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This Online Appendix provides, in Section A, the proofs of the main results of
Han and McCloskey (Forthcoming) and, in Section B, a proof of the claim that the
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tions, and corresponding verification of the high level assumptions made in Han
and McCloskey (Forthcoming) for the threshold crossing model.

Online Appendix A: Proofs of main results

Proof of Theorem 3.1. When β= 0,
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Proof of Theorem 3.2. First, note that

∂g(1)
(
0�μ(1)

)
∂π(1)1

= ∂g∗(0�h(1)(μ(1)))
∂π(1)1

= ∂g∗(0�μ)
∂μ′

∣∣∣∣
μ=h(1)(μ(1))

× ∂h(1)
(
μ(1)

)
∂π(1)1

= 0

by Steps 1 and 2. By way of induction, for 1 ≤ i − 1 ≤ dπ − 1, assume that the first i − 1
columns of ∂g(i−1)(0�μ(i−1))/∂π(i−1)′ are equal to zero. Then by Step 8 of the algorithm,

∂g(i)
(
0�μ(i)

)
∂π(i)′

= ∂g(i−1)(0�h(i)(μ(i)))
∂π(i)′

= ∂g(i−1)(0�μ(i−1))
∂μ(i−1)′

∣∣∣∣
μ(i−1)=h(i)(μ(i))

× ∂h(i)
(
μ(i)

)
∂π(i)′

Sukjin Han: sukjin.han@austin.utexas.edu
Adam McCloskey: adam.mccloskey@colorado.edu

© 2019 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE989

mailto:sukjin.han@austin.utexas.edu
mailto:adam.mccloskey@colorado.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE989


2 Han and McCloskey Supplementary Material
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where the third equality results from the definition of μ(i) in Step 6, the fourth equality
follows from Step 7 and the final equality follows from Steps 5 and 6.

Hence, we have shown that for 1 ≤ i ≤ dπ , the first i columns of ∂g(i)(0�μ(i))/∂π(i)′
are equal to zero. In particular, ∂g(dπ)(0�μ(dπ))/∂π(dπ)′ = 0dg×dπ . Also note that Step 8

defines θ as equal to (β�μ(dπ)) and

g∗(θ)= g∗(β�h(1) ◦ · · · ◦ h(dπ)(μ(dπ)))= g(1)(β�h(2) ◦ · · · ◦ h(dπ)(μ(dπ)))
= g2(β�h(3) ◦ · · · ◦ h(dπ)(μ(dπ)))= · · · = g(dπ)(β�μ(dπ))�

where the first equality follows from the definition of h in Step 8, the second equality
follows from the definition of g(1)(θ(1)) in Step 4 and the final two equalities follow from
the definition of g(i)(θ(i)) in Step 8. Thus for β= 0, using the definition of h(·) in Step 8,
we have ⎡⎢⎣· · · 01×dπ

���
���
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× ∂h(μ)

∂μ′

so that h : M → M satisfies Procedure 3.1 if it is one-to-one. This latter property holds
because each ∂h(i)(μ(i))/∂μ(i)′ for i = 1� � � � � dπ has full rank by Steps 3 and 7 and h =
h(1) ◦ · · · ◦ h(dπ) by Step 8.
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Proof of Proposition 3.1. First, when β = 0, under Assumption ID, there exists at
least one column in J∗(θ) that is linearly dependent on the other columns wp1, which
implies that there exists a nonzero vector m(1) such that (3.3) holds. Thus, (3.4) is a
well-defined system of ODEs with an initial condition that is determined by constants
of integration. By the (global) Picard–Lindelöf theorem (Picard (1893), Lindelöf (1894)),
since m(1)(·) is Lipschitz continuous on compact M(1), there exists a solution h(1) on
M(1) of (3.4). Since the choice of constants of integration for this solution does not af-
fect (3.4), it is always possible to choose them to ensure full rank of ∂h(1)(μ(1))/∂μ(1)′.
Now by way of induction, for 1 ≤ i − 1 ≤ dπ − 1, since ∂h(i)(μ(i))/∂μ(i)′ is full rank and
rank(∂g(i−1)(θ(i−1))/∂μ(i−1)′)= r, it follows that

rank
(
∂g(i)

(
θ(i)

)
∂μ(i)′

)
= rank

(
∂g(i−1)(θ(i−1))
∂μ(i−1)′

∂h(i)
(
μ(i)

)
∂μ(i)′

)
= r�

Thus, there exists a nonzero vector m(i) such that (3.5) holds. Given (3.6), since m(i)(·)
is Lipschitz continuous on compact M(i), there exists a solution h(i) on M(i). Similarly
to before, since the choice of constants of integration for this solution does not affect
(3.6), it is always possible to choose them to ensure (1) and (2) of Step 7 hold. Therefore,
h= h(1) ◦ · · · ◦ h(dπ) exists on M = M(dπ).

Proof of Lemma 4.1. Define h̄(θ) ≡ (β�h(μ)). For any μ ∈ M, since M(h(μ)) has full
rank, ∂h(μ)/∂μ′ has full rank by Step 2 of Procedure 3.1. Therefore,

∂h̄(θ)

∂θ′ =
⎡⎣1 0

0
∂h(μ)

∂μ

⎤⎦
has full rank for any θ ∈ Θ. Also, since h : M → M is proper, h̄ : Θ→ Θ is also proper.
Combining these results with Assumption H(ii), we can apply Hadamard’s global inverse
function theorem Hadamard (1906a,b) to h̄ : Θ→ Θ, and conclude that h̄ is a homeo-
morphism.

Proof of Lemma 4.2. Suppose Assumption Reg3*(v) holds. Without loss of generality,
we may permute the elements of μs so that

hsπ(μ)=
(

0
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π

0
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π)

)
�

where D(μ) is a diagonal full rank d̃∗
π × d̃∗

π matrix. By definition, the column space of
hsπ(μ) is equal to {

v : v= hsπ(μ)x for some x ∈R
dπ
}

= {(
01×(ds−d̃∗

π)
� v′2

)′ : v2 ∈R
d̃∗
π and for each

i= 1� � � � � d̃∗
π� v2�i =Dii(μ)xi for some xi ∈R

}
= {
(01×(ds−d̃∗

π)
�x2)

′ : x2 ∈R
d̃∗
π
}
�
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which clearly satisfies the condition in Assumption Reg3*(iii) since it does not depend
upon μ.

The proofs of Theorem 4.1, Corollary 4.1, and Proposition 5.1 make use of the follow-
ing auxiliary lemmas. The following lemma applies some of the main results of AC12.

Lemma A.1. (i) Suppose Assumptions ID, CF, Reg1 and Jac, and Assumptions B1–B3 and
C1–C6 of AC12, applied to the θ andQn(θ) of this paper, hold. Under parameter sequences
{γn} ∈ 
(γ0�0� b)with ‖b‖<∞,⎛⎜⎜⎝

√
n(β̂n −βn)√
n(ζ̂n − ζn)
π̂n

⎞⎟⎟⎠ d−→

⎛⎜⎜⎝
τ
β
0�b

(
π∗

0�b
)

τ
ζ
0�b

(
π∗

0�b
)

π∗
0�b

⎞⎟⎟⎠ �
(ii) Suppose Assumptions ID, CF, Reg1 and Jac, and Assumptions B1–B3, C1–C5, C7–

C8 and D1–D3 of AC12, applied to the θ and Qn(θ) of this paper, hold. Under parameter
sequences {γn} ∈ 
(γ0�∞�ω0),

√
n

⎛⎜⎜⎝
β̂n −βn
ζ̂n − ζn

ι(βn)(π̂n −πn)

⎞⎟⎟⎠ d−→
⎛⎜⎝ZβZζ
Zπ

⎞⎟⎠ �
Proof. Theorem 3.1 directly implies that Assumption A of AC12 holds when applied to
the θ and Qn(θ) of this paper. Then (i) and (ii) follow by direct application of Theorems
3.1(a) and 3.2(a) of AC12.

The next lemma ensures we can write θ̂n = (β̂n�h(μ̂n)).

Lemma A.2. Suppose Assumptions ID, Jac and H hold. Then θ̂n = (β̂n�h(μ̂n)) for some
θ̂n = (β̂n� μ̂n) ∈Θ such thatQn(θ̂n)= infθ∈ΘQn(θ)+ o(n−1).

Proof. The reparameterization function h̄ : Θ→ Θ is bijective by Lemma 4.1, which
implies Θ = h̄(Θ) andΘ= h−1(Θ) so that

Qn(θ̂n)= inf
θ∈h̄(Θ)

Qn(θ)+ o
(
n−1)= inf

h̄−1(θ)∈Θ
Qn

(
h̄
(
h̄−1(θ)

))+ o(n−1)
= inf
h̄−1(θ)∈Θ

Qn
(
h̄−1(θ)

)+ o(n−1)
= inf
θ∈Θ

Qn(θ)+ o
(
n−1)=Qn(θ̂n)

for some θ̂n ∈Θ.
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Proof of Theorem 4.1. (i) Using Lemma A.2, begin by decomposing μ̂sn − μsn =
hs(μ̂n)− hs(μn) as follows:

hs(μ̂n)− hs(μn)= [
hs(ζ̂n� π̂n)− hs(ζn� π̂n)

]+ [
hs(ζn� π̂n)− hs(ζn�πn)

]
= hsζ(μ̂n)(ζ̂n − ζn)+

[
hs(ζn� π̂n)− hs(ζn�πn)

]+ op
(
n−1/2)�

where the second equality uses a mean value expansion (with respect to ζ) that holds by
Lemma A.1(i) and Lemma 4.1(ii). Using this decomposition, we have⎛⎜⎜⎝

√
n(β̂n −βn)√

nÃ1(μ̂n)
(
μ̂sn −μsn

)
Ã2(μ̂n)

(
μ̂sn −μsn

)
⎞⎟⎟⎠=

⎛⎜⎜⎝
√
n(β̂n −βn)√

nÃ1(μ̂n)h
s
ζ(μ̂n)(ζ̂n − ζn)

Ã2(μ̂n)
[
hs(ζn� π̂n)− hs(ζn�πn)

]
⎞⎟⎟⎠

+

⎛⎜⎜⎝
0

√
nÃ1(μ̂n)

[
hs(ζn� π̂n)− hs(ζn�πn)

]
Ã2(μ̂n)h

s
ζ(μ̂n)(ζ̂n − ζn)

⎞⎟⎟⎠+ op(1)

=

⎛⎜⎜⎝
√
n(β̂n −βn)

Ã1(μ̂n)h
s
ζ(μ̂n)

√
n(ζ̂n − ζn)+ η̃∗

0�b

Ã2(μ̂n)
[
hs(ζn� π̂n)− hs(ζn�πn)

]
⎞⎟⎟⎠+ op(1)

d−→

⎛⎜⎜⎝
τ
β
0�b

(
π∗

0�b
)

Ã1
(
ζ0�π

∗
0�b
)
hsζ
(
ζ0�π

∗
0�b
)
τ
ζ
0�b

(
π∗

0�b
)+ η̃∗

0�b

Ã2
(
ζ0�π

∗
0�b
)[
hs
(
ζ0�π

∗
0�b
)−μs0

]
⎞⎟⎟⎠

under {γn} ∈ 
(γ0�0� b) with ‖b‖<∞, where the second equality follows from Assump-
tions Reg2 and Reg3, Lemma A.1(i) and the CMT and the weak convergence follows from
Assumption Reg2, Lemma A.1(i), the CMT and the fact that hs(ζ0�π0)=μs0.

(ii) For the β0 = 0 case, the same decomposition of μ̂sn−μsn = hs(μ̂n)−hs(μn) as that
used in the proof of part (i) and similar reasoning imply

√
n

⎛⎜⎜⎝
β̂n −βn

Ã1(μ̂n)
(
μ̂sn −μsn

)
ι(βn)Ã2(μ̂n)

(
μ̂sn −μsn

)
⎞⎟⎟⎠=

⎛⎜⎜⎝
√
n(β̂n −βn)

Ã1(μ̂n)h
s
ζ(μ̂n)

√
n(ζ̂n − ζn)

Ã2(μ̂n)
√
nι(βn)

[
hs(ζn� π̂n)− hs(ζn�πn)

]
⎞⎟⎟⎠+ op(1)�

A mean-value expansion, Lemma 4.1(ii) and the consistency of μ̂n under {γn} ∈ 
(γ0�

∞�ω0) given by Lemma A.1(ii) provide that

Ã2(μ̂n)
√
nι(βn)

[
hs(ζn� π̂n)− hs(ζn�πn)

]
= Ã2(μ̂n)

√
nι(βn)

[(
hsπ(ζn� π̂n)+ op(1)

)
(π̂n −πn)

]
= Ã2(μ̂n)h

s
π(ζn� π̂n)

√
nι(βn)(π̂n −πn)+ op(1)�
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where the second equality follows from Lemma 4.1(ii) and Lemma A.1(ii). Putting these
results together, we have

√
n

⎛⎜⎜⎝
β̂n −βn

Ã1(μ̂n)
(
μ̂sn −μsn

)
ι(βn)Ã2(μ̂n)

(
μ̂sn −μsn

)
⎞⎟⎟⎠ d−→

⎛⎜⎜⎝
Zβ

Ã1(μ0)h
s
ζ(μ0)Zζ

Ã2(μ0)h
s
π(μ0)Zπ

⎞⎟⎟⎠
by Assumption Reg2, Lemma A.1(ii) and the CMT. Finally, for the β0 �= 0 case, note
that a standard mean value expansion for μ̂n − μn = h(μ̂n) − h(μn), Lemma 4.1(ii),
Lemma A.1(ii) and the CMT imply

√
n

(
β̂n −βn
μ̂n −μsn

)
=
( √

n(β̂n −βn)√
nhμ(μ̂n)(μ̂n −μn)

)
+ op(1)

=
( √

n(β̂n −βn)
hζ(μ̂n)

√
n(ζ̂n − ζn)+ hπ(μ̂n)

√
n(π̂n −πn)

)
+ op(1)

d−→
(

Zβ
hζ(μ0)Zζ + ι(β0)

−1hπ(μ0)Zπ

)
�

Proof of Corollary 4.1. For case (i),

√
n
(
μ̂1
n −μ1

n

)= √
n
[
h1(ζ̂n)− h1(ζn)

]= h1
ζ(ζ̂n)

√
n(ζ̂n − ζn)+ op(1) d−→ h1

ζ(ζ0)τ
ζ
0�b

(
π∗

0�b
)
�

where the first equality follows from Lemma A.2, the second equality follows from the
mean value theorem, Lemma 4.1(ii) and Lemma A.1(i) and the weak convergence fol-
lows from the CMT, Lemma 4.1(ii) and Lemma A.1(i). The results for β̂n, μ̂2

n and the
joint convergence of the three components follow directly from Lemmas A.2 and A.1(i),
Lemma 4.1(ii) and the CMT.

For case (ii), note that

√
nι(βn)(μ̂n −μn)= √

nι(βn)
[
h(ζ̂n� π̂n)− h(ζn�πn)

]
= √

nι(βn)
[
h(ζ̂n� π̂n)− h(ζn� π̂n)

]+ √
nι(βn)

[
h(ζn� π̂n)− h(ζn�πn)

]
= √

nι(βn)
[
hζ(μ̂n)(ζ̂n − ζn)+ op

(
n−1/2)]

+ √
nι(βn)

[
hπ(ζn� π̂n)(π̂n −πn)+ op

(
n−1/2ι(βn)

−1)]
= hπ(ζn� π̂n)

√
nι(βn)(π̂n −πn)+ op(1) d−→ hπ(μ0)Zπ�

where the first equality follows from Lemma A.2, the third equality follows from the
mean value theorem, Lemma 4.1(ii) and Lemma A.1(ii), while the final equality and weak
convergence result follow from the CMT, Lemma 4.1(ii) and Lemma A.1(ii). Nearly iden-

tical arguments to those used for case (i) provide that
√
n(μ̂1

n − μ1
n)

d−→ h1
ζ(ζ0)Zζ . Joint

convergence of the three components immediately follows from Lemma A.1(ii).
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Proof of Proposition 6.1. The proof is nearly identical to the proof of Theo-
rem 5.1(b)(iv) of AC12, using Proposition 5.1 in the place of Theorems 4.2 and 4.3 of
AC12.

Proof of Proposition 6.2. The proof of this proposition verifies that the assump-
tions of Theorem Bonf-Adj of McCloskey (2017) hold, with some modifications. First,
by Proposition 5.1 and Assumption FD, Assumption PS of McCloskey (2017) holds with
γ1 = (β�π) and γ2 = (ζ�δ). For the definition of {γn�h}, γn�h�1 = (βn�h�n

−1/2πn�h) and
γn�h�2 = (ζn�h�δn�h). Note that h1�1 = b, where h1�1 denotes the first dβ elements of h1.
In the notation of McCloskey (2017), sequences {γn�h} with ‖h1�1‖<∞ (‖h1�1‖ = ∞) cor-
respond to weak (semi-strong or strong) identification sequences {γn} ∈ 
(γ0�0� b) with
‖b‖<∞ ({γn} ∈ 
(γ0�∞�ω0)) in the notation of this paper.

Second, for Assumption DS of McCloskey (2017), Tn(θn) = Wn(vn) ĥn�1 = (b̂n� π̂n)

and ĥn�2 = (ζ̂n� δ̂n). Proposition 5.1 provides the marginal weak convergence of Tωn(θωn)
for all sequences {γωn�h}, where in the notation of McCloskey (2017), Wh = λ(π∗

0�b;γ0� b)

when ‖h1�1‖<∞ and Wh is distributed χ2
dr

when ‖h1�1‖ = ∞. Lemma A.1 and Assump-

tion FD provide the marginal weak convergence of ĥωn = (ĥωn�1� ĥωn�2) for all sequences

{γωn�h}, where in the notation of McCloskey (2017), h̃1 = (b + τ
β
0�b(π

∗
0�b)�π

∗
0�b) when

‖h1�1‖ <∞, h̃1 = (b+ Zβ�π0) when ‖h1�1‖ = ∞ and h2 = (ζ0� δ0). Joint convergence of
(Tωn(θωn)� ĥωn) follows from nearly identical arguments for joint convergence to those
used in the proof of Theorem 5.1 of AC14.

Third, for Definition MLLD of McCloskey (2017), we are in what McCloskey (2017)
refers to as “the usual case” for which u = 1, W̃ (1)

h = λ(π∗
0�b;γ0� b) and H̄(1)�c = ∅ since

P(|λ(π∗
0�b;γ0� b)|<∞)= 1 under the assumptions of Proposition 5.1. Since we are in the

usual case, there is no need to define the auxiliary sequence of parameters {ζn} in that
assumption (it can be any arbitrary sequence in R

r for arbitrary r > 0) and P = R
r∞ for

any r > 0. SinceWh = λ(π∗
0�b;γ0� b)= W̃ (1)

h when ‖h1�1‖<∞ andWh = W̃ (1)
h is distributed

χ2
dr

when ‖h1�1‖ = ∞, the only item left to verify is that λ(π∗
0�b;γ0� b) is completely char-

acterized by h(1) = h= (b�π0� ζ0� δ0). This holds by Assumption FD.
Fourth, for Assumption Cont-Adj of McCloskey (2017), H̄(1) = H. This assumption

holds for any δ(1) > 0 and δ̄(1) ≤ α since λ(π∗
0�b;γ0� b) is an absolutely continuous ran-

dom variable with quantiles that are continuous in b and π0 and λ(π∗
0�b;γ0� b)

d∼ χ2
dr

for
any b such that ‖b‖ = ∞. Fifth, Assumption Sel holds trivially since we are in the “usual
case.”

Sixth, Assumption CS of McCloskey (2017) can be modified and applied to Îan(·) and
its limit counterpart Ia0 (·) so that: (i)

sup
(b�π)∈P(ζ0�δ0)

dH
(
Îan(b�π)� I

a
0 (b�π)

) p−→ 0

under any {γn} ∈ 
(γ0), where dH(A�B) denotes the Hausdorff distance between
the two sets A and B; (ii) Ia0 (·) is a continuous and compact-valued correspon-

dence; (iii) Pγn(Î
a
n(b̂n� π̂n) ⊂ H̄(1)1 (ĥcn�2)) = 1 for all n ≥ 1 and {γn} ∈ 
(γ0) and P(Ia0 (b +



8 Han and McCloskey Supplementary Material

τ
β
0�b(π

∗
0�b)�π

∗
0�b) ⊂ H̄(1)1 (hc2)) = 1; and (iv) Ia0 (b+ τβ0�b(π∗

0�b)�π
∗
0�b) need not satisfy a cov-

erage requirement (i.e., P(h1 ∈ Ia0 (b + τ
β
0�b(π

∗
0�b)�π

∗
0�b) ≥ 1 − a). The proof of Theo-

rem Bonf-Adj in McCloskey (2017) still goes through with this modification of Assump-
tion CS. Condition (i) is satisfied by the consistency of (ζ̂n� δ̂n) and the uniform con-
sistency of Σ̂n(·) under any {γn} ∈ 
(γ0). The former holds by Lemma A.1 and Assump-
tion FD while the latter holds by Assumptions V1 and V2 of AC12. For condition (ii), Ia0 (·)
is clearly continuous and compact-valued. Note that P(ζ̂n� δ̂n) and P(ζ0� δ0) are equal to
H̄(1)(ĥcn�2) and H̄(1)(hc2) in the notation of McCloskey (2017) so that condition (iii) holds
by construction.

Seventh, note that rather than using a quantile adjustment function (a(j)(·) in the
notation of McCloskey (2017)), we are fixing the quantile at level 1 − α and adding a
size-correction function ς(·) to it. The proof of Theorem Bonf-Adj of McCloskey (2017)
can be easily adjusted to this modification. Rather than requiring the quantile ad-
justment function to be continuous, the proof requires ς(·) to be continuous. That is,
Assumption a(i) of McCloskey (2017) may be replaced by the analogous assumption:

ς(·) is continuous. In practice, ς(·) is only evaluated at the point (ζ̂n� δ̂n�
ˆ̄
Σn), which

is consistent with this assumption. Due to the replacement of quantile adjustment
by additive size-correction, Assumption a(ii) of McCloskey (2017) should also be re-
placed by the analogous assumption: sup

(b�γ0)∈R
dβ∞ ×
:(b�ζ0�π0�δ0)∈L̂n∩L(v)

P(λ(π∗
0�b;γ0� b)≥

sup�∈La0(b�γ0)∩L(v) c1−α(�) + ς(ζ0� δ0� Σ̄(b�γ0))) ≤ α. This assumption holds by the con-

struction of ς(ζ̂n� δ̂n�
ˆ̄
Σn) and the (uniform) consistency of (ζ̂n� δ̂n� Σ̂n(·)).

Finally, Assumption Inf-Adj of McCloskey (2017) holds vacuously since H̄(1)�c = ∅
and Assumption LB-Adj of that paper is imposed by Assumption DF2.

Online Appendix B: Assumption verifications for threshold crossing

example

Before proceeding to verify the assumptions imposed for the threshold crossing model
example, we provide the details for the claim that ‖η̃(μ̂n)‖ diverges for μ̂sn = (μ̂n�3� μ̂n�4)
made in the continuation of Example 2.3 in Section 4 of Han and McCloskey (Forthcom-
ing) (HM18 henceforth).

Proof ‖η̃(μ̂n)‖ diverges in Example 2.3. Note that

η̃n(μ̂n)= √
nS(μ̂n)

[
h3(ζn� π̂n)− h3(ζn�πn)+

C3
(
h3(μ̂n)� ζ̂1�n; π̂n

)
C1
(
h3(μ̂n)� ζ̂1�n; π̂n

)(π̂n −πn)
]

= √
nS(μ̂n)

[
ζ3�n(ζ1�n − 1)(ζ1�n − ζ3�n)

(ζ1�n − ζ3�nπ̂n + ζ1�nζ3�nπ̂n)(ζ1�n − ζ3�nπn + ζ1�nζ3�nπn)

+ C3
(
h3(μ̂n)� ζ̂1�n; π̂n

)
C1
(
h3(μ̂n)� ζ̂1�n; π̂n

)](π̂n −πn)

= √
nS(μ̂n)

[
ζ3�n(ζ1�n − 1)(ζ1�n − ζ3�n)

(ζ1�n − ζ3�nπ̂n + ζ1�nζ3�nπ̂n)(ζ1�n − ζ3�nπn + ζ1�nζ3�nπn)
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− ζ̂3�n(ζ̂1�n − 1)(ζ̂1�n − ζ̂3�n)

(ζ̂1�n − ζ̂3�nπ̂n + ζ̂1�nζ̂3�nπ̂n)
2

]
(π̂n −πn)

= √
nS(μ̂n)

[
η̃Nn (μ̂n)

η̃Dn (μ̂n)

]
(π̂n −πn)�

where

η̃Nn (μ̂n)= ζ3�n(ζ1�n − 1)(ζ1�n − ζ3�n)(ζ̂1�n − ζ̂3�nπ̂n + ζ̂1�nζ̂3�nπ̂n)

− ζ̂3�n(ζ̂1�n − 1)(ζ̂1�n − ζ̂3�n)(ζ1�n − ζ3�nπn + ζ1�nζ3�nπn)

= ζ3�n(ζ1�n − 1)(ζ1�n − ζ3�n)

× [
(ζ̂1�n − ζ̂3�nπ̂n + ζ̂1�nζ̂3�nπ̂n)− (ζ1�n − ζ3�nπn + ζ1�nζ3�nπn)

]
+ [
ζ3�n(ζ1�n − 1)(ζ1�n − ζ3�n)− ζ̂3�n(ζ̂1�n − 1)(ζ̂1�n − ζ̂3�n)

]
× (ζ1�n − ζ3�nπn + ζ1�nζ3�nπn)

= ζ2
3�n(ζ1�n − 1)2(ζ1�n − ζ3�n)(π̂n −πn)+Op

(
n−1/2)=Op

(
n−1/2‖βn‖−1)

with the final two equalities resulting from Lemma A.1 of HM18 and a mean value ex-
pansion of the term ζ̂3�n(ζ̂1�n − 1)(ζ̂1�n − ζ̂3�n), and

η̃Dn (μ̂n)= (
ζ1�n − ζ3�nπ̂n + ζ1�nζ3�nπ̂n +Op

(
n−1/2))2

(ζ1�n − ζ3�nπ + ζ1�nζ3�nπ)=Op(1)

by Lemma A.1 of HM18. Noting that both S(μ̂n) and η̃Dn (μ̂n)
−1 are also Op(1) by

Lemma A.1 of HM18, we may combine the expressions for η̃n(μ̂n), S(μ̂n), η̃Nn (μ̂n)
and η̃Dn (μ̂n) to conclude that ‖η̃n(μ̂n)‖ = ‖Op(n−1/2‖βn‖−1)

√
n(π̂n − πn)‖ =

‖Op(n−1/2‖βn‖−2)‖ → ∞, according to Lemma A.1 of HM18.

We now proceed to verify the imposed assumptions for the threshold crossing model
example. Hereafter, Andrews and Cheng (2013a) and Han and Vytlacil (2017) are abbre-
viated as AC13 and HV17. The supplemental material for AC12, AC13, and AC14, An-
drews and Cheng (2012, 2013b, 2014), are abbreviated as AC12supp, AC13supp, and
AC14supp. The working paper version of AC13 is abbreviated as ACMLwp. And “with
respect to” is abbreviated as “w.r.t.”

B.1 Assumptions for threshold crossing models

The assumptions in the main text of the current paper and the assumptions in AC12
on objects involving the transformed parameter θ are verified under assumptions intro-
duced in this section. The assumptions in AC12 are verified by verifying those in AC13.

Assumption TC1. {Wi = (Yi�Di�Zi) : i≥ 1} is an i.i.d. sequence.
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Assumption TC2. (i) Z ⊥ (ε� ν);
(ii) Fε and Fν are known marginal distributions of ε and ν, respectively, that are

strictly increasing and absolutely continuous with respect to the Lebesgue measure such
that E[ε] = E[ν] = 0 and Var(ε)= Var(ν)= 1;

(iii) (ε� ν)′ ∼ Fεν(ε� ν)= C(Fε(ε)�Fν(v);π)whereC : (0�1)2 → (0�1) is a copula known
up to a scalar parameter π ∈ Π such that C(u1�u2� ;π) is three-times differentiable in
(u1�u2�π) ∈ (0�1)2 ×Π;

(iv) The copula C(u1�u2� ;π) satisfies

C(u1|u2;π)≺S C
(
u1|u2;π′) for any π <π ′� (B.1)

where “≺S” is a stochastic ordering defined in HV17 (Definition 3.2);

(v) (1�Z) does not lie in a proper linear subspace of R2 wp1;

(vi) Θ∗ is compact and convex.

Given the form of h in (3.8) of HM18 with c4(ζ) set equal to zero, we write π = π3 in
this assumption and below. The conditions in TC2 are sufficient for (global) identifica-
tion of θ when β �= 0. The argument is similar to that in HV17, except that the condition
for the parameter space TC2(vi) is stronger than that in HV17.

For the next assumption, define Θ∗
δ ≡ {θ ∈Θ∗ : |β|< δ} for some δ > 0.

Assumption TC3. (i) Θ ≡ Θ−π × Π, and Θ−π and Π are compact and simply con-
nected;

(ii) int(Θ)⊃Θ∗;

(iii) For some δ > 0, Θ ⊃ {β ∈ R
dβ : |β| < δ} × Z0 ×Π ⊃ Θ∗

δ for some nonempty open
set Z0 ⊂ R

dμ−dπ andΠ.

(iv) h−1(Z0 ×Π)= Z0 ×Π for some nonempty open set Z0 ⊂ R
dμ−dπ .

As is typical, Assumption TC3(i)–(ii) will be satisfied by a proper choice of the opti-
mization parameter space. For concreteness, we define

Θ∗ ≡ {
θ = (β�ζ�π1�π2�π3) ∈ [−0�98�0�98] × [0�01�0�99] × [0�01�0�99]

× [0�01�0�99] × [−0�99�0�99] : 0�01 ≤ β+ ζ ≤ 0�99
}

(B.2)

and

Θ≡ {
θ= (β�ζ�π1�π2�π3) ∈ [−0�98 − ε�0�98 + ε] × [0�01 − ε�0�99 + ε]

× [0�01 − ε�0�99 + ε] × [0�01 − ε�0�99 + ε] × [−0�99 − ε�0�99 + ε] :
0�01 − ε≤ β+ ζ ≤ 0�99 + ε} (B.3)

for some ε > 0 so that TC3(i)–(ii) is clearly satisfied for small enough ε. Given the def-
inition (B.2), TC4 below also holds if we define the parameter space �∗(θ) of φ ≡ φ1
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as

�∗(θ)=�∗ ≡ [0�01�0�99]� (B.4)

TC3(iii) is satisfied by setting

Z0 ≡ (0�01 − δ�0�99 + δ)3

for δ < ε/2. For TC3(iv), let h̃−1(ζ�π)= (h−1
1 (ζ�π)�h−1

2 (ζ�π)�h−1
3 (ζ�π)), the first three

elements of (3.12) of HM18. Note that h4(ζ�π)= π (i.e., π3 = π) and for any givenπ ∈Π,
h̃−1(Z0�π) does not depend on π. Thus, we may set Z0 = h̃−1(Z0�π) for any π ∈ Π,
noting that Z0 must be a nonempty open set by the continuity of the first three elements
of h(·). The latter follows from TC2(iii) and (3.8) of HM18 after setting c1(ζ)= ζ1, c2(ζ)=
ζ2 and c3(ζ)= ζ3.

Assumption TC4. (i) � is compact and � = {γ = (θ�φ) : θ ∈Θ∗�φ ∈�∗(θ)};

(ii) ∀δ > 0, ∃γ = (β�μ�φ) ∈ � with 0< |β|< δ;

(iii) ∀γ = (β�μ�φ) ∈ � with 0< |β|< δ for some δ > 0, γa = (aβ�μ�φ) ∈ � ∀a ∈ [0�1].

Assumption TC4(ii) guarantees that the true parameter space includes a region
where weak identification occurs and TC4(iii) ensures that � is consistent with the exis-
tence ofK(θ;γ), defined later.

Assumption TC5. (i) C(u1�u2� ;π) is bounded away from zero over (0�1)2 ×Π;

(ii) 0<φ1 ≡ Prγ[Z = 1]< 1 ∀γ ∈ 
.

Lemma B.1. TC5 and TC2(iii) imply the following: for (y�d� z) ∈ {0�1}3, ∀γ = (θ�φ) ∈ � ,
and ∀γ = (θ�φ) ∈ 
,

(i) the first-, second-, and third-order derivatives of pyd�z(θ) are bounded over Θ;

(ii) pyd�z(θ) is bounded away from zero over Θ and 0<φ1 < 1;

(iii) h̄(θ) is three-times differentiable onΘ;

(iv) pyd�z(θ) ≡ pyd�z(h̄(θ)) is three-times differentiable on Θ and the first-, second-,
and third-order derivatives of pyd�z(θ) are bounded overΘ;

(v) pyd�z(θ) is bounded away from zero overΘ.

Proof of Lemma B.1. (i) holds by TC2(iii), the fact that the domain Θ is compact by
TC3(i), and the definitions of pyd�z(θ). (ii) immediately holds by TC5. For (iii), given
(3.9) of HM18, TC2(iii), and TC3(i) imply that h(μ) is three-times differentiable in μ,
and hence h̄(θ)= (β�h(μ)) is three-times differentiable in θ. Next, (iv) holds by (i), (iii),
and the chain rule, and (v) trivially holds by (ii).
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B.2 Verification of assumptions in the main text

Assumptions CF, ID, Jac, and Reg3 are verified in the main text. Assumption Reg1 is sat-
isfied with ḡn(θ) = ξ̂n − g(θ), where each element pyd�z(θ) of the vector g(θ) is con-
tinuously differentiable by TC2(iii). For Assumption H, H(i) holds since its sufficient
conditions that Θ is bounded and h is continuous hold by S2(v), verified below, and by
Proposition 3.1 of HM18, respectively. H(ii) is also trivially satisfied by TC3(i). For Reg2,
rank(hsπ(μ))= 1 if hs(π) contains h2(π), h3(π) or h4(π) and rank(hsπ(μ))= 0 otherwise,
as can be seen from the form of h in (3.8) of HM18 upon setting c1(ζ) = ζ1, c2(ζ) = ζ2,
c3(ζ)= ζ3, and c4(ζ)= 0.

B.3 Verification of assumptions in Andrews and Cheng (2013)

In this section, given our transformed parameter θ and associated transformed objects,
we verify the regularity conditions for the asymptotic theory of the ML estimator θ̂n in
AC13. Specifically, we show that Assumptions TC1–TC5 are sufficient for Assumptions
S1–S4, B1, B2, C6, C7, V1, and V2 of AC13. Then, under Assumptions B1 and B2, As-
sumptions S1–S3 of AC13 imply Assumptions A, B3, C1–C4, C8, and D1–D3 of AC12;
see Lemma 9.1 in ACMLwp. Maintaining the same labels of AC13, below we rewrite the
assumptions of AC13 before verifying them. Note that in our stylized threshold cross-
ing model, β is scalar. Therefore, we do not consider Assumptions S3∗ and V1∗ of AC13
which apply to the vector β case.

Assumption S1. ∀γ0 ∈ 
, {Wi : i ≥ 1} is an i.i.d. sequence and the constant q (that ap-
pears in Assumption S3 below) equals 2 + δ for some δ > 0.

Assumption S2. (i) For some function ρ(w�θ) ∈ R, Qn(θ) = n−1∑n
i=1 ρ(Wi�θ), where

ρ(w�θ) is twice continuously differentiable in θ on an open set containingΘ∗ ∀w ∈ W .

(ii) ρ(w�θ) does not depend on π when β= 0 ∀w ∈W .

(iii) ∀γ0 ∈ 
with β0 = 0, Eγ0ρ(Wi�ψ�π) is uniquely minimized by ψ0 ∀π ∈Π.

(iv) ∀γ0 ∈ 
with β0 �= 0, Eγ0ρ(Wi�θ) is uniquely minimized by θ0.

(v) Ψ(π) is compact ∀π ∈Π, andΠ andΘ are compact.

(vi) ∀ε > 0, ∃δ > 0 such that dH(Ψ(π1)�Ψ(π2)) < ε ∀π1�π2 ∈ Π with |π1 − π2| < δ,
where dH(·� ·) is the Hausdorff metric.

Verification of S2(i). By TC2(iii), pyd�z(θ) is twice continuously differentiable in θ.

Then, since pyd�z(θ) ≡ pyd�z(h̄(θ)) is twice continuously differentiable by Lemma B.1,
so is ρ(w�θ)= −∑

y�d�z=0�1 1ydz(w) logpyd�z(θ).

Verification of S2(ii). It is easy to see from (2.5)–(2.6) of HM18 that, when β = 0,
pyd�0(θ) = pyd�1(θ) for all θ and (y�d), which implies that pyd�0(h̄(θ)) = pyd�1(h̄(θ)) for
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all θ. Therefore,

p11�1(θ)= p11�0(θ)= ζ3�

p10�1(θ)= p10�0(θ)= ζ2� (B.5)

p01�1(θ)= p01�0(θ)= ζ1 − ζ3�

where the second equality in each equation is from (7.1)–(7.2) of HM18. Therefore,
pyd�z(θ) does not depend on π when β= 0, and hence ρ(w�θ)= −∑

y�d�z=0�1 1ydz(w)×
logpyd�z(θ) does not depend on π.

Verification of S2(iii). When β0 = 0, for ψ �=ψ0 and for a given π,

Eγ0ρ(Wi�ψ�π)−Eγ0ρ(Wi�ψ0�π)= −
∑

y�d�z=0�1

pyd�z(ψ0�π0)φz�0 log
pyd�z(ψ�π)

pyd�z(ψ0�π)

≥ − log
∑

y�d�z=0�1

pyd�z(ψ0�π0)φz�0
pyd�z(ψ�π)

pyd�z(ψ0�π)

= − log
∑

y�d�z=0�1

pyd�z(ψ�π)φz�0

= 0�

where the last equality holds since
∑
y�d pyd�1(θ)=∑

y�d pyd�0(θ)= 1 andφ0�0 = 1 −φ1�0,
and the second-to-last equality holds since

pyd�z(ψ0�π0)= pyd�z(ψ0�π)≡ p0
yd (B.6)

when β0 = 0, as in (B.5). Notationally, p11 = ζ3, p10 = ζ2, and p01 = ζ1 − ζ3. The Jensen’s
inequality is strict if there exist (y�d� z) ∈ {0�1}3 such that

pyd�z(ψ�π)

pyd�z(ψ0�π)
�= 1�

Under TC2, this condition can be readily shown to hold by a slight modification of the
identification proof of Theorem 4.1 in HV17, which is omitted here for brevity.

Verification of S2(iv). For θ �= θ0,

Q0(θ)−Q0(θ0)= −
∑

y�d�z=0�1

pyd�z(θ0)φz�0 log
pyd�z(θ)

pyd�z(θ0)

>− log
∑

y�d�z=0�1

pyd�z(θ)φz�0

= 0�
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where the Jensen’s inequality is strict because there exist (y�d� z) ∈ {0�1}3 such that

pyd�z(θ)

pyd�z(θ0)
�= 1

by Theorem 4.1 in HV17 under TC2.

Verification of S2(v). By TC3(i), Π is compact and the parameter space is the same
before and after the transformation. Also, Θ = h̄−1(Θ) is compact since Θ is compact
and Assumption H(i) holds. For compactness of Ψ(π), first note that, for a given π ∈Π,
h̄−π(·�π), which is h̄(·�π) except the last element, is a homeomorphism. This is be-
cause Θ−π is simply connected, h̄−π(·�π) is continuous, and Ψ(π) is bounded since
Θ is bounded. Then

Θ−π = Θ−π(π)≡ h̄−π
(
Ψ(π)�π

)
where the first equality is because the dependence parameter π does not restrict the
space of the remaining elements of θ (or by TC3(i)), and thus Ψ(π) = h̄−1−π(Θ−π�π).
Therefore, Ψ(π) is compact since Θ−π is compact and h̄−π(·�π) is proper.

Verification of S2(vi). The space of ψ = (β�ζ) is continuous in π since Ψ(π) =
h̄−1−π(Θ−π�π), where h̄−1−π(θ−π�π) is continuous in π by (3.12) of HM18 and TC2(iii).

Let ρθ(w�θ) and ρθθ(w�θ) denote the first- and second-order partial derivatives
of ρ(w�θ) w.r.t. θ, respectively. Also, let ρψ(w�θ) and ρψψ(w�θ) denote the first- and
second-order partial derivatives of ρ(w�θ) w.r.t. ψ, respectively. Recall

B(β)≡
[
Idψ 0dψ×1

01×dψ β

]
∈ R

dθ×dθ �

For β �= 0, let

B−1(β)ρθ(w�θ)≡ ρ†
θ(w�θ)�

B−1(β)ρθθ(w�θ)B
−1(β)≡ ρ†

θθ(w�θ)+ r(w�θ)�
(B.7)

where ρ†
θθ(w�θ) is symmetric and ρ†

θ(w�θ), ρ
†
θθ(w�θ), and r(w�θ) satisfy Assumption S3

below;1 see below for actual expressions of these terms. Next, define

V †(θ1� θ2;γ0)≡ Covγ0

(
ρ†
θ(Wi�θ1)�ρ

†
θ(Wi�θ2)

)
�

Let λmax(A) and λmin(A) denote the maximum and minimum eigenvalues, respectively,
of a square matrixA.

1The remainder term r(w�θ) and related conditions in S3 are slightly more general than conditions on
β−1ε(w�θ) and related conditions in AC13.
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In this example of a threshold crossing model, define Dθp
†
yd�z(θ) ≡ B−1(β)×

Dθpyd�z(θ) so that

ρθ(w�θ)= −
∑

y�d�z=0�1

1ydz(w)
1

pyd�z(θ)
Dθpyd�z(θ)�

ρθθ(w�θ)= −
∑

y�d�z=0�1

1ydz(w)
[
− 1

pyd�z(θ)
2Dθpyd�z(θ)Dθpyd�z(θ)

′

+ 1
pyd�z(θ)

Dθθpyd�z(θ)

]
�

ρ†
θ(w�θ)= −

∑
y�d�z=0�1

1ydz(w)
1

pyd�z(θ)
Dθp

†
yd�z(θ)�

ρ†
θθ(w�θ)= ρ†

θ(w�θ)ρ
†
θ(w�θ)

′ =
∑

y�d�z=0�1

1ydz(w)
1

pyd�z(θ)
2Dθp

†
yd�z(θ)Dθp

†
yd�z(θ)

′�

r(w�θ)= −
∑

y�d�z=0�1

1ydz(w)
1

pyd�z(θ)
B−1(β)Dθθpyd�z(θ)B

−1(β)�

Suppressing the argument (ζ1� ζ3�π) in h3 and its derivatives, and suppressing the argu-
ment (ζ1� ζ2�π) in h2 and its derivatives, note that from (7.1)–(7.2) of HM18,

Dθp11�0(θ)=

⎡⎢⎢⎢⎢⎢⎣
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎦ � Dθp10�0(θ)=

⎡⎢⎢⎢⎢⎢⎣
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎦ �

Dθp01�0(θ)=

⎡⎢⎢⎢⎢⎢⎣
0
1
0

−1
0

⎤⎥⎥⎥⎥⎥⎦ � Dθp00�0(θ)=

⎡⎢⎢⎢⎢⎢⎣
0

−1
−1
0
0

⎤⎥⎥⎥⎥⎥⎦ �

Dθp11�1(θ)=

⎡⎢⎢⎢⎢⎢⎢⎣
C2(h3� ζ1 +β;π)

C2(h3� ζ1 +β;π)+C1(h3� ζ1 +β;π)h3�ζ1

0
C1(h3� ζ1 +β;π)h3�ζ3

Cπ(h3� ζ1 +β;π)+C1(h3� ζ1 +β;π)h3�π

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
C2(h3� ζ1 +β;π)

C2(h3� ζ1 +β;π)+C1(h3� ζ1 +β;π)h3�ζ1

0
C1(h3� ζ1 +β;π)h3�ζ3

β
{
Cπ2

(
h3� ζ1 +β†;π)+C12

(
h3� ζ1 +β†;π)h3�π

}

⎤⎥⎥⎥⎥⎥⎥⎦ �

(B.8)
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where 0 ≤ |β†| ≤ β. The last equality is derived using a mean value expansion and the
fact that Cπ(h3� ζ1;π)+C1(h3� ζ1;π)h3�π = 0, obtained by differentiating C(h3� ζ1;π)=
ζ3 w.r.t. π. Furthermore,

Dθp10�1(θ)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−C2(h2� ζ1 +β;π)
h2�ζ1 −C2(h2� ζ1 +β;π)−C1(h2� ζ1 +β;π)h2�ζ1

h2�ζ2 −C1(h2� ζ1 +β;π)h2�ζ2

0

h2�π −Cπ(h2� ζ1 +β;π)−C1(h2� ζ1 +β;π)h2�π

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−C2(h2� ζ1 +β;π)
h2�ζ1 −C2(h2� ζ1 +β;π)−C1(h2� ζ1 +β;π)h2�ζ1

h2�ζ2 −C1(h2� ζ1 +β;π)h2�ζ2

0

−β{Cπ2
(
h2� ζ1 +β††;π)+C12

(
h2� ζ1 +β††;π)h2�π

}

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� (B.9)

where 0 ≤ |β††| ≤ β and the last equality is derived using a mean value expansion and
the fact that h2�π −Cπ(h2� ζ1;π)−C1(h2� ζ1;π)h2�π = 0. Finally,

Dθp01�1(θ)=

⎡⎢⎢⎢⎢⎢⎣
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦−Dθp11�1(θ)� Dθp00�1(θ)=

⎡⎢⎢⎢⎢⎢⎣
−1
−1
0
0
0

⎤⎥⎥⎥⎥⎥⎦−Dθp10�1(θ)�

Also, note that for all (y�d),

Dθθpyd�0(θ)= 0 (B.10)

and

Dθθp01�1(θ)= −Dθθp11�1(θ)� Dθθp00�1(θ)= −Dθθp10�1(θ)� (B.11)

Now, for z = 0,

Dθp
†
yd�z(θ)=Dθpyd�z(θ) (B.12)

and, for z = 1,

Dθp
†
11�1(θ)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C2(h3� ζ1 +β;π)
C2(h3� ζ1 +β;π)+C1(h3� ζ1 +β;π)h3�ζ1

0

C1(h3� ζ1 +β;π)h3�ζ3

Cπ2
(
h3� ζ1 +β†;π)+C12

(
h3� ζ1 +β†;π)h3�π

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� (B.13)



Supplementary Material (Nearly) singular Jacobian 17

Dθp
†
10�1(θ)=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−C2(h2� ζ1 +β;π)
h2�ζ1 −C2(h2� ζ1 +β;π)−C1(h2� ζ1 +β;π)h2�ζ1

h2�ζ2 −C1(h2� ζ1 +β;π)h2�ζ2

0

−Cπ2
(
h2� ζ1 +β††;π)−C12

(
h2� ζ1 +β††;π)h2�π

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� (B.14)

and expressions for the remaining two derivatives can be derived analogously.
Note that

ρψ(w�θ)= −
∑

y�d�z=0�1

1ydz(w)
1

pyd�z(θ)
Dψpyd�z(θ)�

ρψψ(w�θ)= −
∑

y�d�z=0�1

1ydz(w)
[
− 1

pyd�z(θ)
2Dψpyd�z(θ)Dψpyd�z(θ)

′

+ 1
pyd�z(θ)

Dψψpyd�z(θ)

]
�

where, with ψ= (β�ζ)= (β�ζ1� ζ2� ζ3),

Dψp11�0(θ)=

⎡⎢⎢⎢⎣
0
0
0
1

⎤⎥⎥⎥⎦ � Dψp10�0(θ)=

⎡⎢⎢⎢⎣
0
0
1
0

⎤⎥⎥⎥⎦ �

Dψp01�0(θ)=

⎡⎢⎢⎢⎣
0
1
0

−1

⎤⎥⎥⎥⎦ � Dψp00�0(θ)=

⎡⎢⎢⎢⎣
0

−1
−1
0

⎤⎥⎥⎥⎦ �

Dψp11�1(θ)=

⎡⎢⎢⎢⎢⎣
C2(h3� ζ1 +β;π)

C2(h3� ζ1 +β;π)+C1(h3� ζ1 +β;π)h3�ζ1

0

C1(h3� ζ1 +β;π)h3�ζ3

⎤⎥⎥⎥⎥⎦ �

Dψp10�1(θ)=

⎡⎢⎢⎢⎢⎣
−C2(h2� ζ1 +β;π)

h2�ζ1 −C2(h2� ζ1 +β;π)−C1(h2� ζ1 +β;π)h2�ζ1

h2�ζ2 −C1(h2� ζ1 +β;π)h2�ζ2

0

⎤⎥⎥⎥⎥⎦ �

and

Dψp01�1(θ)=

⎡⎢⎢⎢⎣
1
1
0
0

⎤⎥⎥⎥⎦−Dψp11�1(θ)� Dψp00�1(θ)=

⎡⎢⎢⎢⎣
−1
−1
0
0

⎤⎥⎥⎥⎦−Dψp10�1(θ)�
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Also, for all (y�d) and θ,

Dψψpyd�0(θ)= 0 (B.15)

and

Dψψp01�1(θ)= −Dψψp11�1(θ)� Dψψp00�1(θ)= −Dψψp10�1(θ)� (B.16)

Assumption S3. (i) (a) Eγ0r(Wi�θ0)= 0; and (b) ‖Eγ0r(Wi�ψ0�π)‖ ≤ C|π − π0| ∀γ0 ∈ 

with 0< |β0|< δ for some δ > 0.

(ii) (a) For all δ > 0 and some functionM1(w) : W → R+, ‖ρψψ(w�θ1)−ρψψ(w�θ2)‖+
‖ρ†
θθ(w�θ1)− ρ†

θθ(w�θ2)‖ ≤M1(w)δ, ∀θ1� θ2 ∈Θ with ‖θ1 − θ2‖ ≤ δ, ∀w ∈ W ; and (b) for

all δ > 0 and some function M2(w) : W → R+, ‖ρ†
θ(w�θ1) − ρ†

θ(w�θ2)‖ + ‖r(w�θ1) −
r(w�θ2)‖ ≤M2(w)δ, ∀θ1� θ2 ∈Θ with ‖θ1 − θ2‖ ≤ δ, ∀w ∈ W .

(iii) Eγ0 supθ∈Θ{|ρ(Wi�θ)|1+δ + ‖ρψψ(Wi�θ)‖1+δ + ‖ρ†
θθ(Wi�θ)‖1+δ + M1(Wi) +

‖ρ†
θ(Wi�θ)‖q + ‖r(Wi�θ)‖q +M2(Wi)

q ≤ C for some δ > 0 ∀γ0 ∈ 
, where q is as in As-
sumption S1.

(iv) (a) λmin(Eγ0ρψψ(Wi�ψ0�π)) > 0 ∀π ∈ Π when β0 = 0; and (b) Eγ0ρ
†
θθ(Wi�θ0) is

positive definite ∀γ0 ∈ 
.

(v) V †(θ0� θ0;γ0) is positive definite ∀γ0 ∈ 
.

Verification of S3(i)(a). Note that

Eγ0r(Wi�θ0)= −
∑

y�d�z=0�1

φz�0B
−1(β0)Dθθpyd�z(θ0)B

−1(β0)= 0

by (B.10) and (B.11) since β0 �= 0.

Verification of S3(i)(b). Using (B.10) and (B.11),

Eγ0r(Wi�ψ0�π)

=
∑

y�d=0�1

pyd�1(θ0)φ1�0B
−1(β0)

Dθθpyd�1(ψ0�π)

pyd�1(ψ0�π)
B−1(β0)

=φ1�0B
−1(β0)

[
p11�1(θ0)

p11�1(ψ0�π)
Dθθp11�1(ψ0�π)+ p01�1(θ0)

p01�1(ψ0�π)
Dθθp01�1(ψ0�π)

+ p10�1(θ0)

p10�1(ψ0�π)
Dθθp10�1(ψ0�π)+ p00�1(θ0)

p00�1(ψ0�π)
Dθθp00�1(ψ0�π)

]
B−1(β0)

=φ1�0B
−1(β0)

[(
p11�1(θ0)

p11�1(ψ0�π)
− p01�1(θ0)

p01�1(ψ0�π)

)
Dθθp11�1(ψ0�π)

+
(
p10�1(θ0)

p10�1(ψ0�π)
− p00�1(θ0)

p00�1(ψ0�π)

)
Dθθp10�1(ψ0�π)

]
B−1(β0)
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=φ1�0B
−1(β0)

[(
(ζ10 +β0)

(
p11�1(θ0)−p11�1(ψ0�π)

)
p11�1(ψ0�π)

(
ζ10 +β0 −p11�1(ψ0�π)

))Dθθp11�1(ψ0�π)

+
(
(1 − ζ10 −β0)

(
p10�1(θ0)−p10�1(ψ0�π)

)
p10�1(ψ0�π)

(
1 − ζ10 −β0 −p10�1(ψ0�π)

))Dθθp10�1(ψ0�π)

]
B−1(β0)� (B.17)

where the last equality uses p01�1(θ) = ζ1 + β − p11�1(θ) and p00�1(θ) = 1 − ζ1 − β −
p10�1(θ). Apply the mean value theorem to p11�1(θ0)−p11�1(ψ0�π) w.r.t. π:

p11�1(ψ0�π0)−p11�1(ψ0�π)= ∂p11�1
(
ψ0�π

†)
∂π

(π0 −π)

= ∂2p11�1
(
β†� ζ0�π

†)
∂π∂β

(π0 −π)β0� (B.18)

where π† is between π0 and π and 0 ≤ |β†| ≤ |β0|. The second equality holds by an-

other mean value expansion of
∂p11�1(ψ0�π

†)
∂π w.r.t. β0 around β0 = 0 and the fact that

∂p11�1(β�ζ0�π
†)

∂π |β=0 = 0 since

Cπ
(
h3(π)� ζ1;π

)+C1
(
h3(π)� ζ1;π

)
h3�π(π)= 0

for all (ζ1� ζ3�π). Similarly, using mean value expansions,

p10�1(ψ0�π0)−p10�1(ψ0�π)= ∂2p10�1
(
β††� ζ0�π

††)
∂π∂β

(π0 −π)β0 (B.19)

for some π†† between π0 and π and 0 ≤ |β††| ≤ |β0|. Therefore, combining (B.17)–(B.19),∥∥Eγ0r(Wi�ψ0�π)
∥∥≤ |c1|

∥∥B−1(β0)β0Dθθp11�1(ψ0�π)B
−1(β0)

∥∥|π0 −π|
+ |c2|

∥∥B−1(β0)β0Dθθp10�1(ψ0�π)B
−1(β0)

∥∥|π0 −π|�
where c1 and c2 are collections of all other terms, whose norms are bounded by (7.1)–
(7.2) of HM18 and Lemma B.1. Also ‖B−1(β0)β0‖ is bounded for 0< |β0|< δ. Note that
‖Dθθp11�1(ψ0�π)B

−1(β0)‖ and ‖Dθθp10�1(ψ0�π)B
−1(β0)‖ can be shown to be bounded

for 0 < |β0| < δ by differentiating (B.13) and (B.14) w.r.t. θ, respectively, and applying
Lemma B.1.

Verification of S3(ii)(a). Generically, for A = aa′ where a = (a1� � � � � ap) ∈ R
da and

a1� � � � � ap are vectors,

‖A‖ ≤
p∑
j=1

‖aj‖2�

and forA∗ = a∗a∗′∥∥A−A∗∥∥≤ ∥∥a(a− a∗)′∥∥+ ∥∥(a− a∗)a∗′∥∥≤ (‖a‖ + ∥∥a∗∥∥)∥∥a− a∗∥∥
≤

p∑
j=1

(‖aj‖ + ∥∥a∗
j

∥∥) p∑
j=1

∥∥aj − a∗
j

∥∥�
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Applying this result to the last inequality below,

∥∥ρψψ(w�θ1)− ρψψ(w�θ2)
∥∥

≤
∑

y�d�z=0�1

∥∥∥∥Dψpyd�z(θ1)Dψpyd�z(θ1)
′

pyd�z(θ1)
2 − Dψpyd�z(θ2)Dψpyd�z(θ2)

′

pyd�z(θ2)
2

∥∥∥∥
+

∑
y�d�z=0�1

∥∥∥∥Dψψpyd�z(θ1)

pyd�z(θ1)
− Dψψpyd�z(θ2)

pyd�z(θ2)

∥∥∥∥
≤

∑
y�d�z=0�1

(∥∥∥∥Dψpyd�z(θ1)

pyd�z(θ1)

∥∥∥∥+
∥∥∥∥Dψpyd�z(θ2)

pyd�z(θ2)

∥∥∥∥)∥∥∥∥Dψpyd�z(θ1)

pyd�z(θ1)
− Dψpyd�z(θ2)

pyd�z(θ2)

∥∥∥∥
+

∑
y�d�z=0�1

∥∥∥∥Dψψpyd�z(θ1)

pyd�z(θ1)
− Dψψpyd�z(θ2)

pyd�z(θ2)

∥∥∥∥
≤

∑
y�d�z=0�1

dψ∑
j=1

(∣∣∣∣Dψjpyd�z(θ1)

pyd�z(θ1)

∣∣∣∣+ ∣∣∣∣Dψjpyd�z(θ2)

pyd�z(θ2)

∣∣∣∣) dψ∑
j=1

∣∣∣∣Dψjpyd�z(θ1)

pyd�z(θ1)
− Dψjpyd�z(θ2)

pyd�z(θ2)

∣∣∣∣
+

∑
y�d�z=0�1

dψ∑
j�k=1

∣∣∣∣Dψjψkpyd�z(θ1)

pyd�z(θ1)
− Dψjψkpyd�z(θ2)

pyd�z(θ2)

∣∣∣∣�
where |1ydz(w)| ≤ 1 is used in the first inequality. Applying the mean value theorem to

the differential terms,

∣∣∣∣Dψjpyd�z(θ1)

pyd�z(θ1)
− Dψjpyd�z(θ2)

pyd�z(θ2)

∣∣∣∣≤ ∥∥∥∥Dθ{Dψjpyd�z
(
θ†)

pyd�z
(
θ†) }∥∥∥∥‖θ1 − θ2‖�

∣∣∣∣Dψjψkpyd�z(θ1)

pyd�z(θ1)
− Dψjψkpyd�z(θ2)

pyd�z(θ2)

∣∣∣∣≤ ∥∥∥∥Dθ{Dψjψkpyd�z
(
θ††)

pyd�z
(
θ††) }∥∥∥∥‖θ1 − θ2‖�

where θ† and θ†† lie between θ1 and θ2 (element-wise). By Lemma B.1, supθ |Dψjpyd�z(θ)pyd�z(θ)
|<

c1, supθ |Dθk{
Dψjpyd�z(θ)

pyd�z(θ)
}| < c2 and supθ |Dθl{

Dψjψkpyd�z(θ)

pyd�z(θ)
}| < c3 for some positive con-

stants c1, c2 and c3 and, therefore, combining the inequalities,

∥∥ρψψ(w�θ1)− ρψψ(w�θ2)
∥∥≤

∑
y�d�z=0�1

dψ∑
j=1

2c1

dψ∑
j=1

dθ∑
k=1

c2‖θ1 − θ2‖

+
∑

y�d�z=0�1

dψ∑
j�k=1

dθ∑
l=1

c3‖θ1 − θ2‖� (B.20)
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Similarly,∥∥ρ†
θθ(w�θ1)− ρ†

θθ(w�θ2)
∥∥

≤
∑

y�d�z=0�1

∥∥∥∥Dθp†
yd�z(θ1)Dθp

†
yd�z(θ1)

′

pyd�z(θ1)
2 −

Dθp
†
yd�z(θ2)Dθp

†
yd�z(θ2)

′

pyd�z(θ2)
2

∥∥∥∥
≤

∑
y�d�z=0�1

(∥∥∥∥Dθp†
yd�z(θ1)

pyd�z(θ1)

∥∥∥∥+
∥∥∥∥Dθp†

yd�z(θ2)

pyd�z(θ2)

∥∥∥∥)∥∥∥∥Dθp†
yd�z(θ1)

pyd�z(θ1)
−
Dθp

†
yd�z(θ2)

pyd�z(θ2)

∥∥∥∥
≤

∑
y�d�z=0�1

dθ∑
j=1

(∣∣∣∣Dθjp†
yd�z(θ1)

pyd�z(θ1)

∣∣∣∣+ ∣∣∣∣Dθjp†
yd�z(θ2)

pyd�z(θ2)

∣∣∣∣) dθ∑
j=1

∣∣∣∣Dθjp†
yd�z(θ1)

pyd�z(θ1)
−
Dθjp

†
yd�z(θ2)

pyd�z(θ2)

∣∣∣∣
and by Lemma B.1, supθ |Dθjp

†
yd�z(θ)

pyd�z(θ)
|< c4 and supθ |Dθk{

Dθjp
†
yd�z(θ)

pyd�z(θ)
}|< c5 for some positive

constants c4 and c5 and, therefore, by applying the mean value theorem as above,

∥∥ρ†
θθ(w�θ1)− ρ†

θθ(w�θ2)
∥∥≤

∑
y�d�z=0�1

dθ∑
j=1

2c4

dθ∑
j�k=1

c5‖θ1 − θ2‖� (B.21)

By combining (B.20) and (B.21), we have the desired result.

Verification of S3(ii)(b). For bounding ‖r(w�θ1)− r(w�θ2)‖, the proof is very similar
to the one above with ‖ρ†

θθ(w�θ1) − ρ†
θθ(w�θ2)‖. Bounding ‖ρ†

θ(w�θ1)− ρ†
θ(w�θ2)‖ can

also be done analogously.

Verification of S3(iii). First,M1(w) is finite and does not depend onw, as can be seen
from the verification of S3(ii)(a). Now, since |1ydz(w)| ≤ 1

Eγ0 sup
θ∈Θ

∣∣ρ(Wi�θ)∣∣1+δ ≤Eγ0

( ∑
y�d�z=0�1

sup
θ∈Θ

∣∣1ydz(w) · logpyd�z(θ)
∣∣)1+δ

≤
( ∑
y�d�z=0�1

sup
θ∈Θ

∣∣logpyd�z(θ)
∣∣)1+δ

�

which is bounded since pyd�z(θ) is bounded away from zero for any θ ∈Θ and (y�d� z) ∈
{0�1} by Lemma B.1. Next,

Eγ0 sup
θ∈Θ

∥∥ρψψ(Wi�θ)∥∥1+δ

≤Eγ0

( ∑
y�d�z=0�1

sup
θ∈Θ

∥∥∥∥1ydz(w)
[
− 1

pyd�z(θ)
2Dψpyd�z(θ)Dψpyd�z(θ)

′

+ 1
pyd�z(θ)

Dψψpyd�z(θ)

]∥∥∥∥)1+δ
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≤
( ∑
y�d�z=0�1

C sup
θ∈Θ

{∥∥Dψpyd�z(θ)Dψpyd�z(θ)′∥∥+ ∥∥Dψψpyd�z(θ)∥∥})1+δ

by Lemma B.1, where ‖Dψpyd�z(θ)Dψpyd�z(θ)′‖ ≤ ∑dψ
j=1 ‖Dψjpyd�z(θ)‖2, which is

bounded by Lemma B.1, and similarly for ‖Dψψpyd�z(θ)‖. Similar arguments to those
used in the verification of S3(i)(b) and S3(ii)(a) provide the desired result for the remain-
ing four terms in the assumption.

Verification of S3(iv)(a). Note that, when β0 = 0,

Eγ0ρψψ(Wi�ψ0�π)

=
∑

y�d�z=0�1

pyd�z(θ0)φz�0

[
Dψpyd�z(ψ0�π)Dψpyd�z(ψ0�π)

′

pyd�z(ψ0�π)
2 − Dψψpyd�z(ψ0�π)

pyd�z(ψ0�π)

]

=
∑

y�d�z=0�1

φz�0

[
Dψpyd�z(ψ0�π)Dψpyd�z(ψ0�π)

′

p0
yd

−Dψψpyd�z(ψ0�π)

]

=
∑

y�d�z=0�1

φz�0
Dψpyd�z(ψ0�π)Dψpyd�z(ψ0�π)

′

p0
yd

�

where the second equality is by (B.6), and the third equality is by (B.15) and (B.16). Let
Myd�z ≡Dψpyd�z(ψ0�π)Dψpyd�z(ψ0�π)

′ and M̃yd�z ≡Myd�z/p
0
yd so that

Eγ0ρψψ(Wi�ψ0�π)=φ1�0
∑

y�d=0�1

M̃yd�1 +φ0�0
∑

y�d=0�1

M̃yd�0� (B.22)

Let h3(π) ≡ h3(ζ10� ζ30;π) and h2(π) ≡ h2(ζ10� ζ20;π). Note that when β0 = 0, the
Dψpyd�z(ψ0�π) terms can be expressed as

Dψp11�0 =

⎡⎢⎢⎢⎣
0
0
0
1

⎤⎥⎥⎥⎦ � Dψp10�0 =

⎡⎢⎢⎢⎣
0
0
1
0

⎤⎥⎥⎥⎦ � Dψp01�0 =

⎡⎢⎢⎢⎣
0
1
0

−1

⎤⎥⎥⎥⎦ � Dψp00�0 =

⎡⎢⎢⎢⎣
0

−1
−1
0

⎤⎥⎥⎥⎦ �

Dψp11�1 =

⎡⎢⎢⎢⎣
C2
(
h3(π)� ζ1;π

)
0
0
1

⎤⎥⎥⎥⎦ � Dψp10�1 =

⎡⎢⎢⎢⎣
−C2

(
h2(π)� ζ1;π

)
0
1
0

⎤⎥⎥⎥⎦ �
and

Dψp01�1 =

⎡⎢⎢⎢⎣
1 −C2

(
h3(π)� ζ1;π

)
1
0

−1

⎤⎥⎥⎥⎦ � Dψp00�1 =

⎡⎢⎢⎢⎣
−1 +C2

(
h2(π)� ζ1;π

)
−1
−1
0

⎤⎥⎥⎥⎦ �
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where, inDψp11�1 andDψp10�1,

C2(h3� ζ1;π)+C1(h3� ζ1;π)h3�ζ1 = 0� (B.23)

C1(h3� ζ1;π)h3�ζ3 = 1� (B.24)

h2�ζ1 −C2(h2� ζ1;π)−C1(h2� ζ1;π)h2�ζ1 = 0� (B.25)

h2�ζ2 −C1(h2� ζ1;π)h2�ζ2 = 1� (B.26)

by differentiating the objects in (7.1)–(7.2) of HM18 w.r.t. ζ1, ζ2 and ζ3 and (B.5). Let
c ≡ C2(h3(π)� ζ10;π) and c̃ ≡ C2(h2(π)� ζ10;π) for notational simplicity. Then

M11�1 =

⎡⎢⎢⎢⎣
c2 0 0 c

0 0 0 0
0 0 0 0
c 0 0 1

⎤⎥⎥⎥⎦ � M10�1 =

⎡⎢⎢⎢⎣
c̃2 0 −c̃ 0
0 0 0 0

−c̃ 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦ �

M01�1 =

⎡⎢⎢⎢⎣
(1 − c)2 1 − c 0 c− 1

1 − c 1 0 −1
0 0 0 0

c− 1 −1 0 1

⎤⎥⎥⎥⎦ � M00�1 =

⎡⎢⎢⎢⎣
(1 − c̃)2 1 − c̃ 1 − c̃ 0

1 − c̃ 1 1 0
1 − c̃ 1 1 0

0 0 0 0

⎤⎥⎥⎥⎦ �

M11�0 =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎦ � M10�0 =

⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦ �

M01�0 =

⎡⎢⎢⎢⎣
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤⎥⎥⎥⎦ � M00�0 =

⎡⎢⎢⎢⎣
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎤⎥⎥⎥⎦ �
By Weyl (1912),

λmin(A+B)≥ λmin(A)+ λmin(B) (B.27)

for symmetric matricesA and B. Thus, for (B.22),

λmin
(
Eγ0ρψψ(Wi�ψ0�π)

)≥ λmin

(
φ1�0

∑
y�d=0�1

M̃yd�1

)
+ λmin

(
φ0�0

∑
y�d=0�1

M̃yd�0

)
�

The second term on the right-hand side satisfies λmin(φ0�0
∑
y�d=0�1M̃yd�0) ≥

φ0�0
∑
y�d=0�1λmin(M̃yd�0) = 0 by (B.27), the above expressions for the Myd�0’s and since

λmin(M̃yd�0) = λmin(Myd�0) = 0 because p0
yd > 0 for all (y�d) by Lemma B.1(v). The

first term on the right-hand side satisfies λmin(φ1�0
∑
y�d=0�1M̃yd�1) ≥ φ1�0λmin({M̃11�1 +

M̃01�1 + M̃00�1}) by (B.27) and since λmin(M̃10�1) = λmin(M10�1) = 0. Now we prove
λmin(M̃11�1 + M̃01�1 + M̃00�1) > 0, which then implies that λmin(Eγ0ρψψ(Wi�ψ0�π)) > 0 as
desired sinceφ1�0 > 0 by TC5(ii). Under TC5(i) and by Lemma B.1(v), let a≡ p0

11/p
0
01 and
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b ≡ p0
11/p

0
00 for simplicity. Then M̃11�1 + M̃01�1 + M̃00�1 = (M11�1 + aM01�1 + bM00�1)/p

0
11

and

M ≡M11�1 + aM01�1 + bM00�1

=

⎡⎢⎢⎢⎣
a(1 − c)2 + b(1 − c̃)2 + c2 a(1 − c)+ b(1 − c̃) b(1 − c̃) −a(1 − c)+ c
a(1 − c)+ b(1 − c̃) a+ b b −a

b(1 − c̃) b b 0
−a(1 − c)+ c −a 0 a+ 1

⎤⎥⎥⎥⎦ �
Then one can easily show the following: For the kth leading principal minor |Mk| and
determinant |M| ofM ,

|M1| = a(1 − c)2 + b(1 − c̃)2 + c2 > 0�

|M2| = ab
[
(1 − c)+ (1 − c̃)]2 + (a+ b)c2 > 0�

|M3| = abc̃2 > 0�

|M| = ab[a(2c− 1)2 + b(c̃− 1)2
]
> 0

and, therefore, M is positive definite and so is M/p0
11, that is, λmin(M̃11�1 + M̃01�1 +

M̃00�1) > 0.

Verification of S3(iv)(b). We divide this proof into two cases: (i)β0 �= 0 and (ii)β0 = 0.
Case (i): Note that by S3(i)(a),

Eγ0B
−1(β0)ρθθ(Wi�θ0)B

−1(β0)=Eγ0ρ
†
θθ(Wi�θ0)�

First, note that Eγ0ρθθ(w�θ0) is positive definite by the information matrix equality
with the fact that the information matrix is nonsingular by the identification result of
HV17. Thus, for a nonzero vector a ∈ R

dθ , a′Eγ0ρθθ(w�θ0)a > 0, which implies that, for a
nonzero vector ã ∈R

dθ , ã′Eγ0ρ
†
θθ(w�θ0)ã= ã′B−1(β0)Eγ0ρθθ(w�θ0)B

−1(β0)ã > 0. There-

fore, Eγ0ρ
†
θθ(w�θ0) is positive definite.

Case (ii): First, note that by (B.12)–(B.14) and (B.23)–(B.26), we can express
Dθp

†
yd�z(ψ0�π)’s as follows when β0 = 0,

Dθp
†
11�0 =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎦ � Dθp
†
10�0 =

⎡⎢⎢⎢⎢⎢⎣
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎦ �

Dθp
†
01�0 =

⎡⎢⎢⎢⎢⎢⎣
0
1
0

−1
0

⎤⎥⎥⎥⎥⎥⎦ � Dθp
†
00�0 =

⎡⎢⎢⎢⎢⎢⎣
0

−1
−1
0
0

⎤⎥⎥⎥⎥⎥⎦ �
(B.28)



Supplementary Material (Nearly) singular Jacobian 25

Dθp
†
11�1 =

⎡⎢⎢⎢⎢⎢⎣
C2
(
h3(π)� ζ10;π

)
0
0
1

Cπ2
(
h3(π)� ζ10;π

)+C12
(
h3(π)� ζ10;π

)
h3�π(ζ10� ζ30�π)

⎤⎥⎥⎥⎥⎥⎦ � (B.29)

Dθp
†
10�1 =

⎡⎢⎢⎢⎢⎢⎣
−C2

(
h2(π)� ζ10;π

)
0
1
0

−Cπ2
(
h2(π)� ζ10;π

)−C12
(
h2(π)� ζ10;π

)
h2�π(ζ10� ζ20�π)

⎤⎥⎥⎥⎥⎥⎦ � (B.30)

and

Dθp
†
01�1 =

⎡⎢⎢⎢⎢⎢⎣
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦−Dθp†
11�1� Dθp

†
00�1 =

⎡⎢⎢⎢⎢⎢⎣
−1
−1
0
0
0

⎤⎥⎥⎥⎥⎥⎦−Dθp†
10�1� (B.31)

The remaining arguments are similar to those used to verify S3(iv)(a): Let M†
yd�z ≡

Dθp
†
yd�z(θ0)×Dθp†

yd�z(θ0)
′ and M̃†

yd�z ≡M†
yd�z/p

0
yd . Then

Eγ0ρ
†
θθ(Wi�θ0)=Eγ0ρ

†
θ(Wi�θ0)ρ

†
θ(Wi�θ0)

′ =φ1�0
∑

y�d=0�1

M̃†
yd�1 +φ0�0

∑
y�d=0�1

M̃†
yd�0� (B.32)

For notational simplicity, let c ≡ C2(h3(π0)� ζ10;π0) and c̃ ≡ C2(h2(π0)� ζ10;π0). Also let
d ≡ Cπ2(h3(π0)� ζ10;π0)+C12(h3(π0)� ζ10;π0)h3�π(ζ10� ζ30�π0) and d̃ ≡ Cπ2(h2(π0)� ζ10;
π0)+C12(h2(π0)� ζ10;π0)h2�π(ζ10� ζ20�π0). Therefore,

M†
11�1 =

⎡⎢⎢⎢⎢⎢⎣
c2 0 0 c cd

0 0 0 0 0
0 0 0 0 0
c 0 0 1 d

cd 0 0 d d2

⎤⎥⎥⎥⎥⎥⎦ � M†
01�1 =

⎡⎢⎢⎢⎢⎢⎣
(1 − c)2 1 − c 0 c− 1 (c− 1)d

1 − c 1 0 −1 −d
0 0 0 0 0

c− 1 −1 0 1 d

(c− 1)d −d 0 d d2

⎤⎥⎥⎥⎥⎥⎦ �

M†
10�1 =

⎡⎢⎢⎢⎢⎢⎣
c̃2 0 −c̃ 0 c̃d̃

0 0 0 0 0
−c̃ 0 1 0 −d̃
0 0 0 0 0
c̃d̃ 0 −d̃ 0 d̃2

⎤⎥⎥⎥⎥⎥⎦ � M†
00�1 =

⎡⎢⎢⎢⎢⎢⎣
(1 − c̃)2 1 − c̃ 1 − c̃ 0 (c̃− 1)d̃

1 − c̃ 1 1 0 −d̃
1 − c̃ 1 1 0 −d̃

0 0 0 0 0
(c̃− 1)d̃ −d̃ −d̃ 0 d̃2

⎤⎥⎥⎥⎥⎥⎦ �

M†
11�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ � M†
01�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ �
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M†
10�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ � M†
00�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ �

By Lemma B.1, in analogy to the verification of S3(iv)(a), since
∑
y�d=0�1λmin(M̃

†
yd�0) =

λmin(M̃
†
00�1) = 0, we consider the rest of the sum in (B.32) and apply (B.27). Let a ≡

p0
11/p

0
01 and b ≡ p0

11/p
0
10. Then M̃†

11�1 + M̃†
01�1 + M̃†

10�1 = (M†
11�1 + aM†

01�1 + bM†
10�1)/p

0
11

and

M† ≡M†
11�1 + aM†

01�1 + bM†
10�1

=

⎡⎢⎢⎢⎢⎢⎣
a(1 − c)2 + bc̃2 + c2 a(1 − c) −bc̃ −a(1 − c)+ c a(c − 1)d+ bc̃d̃+ cd

a(1 − c) a 0 −a −ad
−bc̃ 0 b 0 −bd̃

−a(1 − c)+ c −a 0 a+ 1 (a+ 1)d
a(c − 1)d+ bc̃d̃+ cd −ad −bd̃ (a+ 1)d (a+ 1)d2 + bd̃2

⎤⎥⎥⎥⎥⎥⎦ �

For the kth leading principal minor |M†
k| ofM†,∣∣M†

1

∣∣= a(1 − c)2 + bc̃2 + c2 > 0�∣∣M†
2

∣∣= abc̃2 + ac2 > 0�∣∣M†
3

∣∣= abc2 > 0�∣∣M†
4

∣∣= a2b(1 − c)2 + abc2 > 0�∣∣M†
5

∣∣= ∣∣M†∣∣
= ab{a2(1 + (1 − c)2)d2 + b2c̃2d̃2 + c2(d2 + bd̃2)+ a(((1 − c)2 + c2)d2 + bc2d̃2)}> 0�

Therefore, M̃†
01�1 + M̃†

10�1 + M̃†
11�1 is positive definite and by (B.27), we can easily show

that λmin(Eγ0ρ
†
θθ(Wi�θ0)) > 0.

Verification of S3(v). Recall

V †(θ1� θ2;γ0)≡ Covγ0

(
ρ†
θ(Wi�θ1)�ρ

†
θ(Wi�θ2)

)
�

But

Covγ0

(
ρ†
θ(Wi�θ0)�ρ

†
θ(Wi�θ0)

)=Eγ0ρ
†
θ(Wi�θ0)ρ

†
θ(Wi�θ0)

′

=Eγ0ρ
†
θθ(Wi�θ0)� (B.33)

where the first equality is by Eγ0ρ
†
θ(Wi�θ0) = B−1(β0)Eγ0ρθ(w�θ0) = 0 and the second

equality is by the definition of ρ†
θ(Wi�θ) and ρ†

θθ(Wi�θ). Since Eγ0ρ
†
θθ(Wi�θ0) is positive

definite from S3(iv)(b), we have the desired result.
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Define the dψ × dβ matrix-valued function

K(θ;γ0)≡ ∂

∂β′
0
Eγ0ρψ(Wi�θ) (B.34)

with domainΘδ × 
0, whereΘδ ≡ {θ ∈Θ : |β|< δ} and


0 ≡ {
γa = (aβ�ζ�π�φ) ∈ 
 : γ = (β�ζ�π�φ) ∈ 
with |β|< δ and a ∈ [0�1]}

for some δ > 0.

Assumption S4. (i) K(θ;γ0) exists ∀(θ�γ0) ∈Θδ × 
0.

(ii) K(θ;γ∗) is continuous in (θ�γ∗) at (θ�γ∗) = ((ψ0�π)�γ0) uniformly over π ∈ Π
∀γ0 ∈ 
with β0 = 0, where ψ0 is a subvector of γ0.

Verification of S4(i). Note that

K(θ;γ0)≡ ∂

∂β0
Eγ0ρψ(Wi�θ)

= − ∂

∂β0

∑
y�d�z=0�1

pyd�z(θ0)φz�0

pyd�z(θ)
Dψpyd�z(θ)

= −
∑

y�d�z=0�1

∂pyd�z(θ0)

∂β0

φz�0
pyd�z(θ)

Dψpyd�z(θ)�

where
∂pyd�z(θ0)

∂β0
is the first element ofDψ0pyd�z(θ0) for all (y�d� z), whose expressions are

above.

Verification of S4(ii). For

K(π;γ0)≡K(ψ0�π;γ0)= −
∑

y�d�z=0�1

∂pyd�z(θ0)

∂β0

φz�0
pyd�z(ψ0�π)

Dψpyd�z(ψ0�π)�

let ayd�z(π�θ0�φ1�0)≡ ∂pyd�z(θ0)

∂β0

φz�0
pyd�z(ψ0�π)

Dψpyd�z(ψ0�π) since φ0�0 = 1 −φ1�0. Note that

ayd�z(π�θ0�φ1�0) is continuous in its arguments by Lemma B.1(iv). We can show that
ayd�z(π�θ0�φ1�0) is continuous uniformly inπ ∈Π by applying the uniform convergence
result in Lemma 9.2 of ACMLwp to ayd�z(π�θn�φ1�n) − ayd�z(π�θ0�φ1�0), using (i) the
pointwise convergence (i.e., pointwise continuity) above, (ii) ayd�z(π�θ0�φ1�0)’s differ-
entiability in π with derivatives bounded over π ∈Π by Lemma B.1 and (iii) the com-
pactness ofΠ (B1(iii) below).

Next, we impose conditions on the parameter spaces Θ and 
. Recall Θ∗
δ ≡ {θ ∈Θ∗ :

|β|< δ}, whereΘ∗ is the true parameter space for θ. The “optimization parameter space”
Θ satisfies the following.



28 Han and McCloskey Supplementary Material

Assumption B1 (AC13). (i) int(Θ)⊃Θ∗.

(ii) For some δ > 0,Θ⊃ {β ∈R
dβ : |β|< δ} ×Z0 ×Π ⊃Θ∗

δ for some nonempty open set
Z0 ⊂ R

dζ andΠ.

(iii) Π is compact.

The following general results are useful in verifying B1 and B2 below: for a contin-
uous function f , (i) if a set A is compact, then f (A) is compact and (ii) f−1(int(A)) ⊂
int(f−1(A)) for any set A in the range of f , where the latter is necessary and sufficient
for continuity. Also note that by definition, for a proper function f , if B is compact, then
f−1(B) is compact. Lastly, for a function f , ifA⊂ B then f (A)⊂ f (B).

Verification of B1. TC3(ii) implies B1(i) since

int(Θ)= int
(
h̄−1(Θ)

)⊃ h̄−1(int(Θ)
)⊃ h̄−1(Θ∗)=Θ∗�

where the first ⊃ is by the continuity of h̄ and the second ⊃ is by TC3(ii) and h̄−1 being a
function. For B1(ii), first note that given TC3(iii),

h̄−1(Θ)⊃ h̄−1({β ∈ R
dβ : ‖β‖< δ}×Z0 ×Π)⊃ h̄−1(Θ∗

δ

)
�

But h̄−1(Θ)=Θ and

h̄−1(Θ∗
δ

)= {
θ ∈Θ∗ : h̄(θ) ∈Θ∗

δ

}
= {
θ ∈Θ∗ : h̄(θ) ∈Θ∗�

∣∣h̄1(θ)
∣∣< δ}

= {
θ ∈Θ∗ : θ ∈Θ∗� |β|< δ}

=Θ∗
δ�

where the third equality is by h̄ being a homeomorphism and h̄1(θ) = β being the first
element of h̄. Also, with Bδ ≡ {β ∈R

dβ : |β|< δ},

h̄−1(Bδ ×Z0 ×Π)= {
θ ∈Θ∗ : h̄(θ) ∈ Bδ ×Z0 ×Π}

= Bδ × {
μ ∈ M∗ : h(μ) ∈Z0 ×Π}

= Bδ × h−1(Z0 ×Π)
≡ Bδ ×Z0 ×Π�

where M∗ = {μ ∈ R
dμ : θ = (β�μ) for some θ ∈ Θ∗}, the second equality holds since

h̄(θ)= (β�h(μ)) and the last equality holds by TC3(iv). Lastly, B1(iii) holds by TC3(i).

Assumption B2 (AC13). (i) 
 is compact and 
= {γ = (θ�φ) : θ ∈Θ∗�φ ∈ ∗(θ)}.

(ii) ∀δ > 0, ∃γ = (β�ζ�π�φ) ∈ 
with 0< ‖β‖< δ.

(iii) ∀γ = (β�ζ�π�φ) ∈ 
 with 0 < ‖β‖ < δ for some δ > 0, γa = (aβ�ζ�π�φ) ∈ 
 ∀a ∈
[0�1].
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Verification of B2. Consider B2(i). Under TC4(i), define  ∗(θ) as  ∗(θ) ≡ �∗(h̄(θ)).
Since � is compact, Θ∗ and �∗(θ) are compact for θ ∈ Θ∗. Thus, Θ∗ = h̄−1(Θ∗) is com-
pact by the properness of h̄. Also given (B.4), we have

 ∗(θ)≡�∗(h̄(θ))=�∗ = [0�01�0�99]�

which is compact and, therefore, 
 is also compact. Next, TC4(ii) implies B2(ii). This
is because, ∀δ > 0, for γ = (β�μ�φ) that satisfies TC4(ii), let γ in B2(ii) be γ =
(β�h−1(μ)�φ), which is in 
 since (β�μ) ∈ Θ∗ implies (β�h−1(μ))= h̄−1(β�μ) ∈Θ∗. To
show that TC4(iii) implies B2(iii), note that for any γ = (β�ζ�π�φ) ∈ 
with 0< |β|< δ for
some δ > 0, γ = (β�h(ζ�π)�φ) ∈ � . By TC4(iii), this implies that γa = (aβ�h(ζ�π)�φ) ∈ �

∀a ∈ [0�1]. Therefore, γa = (aβ�h−1(h(ζ�π))�φ) ∈ 
.

Define a “weighted noncentral chi-square” process {ξ(π;γ0� b) : π ∈Π} by

ξ(π;γ0� b)≡ −1
2
(
G(π;γ0)+K(π;γ0)b

)′
H−1(π;γ0)

(
G(π;γ0)+K(π;γ0)b

)
�

whereG(π;γ0) is defined such thatGn(·)⇒G(·;γ0), where “ ⇒′′ denotes weak conver-
gence, with

Gn(π)≡ n−1/2
n∑
i=1

(
ρψ(Wi;ψ0�n�π)−Eγnρψ(Wi;ψ0�n�π)

)
and

H(π;γ0)≡Eγ0ρψψ(Wi;ψ0�π)�

Assumption C6. Each sample path of the stochastic process {ξ(π;γ0� b) : π ∈Π} in some
set A(γ0� b) with Prγ0(A(γ0� b)) = 1 is minimized over Π at a unique point (which may
depend on the sample path), denoted π∗(γ0� b), ∀γ0 ∈ 
with β0 = 0, ∀bwith ‖b‖<∞.

In Assumption C6, π∗(γ0� b) is random. The following is a primitive sufficient con-
dition for Assumption C6 for the case where β is scalar. Let ρψ(w�θ) ≡ (ρβ(w�θ)

′�
ρζ(w�θ)

′)′. When β = 0, ρζ(w�θ)′ does not depend on π by Assumption S2(ii) and is
denoted by ρζ(w�ψ)′. For β0 = 0, define

ρ∗
ψ(Wi�ψ0�π1�π2)

′ ≡ (
ρβ(Wi�ψ0�π1)

′�ρβ(Wi�ψ0�π2)
′�ρζ(Wi�ψ0)

′)′�
ΩG(π1�π2;ψ0)≡ Covγ0

(
ρ∗
ψ(Wi�ψ0�π1�π2)

′�ρ∗
ψ(Wi�ψ0�π1�π2)

′)�
Assumption C6† . (i) dβ = 1

(ii) ΩG(π1�π2;γ0) is positive definite ∀π1�π2 ∈Π with π1 �= π2, ∀γ0 ∈ 
with β0 = 0.

Note that Assumptions S1–S3 and C6† imply C6; see Lemma 3.1 of AC13.
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Verification of C6†(ii). Noting thatDζpyd�z(ψ0�π) does not depend on π when β0 =
0 so that we may denote itDζpyd�z(ψ0), define

Dψp
∗
yd�z(ψ0�π1�π2)≡ (

Dβpyd�z(ψ0�π1)
′�Dβpyd�z(ψ0�π2)

′�Dζpyd�z(ψ0)
′)′�

Then

ΩG(π1�π2;ψ0)=Eγ0ρ
∗
ψ(Wi�ψ0�π1�π2)ρ

∗
ψ(Wi�ψ0�π1�π2)

′

=
∑

y�d�z=0�1

φz�0

p0
yd

Dψp
∗
yd�z(ψ0�π1�π2)Dψp

∗
yd�z(ψ0�π1�π2)

′�

where the second equality follows from (B.6) and Dψp∗
yd�z(ψ0�π1�π2) can be expressed

as

Dψp
∗
11�0 =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎦ � Dψp
∗
10�0 =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎦ � Dψp
∗
01�0 =

⎡⎢⎢⎢⎢⎢⎣
0
0
1
0

−1

⎤⎥⎥⎥⎥⎥⎦ � Dθp
∗
00�0 =

⎡⎢⎢⎢⎢⎢⎣
0
0

−1
−1
0

⎤⎥⎥⎥⎥⎥⎦ �

Dψp
∗
11�1 =

⎡⎢⎢⎢⎢⎢⎣
C2
(
h3(ζ10� ζ30�π1)� ζ10;π1

)
C2
(
h3(ζ10� ζ30�π2)� ζ10;π2

)
0
0
1

⎤⎥⎥⎥⎥⎥⎦ �

Dψp
∗
10�1 =

⎡⎢⎢⎢⎢⎢⎣
−C2

(
h2(ζ10� ζ20�π1)� ζ10;π1

)
−C2

(
h2(ζ10� ζ20�π2)� ζ10;π2

)
0
1
0

⎤⎥⎥⎥⎥⎥⎦ �

and

Dψp
∗
01�1 =

⎡⎢⎢⎢⎢⎢⎣
1
1
1
0
0

⎤⎥⎥⎥⎥⎥⎦−Dψp∗
11�1� Dψp

∗
00�1 =

⎡⎢⎢⎢⎢⎢⎣
−1
−1
−1
0
0

⎤⎥⎥⎥⎥⎥⎦−Dψp∗
10�1�

using (B.23)–(B.26). The remaining arguments are similar to those used in the verifi-
cation of S3(iv)(a): Let M∗

yd�z ≡Dψp∗
yd�z(ψ0�π1�π2)×Dψp∗

yd�z(ψ0�π1�π2)
′ and M̃∗

yd�z ≡
M∗
yd�z/p

0
yd . Then

ΩG(π1�π2;ψ0)=φ1�0
∑

y�d=0�1

M̃∗
yd�1 +φ0�0

∑
y�d=0�1

M̃∗
yd�0� (B.35)
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Let c ≡ C2(h3(ζ10� ζ30�π1)� ζ10;π1), c̃ ≡ C2(h3(ζ10� ζ30�π2)� ζ10;π2), d ≡ C2(h2(ζ10�

ζ20�π1)� ζ10;π1), and d̃ ≡ C2(h2(ζ10� ζ20�π2)� ζ10;π2) for notational simplicity. Then

M∗
11�1 =

⎡⎢⎢⎢⎢⎢⎣
c2 cc̃ 0 0 c

cc̃ c̃2 0 0 c̃

0 0 0 0 0
0 0 0 0 0
c c̃ 0 0 1

⎤⎥⎥⎥⎥⎥⎦ �

M∗
01�1 =

⎡⎢⎢⎢⎢⎢⎣
(1 − c)2 (1 − c)(1 − c̃) 1 − c 0 −(1 − c)

(1 − c)(1 − c̃) (1 − c̃)2 1 − c̃ 0 −(1 − c̃)
1 − c 1 − c̃ 1 0 −1

0 0 0 0 0
−(1 − c) −(1 − c̃) −1 0 1

⎤⎥⎥⎥⎥⎥⎦ �

M∗
10�1 =

⎡⎢⎢⎢⎢⎢⎣
d2 dd̃ 0 d 0
dd̃ d̃2 0 d̃ 0
0 0 0 0 0
d d̃ 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ �

M∗
00�1 =

⎡⎢⎢⎢⎢⎢⎣
(1 − d)2 (1 − d)(1 − d̃) 1 − d 1 − d 0

(1 − d)(1 − d̃) (1 − d̃)2 1 − d̃ 1 − d̃ 0
1 − d 1 − d̃ 1 1 0
1 − d 1 − d̃ 1 1 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ �

M∗
11�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ � M∗
01�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 1 0 −1 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ �

M∗
10�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ � M∗
00�0 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ �

By Lemma B.1 and similar arguments to those used to verify S3(iv)(a), since∑
y�d=0�1λmin(M̃

∗
yd�0) = λmin(M̃

∗
00�1) = 0, we consider the rest of the sum in (B.35) and

apply (B.27). Let a ≡ p0
01/p

0
10 and b ≡ p0

01/p
0
11. Then, M̃∗

01�1 + M̃∗
10�1 + M̃∗

11�1 = (M∗
01�1 +

aM∗
10�1 + bM∗

11�1)/p
0
01, and

M∗ ≡M∗
01�1 + aM∗

10�1 + bM∗
11�1
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=

⎡⎢⎢⎢⎢⎣
ad2 + (1 − c)2 + bc2 add̃+ (1 − c)(1 − c̃)+ bcc̃ 1 − c ad −(1 − c)+ bc

add̃+ (1 − c)(1 − c̃)+ bcc̃ ad̃2 + (1 − c̃)2 + bc̃2 1 − c̃ ad̃ −(1 − c̃)+ bc̃
1 − c 1 − c̃ 1 0 −1
ad ad̃ 0 a 0

−(1 − c)+ bc −(1 − c̃)+ bc̃ −1 0 1 + b

⎤⎥⎥⎥⎥⎦ �

For the kth leading principal minor |M∗
k| and determinant |M∗| ofM∗,∣∣M∗

1

∣∣= ad2 + (1 − c)2 > 0�∣∣M∗
2

∣∣= a{d̃(1 − c)− d(1 − c̃)}2 + b{c(1 − c̃)− c̃2(1 − c)}2 + ab(d̃c − dc̃)2 > 0�∣∣M∗
3

∣∣= ab(d̃c− dc̃)2 + ab(d̃c+ dc̃)2 + 4bcc̃(1 − c)(1 − c̃) > 0�∣∣M∗
4

∣∣= a{ad̃2(1 − c)2 + (1 − c)2(1 − c̃)2}
+ ab{(1 − c̃)2c2 + bc2c̃2 + ad2c̃2 + (1 − c)2c̃2}

> 0�∣∣M∗∣∣= ab[a(d̃c− dc̃)2 + {
c(1 − c̃)− c̃(1 − c)}2 + a{(d̃(1 − c)− dc̃)2 + (1 − b)d2c̃2}

+ a2d2d̃2 + (1 − c)2(1 − c̃)2 + b(1 − c̃)2c2 + b2c2c̃2 + bc̃2(1 − c)2 + 2ad̃2c(1 − c)]
> 0�

Therefore, M̃∗
01�1 + M̃∗

10�1 + M̃∗
11�1 is positive definite and by (B.27), we can easily show

that λmin(ΩG(π1�π2;ψ0)) > 0.

Define a nonstochastic function {η(π;γ0) : π ∈Π} by

η(π;γ0)≡ −1
2
K(π;γ0)

′H−1(π;γ0)K(π;γ0)�

Assumption C7. The nonstochastic functionη(π;γ0) is uniquely minimized overπ ∈Π
at π0 ∀γ0 ∈ 
with β0 = 0.

For β0 = 0, by (B.15)–(B.16) we can write

K(π;γ0)= −
∑

y�d�z=0�1

φz�0

p0
yd

∂pyd�z(θ0)

∂β0
Dψpyd�z(ψ0�π)�

H(π;γ0)=
∑

y�d�z=0�1

φz�0

p0
yd

Dψpyd�z(ψ0�π)Dψpyd�z(ψ0�π)
′�

Note that we can partitionH(π) andK(π), suppressing γ0, as

H(π)=
[
H11(π) H12(π)

H21(π) H22

]
}dβ
}dζ and K(π)=

(
K1(π)

K2

)
}dβ
}dζ �

and note that K(π0) = [−H11(π0) : −H21(π0)
′]′ by the expressions for K(π;γ0) and

H(π;γ0).
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Verification of C7. We first show that, for any π ∈Π,

η(π)≥ η(π0)�

For matricesA and B, letA≤ B denote B−A being p.s.d. Then we can show that

K(π)′H−1(π)K(π)≤H11(π0)=K(π0)
′H−1(π0)K(π0)� (B.36)

where the inequality is an application of the matrix Cauchy–Schwarz inequality (Propo-
sition B.1 below) and the equality holds because K(π0) = [−H11(π0) : −H21(π0)

′]′; see
below for the proof. Lastly, the weak inequality in (B.36) holds as an equality if and only
if ρβ(Wi�ψ0�π0)a + ρψ(Wi�ψ0�π)

′b = 0 with probability 1 for some a ∈ R and b ∈ R
dψ

with (a�b′) �= 0. Let Dβp0
yd�z ≡ Dβpyd�z(ψ0�π0) and Dψpyd�z(π) ≡ Dψpyd�z(ψ0�π) for

simplicity. Then, when β0 = 0,

ρβ(Wi�ψ0�π0)a+ ρψ(Wi�ψ0�π)
′b=

∑
y�d�z=0�1

1ydz(Wi)

p0
yd

[
Dβp

0
yd�za+Dψpyd�z(π)′b

]
�

But, it is easy to see that a (1 + dψ)× 8 matrix (suppressing π in Dψpyd�z(π) and letting
h3�0 ≡ h3(π0) and h2�0 ≡ h2(π0))[
Dβp

0
11�1 Dβp

0
10�1 Dβp

0
01�1 Dβp

0
00�1 Dβp

0
11�0 Dβp

0
10�0 Dβp

0
01�0 Dβp

0
00�0

Dψp11�1 Dψp10�1 Dψp01�1 Dψp00�1 Dψp11�0 Dψp10�0 Dψp01�0 Dψp00�0

]

=

⎡⎢⎢⎢⎢⎣
C2(h3�0;ζ10�π0) −C2(h2�0� ζ10;π0) 1 −C2(h3�0� ζ10;π0) −1 +C2(h2�0� ζ10;π0) 0 0 0 0
C2(h3;ζ10�π0) −C2(h2� ζ10;π0) 1 −C2(h3� ζ10;π0) −1 +C2(h2� ζ10;π0) 0 0 0 0

0 0 1 −1 0 0 1 −1
0 1 0 −1 0 1 0 −1
1 0 −1 0 1 0 −1 0

⎤⎥⎥⎥⎥⎦
has full row rank (i.e., rank of 1 + dψ) except when π = π0, since

C2
(
h3(π)� ζ10;π

) �= C2
(
h3(π0)� ζ10;π0

)
�

C2
(
h2(π)� ζ10;π

) �= C2
(
h2(π0)� ζ10;π0

)
for π �= π0. This can be shown by modifying the proof of Lemmas 3.1 and 4.1 of HV17
under Assumption TC2, which yields

∂C2
(
h3(π)� ζ1;π

)
/∂π = Cπ2

(
h3(π)� ζ1;π

)+C12
(
h3(π)� ζ1;π

)
h3�π(π) < 0

and

Cπ2
(
h2(π)� ζ1;π

)+C12
(
h2(π)� ζ1;π

)
h2�π(π) < 0�

In fact, h2 or h3 can be seen as u∗
1 in Lemma 4.1 of HV17. Therefore, there is no (a�b′)with

(a�b′) �= 0 such that Dβp0
yd�za+Dψp′

yd�z(π)b= 0 for all (y�d� z) ∈ {0�1}3, which implies

that there is no (a�b′) with (a�b′) �= 0 such that ρβ(Wi�ψ0�π0)a + ρψ(Wi�ψ0�π)
′b = 0

with probability 1. In other words, the equality holds uniquely at π = π0 so that for any
π �= π0, Pr[c′(ρβ(Wi�ψ0�π0)�ρψ(Wi�ψ0�π)

′)′ = 0] < 1 for all c ∈ R
dβ+dψ with c �= 0, and

thus the inequality in (B.36) is strict.
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Proposition B.1. Let x ∈ R
p and y ∈ R

q be random vectors such that E‖x‖2 < ∞,
E‖y‖2 <∞, and Eyy ′ is nonsingular. Then(

Exy ′)(Eyy ′)−1(
Eyx′)≤Exx′�

For our verification proof, taking x= ρβ(Wi�ψ0�π0) and y = ρψ(Wi�ψ0�π), we have

Eγ0yy
′ =H(π)�

Eγ0xx
′ =H11(π0)�

−Eγ0xy
′ = −(Eγ0yx

′)′ =K(π)�
Proof of H11(π0)=K(π0)

′H−1(π0)K(π0). Define a 4 × 4 block-diagonalizing matrix

A(r)=
[

1 −H12(r)H
−1
22

03 I3

]
�

Then

K(r0)
′H−1(r0)K(r0)=K(r0)′A(r)

[
A(r)H(r0)A(r)

]−1
A(r)K(r0)

= (−1)2
[
H11(r0) :H21(r0)

′]A(r)[A(r)H(r0)A(r)]−1
A(r)

[
H11(r0)

H21(r0)

]

= [
H11(r0)−H12(r0)H

−1
22 H21(r0) :H21(r0)

′][H∗
11(r0)

−1 0
0 H−1

22

]

×
[
H11(r0)−H12(r0)H

−1
22 H21(r0)

H21(r0)

]

= [
1 :H21(r0)

′H−1
22

][H11(r0)−H12(r0)H
−1
22 H21(r0)

H21(r0)

]
=H11(r0)�

where the second equality is due to the fact that K(r0) = [−H11(r0) : −H21(r0)
′]′ and

H∗
11(r0) is implicitly defined. We also use the symmetry ofH(r) in this derivation.

Define the following quantities that arise in the asymptotic distribution of θ̂n and the
test statistics we consider. Letting Sψ ≡ [Idψ : 0dψ×1] denote the dψ × dθ selector matrix
that selects ψ out of θ:

Ω(π1�π2;γ0)≡ SψV †((ψ0�π1)� (ψ0�π2);γ0
)
S′
ψ�

J(θ;γ0)≡Eγ0ρ
†
θθ(Wi;θ)�

V (θ;γ0)= V †(θ�θ;γ0)�
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and

J(γ0)≡ J(θ0;γ0)�

V (γ0)≡ V (θ0;γ0)�

Note that

J(γ0)= V (γ0)

by (B.33). Define

Σ(θ;γ0)≡ J−1(θ;γ0)V (θ;γ0)J
−1(θ;γ0)

and

Σ(π;γ0)≡ Σ(ψ0�π;γ0)�

Assumption V1. (i) Ĵn = Ĵn(θ̂n) and V̂n = V̂n(θ̂n) for some (stochastic) dθ × dθ matrix-
valued functions Ĵn(θ) and V̂n(θ) on Θ that satisfy supθ∈Θ ‖Ĵn(θ) − J(θ;γ0)‖ →p 0 and
supθ∈Θ ‖V̂n(θ)− V (θ;γ0)‖ →p 0 under {γn} ∈ 
(γ0�0� b)with ‖b‖<∞.

(ii) J(θ;γ0) and V (θ;γ0) are continuous in θ onΘ ∀γ0 ∈ 
with β0 = 0.

(iii) λmin(Σ(π;γ0)) > 0 and λmax(Σ(π;γ0)) <∞ ∀π ∈Π, ∀γ0 ∈ 
with β0 = 0.

Verification of V1(i). We define the following:

Ĵn(θ)≡ 1
n

n∑
i=1

ρ†
θθ(Wi�θ)= 1

n

n∑
i=1

ρ†
θ(Wi�θ)ρ

†
θ(Wi�θ)

′

= 1
n

n∑
i=1

∑
y�d�z=0�1

1ydz(Wi)
Dθp

†
yd�z(θ)Dθp

†
yd�z(θ)

′

pyd�z(θ)
2 �

whereDθp
†
yd�z(θ0) are defined above. Also,

V̂n(θ)≡ 1
n

n∑
i=1

ρ†
θ(Wi�θ)ρ

†
θ(Wi�θ)

′

= 1
n

n∑
i=1

∑
y�d�z=0�1

1ydz(Wi)
Dθp

†
yd�z(θ)Dθp

†
yd�z(θ)

′

pyd�z(θ)
2 = Ĵn(θ)�

The rest of the proof follows from the uniform law of large numbers in Lemma 9.3 of
ACMLwp with Assumptions S1 and S3 andΘ being compact.

Verification of V1(ii). The continuity follows from the fact that the first and second
derivatives of pyd�z(θ) are continuous by Lemma B.1(vi).
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Verification of V1(iii). Note that

Σ(π;γ0)= J−1(ψ0�π;γ0)V (ψ0�π;γ0)J
−1(ψ0�π;γ0)= V −1(ψ0�π;γ0)

since V (ψ0�π;γ0)= J(ψ0�π;γ0). This is because

V (ψ0�π;γ0)= Covγ0

(
ρ†
θ(Wi�ψ0�π)�ρ

†
θ(Wi�ψ0�π)

)=Eγ0ρ
†
θ(Wi;ψ0�π)ρ

†
θ(Wi;ψ0�π)

′

=Eγ0ρ
†
θθ(Wi;θ)�

where the last equality holds since ρ†
θθ(w�θ)= ρ†

θ(w�θ)ρ
†
θ(w�θ)

′, and the second-to-last
equality holds since

Eγ0ρ
†
θ(Wi�ψ0�π)= −

∑
y�d�z=0�1

φz�0Dθp
†
yd�z(ψ0�π)

= −
∑

y�d=0�1

φ0�0Dθp
†
yd�0(ψ0�π)−

∑
y�d=0�1

φ1�0Dθp
†
yd�1(ψ0�π)

= 0�

Now, for the first part of V1(iii), note that since each element of the vectors in (B.28)–
(B.31) are bounded by TC2(iii) and B2(i), the elements of the matrix

V (ψ0�π;γ0)=Eγ0ρ
†
θ(Wi;ψ0�π)ρ

†
θ(Wi;ψ0�π)

′

=
∑

y�d�z=0�1

φz�0
pyd�0

Dθp
†
yd�z(ψ0�π)Dθp

†
yd�z(ψ0�π)

′

are bounded. For a d×dmatrixA,
∑d
i=1 |λi| ≤∑d

i�j=1 |Aij| where the λi’s areA’s eigenval-
ues and theAij ’s areA’s elements. Therefore, λmax(V (ψ0�π;γ0)) <∞. This implies that
λmin(V

−1(ψ0�π;γ0)) > 0. By Lemma B.1, the proof of the second part is similar to the
proofs of S3(iv)(b) and S3(v) and we can show that λmin(V (ψ0�π;γ0)) > 0, which implies
that λmax(V

−1(ψ0�π;γ0)) <∞.
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