs + q1)/2)

x (A&, () TP 1oy o (JAEp, (),  where 25)

qs  4st qgs 4 +
= , 1= €R™ x R, T € R 5
1 |:CIST qr } 1 (CIST) 1

K1_1 = 2k+D/2p1 2 (k — 1)/2), I,(-) denotes the modified Bessel function of the
first kind of order », pi = 3.1415..., and I'(-) is the gamma function. This holds by
Lemma 3(a) of AMS with B = B,.

By Lemma 3(c) of AMS, the conditional density of Q; given Or = gr when [S: T is
distributed as in (3) with 8 = B is

_ _ —(k—
fouor(@1lqr) = KiK; ' exp(—qs/2) det(q) K=972q ¢ 212, (26)

which does not depend on By, A, or {2.

By Lemma 6.1, the limit of fp(q; Bx, Bo, A, £2) as By — Foo is the density fo(q; puv,
Ay). As in Section 6, fo(q; puv, Av) denotes the density of Q :=[S: T1[S: Tl when [S: T
has a multivariate normal distribution with means matrix in (18), all variances equal to
one, and all covariances equal to zero. This is a noncentral Wishart density that has the
following form:

fo(@: puvs Av) = Kyexp(—Ay(1472,)/2) det(q)* =/ exp(—(gs + q71)/2)

—(k-2)/4
x (M€ pu)) P 122 (VIVE(G: pur)),  where  (27)
&(q; puv) = qs + 2rywqsT + ’}%UQT-

This expression for the density holds by the proof of Lemma 3(a) of AMS with means
matrix w - (1/0y, ryy/0oy) in place of the means matrix u - (cg, dp).

12.2 POIS2 test

Here, we define the POIS2(q1, g1; Bo, B+, A) test statistic of AMS, which is analyzed in
Section 6, and its conditional critical value x> g,(g7).

Given (B4, A), the parameters (B;., A») are defined in (19), which is the same as (4.2)
of AMS. By Corollary 1 of AMS, the optimal average-power test statistic against (B4, A)
and (B2, A2) is

POIS2O: fo. o Ay i QPO Bes ) $(05 Bos B R2)

242(0r; Bos Bx» M)
W(Q: Bo, B, A) = exp(—A(c3 +d3)/2) (Aep(Q) T4y p(286(Q)). (28)

W2(Qr; Bos B, 1) i=exp(=Ad}/2) (AdF0r) T o o (AR 0r),
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Q and Qr are defined in (4), cg = cg(B, 2) and dg = dg(B, 2) are defined in (3), I,,(-) is
defined in (25), £g(Q) is defined in (24) with Q and B in place of g and B, and A := u/ .

Note that ¢2(Q7; B«, A) = ¥2(07; B2x, A2) by (19).
Let k2 g,(g7) denote the conditional critical value of the POIS2(Q; By, B+, A) test

statistic. That is, k2 g,(gr) is defined to satisfy

PQ1|QT (POISZ(Q, B(): B*a )\) > KZ,BO(QT)WT) =« (29)

for all g7 > 0, where Pg, |0, (-|qT) denotes probability under the density fo, 0, (:Ig7) de-
fined in (26). The critical value function «; g,(-) depends on (B, B«, A, {2) and k (and
(32*, AZ) through (B*a A))

12.3 Structural and reduced-form variance matrices

Let u;, v1;, and vy; denote the ith elements of u, vy, and v,, respectively. We have

2
vi;i=u; +vy;B and n:["” “”22], (30)

w1 w5
where B8 denotes the true value.

Given the true value 8 and some structural error variance matrix 3, the correspond-
ing reduced-form error variance matrix 2(8, 3) is

(B, %) := Var <<v1i>> — Var <<”i + U2i,3>>
v2i i

|1 B 1 0of 05—}—20'”,,6—}—0'332 qu—i—ofﬁ
_|:O 1:|2|:B 1i|_|: o+ 028 o2 , where (31)

v

Given the true value g and the reduced-form error variance matrix (2, the structural
variance matrix 3(g, 2) is

3(B, ) := Var ((”l>> — Var ((vli - v2i,8>>
vai Vi

|1 -8B 1 0| |o]-20nB8+w3B® wp—wip
B |:0 1 :|Q|:—B 1] _|: w12—w§B w% ' (82)

Let a-ft(B,_Q), UE(B,_Q), and o,,(B, 2) denote the (1,1), (2,2), and (1, 2) elements of
3(B, 02). Let p,y(B, 2) denote the correlation implied by 3(3, 2).

In the asymptotics as By — oo, we fix B, and (2 and consider the testing prob-
lem as By — *oo. Rather than fixing (2, one can equivalently fix the structural variance
matrix when 8 = 8,, say at 3,. Given 8, and 3,, there is a unique reduced-form error
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variance matrix 2 = Q(B,, 2,) defined using (31). Significant simplifications in certain
formulae occur when they are expressed in terms of 3, rather than (2, for example, see
Lemma 15.1(e) below.

For notational simplicity, we denote the (1, 1), (2, 2), and (1, 2) elements of 3, by o-fl,
05, and o, respectively, without any * subscripts. As defined in (15), pyy := ouv/ (L 0v).
Thus, p,, is the correlation between the structural and reduced-form errors u; and vy;
when the true value of B8 is 8.. Note that p,, does not change when (B, 3,) is fixed
(or, equivalently, (Bx, 2) = (B, 2(Bx, 2x)) is fixed) and By is changed. Also, note that

ol = w% because both denote the variance of v,; under 8 = 8, and 8 = By.

13. ONE-SIDED POWER BOUND AS 39 — £00

In this section, we provide one-sided power bounds for invariant similar tests as By —
+oo for fixed B.. The approach is the same as in Andrews, Moreira, and Stock (2004)
(AMSO04) except that we consider By — +oo; also see Mills, Moreira, and Vilela (2014).

13.1 Point optimal invariant similar tests for fixed By and B

First, we consider the point null and alternative hypotheses:
Hy:B=pBo and H;:B =P, (33)

where 7 € R¥ (or, equivalently, A > 0) under Hy and H;.

Point optimal invariant similar (POIS) tests for any given null and alternative param-
eter values By and B, respectively, and any given (2 are constructed in AMS04, Section 5.
Surprisingly, the same test is found to be optimal for all values of = under Hy, that is, for
all strengths of identification. The optimal test is constructed by determining the level «
test that maximizes conditional power given Q7 = gr among tests that are invariant and
have null rejection probability « conditional on Q7 = g7, for each g7 € R.

By AMS04 (Comment 2 to Corollary 2), the POIS test of Hy: B8 = By versus H; : B =
Bs, for any 7 € R¥ (or A > 0) under Hy, rejects Hy for large values of

dg, (Bo, 2)

POIS(Q; By, Bx) := +2
(Q; Bo, B+) :=Os 6. (B> )

Osr- (34)
The critical value for the POIS(Q; By, B+) test is a conditional critical value given Q7 =
qr, which we denote by kg, (g7). The critical value «g,(q7) is defined to satisfy

PQ1|QT(POIS(Q7 BOa B*) > KBO(CIT)|6]T) =« (35)

for all gr > 0, where Py, o, (-|qg7) denotes probability under the conditional density
foi0:(q11qr) defined in (26). Although the density fp,0,(q11g7) does not depend on
Bo, kg, (qr) depends on By, as well as (B, {2, k), because POIS(Q; By, B:) does.

Note that, although the same POIS(Q; By, B+) test is best for all strengths of identifi-
cation, thatis, for all A = u/_u, > 0, the power of this test depends on A.
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13.2 One-sided power bound when By — too

Now we consider the best one-sided invariant similar test as By — too keeping (B, {2)
fixed. Lemma 15.1 below implies that

d,B*(BOa '-Q) _
Bo—=+oo cg, (Bo, £2)

Puv Puv
F /(F1/oy) = , (36)
( o(1 - wa)l/z) (1-p2y)"

where p,,, defined in (15), is the correlation between the structural and reduced-form
errors u; and vy; under B.. Hence, the limit as 8y — oo of the POIS(Q; By, B«) test
statistic in (34) is

Puv
1—2)1/2QST- (37)

( — Puy

POIS(Q; o0, pyy) := 5 lim

()—):tOO

(QS +2d/3*(B07 Q)

= 2
6. Bo, ) QST) Os+

Notice that (i) this limit is the same for 8y — +oc and By — —oo, (ii) the POIS(Q; oo,
puv) statistic depends on (B, £2) = (B, (B, 2x)) only through p,, := Corr(3,), and
(iii) when p,, = 0, the POIS(Q; oo, p,y) statistic is the AR statistic (times k). Some intu-
ition for result (iii) is that EQs7 = 0 under the null and lim|g,— s EQs7 = 0 under any
fixed alternative B, when p,, = 0 (see the discussion in Section 6.2). In consequence,
Qg7 is not useful for distinguishing between Hy and H; when |By| — oo and p,, = 0.

Let koo (g7) denote the conditional critical value of the POIS(Q; oo, p,y) test statistic.
That is, ks (g7) is defined to satisfy

Pg,10, (POIS(Q; 00, puy) > Koo(qr)lqT) = @ (38)

for all gr > 0. The density fp, 0, (-|q7) of Pg,|0,(-lqT) only depends on the number of
IVs k; see (26). The critical value function k. (-) depends on p,,, and k.

Let ¢g,(Q) denote a test of Hy : B = By versus H; : B = B, based on Q that rejects
Hy when ¢g,(Q) = 1. In most cases, a test depends on By because the distribution of Q
depends on B (see (3) and (4)), and not because ¢g,(-) depends on By. For example,
this is true of the AR, LM, and CLR tests in (6) and (7). However, we allow for depen-
dence of ¢g,(-) on By in the following result in order to cover all possible sequences of
(nonrandomized) tests of Hy : B = By.

TrEOREM 13.1. Let{¢$p,(Q) : By — Loo} be any sequence of invariant similar level a tests
of Hy : B = Py versus Hy : B = B, when Q has density fo(q; B, Bo, A, 2) for some A > 0 and
Q is fixed and known. For fixed true (B, A, (2), the POIS(Q; oo, pyy) test satisfies

limsupPg, g.a,0(Pp,(Q) =1) < Pp,.0, (POIS(Q; 00, puv) > Koo (Q7)).

,80—>:t00

Comments. (i). Theorem 13.1 shows that the POIS(Q; oo, p,y) test provides an
asymptotic power bound as By — +oo for any invariant similar test for any fixed (B,
A, 2). This power bound is strictly less than one. The reason is that limg .+ [cg, (B0,
)| - oo. This is the same reason that the AR test does not have power that converges to
one in this scenario; see Section 4. Hence, the bound in Theorem 13.1 is informative.
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(ii). The power bound in Theorem 13.1 only depends on (B, A, 2) through p,,,, the
magnitude of endogeneity under B, and A,, the concentration parameter.

(iii). As an alternative to the power bound given in Theorem 13.1, one might con-
sider developing a formal limit of experiments result, for example, along the lines of van
der Vaart (1998, Chapter 9). This approach does not appear to work for the sequence
of experiments consisting of the two unconditional distributions of [S : T] (or Q) for
B = Bo, B« and indexed by By as Byp — Loo. The reason is that the likelihood ratio of
these two distributions is asymptotically degenerate as By — +oo (either 0 or oo de-
pending on which density is in the numerator) when the truth is taken to be 8 = By.
This occurs because the length of the mean vector of T diverges to infinity as By — *oo
(provided A = u/_u, > 0) by (3) and Lemma 15.1(c) below. For the sequence of condi-
tional distributions of Q given Q1 = gr, it should be possible to obtain a formal limit
of experiments result, but this would not very helpful because we are interested in the
unconditional power of tests and a conditional limit of experiments result would not
deliver this.

(iv). The proof of Theorem 13.1 is given in Section 19 below.

14. EQUATIONS (4.1) AND (4.2) oF AMS

This section corrects (4.1) of AMS, which concerns the two-point weight function that
defines AMS’s two-sided AE power envelope.
Equation (4.1) of AMS is:!'? given (B4, A), the second point (B2, A2) solves

M eg, ==A"2cp (#£0) and  AY?dg, = A"dp,. (39)
AMS states that provided B. # Bag, the solutions to the two equations in (4.1) satisfy the
two equations in (4.2) of AMS, which is the same as (19) and which we repeat here for
convenience:!!

dpy (Bx — Bo) and A=A (dﬁo 2780 (B — 'BO))2 where

B2 = PBo — dg, + 2rg,(Bs+ — Bo) dj, (40)

rg, = €127 lay - (a/oﬂ_lao)fl/z and e;:=(1,0).

Equation (4.2) is correct as stated, but (4.1) of AMS is not correct. More specifically, it
is not complete. It should be: given (B, A), the second point (B;., A;) solves either (39)
or

Mg, =Acs (#£0) and A)’dg, =—A2dg,. 41)
For brevity, we write the “either or” conditions in (39) and (41) as

A ep, =FAV2cp, (#0) and Ay’dg, =+1"2dg,. (42)

10Note that (B4, A) and (B2, A7) in this paper correspond to (8*, A*) and (83, A}) in AMS.
The formulae in (19) and (40) only hold for B, # Bar, where Bag := (w? — w1289) /(w12 — w3 By) provided
w1y — w% Bo # 0 (which necessarily holds for |B¢| sufficiently large because w% > 0).
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The reason (4.1) of AMS needs to be augmented by (41) is that for some (B, A), Bo,
and (2, (4.1) has no real solutions (8, A2) and the expressions for (B, A2) in (4.2) of
AMS do not satisfy (4.1). Once (4.1) of AMS is augmented by (41), there exist real so-
lutions (B4, A2) to the augmented conditions and they are given by the expressions in
(4.2) of AMS, that is, by (40). This is established in the following lemma.

LeMwMmA 14.1. The conditions in (42) hold iff the conditions in (4.2) of AMS hold, that is,
iff the conditions in (40) holds.

With (4.1) of AMS replaced by (42), the results in Theorem 8(b) and (c) of AMS
hold as stated. That is, the two-point weight function that satisfies (42) leads to a two-
sided weighted average power (WAP) test that is asymptotically efficient under strong
IVs. And, all other two-point weight functions lead to two-sided WAP tests that are not
asymptotically efficient under strong IVs.

LEMMA 14.2. Under the assumptions of Theorem 8 of AMS, that is, Assumptions SIV-
LA and 1-4 of AMS, (@) if (Bas, Ay) satisfies (42), then LR*(Q1.n, OT.n; Bxs A) = e~ 10
cosh(r*LM}/z) + 0,(1), where 7™ = Al/zcﬁ*, which is a strictly—incgzasing continuous
function of LM, and (b) if (B2«, A2) does not satisfy (42), then LR*(Q1.,, OT,n; Bx, A) =
nz(QST,n/QlT/jl) + 0, (1) for a continuous function n,(-) that is not even.

Comments. (i). Lemma 14.2(a) is an extension of Theorem 8(b) of AMS; while
Lemma 14.2(b) is a correction to Theorem 8(c) of AMS.

(ii). The proofs of Lemma 14.1 and 14.2 are given in Section 19 below.

Having augmented (4.1) by (41), the two-point weight function of AMS does not
have the property that 3,, is necessarily on the opposite side of B, from B.. However, it
does have the properties that (i) for any (Bs, A), (824, A2) is the only point that yields
a two-point WAP test that is asymptotic efficient in a two-sided sense under strong
IVs, (ii) the marginal distributions of Qg, Or, and Qg7 are the same under (B, A) and
(B2+, A2), and (iii) the joint distribution of (Qs, Qs7, Or) under (B, A) is the same as
that of (Qs, —Qsr, Or) under (B2, A2).

15. PROOF OF LEMMA 6.1

The proof of Lemma 6.1 and other proofs below use the following lemma.

The distributions of [S : 7] under (Bo, £2) and (B, {2) depend on cg(By, {2) and
dg(Bo, ?) for B = By and B,. The limits of these quantities as By — +oo are given in
the following lemma.!?

Lemwma 15.1. For fixed B, and positive definite matrix (2, we have:

(@) limg,—+o00cB,(Bo, 2) =0.
(b) lim/}@—>ioo CB*(BOa _Q) = ZFI/O'U.

12Throughout, 8y — 400 means By — oo or By — —o0.
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(C) limﬁ0—>:|:oo dﬁo(ﬁﬂa Q) =00

1
(@) dpy(Bo, )/1Bo] = (rrZmis + () = i 4+ 0(1) as ol — oo.
w23*7w12 — Puv
@R 2 T (i) 1

(e) limpy— o0 dp, (Bo, 2) =+

Comment. The limits in parts (d) and (e), expressed in terms of 3, only depend on
Puv, 0y, and o, and their functional forms are of a relatively simple multiplicative form.
The latter provides additional simplifications of certain quantities that appear below.

ProOOF OF LEMMA 15.1. Part (a) holds because cg,(By, £2) = 0 for all 8. Part (b) holds by
the following calculations:

. o o (a ~12
Bol_l)lgoo cg,(Bo, 2) = /301—1300(’8* Bo) - (bpf2bo)
= lim (Bx—=Bo)- (0] —2w12B0 + w%B%)fl/z

Bo—=
=Fl/w2
_=1/0,. 43)

Now, we establish part (e). Let b, := (1, —B,)’. We have

Glm dp, (Bo, )= lim bL0by - (by2bg)~* det(2)"1/2
— lim — w128« — w1280+ w%B*Bo
Pr>£0 (] 2(012!30 + @3B5) (0w — 0})
L w3Bs — 01 (44)

2 1/2°

2
“’2(“’1 w5 — wlz)
Next, we write the limit in (44) in terms of the elements of the structural error variance
matrix 3,. The term in the square root in the denominator of (44) satisfies

w%w% — w%z = ( + 20+ + T, B )a' - (qu + o B*) 050’5 - oﬁv, (45)
where the first equality uses w3 = o7 (since both denote the variance of vy;), 0 = o7 +
2000 Bs + 02 B2, and w1 = gyy + 02 B« (which both hold by (31) with 8 = 8, and 3 = 3,),
and the second equality holds by simple calculations. The limit in (44) in terms of the
elements of 3, is

20 _ 20 2
w;BZ w12 = T, B : (Z’uv + oy, 1:[/32*) =T Puv o (46)
w2(0]0] — 0) (o) — oy (1= pin)

where the first equality uses (45), w% = ag, and wip = oy + 03[3*, and the second in-
equality holds by dividing the numerator and denominator by ;0. This establishes
part (e).
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For part (c), we have
lim d D)= lim (b,02by)"*det(2)"1/2
pim 80(Bo, 2) B(,inioo( 0f2bo) ' * det(2)
1/2
— lim (w%—2w1zﬁo+w%[3%)/

12
I T

= oo0. 47)

Part (d) holds because, as |8g| — oo, we have

(0?/B3 —2w12/Bo + w%)l/z

1/2
(0fw3 — i)

dg,(Bo,2)/1Bol =

- B— +o(1)
T 22 2\1/2
(‘”1‘”2 - “’12)
1
=————— 4+ 0(1), (48)
172
Uu(l - p%w) /

where the last equality uses (45) and w; = oy. O

Next, we prove Lemma 6.1, which states that for any fixed (Bx, A, £2), limg . + fo(g;
B, Bo, A, {2) = fQ(q; Puvs Av)-

PROOF OF LEMMA 6.1. By Lemma 15.1(b) and (e) and (17), we have limg,_, 1o cg, =
F1/0y and limg,—, +0 dg, = Fryv/oy. In consequence,

JJim A+ ) = A/ (1+72) = b1 +72) and

lim A = lim A(c 2cp,d d> 49
pm A (q) = lim (cg.gs +2cp,dp.qsT +dj qr) (49)

= /\(1/0'5) (QS + 2"uquT + rz%vqT) = )\vf(q; Puv)>

using the definitions of A, and &(g; pyy) in (17) and (27), respectively, where the first
equality in the third line uses (F1)(Fr,y) = r,y. Combining this with (25) and (27) proves
the result of the lemma. O

16. PROOF OF THEOREM 5.1

The proof of Theorem 5.1 uses the following lemma.! Let

Sia(Y):=(Z2'2)"?Z'Ye, - i
Oy
1 =112 -1 2 \1/2
Teno(Y):=(Z'2)"?Z'Y0 ey - (£(1 - p2,) *0u), and (50)

13The proof of Comment (v) to Theorem 5.1 is the same as that of Theorem 5.1(a) and (b) with
[Sg,(Y), Tg,(Y)] and Tg,(Y) in place of Qp,(Y) and QOr,g,(Y), respectively.
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1/2

1 1—p? o,

&)Y'PzYer  — —eyY'PzY ) ey - (0 =pw) “ou

Q:tOO(Y) = (TU 2 1/2 U-'U B
(1 - puv) Oy

—e,Y'PzYQ ey

u

QY P,Y0 ey - (1 p2y) ol

Oy

where py, 1= Corr(u;, va;), Pz := Z(Z'Z)"1Z', e1 := (1,0, €3 := (0,1)/, and Qio0(Y) is
the same for +o0 and —oo. Let Or,+.(Y) denote the (2, 2) element of Q1+.(Y). As de-
fined in (17), ryy = puv/(1 — p2,)Y2.

LeMwMA 16.1. For fixed B, and positive definite matrix (2, we have

(@ limg,— 400 Sp,(Y) = S+00(Y),

(b) Sioo(Y) ~ N(F s Ii),

(© limgym oo Ty (Y) = Tioo(Y) = (Z'Z)V2Z'Y 07 Ve - (£(1 — p})Y?wy), where
pa = Corr(vy;, v2;),

(d) Tio(Y) NN(¢r(,”—jMw,1k),

() Sico(Y) and T (Y) are independent,

(£) limg,— +00 Oy (Y) = Q+0(Y), and

(8) O+0(Y) has a noncentral Wishart distribution with means matrix Mﬂ(lv fuvy ¢

oy’ oy

Rkx2, identity variance matrix, and density given in (27).
Comment. The convergence results in Lemma 16.1 hold for all realizations of Y.

Proor oF THEOREM 5.1. First, we prove part (a). We have

1(RLength(CS4(Y)) = 00)
=1(T(Qpo(Y)) =< ev(Qr,5,(Y)) YBo = K(Y) for some K(Y) < oc)
= lim 1(7(Qp,(Y)) =¥(Qr,,(Y)): Gb

where the second equality holds provided the limit as By — oo on the right-hand side
(ths) exists, the first equality holds by the definition of CS4(Y) in (11)-(13) and the def-
inition of RLength(CSy(Q)) = oo in (14), and the second equality holds because its rhs
equals one (when the rhs limit exists) iff 7(Qg,(Y)) < cv(Qr,g,(Y)) for By > K(Y) for
some K(Y) < oo, which is the same as its left-hand side.
Now, we use the dominated convergence theorem (DCT) to show
lim Eg 70l(T(Qp,(Y)) < cv(Qr,p,(Y)))

Bo—o0

=Eg, =0 Biiinoo H(T(Qp,(Y)) <cv(Qr,8,(Y))). (52)

The DCT applies because (i) the indicator functions in (52) are dominated by the
constant function equal to one, which is integrable, and (ii) limg,— o 1(7(Qp,(Y)) <
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cv(Qr,8,(Y)) exists a.s.[Pg, ol and equals 1(7 (Q+0(Y)) < cV(O7,+00(Y)) @.8.[Pg, 7 0l
The latter holds because the assumption that 7 (g) and cv(g7) are continuous at positive
definite (pd) ¢ and positive gr, respectively, coupled with the result of Lemma 16.1(f)
(that Qg,(Y) = QO+0(Y) as By — oo for all sample realizations of Y, where Q1 (Y)
is defined in (50)), imply that (a) limg,— 0. T(Qp,(Y)) = T (Q+0(Y)) for all realizations
of Y for which Q1. (Y) is pd, (b) limg, 0o cv(Q7,8,(Y)) = cv(Qr,+00(Y)) for all real-
izations of Y with Q7 1+ (Y) > 0, and hence (c) limg, 00 1(7 (Qp,(Y)) < cv(Q7p,(Y)) =
H(T(Q+0(Y)) < ov(Qr+0(Y)) for all realizations of Y for which
T(Q+00(Y)) # cV(Q1,+00(Y)). We have Pg, - o(T(Q+00(Y)) = cv(Qr1,+00(Y))) = 0 by
assumption, and Pg,  0(Q+oo(Y)ispd & 07, +50(Y) > 0) =1 (because O+~ (Y) has a
noncentral Wishart distribution by Lemma 16.1(g)). Thus, condition (ii) above holds
and the DCT applies.
Next, we have

1- Bglinoopﬁ*,ﬁo,/\,o(fﬁ(Q) =1)

= lim EB*,qT,Ql(T(QB()(Y))fcv(QTyﬁ(l(Y)))

Bo—o0

=Ep,ma Jim 1(T(Qp(Y)) = cv(Qr.p(Y)))
0—> 00
= Pg, =0(RLength(CSy(Y)) = 00), (53)

where the first equality holds because the distribution of Q under Pg, g, A 0(-) equals
the distribution of Qg (Y) under Pg,  o(-) and ¢(Q) = 0iff 7(Qp,) < cv(Qr) by (12),
the second equality holds by (52), and the last equality holds by (51). Equation (53) es-
tablishes part (a).

The proof of part (b) is the same as that of part (a), but with LLength, VB < —K(Y),
and By — —oo in place of RLength, VB; > K(Y), and By — oo respectively.

The proof of part (c) is as follows:

1(RLength(CS¢(Y)) = oo & LLength(CS¢(Y)) = o0)
= 1(T(Qpy (V) = cv(Q1p,(Y)) YBo = K(Y) & VB = —K(Y) for some K (Y) < o)
= ﬁgiinoo LT (Qpy(Y)) = ev(Qr,5,(Y)) & T(Q-p,(Y)) = cv(Qr,—p,(Y)))

= (T (Q+0(Y)) < cv(Q7,200(Y))
= B(l)i—r>noo (T (Qp,(Y)) < cv(Qr,8,(Y)), (54)

where the first two equalities hold for the same reasons as the equalities in (51), the third
equality holds a.s.[Pg, - o] by result (ii) that follows (52) and the same result with — g in
place of B since Q1,(Y) is the same limit whether By — oo or —oo, and the last equality
holds by result (ii) that follows (52).

Now, we have

Pg, = 0(RLength(CSy(Y)) = 0o & LLength(CSy(Y)) = 00)
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=Eg, 0 lim 1(T(Qp,(Y)) = v(Qr.p,(Y)))
Bo—>00
=1- Blim Pg. gor0(0(Q)=1), (55)
0—> 00

where the first equality holds by (54) and the second equality holds by the first three lines
of (53). This establishes the equality in part (c) when By — oo. The equality in part (c)
when By — —oo holds because (54) and (55) hold with 8y — oo replaced by By — —oco
since the indicator function on the rhs of the second equality in (54) depends on B3 only
through |Bg]. O

ProoF oF LEMMA 16.1. Part (a) holds because

lim S (Y)= lim (2'2) Y*Z'vby- (b,02by) '/
Bo—l>nj1:oo ﬁo( ) B m ( ) 0 (0 0)

0—>:tOO

Bo—Eo0

= (Z/Z)*l/ZZ’Y lim <_1}0) /(w% —2w12B0 + w%BS)I/Z

=(22)"*Z'Yer(¥1 /), (56)

where e, := (0, 1), the first equality holds by (3), the second equality holds because b :=
(1, —Bo)’, and the third equality holds using w; = a,.

Next, we prove part (b). The statistic S+ (Y) has a multivariate normal distribution
because it is a linear combination of multivariate normal random variables. The mean
of S400(Y) is

_ 1 1
12 2 F_ 0 F

1
7' Z[mBy : wles - j— =(2'2) pr-—, (57

v Oy Oy

ES+in(Y)=(Z'2)

where the first equality holds using (2) with a = (B4, 1)’ and (50). The variance matrix of
S+00(Y) is

n
Var(Sioo(Y)) = Var((2'2) " Z'Y ey) o = Var(Z(Z/z)‘” 2Z,-Y;e2) /o2
i=1

n n
= Var((2'2)""*ziY}es) 102 =Y (2'2) 2,242/ Z) ey er /o)
i=1 i=1
=1, (58)

where the third equality holds by independence across i and the last equality uses w% =
2. This establishes part (b).
To prove part (c), we have

~1/2

lim Tp,(Y)= lim (2'Z)""*Z'yQ 'ay- (a)2 'ap)"?

B0—> +o0 B()—) +o0

ﬁo—):l:OO

=(22z)""?Zya" lim (ﬁ”) /(0" B +20"2B) + 02) "/
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~1/2 172

=(22)"Z2Y0 e - (£1/0™)

=(22)"VZY 0 er - (20}l — 03) P w2), (59)

where o!!, ®!'?, and w?? denote the (1, 1), (1,2), and (2,2) elements of 271, respec-
tively, e; := (1, 0)’, the first equality holds by (3), the second equality holds because
ag := (Bo, 1)/, and the fourth equality holds by the formula for '!. In addition, we have

(0202 — 02) 0y = (1 - p3) Py = (1 - p2,) o, (60)

where the first equality uses pg) := w12/(w]w;) and the second equality holds because
wiw — wl, = ool — o2, by (45) and w; = 0. Equations (59) and (60), combined with
(50), establish part (c).
Now, we prove part (d). Like S1+o(Y), T+ (Y) has a multivariate normal distribu-
tion. The mean of T (Y) is
1 N—12 — 1/2
ETeae(Y)=(Z'2)"?Z' ZImB - 10 ey - (£(1 = p2y) o)

uv

= (22)" 7 (B0 + 02) - (£(1 - p2,) o), (61)

uv

where the equality holds using (2) with a = (B4, 1)’ and (50). In addition, we have

2

WH — W12 —0, -
B*w“+w12=ﬂ’; 2 == b (62)
Wiwy, — Wiy 0,0, — 0,y (1 - puv)O'uO'v

where the second equality uses wlw3 — w?, = 0202 — 02, by (45) and B.w3 — w12 = — 0w

by (32) with 8 = B,.. Combining (61) and (62) gives

FPuv _ Fruv
2 = K7 '

Uv(l - p%w)

ETio0(Y) = pr - (63)

Oy

The variance matrix of T4 (Y) is

—1/2

Var(Tioo(Y)) = Var((2'2) " °Z'Y Q7 ey) - (1 - p2,) 0

n
= Var(Z(Z’Z)_l/zziyl-/ﬂ_lﬁ) (1= Piv)""%
i=1

n
= ZVar((Z/Z)_l/ZZiY,!-Q*l61) (1= pi) o
i=1

n
=N (2z2)zz/(22)""?e 0 ey - (1 pL,) 0
i=1

w2
2 2\ 2
= I 2 2 2 '(1_puv)au
)
2
Ty 2\, .2
=lk—— 2 (1= puv) oy = I,

0,0y — Oy
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where the first equality holds by (50), the third equality holds by independence across i,
and the second last equality uses wjw3 — w}, = 0207 — 2, by (45) and w3 = 2.

Part (e) holds because
Cov(S+00(Y), T1oo(Y))

—1,2

n
=Y cov((Z2'2) *ZiY]er. (2 2) 2V} o) - (1 - pLy) o) o

i=1

n
=3 (22) 7,22 2) ey 00 ey - (1 - pL) P o = OF. (64)
i=1

Part (f) follows from parts (a) and (c) of the lemma and (11).

Part (g) holds by the definition of the noncentral Wishart distribution and parts (b),
(d), and (e) of the lemma. The density of Q1. (Y) equals the density in (27) because the
noncentral Wishart density is invariant to a sign change in the means matrix. O

17. PrRoOFs oF THEOREM 6.2, COROLLARY 6.3, AND THEOREM 6.4

The following lemma is used in the proof of Theorem 6.2. As above, let Pg, g, A 0(-) and
Py,.2,(-) denote probabilities under the alternative hypothesis densities fo(q; B+, Bo,
A, 2) and fo(q; puv, Av), which are defined in Section 12.1. See (25) and (27) for explicit
expressions for these noncentral Wishart densities.

LEMMA 17.1. (a) limg, .+ Pg, gy, 2,0(POIS2(Q; By, Bo, A) > k2.8,(Q1)) =
Ppuv,)\u(POISZ(Q; oo, |Puv|a A‘U) > K2,OO(QT))7

(b) limg,— 100 Pp,,,89,A,,2(POIS2(Q; Bi, Bo, A) > Kk2,5,(Q1)) = P—p,,,2, (POIS2(Q; o0,
[puvl, Av) > K2,00(O1)),

(C) Ppuu,)LU(POISZ(Q; o0, |pMU|7 A'U) > KZ,OO(QT)) = P—puu,)\v(POISQ’(Q; oo, |Puv|, /\’l)) >
K2,00(01)),

(d) limpg—s 400 Box = —Bsx +2%% = B + 272 and

(1)2 v

(e) limﬁoﬁioo Ay =A.

The reason that Q has the density fo(g: —puv, Av) (defined in (27)) in the limit ex-
pression in Lemma 17.1(b) can be seen clearly from the following lemma.

LEmMMA 17.2. For any fixed (B, A, 2), limg 1+ fo(q; B2« Bo, A2, 2) = fo(q; —puv, Av)
forall 2 x 2 variance matrices q, where B,, and \; satisfy (19) and p,,, and A, are defined
in (15) and (17), respectively.

PrROOF OF LEMMA 17.2. Given (8%, A*), suppose the second point (B3, A3) solves (39). In
this case, by Lemma 15.1(b) and (e), we have

5 linioo)\é/zcﬁz*(ﬁo,mzﬁ 1_1200_/\1/2%(30’9)zi/\uz/%:i)\}/z and
0—> 0

(65)

p
uv2 1/2::F)\v Tyy-

. 1/2 T 1/2 N V)
lim A, 7dg, (Bo,2)= lim AY“dg, (Bo,{) =FA
Bo—+o0 2 2 Bo—>xo0 oy (1 _ puv)
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Using (24), (27), and (65), we obtain

lim )\z(cﬁ2 +dg, )=M(1+rs,) and

Bo—=*

lim A = lim Ay(c3 2¢g,.d d>
g m 2682, (q) gm 2(cg,, qs + 2¢py, dp,, qsT + dg, qT) (66)

= Mo(qs — 2rugst + rayqr)
=: M&(q; —puv)-

On the other hand, given (B8*, A*), suppose the second point (83, A3) solves (41). In
this case, the minus sign on the rhs side of the first equality on the first line of (65) dis-
appears, the quantity on the rhs side of the last equality on the first line of (65) becomes
/%, aminus sign is added to the rhs side of the first equality on the second line of (65),
and the quantity on the rhs side of the last equality on the second line of (65) becomes
£ %r,p. These changes leave )‘ZCBZ /\2d , and Ajcg, dg,, unchanged from the case
where (83, A3) solves (39). Hence, (66) also holds when (B3, A%) solves (41).

Combining (66) with (25) (with (B2, A2) in place of (B4, A)) and (27) proves the result
of the lemma. O

ProOF OF THEOREM 6.2. By Theorem 3 of AMS, for all (B, Bo, A, 2),

PB*,ﬁoJ’Q(‘f’B()(Q) = 1) + Pﬁz*aﬁoa)\zﬂ(‘»ﬁﬁo(Q) = 1)
< Pg, gy,2,2(POIS2(Q: Bo, Bs, A) > k2,p,(Q7))
+ P, 8o, 20,2(POIS2(Q: Bo, B, A) > K2,8,(O7)). (67)

That is, the test on the rhs maximizes the two-point average power for testing 8 = By
against (B, A) and (B2, A2) for fixed known (2.

Equation (67) and Lemma 17.1(a)—(c) establish the result of Theorem 6.2 by taking
the limsupg _, ;, of the left-hand side and the liminfg,, 1o of the rhs. O

The proof of Comment (iv) to Theorem 6.2 is the same as that of Theorem 6.2,
but in place of (67) it uses the inequality in Theorem 1 of Chernozhukov, Hansen, and
Jansson (2009), that is, fPB*’BO’)\’M#/HMWH’Q((ﬁﬁo(Q) = 1) dUIllf(,U/qT/”/.L»,T”) <

I Ps, go.r,pn/llunl,2(POIS2(Q; Bo, Bx, A) > k2,8,(Q7)) d Unif(ur/|lmuxl), plus the fact
that the rhs expression equals Pg, g, »,0(POIS2(Q; By, B«, A) > k2,p,(Q7)) because the
distribution of Q only depends on u, through A = u/_u.

ProoF oF LEMMma 17.1. To prove part (a), we write
Pg, g0 (POIS2(Q: Bo, Bx, A) > Kk2,5,(07))
- / / 1(POIS2(q; Boy Bar A) = Ko,y (1)) bk (5 — cp. ) bi (¢ — dp, ) dsdt, and

Pp,, 0, (POIS2(Q; 00, |punl, Av) > K2,00(Q1)) (68)
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=//1(POIS2(61; 00, |puvls Av) > K2,00(47)) i (s — (F1/00) o)
X ¢k (t - (:Fruv/o'v)/-‘v'n') dsdt,

where ¢ (x) for x € RF denotes the density of k i.i.d. standard normal random variables,
A=, S, tE Rk, qg=I[s:tI'ls: t], gr =t't, cg, = cp,(Bo, ), dp, = dg, (B, {2), the F
signs in the last line are both + or both —, and the integral in the last line is the same
whether both F signs are + or — (by a change of variables calculation).

We have

Bolinioo dr(s — cp. (Bo, Dpr) i (t — dp, (Bo, Q) pur)

= ¢k (s - (:Fl/o'v)l"vw)d)k(t - (:Fruv/o'v)llvw) (69)

for all s, ¢t € R¥, by Lemma 15.1(b) and (e) and the smoothness of the standard normal
density function. By (20) and (28) and Lemma 15.1(b) and (e), we have

lim POIS2(q; By, Bx, A) =POIS2(g: 00, |puvl, Av) (70)
'80%:&00
for all for 2 x 2 variance matrices g, for given (B, A, £2). In addition, we show below that
limg, . +00 k2,8,(qT) = K2,00(q7) for all g7 > 0. Combining these results gives the follow-
ing convergence result:

lim 1(POIS2(q; Bo, Bx» A) > k2,,(q1)) - i (s — ¢, (Bo, Dpr) bic(t — dp, (Bo, D)

B(]*):l:OO

= 1(POIS2(q; 00, |puvl, Av) > K2,06(4T))
i (s — (F1/0v)r) b (t = (Fruv/ o) pr) (71)

for all [s : ] for which POIS2(g; 00, |puvl, Av) > K2,00(qT) OF POIS2(gq; 00, |punl, Av) <
K2.00(qT), where [s : t], g and (gs, gsT, gr) are functionally related by g = [s : ¢]'[s : t] and
the definitions in (25).

Given Lebesgue measure on the set of points (s, ¢') € R?f | the induced measure on
(qs, qst, q7) = (5's, s't, 't) € R3 is absolutely continuous with respect to (wrt) Lebesgue
measure on R with positive density only for positive definite ¢. (This follows from
change of variables calculations. These calculations are analogous to those used to
show that if [S : 7] has the multivariate normal density ¢ (s — (F1/0y)prn) dp(t —
(Fruv/ov)pr), then Q has the density fo(q; puv, Av), which, viewed as a function of
(gs, qsT,qT), is a density wrt Lebesgue measure on R3 that is positive only for positive
definite g.) The Lebesgue measure of the set of (g5, gs7, g7) for which POIS2(g; oo, |puyl,
Av) = K2,00(qT) is zero. (This holds because (i) the definition of POIS2(q; oo, |puvl, Ay) in
(20) implies that the Lebesgue measure of the set of (gs, gs7) for which POIS2(g; oo,
[puvls Av) = K2,00(qT) is zero for all g7 > 0 and (ii) the Lebesgue measure of the set of
(gs, gsT, qr) for which POIS2(g; o0, |pusl, Av) = Kk2,00(g7) is obtained by integrating the
set in (i) over g7 € R subject to the constraint that g is positive definite.) In turn, this im-
plies that the Lebesgue measure of the set of (s, t')’ for which POIS2(g; oo, |puyl, Av) =
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K2,00(qT) is zero. Hence, (71) verifies the a.s. (wrt Lebesgue measure on R?k) convergence
condition required for the application of the DCT to obtain part (a) using (68).

Next, to verify the dominating function requirement of the DCT, we need to show
that

sup | (s — g, (Bo, D pm) b (¢ — dp, (Bo, Dpir)| (72)
BoeR
is integrable wrt Lebesgue measure on R?¥ (since the indicator functions in (71) are
bounded by one). For any 0 < ¢ < oo and m € R, we have

f sup exp(—(x —m)?/2) dx = 2/00 sup exp(—x?/2+ mx —m?/2) dx
0

|m|<c |m|<c

< 2/ exp(—x%/2 + cx) dx
0

=2/ exp(—(x—c)2/2+cz/2) dx < o0, (73)
0

where the first equality holds by symmetry. This result yields the integrability of the
dominating function in (72) because ¢(-) is a product of univariate standard nor-
mal densities and supg,cr g, (Bos )| < oo and SUPg,cRr ldg, (Bo, £2)| < oo are finite by
Lemma 15.1(b) and (e) and continuity of cg, (B, {2) and dg, (Bo, {2) in By.

Hence, the DCT applies and it yields part (a).

It remains to show limg, .+ k2,8,(q9T) = K2,00(q7) for all g7 > 0. As noted above,
limg, +00 POIS2(q; Bo, B, A) = POIS(gq; 00, |puyl, Ay) for all 2 x 2 variance matrices q.
Hence, 1(POIS2(Q; Bo, Bx, A) < x) — 1(POIS2(Q; 00, |puvl, Av) < x) as By — oo for all
x € R for which POIS2(Q; o0, |puvl, Av) # x. We have Py, o, (POIS2(Q; 00, [puyl, Ay) =
x|qr) = 0 for all gr > 0 by the absolute continuity of POIS2(Q; oo, |puyl, Ay) under
Pg, 10, (-lq7) (by the functional form of POIS2(Q; oo, |puul, Ay) and the absolute conti-
nuity of Q1 under Py, o, (-|q7), whose density is given in (26)). Thus, by the DCT, for all
X €R,

lim Pog,0,(POIS2(Q; Bo, Bs, A) < xlq7)
B0—>:|:OO

= Py, 10, (POIS2(Q; 00, lpusl, \v) < xlgr) and (74)
POIS2(Q: Bo, B+, A) =4 POIS2(Q; o0, |puvl.Ay)  as By — Foo under Py, 0, (1q7).

The second line of (74), coupled with the fact that POIS2(Q; oo, |puy|, Ay) has a
strictly increasing distribution function at its 1 — « quantile under Py, o, (:|q7) for all
gt > 0 (which is shown below), implies that the 1 — « quantile of POIS2(Q; By, B«, A)
under Py, o, (-lq7) (i.e., k2 g,(qT)) converges as By — +oo to the 1 — a quantile of
POIS2(Q; By, B+, A) under Pg, 0, (-1qT) (i.e., k2,5(q7)). This can be proved by contra-
diction. First, suppose 8 := lim SUP;_, o0 K2,j(4T) — K2,00(qT) > 0 (where each j € R repre-
sents some value of 8¢ here). Then there exists a subsequence {m; : j > 1} of {j: j > 1}
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such that 6 =lim;_, o K2,m;(4T) — K2,00(4T). We have

a= lim Py, o, (POIS2(Q; mj, B, A) > k2,m;(q1)\qT)

j—o00

< jl_i)ngoPQﬂQT (POIS2(Q; mj, Bx, A) > K2,00(qT) + 8/2|9T)

= Pg,i0; (POISZ(Q; 00, |puvl, )\v) > K2,00(qT) + 5/2|QT)
< PQl\QT (POISZ(Q§ 00, [puvl, /\v) > K2,oo(‘]T)|¢]T)
- (75)

where the first equality holds by the definition of «, g,(g7), the first inequality holds
by the expression above for §, the second equality holds by the first line of (74) with
X = K2,00(qT) + 6/2, the second inequality holds because 6 > 0 and the distribution
function of POIS2(Q; oo, |puvl, Av) is strictly increasing at its 1 — o quantile k2 o (q7)
under Py, o, (-|gr) for all gr > 0, and the last equality holds by the definition of
K2,00(q7). Equation (75) is a contradiction, so 6 < 0. An analogous argument shows
that liminfg . o k2,8,(97) — K2,00(q7) < 0 does not hold. Hence, limg, . k2,8,(q7) =
K2,00(qT). An analogous argument shows that liminfg, . o 2,8,(97) = K2,00(q7)-

It remains to show that the distribution function of POIS2(Q; oo, |puyl, Ay) is strictly
increasing at its 1 — o quantile k» . (g7) under Py, o, (-lgr) for all gr > 0. This holds
because (i) POIS2(Q; oo, |puyl, Ay) is @ nonrandom strictly increasing function of (£(Q;
puv), £(Q; —puy)) conditional on T = ¢ (specifically, POIS2(Q; oo, |puvl, Av) = Cgp X
Y2 0lWE(D; puv)) + (Apé(Q; —pun)) 1/ (4T (v + j + 1)), where Cy, is a constant that
may depend on g7, v := (k —2)/2, and I'(-) is the gamma function, by (20) and (4.8) of
AMS, which provides an expression for the modified Bessel function of the first kind
L, (x)), (i) &(Q; puw) = (S + rpwT)' (S + rywT) and &£(Q; —puy) = (S — 1w T)' (S — 1y T)
have the same noncentral Xi distribution conditional on 7 = ¢ (because [S : T] has
a multivariate normal distribution with means matrix given by (18) and identity vari-
ance matrix), (iii) (£(Q; puwv), £(Q; —puy)) has a positive density on R2+ conditional
on T =t and also conditional on Q7 = gqr (because the latter conditional density is
the integral of the former conditional density over ¢ such that ¢t = gr), and hence,
(iv) POIS2(Q; o0, |puvl, Av) has a positive density on Ry conditional on g7 for all g7 > 0.
This completes the proof of part (a).

The proof of part (b) is the same as that of part (a), but with (i) —cg, and +1/0y in
place of cg, and F1/0y, respectively, in (68), (69), and (71), and (ii) 7, in place of =,
where

_ M2g(Bo. Bs, )
(e’l,kZ’Zel,k)l/z

m=Meyy, e ;:=(1,0,...) R, M:

(76)
dp, + 2rg, (B« — Bo)

dﬂo

g(Bos Bx, ) := ,and A= .

As defined, A, satisfies (19) because

Ay = W oy = W Z Zry = M€ Z' Zey i = Ag*(Bo, Bs ). 77)
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In addition, A, — A as By — +oo by (81) below. With the above changes, the proof of
part (a) establishes part (b).

Part (c) holds because the test statistic POIS2(Q; oo, |puvl, Ay) and critical value
K2,00(Qr) only depend on p,, and gsr through |p,,| and |gs7|, respectively, and the
density fo(q; puv, Av) of Q only depends on the sign of p,, through r,,qs7. In conse-
quence, a change of variables from (gs, gs7, g7) to (¢s, —qsr, qr) establishes the result
of part (c).

To prove part (d), we have

12 _ w383 — 201280 + w?

2 2 2
Wy Wy — Wiy

dg, = (a{)!)_lao) (%9_1“0)—1/2 and

5 (78)
—1/2 _ w380 — w12

- 22 2
W W) — Wy

rg, = e/lﬂ_lao(a6(2_1a0) (af)()_lag)*l/z,

where the first equalities on lines one and two hold by (2.7) of AMS and (19), respectively.
Next, we have

dB(](B* - BO)
dg, + 2rg, (B« — Bo)

_ dBO(ZBO — Bx) + ZFBO(B* — Bo)Bo

dﬁo + zrﬁo(ﬂ* - BO)
_ (@385 — 201280 + 1) (2B0 — Bx) +2(w3Bo — w12) (B+Bo — Bf)

(0%33 —2w12B0 + w%) + 2(6!)%30 — w12) (B — Bo)
_ Bi(-@3Bs — 4012+ 203B, + 2012) + O(Bo)

Bi (w3 = 2w3) + O(By)
_ (@3B —2w10) + 0(1)
—wi+o(1)

Bax = Bo —

2
= B+ 22+ o(1), (79)
)

where the third equality uses (78) and the two terms involving Bg in the numerator of
the rhs of the third equality cancel. Next, we have

2 2wy — w2 + w3 2 2
g+ w;z _ (w12 2,32*) 2B _ 20w +2(TUB* =,3*+2(T_MZUZB*+2M’ (80)

w5 w5 a, a, Oy

where the second equality uses (32) with 8 = 8, and w3 = o?2.
Next, we prove part (e). We have

M2 | dgy +2r8,(Bx — Bo)
A N dg,
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w3 B3 —2w12B0 + 0] +2(w3B0 — w12)(Bx — Bo)
w%ﬁ% —2w12B0 + w%

B3 (03 — 203) + Bo(—2012 +2w3 B4 + 2012) + 0] — 2w12Bx
w%B% —2w12Bo + w%

=1+o0(1), (81)

where the first equality holds by (19) and the second equality uses (78). O

ProoF oF COROLLARY 6.3. We have
(Pg,.,0(RLength(CSy(Y)) = 00) + Pg,, »,.0(RLength(CS¢(Y)) = 00))/2

=1 lim [Ps p00(0@=1)+ lim Pg, g,10(4@=1)]/2

Bo—00

> Ppyyry (POIS2(Q; 00, [puvls Av) > K2,00(QT)), (82)

where the equality holds by Theorem 5.1(a) with (B84, A) and (B2«, A2:), Pg, x,0(-) is
equivalent to Pg, , o(-), which appears in Theorem 5.1(a) (because events determined
by CS4(Y) only depend on 7 through A, since CS4(Y) is based on rotation-invariant
tests), and the inequality holds by Theorem 6.2(a). This establishes the first result of
part (a).

The second result of part (a) holds by the same calculations as in (82), but with
LLength and By — —oo in place of RLength and By — oo, respectively, using Theo-
rem 5.1(b) in place of Theorem 5.1(a).

Part (b) holds by combining Theorem 5.1(c) and Theorem 6.2 because, as noted in
Comment (iii) to Theorem 6.2, the limsup on the left-hand side in Theorem 6.2 is the
average of two equal quantities. O

Next, we prove Comment (ii) to Corollary 6.3. The proof is the same as that of Corol-
lary 6.3, but using

/PB*,A,M,T/HM\|,0(RLength(CS¢(Y)) = 00) d Unif(pr /| wrl)
=1- ﬁ(l)linoopﬁ*’ﬁo’)"”((b(g) =1) (83)

and likewise with (B, A7) in place of (B., A) in place of the first equality in (82).
The proof of (83) is the same as the proof of Theorem 5.1(a) but with Qg (Y) and
0Or,8,(Y) replaced by [Sg,(Y), Tg,(Y)], and Tg,(Y), respectively, throughout the proof,
with Eg,_ . o(-) replaced by fEB*,,\,M/HM”,Q(-)dUniform(p,W/H,uWH) in (52), and using
Lemma 16.1(a) and (c) in place of Lemma 16.1(f) when verifying the limit property (ii)
needed for the DCT following (52).

Proor OoF THEOREM 6.4. The proof is quite similar to, but much simpler than, the
proof of part (a) of Lemma 17.1 with POIS2(g; B, B«, A) > k2 g,(qr) in (68) replaced
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by gs > Xi,l—a/k for the AR test, qu/qT > X%,l—a for the LM test, and g5 — q7 + ((gs —
qr)? + 4q§T)1/2 > 2kR,«(qr) for the CLR test. The proof is much simpler because for
the latter three tests neither the test statistics nor the critical values depend on gy.
The parameter By, for which the limit as By — oo is being considered, only enters
through the multivariate normal densities in (68). The limits of these densities and an
integrable dominating function for them have already been provided in the proof of
Lemma 17.1(a). The indicator function that appears in (71) is bounded by one regardless
of which test appears in the indicator function. In addition, Pg, ,,,,A, (AR = X%,lfa) =0

and Pg, p,,, 1, (LM = X%,pa) = 0 because the AR statistic has a noncentral X% distribution
with noncentrality parameter A, under Pg, ,,, A, (since S ~ N(ur /0oy, I;) by Lemma 6.1
and (18)) and the conditional distribution of the LM statistic given T under Pg, ,,, .1, iS
anoncentral y? distribution.

Next, we show Pg, p,,.1,(LR = k1ro(Q7)) = 0. Let J = AR — LM. Then 2LR =J +
IM — Q7 + ((J + LM — Q7)* + 4LM - O7)'/2. We can write Q =[S : TI'[S : T], where
[S : T1 has a multivariate normal distribution with means matrix given by (18) and iden-
tity variance matrix. As shown below, conditional on 7' = ¢, LM and J have indepen-
dent noncentral x? distributions with 1 and k — 1 degrees of freedom, respectively.
This implies that (i) the distribution of LR conditional on T = ¢ is absolutely contin-
uous, (i) Pg,, pu.r, (LR = kLR, (QT)IT = t) = 0 for all ¢ € R*, and (iii) Pg, p,, A, (LR =
KLR,«(QT)) = 0. It remains to show that conditional on Q7 = g7, LM and J have inde-
pendent noncentral y? distributions. We can write LM = S'P7S and J = §'(I; — Pr)S,
where P := T(T'T)~'T’ and S has a multivariate normal with identity variance matrix.
This implies that PrS and (I, — Pr)S are independent conditional on 7' = f and LM and
J have independent noncentral y2 distributions conditional on 7 = ¢ for all € R¥. This
completes the proof. O

18. PrRoOF OF THEOREM 8.1

The proof of Theorem 8.1(a) uses the following lemma.

LEMwMA 18.1. Suppose b1, =1+ 6x/x and by, =1 — 6, /x, where 8§y — 8 # 0 as x — oo,
Kjix = (bjxx)" forsomem e R for j=1,2,and K jpy — K € (0, 00) as x — oo for j=1,2.
Then (a) as x — oo,

lOg(KllxKlzxeblxx + Kzlszgxebz"x) —x —nlogx —log K
— 800 +log(1 +e72°*) and

(b) the function s(y) :=y + log(1 + e~%) for y € R is infinitely differentiable, symmetric
about zero, strictly increasing for y > 0, and hence, strictly increasing in |y| for |y| > 0.

Proor oF LEMMA 18.1. Part (a) holds by the following:
log(K11xK12c€”* + Ko1,K2re?>¥) — x — nlogx — log Koo

K>, K
= log(KllxKlzxeb”x (1 + Me(b“_b”)")> —x—mnlogx —logK
K11xK12x
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K>, K
=Dbixx +1og K1, +1og(Kiox/Keo) + log(l + Me(bz"_b“)x> —x—mnlogx
Ki1x K12k
K>, K
=8y + nlog(biy) + log(K12x/Koo) + log(l + Me_25x>
Ki1xKi2x
— 800 +log(1 + €720, (84)

where the third equality uses b1, x — x = 8, log K11, = nlog(b1,x) = nlog(b1,) + nlog(x),
and by, — by, = —28,/x, and the convergence uses log(bi;) = log(l + o(1)) — 0,
K12x /Koo = 1, K212/ K11x = (b2x /b1x)" = 1+ 0(1), and Kpx /K12, — 1.

The function s(y) is infinitely differentiable because log(x) and e~% are. The func-
tion s(y) is symmetric about zero because

y+log(1+e ) =~y +log(1+e?)

14 e (85)
& 2y=log(l+e?) —log(l+e )= log(ﬁ> =log(e?) =2y.
+e

The function s(y) is strictly increasing for y > 0 because

e 1—e -1
T4e™® 14e? a1

d
oW =1- (86)

which is positive for y > 0. We have s(y) = s(|y|) because s(y) is symmetric about zero,
and (d/d|yl)s(|y|) > 0 for |y| > 0 by (86). Hence, s(y) is strictly increasing in |y| for |y| > 0.
|

Proor oF THEOREM 8.1. Without loss in generality, we prove the results for the case
where sgn(dpg,) is the same for all terms in the sequence as )\d%* — oo. Given (3), without
loss of generality, we can suppose that

S=cgur+Zs and T=dgpur+Zr, (87)

where Zg and Zr are independent N (0%, I) random vectors.

We prove part (c) first. The distribution of Q depends on w only through A. In conse-
quence, without loss of generality, we can assume that Y := u,/A'/? € R* does not vary
as /\dé* and A!/2cg, vary. The following establishes the a.s. convergence of the one-sided
LM test statistic: as Addg_— oo and AM2¢p, — coo,

Ost __ (cp.pn+ Zs) (dg,un + Z1)
er/z ((dg,m + Z1) (dp, pmr + ZT))l/Z
_ (epm + Zs) (dp,pn + Z71)
@01+ 005 D)
(cg.tin/A? + Zs/N?) (sgn(dp ) ptm + Oass.(1/1dp, )
- (14 0as.(1))
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( (ds)Y'Z (dg.)AV? 10) (AC‘% )1/2 o !
= | sgn(dg, s +sgn(dp, cg, + (—>+ (—))
Ny T\ aa )

X (1 + Oa.s.(l))
—a.s.5g0(d,)Y' Zs + sgn(dg, )coo
=: LM ~ N (sgn(dg, )¢, 1), (88)

where the first equality holds by (4) and (87), the second equality holds using dg, - +
Zr = ()\d%*)l/z(dﬁ*,uﬂ/()\d%*)1/2 + 045.(1)) since /\df;* — oo, the convergence holds
because Adé* — oo and A/2cg, — ¢, and the limit random variable LM, has a
N(sgn(dp,)coo, 1) distribution because sgn(dg,)Y'Zs ~ N(0, 1) (since Zg ~ Nk, I})
and | Y| =1).

The a.s. convergence in (88) implies convergence in distribution by the DCT applied
to 1(Q5T/Q1T/2 <y) for any fixed y € R. In consequence, we have

P(LM > X%,l—a) = P((QST/QlT/Z)2 > X%,l—a)

(89)
- P(IMI > X3 ) =P((A) > X1 a)

as /\dé* — oo and AY2¢cg, — oo, which establishes part (c).
To prove Theorem 8.1(a), we apply Lemma 18.1 to arealization of the random vectors
Zs and Z7 with

x:= (A3, 07)"2,

12 12
biyx == (A€, (Q: Bo, Q) /%= A1/2(C,23*Qs +2¢p,dp, Ost + df;*QT) 2,
12
byx = M2(c Qs —2¢p,dp, Ost + d2 O7) "7,
Kipy i= (bpex)~ k=172, (90)
Ko (b120) 212y ;2 (b12X)
12X T ebl)(x
Koix = (b2xx)_(k_l)/2, and
) (b2xx)1/21(k—2)/2(b2xx)
Ky = Dy .
e X
Thus, we take n := —(k — 1)/2.
We have
Or = (dp,pr + Zr) (dp, ir + Z1) = Mg (1+ 045.(1)). (91)

This implies that x = ()\dé*)(l + 04.5.(1)). Thus, x — oo a.s. since )\dé* — 0o by assump-
tion.

The conditions )\dlzg* — ooand A!/2¢g, — coo € R imply that by, x — 0o and by, x — 00
as x — oo. In consequence, by the properties of the modified Bessel function of the first
kind, I(x_7)/>(x) for x large, for example, see Lebedev (1965, p. 136),

lim Ky =1/Q2m)Y? and lim Kap,=1/2m)"% (92)

biyx—00 byyx—00



Supplementary Material On optimal inference in the linear IV model 25

Hence, the assumptions of Lemma 18.1 on K j5, for j = 1,2 hold with Ko = 1/(2m)!/2.
Next, we have

1/2
bix = (A}, Qs +2Acp,dp, Qsr + M3, 0r)V* x

2)\CB*dB*QST n )\Clzg* QS)]/2

1 /2x 2

1+

(s
(

2
- /\1/2c3 sgn(dg,) Qs )\CB*QS)I/Z

1/2 2
X QT X

_ 2M72¢5 sen(d Ac Qs
=1+ (1+ 04s5.(1)) 1/2( B*xg (dp.) Qf/€+ P ) 93)
Or X

where the fourth equality holds by the mean value theorem because A!/2¢cg, = O(1), x —

oo a.s., and QST/QIT/2

line of (93) is 04.5.(1).
From (93), we have

=0(1) a.s. (by (88)) imply that the term in parentheses on the last

Qsr A, Qs)

—-1/2
8y = (1+ 0as. (1) / (2/\1/2% Sgn(dﬁ*)ﬁ .
T

(94)
—  2coosgn(dg,)LM o =: 65 a.S.

using (88). This verifies the convergence condition of Lemma 18.1 on 8§, with 6 # 0 a.s.
(by the absolute continuity of Zg). Hence, Lemma 18.1 applies with x, b1, ... asin (90).

Let £g, abbreviate &g, (Q; Bo, 2) = cf;* Os + 2cp,dp, Ost + dé*Qr. Let ég,, = c'%* Qg —
2cp,dp,Qst +dj Or. S0, b1x = (Aép,)/? and by,x = (Aég,,)'/?. Let

k-1
7(Bs, A, Or) = —(Adj, Or) " + === log((Ad}, Or) %) ~ log K

= —x —nlogx —log K, (95)

where the equality holds using the definitions in (90) and K, = 1/(2m)/? by (92).
Given the definitions of POIS2(Q; By, B+, A) and x, biy, ... in (28) and (90), respec-
tively, Lemma 18.1(a) gives
log(POIS2(Q; Bo, B> M) +10g(22(Q75 Bos Bxs A)) + 7(Bss A, Or)
=log((Aép,) ™ " 422 ((Aép)Y7) + (o) ™72 1) (M) 7))
+ T(B*a )\s QT)

_ 7(k71)/4( B (k=2)/2 B ()\fﬁ*) /
_10g<(/\§ﬁ*) e()\fﬁ*)l/z ¢

4 (Ag )—(k—l)/4 ()‘5132*)1/4I(k_2)/2((/\§ﬁ2*)1/2
Basx o(Aép,, )72

12
)e()‘§’32*) ) + 7(Bs, A, Or)
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= log(K11:K12:€?15* + K1, K22, ?2) — x — mlog x — log Koo

—a.s. 800 +10g(1+ 6_2500)

=5(0c0)

= 5(2¢o0|LM 1), (96)

where ¢,(Q7; Bo, B, A) is defined in (28), LM7_ ~ x3(c3,) is defined in (88), the first
equality holds by the definition of POIS2(Q; By, B+, A) in (28), the third equality uses
the definitions in (90) and (95), the convergence holds by Lemma 18.1(a), the second
last equality holds by the definition of s(y) in Lemma 18.1(b), and the last equality
holds because 6 := 2co sgn(dp,)LM 1 (see (94)), and s(y) is symmetric around zero
by Lemma 18.1(b).

Applied to 1(1og(POIS2(Q: Bo, Bs, 1)) +10g(242(Q7: Bo, Bis 1)) + 7(Bss A, O7) < w)
for any w € R, equation (96) and the DCT give

log(POIS2(Q; B, B> A) +10g(242(0r3 Bos Bis 1)) + 7(Bas A, O1) =4 5(800)
= 5(2¢00| LM 105 ]). (97)

Now we consider the behavior of the critical value function for the POIS2 test,
k2,8,(qT), where gr denotes a realization of Q7. We are interested in the power of
the POIS2 test. So, we are interested in the behavior of k> g (g7) for gr sequences as
/\dé* — oo and A!Y2¢cg, — ¢ that are generated when the true parameters are (S, A).
This behavior is given in (91) to be g7 = Adj_(1+ o(1)) a.s. under (Bx, A).

Up to this point in the proof, the parameters (B, A) have played a duel role. First,
they denote the parameter values against which the POIS2 test is designed to have op-
timal two-sided power and, hence, determine the form of the POIS2 test statistic. Sec-
ond, they denote the true values of 8 and A (because we are interested in the power
of the POIS2 test when the (B4, A) values for which it is designed are the true values).
Here, where we discuss the behavior of the critical value function «; g,(-), (B, A) only
play the former role. The true value of B is By and the true value of A we denote by Ay.
The function « g,(-) depends on (B, A) because the POIS2 test statistic does, but the
null distribution that determines «; g,(-) does not depend on (B, A). In spite of this,
the values g7 which are of interest to us, do depend on (B, A) as noted in the previous
paragraph.

The function «; g,(-) is defined in (29). Its definition depends on the conditional
null distribution of Q; given Q7 = gr whose density fp, 0, (:|q7) is given in (26). This
density depends on k, but not on any other parameters, such as By, Ao = I"“;To Wy, Or £2.In
consequence, for the purposes of determining the properties of «; g, (-) we can suppose
that Bo =0, ur, = 1%/[1%]|, Ao = 1, and 2 = I,. In this case,

S=Zs~NO5 1),  T=pm+Zr~N(@m, ), (98)

and S and T are independent (using dg,(Bo, 2) = byQby(by2by)~ /2 det()~1/? =1
since by = (1, Bp)’ = (1, 0)").
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We now show that «; g,(g7) satisfies

log(k2,p,(q7)) +10g(2¢2(q73 Bo, Bss V) + 7(Bs, A, q1)

— S(2|Coo|()(%,1_a)l/2) as qr — oo (99)

for any sequence of constants gr = /\df;*(l +0(1)) as )\d%* — 00.

Suppose random variables {W,,, : m > 1} and W satisfy: (i) W}, -4 W asm — oo, (i) W
has a continuous and strictly increasing distribution function at its 1 — « quantile ko,
and (iii) P(W,, > k) = « for all m > 1 for some constants {k,, : m > 1}. Then k,;, - k.
This holds because if limsup,,,_, ., km > Ko, then there is a subsequence {v,,} of {m} such
that lim,;—, oo Kv,, = Koot > Koo ad a = P(W,, > Ky,,) &> P(W > koot) < P(W > ko) = q,
which is a contradiction, and likewise liminf,,_, o kK < Koo leads to a contradiction.

We apply the result in the previous paragraph with (a) {W}, : m > 1} given by
log(POIS2(Q; By, B«, A)) +10g(2¢2(qT; Bo, B, A)) + 7(Bx, A, gr) under the null hypoth-
esis and conditional on T = ¢ with ¢ = 1kq1T/ 2/ k1/2 for some sequence of constants g7 =
Adg (140(1)) » oo as Adg — oo, (b) W = 5(2¢o0|S'1% / k1/2)), where §'1% / k12 ~ N (0, 1),
(©) km equal to log(kz, g,(qr)) + log(2¥2(qT; Bos Bx> A)) + T(Bx, A, q7), and (d) koo =
$Qleal (X3 1)),

We need to show conditions (i)-(iii) above hold. Condition (ii) holds straightfor-
wardly for W as in (b) given the normal distribution of S, the functional form of s(y),
and ¢ # 0.

By definition of k, g,(q7), under the null hypothesis, Pg, o, (POIS2(Q; By, Bx, A) >
k2,8,(q7)|qr) = @ for all g7 > 0; see (29). This implies that the invariant POIS2 test is
similar. In turn, this implies that under the null hypothesis P(POIS2(Q; Bog, B«, A) >
k2,8,(qr)IT =1t) =aforall t € Rk because Theorem 1 of Moreira (2009) shows that any
invariant similar test has null rejection probability « conditional on 7. This verifies con-
dition (iii) because the log function is monotone and the last two summands of ¥}, and
k, defined in (a) and (c) above cancel.

Next, we show that condition (i) holds. Given (98) and ¢ = 1kq1T/ ?/k'/2, under the null
and conditional on 7 = ¢, we have

/
Osr S Sk~ (100)
o7~ (1)

which does not depend on )\d%* or A!/2¢g_ . Hence, in place of the a.s. convergence result

for Qgr/ QlT/2 as )\dé* — oo and A/ 2C'3*_>Coo in (88), which applies under the alternative

hypothesis with true parameters (8., A), we have QST/QlT/2 = §'1%/k'/2 under the null
hypothesis for all /\d%* and AV ZCB*. Using this in place of (88), the unconditional a.s. con-
vergence result in (96), established in (90)-(96), goes through as a conditional on 7' = ¢
a.s. result without any further changes. In consequence, the convergence in distribution
result in (97) also holds conditional on T = ¢ a.s., but with s(2coo|S’1k / kl/ 2|) in place of
§(2¢o0| LM 150]). This verifies condition (i).

Given that conditions (i)—(iii) hold, we obtain «,;, — ko as )\dé* — oo for k,,;, and ks
defined in (c) and (d), respectively, above. This establishes (99).
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Given (99), we have

Pg, go.A,0(POIS2(Q: Bo, Bx, A) > Kk2,5,(07))
= Pg, p.2,0(log(POIS2(Q; B, B+, A)) +10g(242(Q7; Bo, Bx» 1)) + 7(Bx, A, OT)
> log(k2,8,(Q1)) +10g(2¢2(073 Bo, B+ M) + 7(Bx, A, O1))
= d P(5(2¢0| LM 15]) > 5(2¢00| X7 1 o))
= P(LM7o > X7 1_q)
=P(x1(c%) > x1.1-a)» (101)

where the second last equality uses the fact that s(y) is symmetric and strictly increasing
for y > 0 by Lemma 18.1(b). Equation (101) establishes part (a) of the theorem.
Now we establish part (b) of the theorem. Let

J:=S5'MrS, (102)
where M7 := I — Pr and Py := T(T'T)~'T'. It follows from (6) that
IM=SPrS and Qgs=LM +J. (103)

By 91), Or = )\dé*(l + 045.(1)) — 00 a.s. as )\d%* — oo when the true parameters are
(B, A). By (103) and some algebra, we have (Qs — Q7)?> +4LM - Oy = (LM —J + O71)* +
4LM - J. This and the definition of LR in (6) give

LR:%(LM—i—J—QT—i-\/(LM—J+QT)2+4LM'J)' (104)

Using a mean-value expansion of the square-root expression in (104) about (LM —J +
Or)?, we have

M =7 4 02 +4LM T =IM —J + QOr + 2O 4LM -J (105)

for an intermediate value ¢ between (LM —J + Q7)* and (LM —J + Q7)> +4LM - J. Tt
follows that

LR=LM +o(1) a.s. (106)

because Q7 — oo a.s., LM = O(1) a.s., and J = O(1) a.s. as )\d%* — 0o and A/2¢g, —
oo € R, which imply that (v/2)~! = o(1) a.s. These properties of LM and J hold be-
cause LM = S'PrS < §'S, J = §’M7S < §'S, and, using (87), we have §'S = (cg, pun +
Zs) (cg,mm + Zs) = O(1) a.s. because ||C'3*,LL7T||2 = )\cé* = O(1) by assumption.

The critical value function for the CLR test, kzr, «(-), depends only on k and «; see
Lemma 3(c) and (3.5) in AMS. It is well known in the literature that xzr o(-) satisfies
KLR,a(qT) — X%,l—a as qr — oo, for example, see Moreira (2003, Proposition 1). Hence,
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we have

Pg, gy, 0(LR > kIR o(QT)) = Pp, gor.0(LM + 045.(1) > X 1_o + 0as.(1))
= Pp.por2 (LM +0p(1) > X1 1_,)

— P(xi(c%) > XT.1_a) (107)

as )\dé* — oo and Al/zcﬁ* — (oo, Where the first equality holds by (106), Q7 — oo a.s.

by (91), and limg, . o KLR,a(qT) = X% 1_, and the convergence holds by part (c) of the
theorem. This establishes part (b) of the theorem. O

Proor oF THEOREM 8.2. First, we establish part (a)(i) of the theorem. By (31) with 8 =
B and 3 = 3,, we have

Q(By, 3,) = [;"i ‘Zﬂ = [0”2‘ +02:uf;5;*033 < ow J;g" WB *} . (108)
Using this, we obtain, as p,, — £1,
cg, = ¢g,(Bo, 2(Bx, 2x))
= (Bs — Bo) (0} — 2Bowir + w3p3)
= (Bx — Bo) (02 + 200 Bx + 0282 — 2B0(0un + 02 Bx) + 0333)_1/2
= (B.— Bo) (02 +2(Bs — B0)ou0upuy + (Bs — Bo)202)
— (B« — Bo) (02 £2(Bs — B)ouoy + (Bs — Bo)?02) /?
= (Bx— Bo)/|ou £ (B« — Bo)ou|, (109)

where the second equality uses (3), the convergence only holds if o, = (8« — Bg) oy # 0,
and the fourth equality uses oy, = 0,0y pyp- This proves part (a)(i).
To prove part (a)(ii), we have

12 det(2) 12

dg, = dg,(Bo, 2(Bs, 2x)) = bl 02by (b(2by)
= (0 — 012(Bo + Bx) + 03BoBx) - (0] —2Bow12 + w383

—-1/2
(0wl - wly) 7, (110)

~1/2
)

where the second equality holds by (3). The second multiplicand on the rhs of (110)
converges to |oy, £+ (B« — Bo)ow| ! provided o, & (B« — Bo) oy # 0 by the calculations in
(109).

The first multiplicand on the rhs of (110) satisfies, as p,, — %1,

w% —w12(Bo + Bx) + w%ﬁoﬁ*
= 02 + 200 B + 02 B2 — (duy + 02 B) (Bo + Bs) + o2 BoBx
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= 0'3 + 0uoypuv(Bs« — Bo)
ﬁau(auigv(ﬁ*_BO)L (111)

where the first equality uses (108) and the second equality holds by simple algebra and

Oyy = OyuOyPyy-
The reciprocal of the square of the third multiplicand on the rhs of (110) satisfies, as
puv — £1,

w%w%_ w%Z = ( +20'u0'vpuvB*+o' B )U - (a'uO'vpuv-i-U' P )

( :i:ZUua'vB*—l—a' B )0' - (:l:O'qu—l—a' B*)
= (U'u:to'vﬁ*) O'U _(io'u+0'vﬁ*) O'U
=0, (112)

where the first equality holds by (108) and oy, = 0,09 puv-

Combining (110)-(112) and A > 0 proves part (a)(ii).

Next, we establish part (b) of the theorem. Using the definition of cg(By, £2) in (3),
we have

. L B , ~12
p(}gnﬂ g, (Bo, 2) = pél_l)nil(ﬁ* Bo) (b 2by)
=, lim (B* Bo) (0} —2Bowiwapn + w3B5)” 12
.(I_)
= (B« — Bo)/|lw1 F w2B0l, (113)

where the third equality holds provided w| F w; 8¢ # 0. This establishes part (b) (i) of the
theorem.
Using the definition of dg(By, £2) in (3) and b, := (1, B+)’, we have

172

hm dB (Bo, 2) = limﬂb;!)bo(b/oﬂbo)f det(2)~1/?

po—=*

= lim (0] — @102p0(Bo+ Bs) + @3B0Bx)

po—>*1
(@} = 2B0@102p0 + w3B]) 7 (0f 03 - wledph) T
— (01 F 2B0) (@1 F @2B) ———— —— . lim
|01 F @20l @102 po—=1 (1 - p2)!/>
= sgn((w1 F w2B0) (w1 F w2B4)) - 00, (114)

where the third and fourth equalities hold provided w{ F w289 # 0 and w F wy B+« # 0.
This and A > 0 establish part (b)(ii) of the theorem.
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Part (c)(i) is proved as follows:
B* - /30
(0'3 +2(Bx — Bo) OuTvpuy + (Bx — :80)20'3)

C =

172

- :F(Tiv as (puv, Bo) — (1, £00), (115)
where the first equality holds by (109) and the convergence holds by considering only the
dominant B terms. The same result holds as (p,y, Bo) — (1, +00) because p,, enters the
middle expression in (115) only through a term that does not affect the limit.

Part (c)(ii) is proved using the expression for dg, in (110). By (112), the third multi-
plicand in (110), which does not depend on By, diverges to infinity when p,, — 1 or —1.
The product of the first two multiplicands on the rhs of (110) equals

o] — 012(Bo + B+) + ®3B0Bx _ oa + 0u0upur(Bx — Bo)
12— 1/2
(a)% —2Bow12 + (x)%B%) / (0‘5 +2(Bs — Bo)ouovpuy + (Bx — 30)20-3) /
oy oy
- F =Foy, as (pu,Bo) — (1, xo0), (116)

Oy

where the equality uses the calculations in the first three lines of (109) and (111) and
the convergence holds by considering only the dominant By terms. When (p,,, Bo) —
(=1, £00), the limit in (116) is 0, because p,, enters multiplicatively in the dominant
Bo term in the numerator. In both cases, the product of the first two multiplicands on
the rhs of (110) converges to a nonzero constant and the third multiplicand diverges to
infinity. Hence, dpg, diverges to +o0 or —oo and Ad%* — oo since A > 0, which completes
the proof.
Part (d) (i) holds because

B*_BO

(07 —2Bowiwrpn + @367

1
g, = > ¥, as (po, Bo) — (1, £00), (117)

)1 2
where the equality uses (113). The same convergence holds as (pg, Bg) — (1, £00) be-
cause py, enters the middle expression in (117) only through a term that does not affect

the limit.
Part (d)(ii) is proved using the expression for dg, in (114):

(wf —w1w2p0(Bo+ B«) + w%BoB*) N s 2 9 9

2
dg, = )1/2 w05 — Vo500

*

)71/2

>

(0 = 2Bowiwrpn + w36

2 2 23 _
(0] — @1@2p0(Bo + Bx) + wz)[f;)zﬁ*) . i(wz,&;z wiw)) — (| — wyB,). and (118)

(07 —2Bowiwapn + @3B

2.2 2)71/2

(‘“%“’% —Wiw30( — 00 as(pgn,Bo) — (1,F00).

Hence, )\dé* — o0 as (pg, Bo) = (1,+00) provided w; — wrBx # 0. When (pg, Bo) —
(=1, £00), the limit in the second line of (118) is :I:(w%B* + wiwy)/wy = £(w1 + w284),
and hence, )\dé* — oo provided w{ + w, B« # 0, which completes the proof. O
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19. PROOFS OF THEOREM 13.1 AND LEMMAS 14.1 AND 14.2

ProoF oF THEOREM 13.1. By Corollary 2 and Comment 2 to Corollary 2 of Andrews,
Moreira, and Stock (2004), for all (B4, Bo, A, £2),

Pg, gor,0(Pp,(Q)=1) < Pg, p,1,0(POIS(Q; Bo, Bx) > kg, (O71)). (119)

That is, the test on the rhs is the (one-sided) POIS test for testing Hy : B = By versus
H; : B = B, for fixed known (2 and any A > 0 under H;.

We use the DCT to show
lim Pg, p.2,0(POIS(Q; Bo, B+) > kpy(Q7))
ﬁo—):l:OO
=Pp 10 (POIS(Q; 00, Puy) > Koo(QT))- (120)

Equations (119) and (120) imply that the result of Theorem 13.1 holds.
By (34), (37), and Lemma 15.1(b) and (e),

lim  POIS(q; Bo, ) = POIS(g; 00, puv) (121)
Bo— oo

for all 2 x 2 variance matrices g, for given (B, m, ).

The proof of (120) is the same as the proof of Lemma 17.1(a), but with POIS(Q; By,
B.), kg, (Q1), POIS(Q: 00, puy), and koo (Qr) in place of POIS2(Q: By, B, A), k2,5,(Q7),
POIS2(Q; 00, |puvl, Av), and k2 .,(Qr), respectively, using (121) in place of (70), and
using the results (established below) that (i) the Lebesgue measure of the set of
(gs, qst, qr) for which POIS(g; o0, puv) = koo (q7) 18 Z€TO, (ii) Po, |0, (POIS(Q: 00, puy) =
x|qr) =0 for all g7 > 0, and (iii) the distribution function of POIS(Q; o0, p,y) is strictly
increasing at its 1 — a quantile k. (q7) under Py, 0, (-|q7) for all gr > 0.

Condition (i) holds because (a) POIS(g; 00, puy) = qs + 2rupqst (see (37)) implies that
the Lebesgue measure of the set of (gg, gs7) for which gs + 2r,ygsT = koo (g7) is zero for
all g7 and (b) the Lebesgue measure of the set of (gs, gst, gr) for which gs + 2r,,gsT =
Kso(qT) is obtained by integrating the set in (a) over g7 € R subject to the constraint that
q is positive definite.

Condition (ii) holds by the absolute continuity of POIS(Q; oo, pyy) under Py, 0, (|
qr) (by the functional form of POIS(Q; oo, p,») and the absolute continuity of Q1 under
Po,10;(-1qT), whose density is given in (26)).

Condition (iii) holds because we can write POIS(Q; 00, pyy) = 8'S + 21, S'T = (S +
ruwT)' (S + rypT) — rbsz/ T, where [S : T] has a multivariate normal distribution with
means matrix given by (18) and identity variance matrix, and hence, POIS(Q; oo, puy)
has a shifted noncentral X2 distribution conditional on T = ¢. In consequence, it has a
positive density on (rszt’t, 00) = (rl%vqT, oo) conditional on T = ¢ and also conditional on
Ot = qr (because the latter conditional density is the integral of the former conditional
density over ¢ such that #'t = g7). This completes the proof. O

Proor orF LEMMA 14.1. First, we show that (42) implies the equation for A, in (40). By
the expression dg = a’0~'ag(ay 2~ ag)~/? given in (2.7) in AMS, where a := (8, 1)’ and
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ag = (Bg, 1), forany B € R,

d/g — dBo =(a— ao)/9_1a0(060_1a0)71/2
= (B — Bo)e, 2 ag(ap2 "ag) " = (B — Bo)ry» (122)

where e := (1, 0)" and the last equality holds by the definition of rg,.
Substituting (122) into the second equation in (42) gives

A Pdg,, =2 dg,
iff Y% (dpg, + g, (Bax — B0)) = £AY2(dg, + g, (B« — Bo)) (123)
iff ’\é/zdﬁo = iAl/Z(dBO + 78y (Bx — :80)) - rﬁo)‘é/z(ﬂz* — Bo)-

Given the definition of cg in (3), the first equation in (42) can be written as

A2(Baw — Bo) = FAV2(B. — Bo). (124)
Substituting this into (123) yields

1/2 1/2

2
iff Ay %dpg, = £A"2(dg, + 2rgy (B« — Bo) (125)

dg. +2rp (By —
iff AY? =212 B+ r/;O(B Po)
Bo

The square of the equation in the last line in (125) is the equation for A; in (40).
Next, we show that (42) implies the equation for B,, in (40). Using (124), the first
equation in (42) can be written as

12
B2 =PBoF W(B* - Bo)- (126)
2

This combined with the equation for A72y Aé/ 2 obtained from the last line of (125) gives

dﬁ()
dg, + 2rg, (B« — Bo)

B2« = Bo — (B« — Bo)» (127)
where a minus sign appears because the F sign in (126) gets multiplied by the + sign in
the last line of (125), which yields a minus sign in both cases. Equation (127) is the same
as the first condition in (40). This completes the proof that (42) implies (40).

Now, we prove the converse. We suppose (40) holds. Taking the square root of the
second equation in (40) gives

)\;/2 _ :i:/\l/z dﬁo + 2”,80(3* - Bo)

5 (128)
dﬁo
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where the + sign means that this equation holds either with + or with —. Substituting
this into the first equation in (40) gives (126), which is the same as (124), and (124) is the
first equation in (42).

The second equation in (42) is given by (123). Given that the first equation in (42)
holds, the second equation in (42) is given in (125). The last line of (125) holds by (128).
This completes the proof that (40) implies (42). O

ProoF oF LEMMA 14.2. The proof of part (a) of the lemma is essentially the same as
that of Theorem 8(b) in AMS. The only change is to note that when (B;., A;) satisfies
(41), we have 7+ = 7-3‘, &% = —8’2‘, and Smax = |6 = |8;| (using the notation in AMS). Be-

cause Smax = |6%| = |53|, we obtain N - 82 .. = 0 and the remainder of the proof of
Theorem 8(b) goes through as is.

The proof of part (b) of the lemma is quite similar to the proof of Theorem 8(c) of
AMS. The latter proof first considers the case where “(8;,, A2) does not satisfy the sec-
ond condition of (39).” This needs to be changed to “(3;., A2) does not satisfy the second
condition of (39) or (41).” With this change, the rest of that part of the proof of Theo-
rem 8(c) goes through unchanged.

The remaining cases (where both (39) and (41) fail) to consider are (i) when the sec-
ond condition in (39) holds and the first condition in (39) fails and (ii) when the sec-
ond condition in (41) holds and the first condition in (41) fails. These are mutually ex-
clusive scenarios because the second conditions in (39) and (41) are incompatible. The
proof of Theorem 8(c) of AMS considers case (i) and proves the result of Theorem 8(c)
for that case. The proof of Theorem 8(c) for case (ii) is quite similar to that for case (i)
using (A.21) in AMS because 6* = —83, Smax = [6%| = |85] > 0, and 7* # 75 imply that
sgn(8*) = —sgn(53) and 7% sgn(8*) # —7; sgn(83). This last inequality shows that the ex-
pression in (A.21) in AMS is a continuous function of QSTQ;I/ 2 that is not even. (Note
that (A.21) in AMS has a typo: the quantity 73 sgn(6*) in its second summand should be
75 5gn(33).) O

20. STRUCTURAL ERROR VARIANCE MATRICES UNDER DISTANT ALTERNATIVES AND
DISTANT NULL HYPOTHESES

Here, we compute the structural error variance matrices in scenarios 1 and 2 considered
in (9) and (10) in Section 4. By design, the reduced-form variance matrix (2 is the same
for By and B., and hence, does not vary between these two scenarios.

In scenario 1 in (9), the structural error variance matrix under Hy is (8, £2), defined
in (32). Under H; : B = B4, as |B«| — oo, we have

=7F1 and

2
_ ) w2 — 03B
B l—1>njl:oo Puv(Be ) = B hnioo ( 2_» 13 : 2*32)1/2
* * w7 —2w +w w
! 122 R i 22 (129)
—2
lim o3, 2)/03 (B, ) = = 2Bt 03Bx _ o,

Bxl— w5
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where p,y(Bs, 2), 03(3*, (), and US(B*, () are defined just below (32). Equation (129)
shows that, for standard power envelope calculations, when the alternative hypothesis
value B, is large in absolute value the structural variance matrix under H; exhibits cor-
relation close to one in absolute value and a large ratio of structural to reduced-form
variances.

In scenario 2 in (10), the structural error variance error matrix under H, is 3(Bs, {2).
Under Hy : B = By, by exactly the same argument as in (129) with B¢ in place of ., we
obtain

lim puw(Bo,2)=F1 and  lim o2(By, 2)/02(Bo, 2) = co. (130)
Bo— 00 |Bol—00

So, in scenario 2, when the null hypothesis value B is large in absolute value the struc-
tural variance matrix under H exhibits correlation close to one in absolute value and a
large ratio of structural to reduced-form variances.

From a testing perspective, it is natural and time honored to fix the null hypothesis
value By and consider power as the alternative hypothesis value g, varies. On the other
hand, a confidence set is the set of null hypothesis values By for which one does not
reject Hy : B = By. Hence, for a given true value B, the false coverage probabilities of
the confidence set equal one minus its power as one varies Hy : 8 = By. Thus, from the
confidence set perspective, it is natural to fix 8, and consider power as S varies.

21. TRANSFORMATION OF THE B VERSUS B, TESTING PROBLEM TO A 0 VERSUS S8,
TESTING PROBLEM

In this section, we transform the general testing problem of Hy : 8 = B¢ versus Hy : B =
B for 7 € R* and fixed (2 to a testing problem of Hy : B =0 versus H; : B = B, for some
7 € R¥ and some fixed 2 whose diagonal elements equal one. This is done using the
transformations given footnotes 7 and 8 of AMS, which argue that there is no loss in
generality in the AMS numerical results to take w? = w3 =1 and By = 0. These results
help link the numerical work done in this paper with that done in AMS.

Starting with the model in (1), we transform the model based on (y;, y;) with param-
eters (B, ) and fixed reduced-form variance matrix (2 to a model based on (31, y,) with
parameters ( E , ) and fixed reduced-form variance matrix ﬁ, where

E:ZB_B(]a and

()l ) e

_ [w% —2w12B0 + w%ﬁ% w12 — w%BO:|

N

2 2
w12 — w3 By w5

The transformed testing problem is H : E =0 versus H; : E = E*, where E* = B+ — Bo,
with parameter 7 and reduced-form variance matrix (2.
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The matrix 2 does not have diagonal elements equal to one, so we transform the
model based on (¥, y,) with parameters (E , ) and fixed reduced-form variance matrix
0 to a model based on (31, ¥,) with parameters (8, 7) and fixed reduced-form variance
matrix 2, where!4

5, = i y1 = »2B0
= =" 1/2
O1 (wf — 2018 + w3B3)"

_ 1 1
Wi==2=—)

»2 @2 (132)
-~ Wy w2

“1 (0] —2w12B0 + 03Bj)
. 1 1
Ti=—T=—1

@7 W)

In addition, we have

7. i\ _ /oy 0 Y1
ool 1))
Jya o 5lva o

o s 0 1/@

(15, 0 Mwﬁ—zwuﬁww%ﬁg wu—w%Bo] [1/51 o]

0 1/w; w1y — w%BO w% 0 1/w>
[ w12 — 3P0
! 2 22\1/2
w12 — w3 By 1
12
| (0F = 21280 + w385) w2
The transformed testing problem is Hy : 8 = 0 versus H; : 8 = §3,, where
J— wz

(0] — 201280 + 3)

with parameter 7 and reduced-form variance matrix (2.
Now, we consider the limit as 8y — +oo of the original model and see what it yields
in terms of the transformed model. We have

. — . — 1 F1
,80—1>rriloo 'B* + and Bo—l>rriloo |:ZF1 1 :| (135)

W4The formula B := (@/@1)B in (132) comes from , := Ji/@1 = (0B + u)/@1 = yB/@1 + u/@; =
(12/@2)B(@2/@1) + u/®, =, B + 1, where the last equality holds when B := (@,/@ ) and 7 := u/a,.
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So, the asymptotic testing problem as 8y — £oo in terms of a model with a null hypoth-
esis B value of 0 and a reduced-form variance matrix £ with ones on the diagonal is a
test of Hy : B =0versus H; : B = Fl.

We get the same expression for the limits as By — oo of cg, (B, £2) and dg, (Bo, 2)
written in terms of the transformed parameters (EO, B.,,, 0) as in Lemma 15.1 except
they are multiplied by o,. This occurs because w#= = wr/0y. In consequence, the lim-
its as By — +oo of cg, (Bo, 2)u- and dg, (Bo, 2) i, written in terms of the transformed
parameters (EO, B., 7, Q) are the same as their limits without any transformation.

LEMMA 21.1. Let B, = B,(Bo) and Q = Q(By) be defined in (134) and (133), respectively.
Let By(Bo) = 0.

(a) limﬁoaioo CE*(BO)(B()(‘BO)’ ﬁ(ﬂ())) =Fl.

(b) limp— 100 dg_(g,)(Bo(B0), 2(Bo)) = :F(l—ZW'

Comment. (i). By Lemmas 15.1 and 21.1, the distributions of all of the tests con-
sidered in this paper are the same in the model in Section 2 when B, and (2 are fixed
and the null hypothesis value B satisfies By — +oo, and in the transformed model of
this section when the null hypothesis B, is fixed at 0 and the alternative hypothesis
value B, = B,(Bo) and the reduced-form variance 2 = () converge as in (135) as
Bo — +oo. (This uses the fact that o, = 1 in Lemma 21.1.)

(ii). AMS footnote 5 notes that there is a special parameter value 8 = B4r at which
the one-sided point optimal invariant similar test of Hy : 8 = B versus H; : B = Bar is

2_
the (two-sided) AR test. In footnote 5, Bar is defined to be Bag = %ﬁlio If we com-
12— w550

pute B for the transformed model (y,, y,) with parameters (83, 7, 0), where By=0,we
obtain

_2
which is the same as the limit of 8, = 8, (8B¢) as By — +oc in (132).

Proor ofF LEMMaA 21.1. First, we prove part (a). We have

cg. (Bo» ) = (B.. — Bo) (bo2bo) "

w o
N (wz 2w12[302+ w2,82)1/2 (B« — Bo)(1 = 2@12By + By) v
1™ 2P0
_ w2(B« — Bo)
(0} — 201280 + 0383)"?
— F1 as By— too, (137)

where the second equality uses (134) and the third equality uses B, = 0. Hence,
cg, (Bo» D) pw— F(1/ o) as By — 00 using the expression for 77 in (132) and w; = oy.
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Next, we prove part (b). Let b, = (1, —B,)" and by = (1, —3,)’. We have

92
= w12 = 03P T and (138)
( —2w12B0 + szo)
12 1=®1By— @B, + BB
- 1/2
(1 — 2w12B0 + Bo) /

b, 0by(bo2by) =1-onp,

where the second equality on the third line uses 8, = 0. Next, we have

2
1-— alzﬁ* =1- @1 (1)2,80 1/2 ©2 N2 (Bx — Bo)
(0] — 201280 + ®3B5) w2 (0 — 201280 + w3 7)
1_ (w12 — @3B0) (B« — Bo)

2 202
0] —2w1280 + w33

— 201280 + @385 — @128+ + w1280 + @3B0 — 3B
— 201280+ @385

2 2
0] — 01280 — @128+ + @3B0 P+«

= > (139)
o1 — 201280 + ®3 6]
where the first equality uses (133) and (134).
In addition, we have
2
_ (w12 — w%Bo)
l-op=1-- 2.2\, 2
(0] = 201280 + w387) w3
2 2 2 452
wla)z 2w12w230 + “’ZBO 0], + 2010580 — 0" B
(0F — 201280 + w37) @3
2 2 2
_ Wy Wy — Wy
-2 2,2\ 2° (140)
(0] —2w12B0 + w3B;) w5
where the first equality uses (138).
Using (138)—(140), we have
dg (By. ) = b, 12by (bo2bg) ™ det (@)1
0t — w1280 — 012Bx + ©3B0Bs ( wjw; — o, >_1/2
o —2w12B0 + 03B} (w% —2w12B0 + w%B%)w%
2 2
- — B+ .
_ (0] — @12B0 — w128+ + @3B0 Bx) 0. (141)

(0] — 201280 + wzﬁo)l/z( jw3 - “’%2)1/2
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The rhs of (141) is the same as the expression on the second line of (44) multiplied
by w, = 0. In consequence, the calculations in (44)-(46) give the result of part (a) of
Lemma 21.1. O

22. TRANSFORMATION OF THE 8y VERSUS 3, TESTING PROBLEM TO A EO VERSUS 0
TESTING PROBLEM

In this section, we transform the general testing problem of Hy : 8 = B¢ versus Hy : B =
B. for m € R and fixed reduced-form variance matrix (2 to a testing problem of Hy :
B = By versus Hy : B =0 for some 7 € R¥ and some fixed 2 with diagonal elements
equal to one. These transformation results imply that there is no loss in generality in the
numerical results of the paper to taking w% = w% =1 and B, = 0. We also show that there
is no loss in generality in the numerical results of the paper to taking p,, € [0, 1], rather
than p,, € [—1, 1], where p,, is the structural variance matrix correlation defined in (15).

We consider the same transformations as in Section 21, but with B, in place of By in
(131)-(133) and with the roles of B, and B, reversed in (134) and (135). The transformed
testing problem given the transformations in (131) (with B, in place of By) is Hy: B =B
versus H; : B =0, where By = By — B+, with parameter 7 and reduced-form variance ma-
trix (2. The transformed testing problem given the transformations in (131)-(133) (with
B, in place of By) is Hy: B = B, versus H; : B =0, where By = By — B, with parameters
B, 7, and Q defined in (132) and (133) (with the roles of B« and B reversed).

For example, a scenario in which a typical test has high power in the original scenario
of testing Hy : B = Bg versus H; : B = B, such as By =0 and |B.]| large, gets transformed
into the testing problem of Hy: 8 = B, versus H; : 8 = 0 with correlation @y, (the (1, 2)
element of ) close to £1, because by (135) (with the roles of B, and By reversed) we
have

lim ﬁz[l :Fl] (142)

In this case, we also have limg, .+ By = F1 by (135). Also, note that the reduced-form
and structural variances matrices are equal when the alternative hypothesis holds in the
testing problem Hy: B = B, versus Hj : B =0, so the result in (142) also applies to the
structural variance matrix (8, ) when 8 = 0 whose correlation we denote by p,,, that
is, limg, .+ p,, = F1. Here, the parameter p,,, is the parameter p,, that appears in the
tables in the paper. These results are useful in showing how the numerical results of the
paper apply to general hypotheses of the form Hy : 8 = B¢ versus H; : B = B..

Next, we show that there is no loss in generality in the numerical results of the pa-
per to taking p,, € [0, 1]. We consider the hypotheses Hy : B = By versus H; : B =0, as
in the numerical results in the paper. When the true B8 equals 0 and (2 has ones on its
diagonal, the reduced-form and structural variance matrices are equal; see (32). Hence,
the correlation wi, given by (2 equals the structural variance correlation p,, in power
calculations in the paper, and it suffices to show that there is no loss in generality in the
numerical results of the paper to taking w1, € [0, 1].

By (3), the distributions of § and T only depend on cg(Bo, £2), dg(Bo, £2), and p, :=
(Z'Z)'/?7. The vector w, does not depend on B, By, or (2. First, note that w, enters
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cg(Bo, 2) := (B — Bo)(by2bo)~/? = (B — Bo)(w] — 201280 + w3B5) /% only through
w12B0- In consequence, the distribution of § is the same under (B, wi2) as under
(—=Bo, —w12). Second, by (2.8) of AMS, dg(By, {2) can be written as b’!)bo(baﬂbo)*l/2 X
det(2)~1/2, where b := (1, —B)’. The distribution of T when B8 = 0 depends on dy( By,
2) = (1— w12B0) (b 2by)~1/? det(£2)~1/2. The first two multiplicands depend on w1, only
through 1,8y and the third multiplicand only depends on w1, through “’%2 (because
det(2)=1- w%z). In addition, S and T are independent. Hence, the distribution of [S : T
for given (By, w12) when B = 0 equals its distribution under (-, —w12) when g = 0.
Thus, the power of a test of Hy : B = By versus H; : 8 =0 when wq; < 0 equals its power
for testing Hy : B = —Bg versus Hy : B =0for —wys > 0.

23. UNKNOWN VARIANCE CLR TEST

In this section, we consider a different form of the CLR test to see whether it has
smaller probabilities of infinite length than the CLR test defined in (6) and (7).!> By Mor-
eira (2003, pp. 1036, 1045), the likelihood ratio statistic under the assumption that the
reduced-form variance matrix is unknown is

byY Pz Yhy ) n ( 1+Amm(§—1/2YPZY§—1/2)

n
LRy :==In(1+—0—"23 )_=
v ( (n— k)b Qby n—k

5 ) ,  Wwhere

2 (143)

Q:=YMzY/(n—k).

(Note that Moreira (2003) denotes the statistic LRy by LR and the statistic LR in (6) above
by LRy.)

The probabilities that the CLR test has infinite length (given in Table 1 in Section 7)
are computed under the assumption that {2 is known. If we made comparisons of these
results to analogous results for the conditional test that employs the statistic LRy (com-
bined with the same conditional critical value as in (7)), the comparisons would be mis-
leading because LRy does not make use of the known value of (2. To obtain a fair com-
parison, we alter the LR; statistic by replacing 9] by (2. The resulting statistic is

—1/2 -1/2
n, (1 byYP2Yb )_nl (H)\min(n 2YP7YQ /)>

LR2, .= = -z
=T i obpby) T2 n—k
n Qs n Qs—LR
= —In(1 ——In{1+=— 144
2n< +(n—k)> 2n< + n—k )’ (144)

where the second equality holds by the definition of Qg in (3) and (4) and the expression
LRy = 8'S — Amin 0N p. 1033 of Moreira (2003), which in the notation of this paper is
LR = Qg — Amin fOT Apin := Amin (2~ Y2Y Pz Y 0Q~1/2) by p. 1045 of Moreira (2003).

The conditional critical value for this statistic is the same as that in (7). We call the
resulting test the CLR2,, test. Somewhat confusingly, or perhaps paradoxically, the form
of the LR2,, statistic is determined by assuming (2 is unknown, which yields a test that
depends on an estimator 0 of 0, which we then replace by (2, which yields a test for

15We thank Marcelo Moreira for suggesting that we consider the CLR2,, tests considered in this section.
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the case where (2 is known. Note that the LR2, statistic depends on n, whereas the LR
statistic in (6) does not.

Table SM-VI in the Online Supplementary Material 2 reports differences in the prob-
abilities that the CLR2, and CLR ClIs have infinite length for the same &, A, and p,,, values
as in Table I, for three values of n: n = 100, 500, and 1000. Note that the data generating
process depends only on k, A, and p,,, and not on xn. The quantity » only enters through
the form of the LR2,, statistic.

The results in Table SM-VI show that the CLR2,, and CLR CIs perform very similarly.
This is especially true for » = 500 and 1000 in which cases all differences are less than
0.005. For n = 100, the differences exceed 0.005 in some scenarios where p,;, is small (0,
0.3, and 0.5) and k is large (k > 10 for p,, = 0.0, 0.3 and k > 20 for p,, = 0.5). The largest
difference is 0.0235 and is achieved when n = 100, p,, =0, k = 40, and A = 20.

Based on these results, we do not find that the CLR2,, test improves on the CLR test
in terms of its probabilities of having infinite length. The differences between the CLR2,,
and CLR tests are quite small, especially for » = 500 and 1000.

24. HETEROSKEDASTIC AND AUTOCORRELATED MODEL

Theorem 5.1 gives formulae for the probabilities that certain Cls have infinite right
length, infinite left length, and infinite length in the homoskedastic Gaussian linear
IV model. In this section, we extend these results to the Gaussian linear IV model
that allows for heteroskedasticity and autocorrelation (HC) in the errors. We use the
specification and notation in Moreira and Ridder (2017). The reduced-form model is
Y =Zud +V, as in (2), but without the assumption that the rows of I are i.i.d. with
distribution (2. Rather, we assume that

vee(V) :=vec((Z2'2) " ?Z'V) ~ N(0, 3), (145)

where IV € R¥*2 and 3 is a positive definite 2k x 2k matrix. The matrix 3 can be
consistently estimated. In consequence, we focus on the case where 3 is known. Let
Py := Z(Z'Z)~1/? € R"™k and let P, € R"*("~%) be such that P := [P, : P,] is orthogonal.
A one-to-one transformation of Y is (P{Y, P;Y). The matrix P}Y is ancillary and the
variance of I is only restricted by Var(vec(P;}")) = 3. In consequence, we only consider
tests that are a function of P} Y. We have

R:=P|Y =p,d +V, wherepu,:=(Z'Z)*mranda:=(B,1). (146)

For a given null hypothesis value S, a one-to-one transformation of R is (Sg,(R),
Tp,(R)), where

Sg,(R) := [(b6 ® Ik)z(bo ® Ik)]il/z(b/o ® Ik) vec(R), 147)

Tpy(R) :=[(af, ® ) S~ (ap ® [1)]*(a) ® 1) 3" vec(R),



42 Andrews, Marmer, and Yu Supplementary Material

ag = (Bo, 1), and by := (1, —By)’. The statistics Sg,(R) and Tg,(R) are independent.
Their distributions are

Spy(R) ~ N((B — Bo)Cpy i Ik) and

Tg,(R) ~N(Dgur,I), where

i (148)

Cg, = [(b6®lk)2(bo®lk)] and

Dp = [(ay® 1) 3™ @@ 1] (ap @ 11) 3™ (@@ L),

As shown in the following lemma, the limits of Sg,(R) and Tg,(R) as By — +oo are

Stoo(R) = ¢2;2]/2R2 and
) (149)
Tioo(R) := £(3") (e} @ I;) 3" vec(R),

where R; denotes the second column of R, 35, denotes the lower right £ x k block of %,
311 denotes the upper left k x k block of 371, and e := (1, 0)'.

LEmMMA 24.1. For fixed true value B = B, and positive definite matrix 3, we have

(@) limg,— +00 Sg,(R) = S+00(R),

() Sioc(R) ~N(FZp *pms 1),

(©) limg)— 100 Ty (R) = Too(R),

(d) Tico(R) ~ N(E(E"H™V2(e) @ 1) 37 vec(ural), Ix), where a, := (B, 1), and
() Sico(R) and T1oo(R) are independent.

Comments. (i). The convergence results in Lemma 24.1 hold for all realizations of R.

(ii). In the homoskedastic case, where 3 = 2 ® I, we have S;,(R) = S+ (Y) and
Ti00(R) = T150(Y), where S+ (Y) and T4 (Y) are defined in (50) for the homoskedas-
tic model.

These results hold by the following calculations. In the homoskedastic case, 3, =
w%l k= 031 &, where w% denotes the (2, 2) element of 2 and 05 := Var(vy;). This yields
Si00(R)=F(1/0)Ry =F(1/0u)(Z'Z) Y27 Y ey := S1o0(Y). In the homoskedastic case,
3! =!I}, where w!! denotes the (1,1) element of 271, 371 =071 @ I}, and (¢| ®
I3 1vec(R) = (e’lﬂ‘1 ® I;)vec(R) = R~ ey, where the last equality uses the formula
vec(ABC) = (C' ® A)vec(B). We have !l = w%/(w%w% — “’%2) by the formula for the in-
verse of a 2 x 2 matrix, wjw3 — w}, = 0202 — 02, = 0202(1 — p2,), where the first equal-
ity holds by (45), and (0')~V? = 0,0, (1 — p2,)1/? /w3 = o (1 — p2,)1/?, where the last
equality uses o, = w,. Putting these results together gives Tioo(R) := £(31)~1/2(e] ®
)37 'vec(R) = +oy,(1 — p2 )YV°RO7 ey = (Z/2)12Z' YO ey - (£(1 — p2 ) Y?0y) =
Tioo(R).

Let Pg, ~ s(-) denote the probability distribution of R when B, 7, 3 are the true
values.

The HC model analogue of Theorem 5.1 is the following.
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THEOREM 24.2. Suppose CS4(R) is a CS based on level a tests ¢(Sg,(R), Tg,(R)) whose
test statistic and critical value functions, T (s, t) and cv(t), respectively, are continuous
at all k x 2 matrices [s : t] and k vectors t, Pg_ . s(T(Sc(R), Te(R)) = cv(Tc(R))) = 0 for
¢ = +o0 in parts (a) and (c) below and ¢ = —oc in part (b) below. Then, for all (B., 7, 3)
with 3 positive definite,

(@) Pg,. . s(RLength(CSy(R)) = 00) = 1 — limgy—c0 Pg, . x($(Sgy(R), Tgy (R) = 1),

(b) Pg, - s(LLength(CS4(R)) =00) =1 — limg;— o0 Pg, = 5((Sgy(R), Tp,(R)) = 1),
and

(© IfT(Sc(R), T(R)) < cv(T(R)) for c = +o0 iff the same inequality holds for c = —oco
a.s., then Pg, . s(Length(CSy(R)) =00) =1 —limg)— 100 Pg, 7 5(P(Sp,(R), T, (R)) =1).

Proor oF THEOREM 24.2. The proofis essentially the same as that for Theorem 5.1 with
() (Sg,(R), Tp,(R)) and Tg,(R) in place of Qp,(Y) and Qr g,(Y), respectively, using
(ii) Lemma 24.1 in place of Lemma 16.1, and using (iii) the assumption of the Theo-
rem that “7 (s, t) and cv(¢) are continuous at all k x 2 matrices [s : ¢] and k vectors ¢,”
in place of the assumption of Theorem 5.1 that “7 (g) and cv(gr) are continuous at all
positive definite 2 x 2 matrices g and positive constants g7.” (In the argument following
(52) in the proof of Theorem 5.1, the latter assumption is combined with the result of
Lemma 16.1(g), which implies that Q. (Y) is pd a.s. and Or,.,(Y) > 0 a.s. In contrast,
in the proof of the present theorem, this part of the argument is not needed because
there is no restriction to positive definite matrices g and positive constants gr.) In the
proof of part (c), the second last equality in (54) in the proof of Theorem 5.1 holds (with
the changes listed in (i)—(iii) above) because the assumption imposed in part (c) of the
present theorem is the same as condition (iii) stated immediately above (54). O

PrOOF OF LEMMA 24.1. We prove part (a) first. Dividing the components of Sg,(R) in
(147) by | Bo|, we obtain

Sgy(R) = [((bo/1B0l) ® Ix) 3((bo/1B0l) @ k)] > ((bo/1B0l) ® I) vec(R).  (150)
We have

Jim ((bo/1Bol)' @ 1) vee(R) = ((0, F1) ® Ii) vee(R) = ¥R,  and
’ (151)
Bloigloo((bo/lﬁol) ® 1) 2((bo/1Bol) ® I) = ((0, F1) @ I1) 3((0, F1) ® Ix.) = 322,

using by := (1, —By)’, where R, denotes the second column of R. Combining (150) and
(151) and using the positive definiteness of 35, gives limg +o0 Sg,(R) = :|:22_21/ 2R2 =
S1o0(R), which proves part (a).

Part (b) holds by the definition of S1 (R) in (149) because Ry ~ N (4, 322) by (145)
and (146).

To prove part (c), we divide the components of Tg,(R) in (147) by || to obtain

T, (R) = [((a0/1B0l) & Ix) X~ ((a0/1B0l) ® I)]~"*((a0/1Bol) ® Ix) S~ vec(R), (152)
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where ay = (By, 1)’. We have

Jim ((a0/1Bol) ® Ir) 3~ tvec(R) = +((1,0) ® I;) 3 ' vec(R) and
oEtoo

/ (153)
Jim ((ao/1B0l)" ® k)X~ ((ao/1Bol) ® Ii) = (&1, 0) @ 1) X7 (21, 0) @ 1) = 2T,

where 31 denotes the upper left k¥ x k block of 31 Combining (152) and (153)
and using the positive definiteness of 37! gives limg oo Tp,(R) = £(3H)"12(e} ®
I) 37 vec(R) := T (R), which establishes part (c) of the lemma.

Part (d) holds by the definition of 71 (R) in (149) because R = ua}, + V when B=
B. by (146), vec(V) ~ N (0, 3) by (145), and

Var(T+oo(R)) = Valr((Z“)_l/2 (e] ® Ik)Ef1 vec(R))

= ()T @ 1) IS e @ I (31) T
=I. (154)

Part (e) holds because S+ (R) and T+ (R) are jointly normal with covariance

Cov(Stoo(R), Too(R)) = Cov (F 22_21/2(6/2 ® I)vec(R), :i:(En)_l/2 (¢] ® Ik)E_lvec(R))

= —22_21/2(6’2 ® Ix) Var(vec(R))Z_l(el ® 1) (Ell)_l/2
=Iy. (155)

This implies that S+ (R) and T+ (R) are independent, which proves part (e). O
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