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Appendix A: Sample construction

Constructing a quarterly panel of earnings from the IABS

The IABS reports average daily labor earnings for each employment spell of workers who
are subject to compulsory social insurance contributions. According to the German Data
and Transmission Act (DEÜV), employers must report at least once a year all labor earn-
ings and some additional information such as education, training status, etc. for this
group of employees. Reported earnings are gross earnings after the deduction of the
employer’s social security contributions. The German Employment Agency combines
these data with its own information on unemployment benefits collected by individu-
als. Employment and unemployment spells are recorded with exact start and end dates.
A spell ends for different reasons, usually due to a change in the wage paid by the firm or
a change in the employment relationship. If no such change occurs, a firm has to report
one spell per year. The reported average daily earnings for employment spells are total
labor earnings for a spell divided by its duration in days.

To generate a panel data set that follows workers over the life cycle, one needs to
choose the level of time aggregation. Theoretically, one can generate time series at the
daily frequency, but given sample sizes and empirical frequencies of earnings changes,
this is neither practical nor desirable. Instead, I study wage dynamics at the quarterly
level. This involves aggregation of the data if a worker has more than one spell for some
quarters, and disaggregation for spells that are longer than two quarters. More precisely,
I keep spells that start and end in different quarters and compute the quarterly wage as
the product of the reported daily earnings for this spell and the number of days of the
quarter. As a consequence, spells that start and end in the same month are dropped,
and spells that cross several quarters are artificially split into multiple spells, one for
each quarter.1 One rationale of choosing this approach rather than averaging all spells
within a quarter is to avoid smoothing out productivity variation across jobs.2 For the
same reason, I also only keep the main job of a worker, defined by the highest paid job
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1For example, a spell that takes 1 year, starting on January 1 and ending on December 31, is split into

four spells, each with the same quarterly earnings.
2Given the lower job mobility rates in Germany compared to the US, the bias from time aggregation will

be smaller than in quarterly US data.
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held during a quarter. I deflate earnings by the quarterly German CPI provided by the
German Federal Statistics Office.

Censoring

Once the wage income of a worker exceeds the contribution assessment ceiling, it is
replaced by the ceiling, thus introducing a censoring problem.3 The fraction of cen-
sored observations varies strongly across education groups, providing a further moti-
vation for estimating earnings processes for each group separately. The IABS provides
an education variable with 6 categories, ranging from “no degree at all” to “univer-
sity degree,” which I aggregate up to three categories, “high-school dropouts,” “sec-
ondary degree,” and “some post-secondary degree.” While I drop the last group from
the analysis because of its high fraction of top-coded earnings, censoring still needs
to be addressed in the other two education groups. The standard approach in studies
using the PSID, such as Meghir and Pistaferri (2004) and Hryshko (2012), is to drop
top-coded earnings records, introducing a sample selection problem that potentially
leads to a bias in the empirical autocovariances that are matched by the model. In par-
ticular, with older workers being more likely to be at the top of the earnings distribu-
tion, dropping top-coded observations can lead to a downward bias in covariances be-
tween earnings early and late in the life cycle—the moments that provide important
identification variation for the parameters. Furthermore, in contrast to missing obser-
vations, top-coded earnings records contain valid information, namely that the individ-
ual has a large positive earnings residual relative to the comparison group. For this rea-
son, I adopt the imputation procedure in Dustmann, Ludsteck, and Schoenberg (2009),
which is a static Tobit model that controls for observables with maximum flexibility
and adds a random draw from some distribution.4 While this procedure cannot de-
termine which individuals with top-coded earnings should be allocated a particularly
high residual, it captures the important fact that top-coded individuals have a larger
residual component than their comparison group. The conclusions drawn in this paper
are unaffected by following the literature and dropping top-coded observations alto-
gether.

Structural break

Since 1984, it is mandatory for firms to also report one-time payments, potentially
generating a discrete increase in measured earnings inequality. Steiner and Wagner
(1998) showed that it is only earnings in the upper percentiles of the cross-sectional

3This ceiling is adjusted annually. In some cases, recorded earnings exceed the ceiling, most likely be-
cause of bonus payments and other one-time payments. In order to avoid my results to be driven by these
outliers, I replace these records with the upper contribution limit.

4Dustmann, Ludsteck, and Schoenberg (2009) performed numerous specification checks and cross-
validations with the major German survey panel data set, the SOEP, and conclude that this procedure works
best among other imputation procedures. Card, Heining, and Kline (2013) adopted the same method-
ology to their data. Haider (2001), estimating earnings processes from the PSID, used a static imputa-
tion/interpolation procedure as well for a subset of censored observations.
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distribution that are significantly affected by this change. Since I study life-cycle earn-
ings dynamics for workers who are observed from the time of labor market entry on,
those included in my sample in 1984 are relatively young, with the oldest individual
being 29 years old in this year. Together with my focus on the lower educated, it is
unlikely that my earnings data are significantly affected by the change in data collec-
tion.

I use several approaches to rigorously test for a structural break in the autocovari-
ance structure. I first run a regression of the variance of residual log-income on a high-
order polynomial in time and an indicator variable that is one for observations recorded
past 1984, using only those individuals who are present in the sample before 1984.5 For
those with a secondary degree, the estimate for the dummy is 0�0013 with a standard
deviation of 0�002. The R-squared is 0�86, suggesting that the regression specification
approximates the evolution of the variances over time quite well. For those without a
secondary degree, the corresponding estimate is −0�039 with a standard deviation of
0�016, implying that there is a significant discontinuous decrease in measured variances
in years after the structural break. However, an R-squared of 0�47 indicates that the re-
gression specification misses a considerable part of the evolution of variances over time.
With estimates being negative, the result is more likely to be driven by experience ef-
fects. I thus reestimate the regressions for both samples, but adding the cohorts entering
the labor market after 1984. This allows me to precisely estimate experience profiles in
variances. The estimates for the break-dummy for the two samples are now 0�0018 with a
standard deviation of 0�004 and 0�0002 with a standard deviation of 0�012, respectively. In
both cases, the specification can explain over 80% of the variation in the data. Taken to-
gether, these results suggest that the auto-covariances matched in the estimation below
are not affected by the structural break in 1984, and I thus include all cohorts I observe
from the age of labor market entry.

Appendix B: Standard errors

In this section of the Online Appendix, I briefly address the issue of computing standard
errors of the EWMD-estimator. In the following, assume that the model is well specified
in the sense that Cvec = G(θ0�Z), where θ0 is the true parameter value, and let Jθ0(Z) =
∂G(θ0�Z)

∂θ′
0

be the Jacobian of G(θ̃�Z) at θ̃ = θ0. Then the asymptotic distribution of the

EWMD estimator is N(θ0�
1√
N
Vθ0), with

Vθ0 = (
J′
θ0
Jθ0

)−1 ∗ (
J′
θ0

∗Ω ∗ Jθ0

) ∗ (
J′
θ0
Jθ0

)−1
� (1)

Here, Ω is the asymptotic covariance matrix of Ĉvec, which since Ĉvec are autocovari-
ances, can be interpreted as a matrix of fourth-order moments of residual log wages.
This matrix has size [dim(Ĉvec)]2 and can be estimated consistently from individual-
level panel data on earnings. It is common to estimate Ω directly from the raw data and
to plug it into the formula (1) to obtain an estimate of Vθ0 . Unfortunately, when relying

5I use a sixth-order polynomial as coefficients on higher-order terms are insignificant.
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on a sample with many observations per individual and many cohorts, computing this
matrix is infeasible because its size grows quadratically in the length of observed life cy-
cles. This problem is exacerbated in my case because I use quarterly rather than annual
earnings data and because the data are administrative in nature so that there are legal
restrictions on the size of empirical objects that can be transferred outside of research
data centers.

Without a plug-in estimator of Ω from individual-level data, one thus needs to ask if
it is possible to obtain an asymptotically valid estimator of Vθ0 from data on autocovari-
ances that are reported on the cohort-age-lag level. To address this question, define the
vectorized error term χvec = (Ĉvec − Cvec), which has the same covariance matrix Ω as
Ĉvec. Its sample analogue is the vector of residuals χ̂vec with generic element χ̂btk. From
the theory of nonlinear regression, it is well known that without further restrictions on
the distribution of χvec it is not possible to estimate Ω consistently from observations
on χ̂vec as there are more elements in Ω than observations in the aggregated data. At the
same time, it is also known that one can estimate V (θ̂) consistently without direct esti-
mation of Ω if additional restrictions on the distribution of χvec are satisfied. This is the
case if one can recover the object (J′

θ ∗ Ω ∗ Jθ) consistently, which has lower dimension
than Ω.

More specifically, if it is possible to divide the sample into clusters such that (a) the
χ̂btk are uncorrelated across clusters, (b) the distribution of χ̂btk is independent of the
clustering variable conditional on Z, and (c) the number of clusters grows with sam-
ple size, then cluster-robust standard errors provide a consistent estimator of V (θ̂). The
question of obtaining an asymptotically valid estimator of Vθ0 thus reduces to the ques-
tion of whether the covariance structure can be partitioned into clusters satisfying re-
quirements (a) to (c).

To answer this question, one should notice that χvec has the interpretation of a sam-
pling error that is uncorrelated with the explanatory variables Zbtk as long as the model
is well specified, that is, as long as Cvec = G(θ0�Z). Using cohort as clustering variable
then produces an error term that satisfies all three requirements for the following rea-
sons. First, a wage observation never enters the computation of covariance structures
for different cohorts, so that sampling error will not be correlated across clusters. Im-
portantly, under the assumption that the model is correctly specified, any correlation
between cohorts that is not sampling error is controlled for. As an example, any correla-
tion in autocovariances between cohorts that arise because of time effects is controlled
for by inclusion of the factor loadings (pt�λt�ϕt)t≥t0 . It thus follows that (a) is satisfied.
At the same time, since the same residual wages enter the computation of multiple ele-
ments in Ĉvec for the same cohort, the χ̂btk cannot be uncorrelated across observations
within the same cohort. Clustering takes care of this correlation, as long as it remains
stable over time, which is requirement (b). In addition to the assumption that the model
is well specified, this requires that the distribution of sampling error in the data does
not change across cohorts. This is arguably the strongest assumption and represents the
cost of estimating Vθ0 from aggregated rather than individual-level data. Assumption (c)
is satisfied in my context since the IABS is a representative sample of the population
and is updated regularly. This ensures that the number of cohorts grows as sample size
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grows. This finishes the justification of estimating Vθ0 using cluster-robust standard er-
rors for (NLS), where clustering takes place on the cohort level.

Appendix C: Formal discussion of implication 2

In this section of the Online Appendix, I discuss how the rank condition for local identi-
fication can be verified, thereby providing a more formal treatment of implication 2.

Some algebraic results

It is helpful to start with a number of algebraic results that are omitted from the main
text. First, define the permanent component as

Pibt = pt ∗ [αi +βi ∗ hbt + uibt]� (2)

Then, using the assumptions on each of the random variables in Pt , we get

cov(Pibt�Pibt+k) = pt ∗pt+k ∗
[

cov
(
αi +βi ∗ hbt�αi +βi ∗ (hbt+k + k)

)
+ cov(uibt�uibt+k)

]
= pt ∗pt+k ∗ [

σ̃2
α + (2hbt + k) ∗ σαβ + hbt ∗ (hbt + k) ∗ σ2

β

]
+pt ∗pt+k ∗ var(uibt). (3)

Using a backward recursion on the unit roots component and exploiting the indepen-
dence of its shocks across periods yields:

var(uibt) = σ̃2
u0

+
t−1∑
τ=0

var(νibt−τ)

= σ̃2
u0

+
t−1∑
τ=0

Jν∑
j=0

(hbt−τ)
j ∗ δj

= σ̃2
u0

+
Jν∑
j=0

δj ∗
t−1∑
τ=0

(hbt−τ)
j

≡ σ̃2
u0

+ f u(hbt� δ0� � � � � δJν )� (4)

Here, potential labor market experience hbt−τ takes integer values in {1� � � � � t − t0(b)}.
Hence, the term

∑t−1
τ=0(hbt−τ)

j is a sum of integers to the power of j and is, applying
standard results on sums of powers of integers, a polynomial of degree (j + 1) with zero
intercept. It follows that f u(hbt� δ0� � � � � δJν ) is a polynomial of degree (Jν + 1), intercept
excluded, and that it is linear in the parameters (δ0� � � � � δJν ). Hence, δj is the coefficient
on a term that varies on the order of (hbt)

j+1.
Similarly, the persistent component

zibt = ρ ∗ zib�t−1 + λt ∗ ξibt (5)
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solves recursively for

zibt = ρt−t0(b) ∗ zib�t−t0(b) +
t−t0(b)−1∑

k=0

ρk ∗ λt−k ∗ ξibt−k� (6)

Thus,

Var(zibt) = ρ2∗(t−t0(b)) ∗ (λt0(b))
2 ∗ σ2

ξ0
+

t−t0(b)−1∑
τ=0

ρ2∗τ ∗ (λt−τ)
2 ∗ var(ξibt−τ)

= ρ2∗hbt ∗ (λt0(b))
2 ∗ σ2

ξ0
+

hbt−1∑
τ=0

ρ2∗τ ∗ (λt−τ)
2 ∗

Jξ∑
j=0

(hbt)
j ∗ γj

= ρ2∗hbt ∗ (λt0(b))
2 ∗ σ2

ξ0
+

Jξ∑
j=0

γj ∗
hbt−1∑
τ=0

ρ2∗τ ∗ (λt−τ)
2 ∗ (hbt)

j� (7)

Identification

To derive identification results, I exploit the additive composition of the covariance
structure into permanent, persistent and transitory components. First, I study the per-
manent component and show that, if viewed in isolation, its parameters are identified
under the conditions stated in the main text. Next, I show that adding the transitory
component does not cause a failure of identification as long as one additional normal-
ization on factor loadings is imposed. Finally, I study under which conditions adding
the AR(1) term does not generate a failure of the rank condition. In the following dis-
cussion, I abstract from the trivial case with pt = 0 or λt = 0 for all t. It is also understood
that a partial derivative with respect to one parameter depends directly on some of the
other parameters. Any statement below about these derivatives hold for any value of the
full parameter vector, unless noted otherwise.

To start, it is useful to notice that cov(Pibt�Pibt+k) as written in (3) is a linear regres-
sion model. The term (pt ∗ pt+k) is an interaction of a set of time fixed effects, mea-
sured at t and (t + k). It is interacted with an intercept, the variables (2hibt + k) and
(hbt ∗ (hbt +k)) and a polynomial of degree (Jν + 1) in hbt that has intercept σ̃2

u0
. The co-

efficients on these variables are, in order, σ̃2
α, σαβ, σ2

β, the set of parameters (δ0� � � � � δJν ),

and σ̃2
u0

. The parameters σ̃2
α and σ̃2

u0
enter this expression additively and are thus not

separately identified. This results is stated in implication 1. Furthermore, without nor-
malization even their sum and the term (pt ∗pt+k) are not identified because they enter
(3) as (pt ∗ pt+k) ∗ σ2

α, where σ2
α = σ̃2

α + σ̃2
u0

. A natural normalization is treating skills in
period t0 as Numeraire, so that pt0 = 1. With variation in k, none of the other parameters
multiply variables that are collinear, so that the Jacobian of cov(Pibt�Pibt+k) with respect
to its parameters has full rank. As a consequence, a failure of the rank condition, if any,
must come from the other variance components.

Next, write the transitory component as

Ξibt = ϕt ∗ εibt � (8)
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Its contribution to the covariance structure is

cov(Ξibt�Ξibt+k)= 1(k= 0) ∗ϕ2
t ∗

(
Jε∑
j=0

h
j
bt ∗φj

)
� (9)

This too is a linear regression model. It is a triple interaction of a dummy variable that
is equal to one for variances and zero for covariances, a set of time fixed effects with
coefficients ϕ2

t , and a polynomial of degree Jε in h that is linear in the parameters
(φ0� � � � �φJε). Because of the presence of a constant term φ0 that is interacted with time
fixed effects in both, (9) and (3), additional normalizations have to be imposed. Again,
one choice is initializing time effects by setting ϕ2

t0
= 1. This however is not sufficient

because in the presence of age heteroscedasticity, age profiles of variances for different
cohorts do not provide the variation to separate ϕ2

t from p2
t . Informally, one may think

of moments with k = 0 as “taken up” by the transitory component. Identification of the
dynamic processes must thus come from covariance terms. Absent the AR(1) compo-
nent, the covariance structure for k≥ 1 is determined by cov(Pbt�Pbt+k), which is a linear
regression model that involves interactions of time fixed effects. Every such covariance
term involves products of factor loadings pt ∗ pt+k with t > t0. To set the scale of these
products, one more factor loading on the permanent component needs to be normal-
ized, and I set pt0+1 = 1. Now, since 1(k = 0) is not in the span of any of the variables
in (3), the interaction terms in (9) are neither. Hence, the rank condition applied to the
sum of (3) and (9) is satisfied. It must thus be true that any failure of the rank condition,
if any, comes from the persistent component (7). This component is given by

cov(zibt� zibt+k) = ρk ∗ Var(zibt)

= ρ(2∗hbt+k) ∗ (λt0(b))
2 ∗ σ2

ξ0
+

Jξ∑
j=0

γj ∗ Sj(hbt�k� t)� (10)

where

Sj(hbt�k� t) =
hbt−1∑
τ=0

ρ(2∗τ+k) ∗ (λt−τ)
2 ∗ (hbt)

j� (11)

To understand the behavior of this term it is informative to start with the time-
stationary case where λ2

t = 1 for all t. In this case, it is convenient to view (7) as a dif-
ference equation and write the solution, which exists as long as ρ ∈ (0�1), as VZ(h�k).
It is possible to derive this solution analytically, but for the study of identification this
does not yield any new insights. The major result is that VZ(h�k) cannot be a polyno-
mial. Indeed, any such solution must satisfy equation (7), which cannot be written in
polynomial form as long as ρ < 1. This remains true if σ2

ξ0
= 0, implying that the func-

tion Sj(h�k) is not spanned by the space of polynomials in (h�k) of order J = max{Jε� Jν}
for any finite J. Identification follows almost immediately. First, the γj are coefficients
on functions of (h�k) that are not in the span of polynomials of finite order, and thus
not collinear with any terms in cov(Pibt�Pibt+k) and cov(Ξibt�Ξibt+k). Second, deriva-
tives with respect to ρ involve the logarithmic function, which is not in the span of any
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of these terms either. The same is true for the derivative with respect to σ2
ξ0

, which is

simply ρ(2∗hbt+k). The rank condition is thus satisfied. If ρ = 1, instead then zibt is a unit
roots process that is indistinguishable from uibt and identification fails.

Checking the rank condition for the nonstationary case follows the same line of ar-
guments. Start with the case with ρ < 1. For the same reason as for the unit roots process,
one needs to impose more than one normalization on factor loadings. The necessity of
the restriction λt0 = 1 is obvious, but the restriction λ(t0+1) = 1 is not. The first two factor
loadings are identified from the two oldest cohorts only, and so are the initial conditions
σ2
ξ0

and σ2
α. At the same time, because cov(zibt� zibt+k) = ρk ∗ Var(zibt) the lag profiles

for these cohorts impose restrictions on ρ, but not on any parameters in Var(zibt). As
a consequence, without the restriction λ(t0+1) = 1 the parameters of the AR(1)-process
are not identified. Conversely, the autocovariances of orders k = 1�2 for the two oldest
cohorts, evaluated at t0 and (t0 + 1), pin down the initial conditions once this restriction
is imposed. The remaining arguments for establishing identification are then a straight-
forward extension of those used above.

First, the model remains linear in the γ′
js, but they are now coefficients on a func-

tion that varies nonpolynomially in three instead of two variables, namely (h�k� t). The
model is also linear in the (λt−τ)

2 since the derivative of cov(zibt� zibt+k) with respect to
(λt−τ)

2 does not depend on (λt−τ)
2 itself. Importantly, this derivative is a function that

varies non-polynomially in (h� t). This is because the same factor loading enters at dif-
ferent positions of the summation in Sj(h�k� t), depending on the age and the calendar
year the covariance is calculated for. This also implies directly that, as long as ρ < 1, the
partial derivatives with respect to the γ′

js, which are the Sj(h�k� t), and the factor load-

ings are not perfectly collinear. That is, the Sj(h�k� t) are a combination of the (λt−τ)
2,

but not a linear one since the coefficients are nonlinear functions. The derivative with
respect to ρ involves logarithms that are not in the span of any of the polynomial terms
of the other variance components.

If instead ρ = 1, identification fails without additional restrictions on parameters. To
see this, notice that in this case cov(zibt� zibt+k) = Var(zibt) for all k ≥ 0. Hence, each
additional year adds one restriction on the autocovariance structure per cohort, but
also one additional factor loading. As a consequence, it is generally impossible to sep-
arate age from time effects in the AR(1) process. A sufficient condition for identifica-
tion is λt = 1 for all t ∈ {t0� t0 + Jξ + 2}. In this case, there are sufficiently many peri-
ods where variation in Var(zibt) is entirely due to age effects, and this is sufficient to
pin down γj . This is the case even in the presence of the unit roots process. Indeed,
cov(uibt�uibt+k)= pt ∗pt+k ∗var(uibt) so that the multiplicative nature of the factor load-
ings imposes more than just one restriction on autocovariances per cohort and per ad-
ditional year. It introduces variation in the lag that is sufficient to recover the parameters
of var(uibt).

Appendix D: Constrained optimization and computational issues

The MD-estimator does not impose any nonnegativity constraints on the estimates of
variance parameters such as σ2

β. If the model is misspecified, or if a variance parame-
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ter is zero while the match can be improved by choosing a negative value, these con-
straints may be violated. As long as a variance is summarized by a single parameter,
one can easily avoid this problem by iterating over standard errors instead, or by us-
ing some positive transformations of the underlying parameters. However, variances of
permanent and persistent shocks are polynomials in age, and parameters {δj}Jνj=0 and

{γj}Jξj=0 need to be allowed to be negative as long as var(νibt) and var(ξibt) evaluated at
any age are restricted to be nonnegative. The MD estimator therefore becomes the so-
lution of a constrained minimization problem for which the constraints are linear in
parameters. With an objective function that is continuously differentiable and with lin-
ear constraints, there are a number of numerical algorithms that work well in theory.
After experimenting extensively with different algorithms, I have found that a SQP al-
gorithm works best in the sense that it is least sensitive to initial values, and converges
quite quickly to a solution.6 If a variance parameter hits the constrained, calculation of
standard errors becomes problematic. In this case, I restrict the parameter to zero and
reestimate the model.

Appendix E: How robust are the conclusions? Results from the dropout

sample

In this Online Appendix, I document and discuss results from estimating the model of
earnings dynamics on the sample of high school dropouts. This exercise is interesting
for two main reasons. First, the covariance structure of earnings for this group displays
different features than the corresponding structure for the secondary degree sample or
for the US labor market, thereby enabling me to explore the robustness of my results.
Second, while the preferred model matches well the covariance structure of the more
educated, it is clearly misspecified for the high school dropouts, as shown in the Ap-
pendix, Figure 5.7 Instead of modifying the model to improve its fit—a promising ap-
proach would be to allow all parameters to vary freely across cohort groups—I investi-
gate whether the conclusions drawn from the main sample hold when one starts from a
misspecified model.

Parameter estimates for various specifications are shown in the Appendix, Table 4.
This table has the same structure as Table 2. Results are thus directly comparable. In-
cluding the factor loadings, there are 62 parameters in the benchmark specification that

6To evaluate if a numerical solution is a candidate for a global minimizer, I use several approaches. First,
since there are fast and robust numerical algorithms for unconstrained least-squares estimation, I start
with solving this problem. Only if some of the constraints are violated do I reestimate the parameters. If
the minimized value of the estimation criterion from the constrained routine is significantly larger than the
one from the unconstrained routine, I interpret it as a sign that a global constrained minimum has not been
found, and I start with a different initialization and/or a different solver.

7Inspection of this figure shows that the model’s problems to fit the data is primarily driven by a sig-
nificant change in the covariance structure for recent cohorts. Most importantly, cohorts born after 1967
experience an increase in low-order autocovariance early in the life cycle that peaks at a value higher than
any covariances of older cohorts. At the same time, covariance structures late in the life cycle or at large lags
appear to remain fairly stable across cohorts. This suggests that intercohort changes can only be explained
by an increase in the variance of the persistent or transitory component. The model is not rich enough to
account for these rather complex changes.
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are estimated on a sample of 64,278 moments. Estimates are shown in column 1 of the
table and, in the case of the factor loadings, in the lower panel of the Appendix, Figure 4.
There are two major differences in parameter estimates of the benchmark specification
compared to results from the secondary degree group. First, a Wald-test for the joint sig-
nificance of (σ2

β�σαβ) cannot reject the null hypothesis of no heterogeneity in earnings
growth rates in either specification. Second, the persistent component as captured by
the heteroscedastic AR(1) process plays a significantly larger role. The estimated initial
condition of the AR(1) process is much larger than in the secondary degree sample. In
the Appendix, Figures 2 and 3, which correspond to the experience and lag-profiles plot-
ted in Figures 1 and 2, show that the large role of a persistent initial condition is driven
by the high intercepts of lag profiles. Given the steep initial decline of the lag profiles,
one may be surprised by the insignificance of σαβ. However, this decline is rather rapid
and ends in a constant lag-profile later in the life cycle, which is consistent with a large
persistent initial condition of the earnings process coupled with imperfect persistence.
Other parameters such as the estimated variance of the intercept σ2

α and the persistence
of the AR(1)-process ρ are quite similar to those from the secondary degree sample.

The robustness exercises documented in the rest of the table reveal patterns that are
remarkably consistent with those found in the main sample. In particular, a standard
HIP process yields highly significant estimates of slope heterogeneity. At the same time,
the large inequality at the beginning of the life cycle is now primarily matched by inter-
cept heterogeneity, with an estimate of σ2

α that is five times as large as the corresponding
estimate from the full model. Furthermore, results in columns 4 to 6 imply that omission
of any of the components in the benchmark specification has substantial effects on the
estimates of slope heterogeneity (σ2

β�σαβ). Again, exclusion of the persistent initial con-
dition produces the most dramatic omitted variable bias.

Taken together, these conclusions are consistent with those found from the sec-
ondary degree sample. As the covariance structures for these two samples are quite dif-
ferent, the results documented in this paper are unlikely to be an artifact of one particu-
lar data set.

One interesting conclusion from this Appendix section is that controlling for age ef-
fects is important even if the model is misspecified. This hints at the difference between
fitting selected moments well and estimating parameters consistently. Consistent esti-
mation is generally possible even in misspecified models—if the identifying variation is
chosen appropriately. Indeed, it is common to have a low R2 in microeconometric stud-
ies that rely on experimental data for consistent parameter estimation. In the context of
this paper, estimates of profile heterogeneity will be biased upwards if they are estimated
from life-cycle variance profiles, even if the model matches these profiles perfectly. Con-
versely, the estimates are likely to be consistent if they are identified from the tails of lag
profiles, no matter how poor the model fit is.

Appendix F: Finite sample performance: A Monte Carlo simulation

In this Appendix section, I investigate using Monte Carlo simulation whether the key
parameters of my model of earnings dynamics can be recovered without any systematic
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biases from simulated samples of sizes similar to the IABS data. Related to this, I explore
whether controlling for age effects in innovation variances, and in particular allowing
for an initial condition in age profiles of second moments, tends to produce estimates
of HIP that are biased toward zero. This may be an issue because it is hard to distinguish
empirically between age heteroscedasticity and profile heterogeneity, as shown in the
theoretical section. More specifically, once one models age heteroscedasticity flexibly,
HIP is identified from the tail of lag profiles, which is a second-order feature of the data.

Simulation protocol

Every Monte Carlo exercise carried out in the following simulates 1000 data on
individual-level life-cycle earnings dynamics. Sample sizes and attrition rates in each
of these simulated data sets are the same as in the actual IABS data. To focus on the joint
estimation of age effects in innovation variances and HIP, I abstract from time effects
and simulate time-stationary earnings processes. As a consequence, I compute from
each panel data on earnings one aggregate covariance structure rather than covariance
structures that are disaggregated to the cohort level. This works against estimating the
parameters of interest precisely since the number of observations grow faster than the
number of parameters as one disaggregates to the cohort level. The parameters of the
earnings process are then estimated 1000 times, once on the covariance structures com-
puted from each of the simulated individual level panel data on earnings dynamics.

Parameters describing the Monte Carlo simulation are displayed in the upper panel
of the Appendix, Table 5. Unless noted otherwise, I simulate a stationary version of the
benchmark earnings process, which features HIP, an AR(1) process with age-varying
innovation variances, a homoscedastic unit roots process, and a transitory component.
With the exception of the HIP component, I use the estimates from the time-stationary
specification in column 5 of Table 2 as parameter values. To have substantial HIP, I re-
place the estimates of permanent heterogeneity and the persistence of the AR(1) pro-
cess by the estimates of the Hryshko-specification in column 6 of the same table. The
table also displays the values of each parameters used as initial conditions in the non-
linear numerical estimation routine. These are relatively far away from their true values,
but chosen on “intuitive” criteria. For example, as an initial guess for σ2

α I choose an
approximate long-run average of autocovariances, and for the initial condition of the
AR(1) process, I use the approximate difference between the intercept and the long-run
value of lag profiles of labor market entrants. Age effects and HIP are initialized at zero.

Results

The results from the Monte Carlo analysis are shown in the bottom panel of the Ap-
pendix, Table 5. I simulate three different models, shown in three different sub-panels.
Each subpanel in turn lists the results from estimating three different models. That is,
holding fixed the model being simulated, I estimate three different models on each of
the 1000 simulated covariance structures. The first model does not impose any restric-
tions on the parameters in the estimation. In this case, parameter estimates should not
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be systematically biased, but they may be estimated with less precision if the true un-
derlying model is more restrictive than the estimated model. The second model imposes
(σ2

β�σαβ)= (0�0), that is, the absence of HIP, in the estimation, and the third model sets
the initial condition of the AR(1)-process to zero. To avoid clutter in the table, I only
show results for the key parameters, namely those describing individual heterogeneity
(σ2

α�σ
2
β�σαβ) and the persistence and the initial condition of the AR(1) process (ρ�σ2

ξ0
).

The sampling distribution of their 1000 parameters estimates are summarized in two
statistics, the average bias and the standard deviation.

The three subpanels differ by which of the assumptions used in the estimation are
actually imposed in the simulation. More specifically, the first simulated model does
not impose any restrictions on the parameter values. This simulation has two princi-
ple goals. First, it explores whether parameters of an unrestricted process can be recov-
ered precisely and without bias from the simulated data. Indeed, as shown in column 1,
there is no significant bias in any of the parameters. This is reassuring and suggests that
given the sample sizes a process with HIP and a rich structure for age-dependent het-
eroscedasticity in earnings dynamics can be estimated precisely and without bias. The
second goal is to investigate whether imposing erroneous assumptions introduces sub-
stantial biases in the estimates. To this end, the next two columns impose the restrictions
described above, both of which are wrong. Not surprisingly, this leads to substantial bi-
ases in most parameter estimates. Perhaps most importantly, if the initial condition of
the AR(1) process is omitted, a specification whose estimates are shown in column 3,
the parameters of HIP are severely biased upwards in absolute value, and these biases
are highly significant. Hence, even in the presence of HIP, omission of age effects intro-
duces substantial biases. This reaffirms the central result of this paper.

The second simulation sets the parameters of the HIP component to zero:
(σ2

β�σαβ)= (0�0). As shown in columns 4 and 5, there are no significant biases no matter
if this restriction is imposed in the estimation (column 5) or not (column 4). In contrast,
once the initial condition of the AR(1) process is erroneously set to zero, the estimate
of σαβ tends to be biased away from zero, and this bias is significant. The omitted vari-
able bias in σ2

β has a similar magnitude as in simulation 1 when the persistent initial
condition is erroneously set to zero in the estimation. However, the sampling distribu-
tion is now too dispersed for this bias to be significant. Two points need to be kept in
mind when interpreting this result however. First, a Wald test of the null hypothesis that
(σ2

β�σαβ) are jointly zero given their sampling distribution would be rejected. Second, in
this particular exercise, age effects in the variances of the AR(1) process other than the
initial condition are still allowed for in the estimation. Omitting age heteroscedasticity
altogether leads to larger biases in estimates of HIP, though this is not shown in the table.

Finally, the third simulation explores whether allowing for an initial condition of the
AR(1) process in the estimation may lead to overfitting in the sense that estimates of
HIP are systematically biased toward zero. More specifically, it answers the question of
whether allowing for a persistent initial condition in the estimation when none exists
leads to biased estimates of HIP. Results in columns 7 to 9 indicate that this is not the
case. Significant biases arise only in the case of erroneously omitting HIP in the estima-
tion, as shown in column 8. In this case, the average estimate of σ2

ξ0
is 0�065, compared

to a true value of zero.
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To summarize, the Monte Carlo analysis establishes three results. First, as long as
one does not impose a wrong restriction on the parameters of the earnings process, all
parameters can be recovered precisely and without bias using equally weighted mini-
mum distance estimation, at least given the sample sizes and the length of the panels in
the IABS. Second, erroneously omitting the persistent initial condition, which is a par-
ticular age effect in the innovation variances of the AR(1) process, leads to substantial
upward biases in the estimates of profile heterogeneity. Third, controlling for a persis-
tent initial condition if none exists does not introduce any biases in estimates of HIP.
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Appendix Table 2. Average labor income by education group and experience (in years).

Education group

Experience Main Sample: Robustness Sample:
(in years) Secondary Degree Group High School Dropouts

0 8�556 7�807
1 8�631 8�013
2 8�686 8�263
3 8�731 8�450
4 8�768 8�550
5 8�802 8�596
6 8�836 8�637
7 8�865 8�670
8 8�891 8�701
9 8�916 8�728

10 8�937 8�755
11 8�957 8�773
12 8�973 8�791
13 8�988 8�805
14 9�000 8�821
15 9�012 8�835
16 9�022 8�839
17 9�034 8�840
18 9�044 8�848
19 9�051 8�859
20 9�061 8�862
21 9�072 8�872
22 9�081 8�870
23 9�087 8�871
24 9�098 8�884
25 9�111 –
26 9�111 –
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Appendix Table 3. Parameter estimates for baseline specifications, annual data: secondary de-
gree group.

(1) (2)

Benchmark specification No slope heterogeneity

Intercept heterogeneity σ2
α 0�021 0�012

Slope heterogeneity σ2
β ∗ 103 0�004 –

Cov (intercept; slope) σαβ ∗ 10 −0�003 –
Persistence of AR(1) ρ 0�632 0�688
Initial condition of AR(1) σ2

ξ0
0�078 0�072

Permanent shocks δ0 ∗ 10 0�024 0�015

Number of moments 3644

Note: This table shows parameter estimates for the specifications in Table 1, but estimated from simulated annual data.
It provides the numerical mapping from parameters of the benchmark earnings processes on the quarterly level to the cor-
responding parameters on the annual level. I first simulate individual-level panel data on the quarterly level, using the pa-
rameters in Table 1 together with the same data structure as the original IABS-data. I then aggregate the worker-level data to
the annual level, compute the covariance matrices and estimate the earnings processes. The estimates for the key parameters
are listed in this table. The variance of transitory shocks is zero because aggregation averages over four random draws on the
quarterly level. I thus do not show it in the table.
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Appendix Figure 1. Variance components with Baker–Solon estimates, stationary part.
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Appendix Figure 1. Continued.
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Appendix Figure 2. Life-cycle profiles of autocovariances at different lags, by cohorts. Sample:
Dropout group.
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Appendix Figure 3. Lag profiles of autocovariances for different experiencegroups, by cohorts.
Sample: Dropout group.
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Appendix Figure 4. Estimated factor loadings for the full model.
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Appendix Figure 5. Fit of benchmark model: dropout group.
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