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Normality tests for latent variables
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We exploit the rationale behind the Expectation Maximization algorithm to derive
simple to implement and interpret LM normality tests for the innovations of the
latent variables in linear state space models against generalized hyperbolic alter-
natives, including symmetric and asymmetric Student ¢s. We decompose our tests
into third and fourth moment components, and obtain one-sided likelihood ratio
analogues, whose asymptotic distribution we provide. When we apply our tests to
a common trend model which combines the expenditure and income versions of
US aggregate real output to improve its measurement, we reject normality if the
sample period extends beyond the Great Moderation.

Keyworbps. Cointegration, gross domestic product, gross domestic income, kur-
tosis, Kuhn-Tucker test, skewness, supremum test, Wiener—Kolmogorov-Kalman
smoother.
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1. INTRODUCTION

Latent variable models that relate a set of observed variables to a meaningful set of un-
observed influences are widely used in many applied fields. The list of empirical studies
that make use of those models is vast. In this paper, we consider a classic application of
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signal extraction techniques whereby we obtain an improved aggregate (real) produc-
tion series by combining its expenditure (GDP) and income (GDI) measures, which dif-
fer because they are constructed using largely independent data sources (see Landefeld,
Seskin, and Fraumeni (2008) for a review).

We will use this model in Section 7, but in developing it, one particularly relevant
decision we must make is the normality of the underlying variables, which implies the
normality of the observed variables and justifies the use of the Kalman filter for infer-
ring the true underlying output from its two measures. In contrast, if the innovations
are not Gaussian, the Kalman filter only provides the best linear filter for the latent vari-
able, which can be noticeably different from its conditional expectation. To illustrate this
point, consider the simplest possible example in which a negatively skewed signal x is
observed cloaked in some additive symmetric noise €. As can be seen in Figure 1, the
linear projection can display important biases relative to the conditional expectation of
x given the observed series y = x + €. Intuitively, the conditional expectation takes into
account that the asymmetry in x implies that large negative/positive realizations of y are
more/less likely to result from the signal, while the linear projection assigns a constant
fraction of y to x regardless.

The remarkable increase in computing power has made possible the implementa-
tion of simulation-based estimation and filtering techniques for non-Gaussian dynamic
latent variable models (see, e.g., Johannes and Polson (2009)). However, the majority of
practitioners continue to rely on the Kalman filter, which is far simpler to implement
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F1GURE 1. Linear projection versus conditional expectation in a non-Gaussian univariate static
factor model. Notes: The observed variable is y; = %xt + ‘/756,. We assume that the joint distribu-
tion of x; and ¢, is asymmetric Student ¢ with zero mean, identity covariance matrix, 8 degrees of
freedom and skewness vector parameter b = (—1, 0)’. Given that the joint distribution of y, and
x; will also be an asymmetric Student 7, we can use the expressions in Mencia (2012) to compute
the conditional expectation of x, given y,.
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and explain. Undoubtedly, those practitioners would benefit from the existence of di-
agnostics that could tell them the extent to which normality of the latent variables is at
odds with the data. Although there are many readily available normality tests, they are
designed to be directly applied to the observed variables in static models or their one-
period ahead prediction errors in dynamic ones.

The objective of our paper is precisely to derive simple to implement and interpret
tests for nonnormality in all or a subset of (the innovations to) the state variables. We
focus on Lagrange Multiplier (LM) tests, which only require estimation of the model
under the null. As is well known, Likelihood ratio (LR), Wald and LM tests are asymp-
totically equivalent under the null and sequences of local alternatives and, therefore,
they share their optimality properties. Aside from computational reasons, the advan-
tage of LM tests is that rejections provide a clear indication of the specific directions
along which modeling efforts should focus.

Nowadays, the computational advantages of LM tests might seem irrelevant, but in
our case they are of first-order importance because the density function of the observed
variables or their innovations is typically unknown when the distribution of the latent
variables is not Gaussian, and in many cases it can only be approximated by simulation
(see Durbin and Koopman (2012) for an extensive discussion in the context of dynamic
models). As a result, the log-likelihood function under the alternative, its score and in-
formation matrix can seldom be obtained in closed form despite the fact that we can
compute the true log-likelihood function under the Gaussian null. We overcome this
stumbling block by exploiting what we call “the EM principle.” Specifically, we general-
ize Louis’ (1982) score formula in order to obtain the first derivatives of the log likelihood
with respect to the shape parameters that characterize departures from normality. The
EM algorithm studied in Dempster, Laird, and Rubin (1977) is a well-known procedure
for obtaining maximum likelihood estimates in both static and dynamic latent variable
models (see, e.g., Rubin and Thayer (1982) or Watson and Engle (1983), resp.). However,
to the best of our knowledge it has only been used for testing purposes by Fiorentini and
Sentana (2015), who employ it to assess neglected serial dependence in non-Gaussian
static factor models.

Our approach introduces a relatively minor complication: the influence functions
that constitute the basis of our tests are serially correlated in dynamic models. In this re-
gard, our methods are related to Bai and Ng (2005) and Bontemps and Meddahi (2005),
who derive moment-based normality tests for a single observed variable or its innova-
tions in potentially serially correlated contexts by relying on heteroskedastic and auto-
correlation consistent estimators of the asymptotic variances. Nevertheless, we derive
analytical expressions for the autocovariance matrices of the influence functions, which
we would expect a priori to lead to more reliable finite sample sizes for our statistics
than their nonparametric counterparts. For that reason, our approach is more closely
related to Harvey and Koopman (1992), who apply standard univariate normality tests
for observed variables to the smoothed values of the innovations in the underlying com-
ponents of a univariate random walk plus noise model explicitly taking into account the
serial correlation implied by the model for those estimates. Unlike us, though, none of
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those authors justify their procedures by appealing to the likelihood principle or con-
sider multivariate models.

For most practical purposes, departures from normality can be attributed to two dif-
ferent sources: excess kurtosis and skewness. Although our EM-based LM approach can
be applied far more generally, we follow Mencia and Sentana (2012) in considering Gen-
eralized Hyperbolic (GH) alternatives, which include the symmetric and asymmetric
Student ¢, normal-gamma mixtures, hyperbolic, normal inverse Gaussian and symmet-
ric and asymmetric Laplace distributions. The main advantage of these GH alternatives
is that they lead to easy to interpret moment tests that focus on third and fourth mo-
ments. In particular, they coincide with the moments underlying the Jarque and Bera
(1980) test in the univariate case. At the same time, the number of moments that are ef-
fectively tested in multivariate contexts is proportional to the number of series involved,
unlike tests against Hermite expansions of the multivariate normal density, which suffer
from the curse of dimensionality (see Amengual and Sentana (2015) for a comparison
in the context of copulas). Importantly, we show that our tests are not affected by the
sampling variability in the model parameters estimated under the null, so we can treat
them as if they were known.

The rest of the paper is organized as follows. Section 2 describes the econometric
model, as well as the GH alternatives. We derive our normality tests against the Student
t first and the GH distribution later in Sections 3 and 4, respectively. Then, in Section 5
we illustrate our procedures with two popular examples, while in Section 6 we discuss
the results of our Monte Carlo experiments. Section 7 explores in detail the information
about aggregate output in the GDP and GDI measures. Finally, we present our conclu-
sions in Section 8. The Online Supplemental Material (Almuzara, Amengual, and Sen-
tana (2019)) contains proofs and provides additional results.

2. THE MODEL
2.1 Linear state-space models

A linear, time-invariant, parametric state-space model for a finite dimensional vector of
N observed series, y;, can be recursively defined in the time domain by the system of
stochastic difference equations

y: =@ (0) + H(0)§,, 1)
& =F)¢,_ +M@0)e, 2)
8I|It—l9¢wi~i'd'D(071K’ ¢)7 (3)

where ¢ = (0, ¢'), 6 € ® C R? is a vector of p first and second moment parameters,
@ : @ > RY is the mean vector of the observed series, H: @ — RY*M F.@ — RM*xM
and M : ® — RM*K are matrix valued functions of coefficients, many of whose elements
will typically be either 0 or 1, &, is an M-dimensional vector of state variables, &, is a K-
dimensional vector of standardized structural i.i.d. innovations driving those variables
whose distribution depends on a vector of shape parameters ¢, and Z,_; is an informa-
tion set that contains the values of y; and &, up to and including ¢ — 1.
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We assume that N < K < M to avoid dynamic singularities. We also assume that the
model above is correctly specified, in the sense that there is some @ for which (1) and (2)
constitute the true data generating process of {y;, §;}. In this context, static models will
be such that F(0) = 0 for all 6.

There are multiple alternative representations of state-space models,! but in this pa-
per we follow the one in Harvey (1989), except that we have deliberately subsumed any
possible error in the measurement equation (1) into the state vector so as to be able to
test for normality not only in the minimal possible set of state variables but also in the
measurement errors. For that reason, equations (1) and (2) closely resemble the usual
state representation in the engineering literature, in which the elements of &; would
be regarded as control variables (see Anderson and Moore (1979)). For ease of exposi-
tion, we do not look at models with exogenous regressors or those in which some of the
system matrices are deterministic functions of time or observable predetermined vari-
ables.?

We assume without loss of generality that the columns of the matrix M(#) are lin-
early independent so that there are no redundant elements in &,. Typically, M(0) will be
a selection matrix whose columns are (proportional to) vectors of the M-dimensional
canonical basis, but in principle they could be different. As a result, we can uniquely
recover g, from &, as

& =M"(0)[Iyy —F(O)L]&,, (4)

where M (0) = [M'(0)M(0)]"'M'(0) denotes the Moore-Penrose inverse of M(0). We
also assume no linear combination of all the observables {y;} has zero variance.

Finally, we assume that the researcher makes sure that the model parameters 6 are
identified before estimating the model, which often requires restrictions on the system
matrices (see, e.g., Section 2.3 of Fiorentini, Galesi, and Sentana (2018) and the ref-
erences therein). These assumptions are satisfied in virtually all applications of state-
space models.

2.2 Null and alternative hypotheses

In Section 4, we derive computationally simple tests of the null hypothesis that the struc-
tural innovations are Gaussian against the alternative that they follow a member of the
GH family of distributions introduced by Barndorff-Nielsen (1977) and studied in detail
by Bleesild (1981). This is a rather flexible family of multivariate distributions that nests
not only the normal and Student ¢ but also many other examples such as the asym-
metric Student ¢, the hyperbolic and normal inverse Gaussian distributions, as well as
symmetric and asymmetric versions of the normal-gamma mixture and Laplace. As we

1For example, Durbin and Koopman (2012) shifted the transition equation (2) forward by one period, as
in Anderson and Moore (1979), and included measurement errors in (1), which they assume are orthogo-
nal to the innovations in the state variables. On the other hand, Komunjer and Ng (2011) substituted the
transition equation (2) into the measurement equation (1), thereby creating an alternative measurement
equation whose innovations are perfectly correlated with the innovations in the transition equation.

ZMinor changes to the testing procedures we propose will render them applicable to those situations.
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mentioned in the Introduction, the main advantages of these GH alternatives is that they
lead to easy to interpret moment tests that focus on third and fourth moments, but in
such a way that the number of conditions which are effectively tested is proportional
to the number of series involved. Nevertheless, for clarity we first present the relevant
results regarding testing multivariate normal versus multivariate Student ¢ innovations
in the next section, and then generalize them to the GH case.

In many applications, the researcher may only be interested in testing whether the
source of nonnormality comes from a subset of the underlying components, which have
some meaningful interpretation. In our empirical application, for example, it matters
whether the potential nonnormality is a feature of the true GDP or its measurement er-
rors. Given that we can always reorder the vector of structural innovations &, and post-
multiply the matrix M(6#) by a permutation matrix, without loss of generality we can
assume that the non-Gaussian distribution is confined to the first R < K innovations

under the alternative. Henceforth, we refer to the relevant components as £ = Sgie,,

with Srk = (IR, 0), and to the remaining ones as slt\].

As aresult, we explicitly consider the following alternative hypotheses:

1. The joint distribution of all structural innovations is GH: Hy : £, ~ GHg (7, , B);

2. The joint distribution of the first R structural innovations is GH while the rest are
Gaussian: Hyg : eSH ~ GHg(n, ¥, B), eN ~ Ng_r(0,Igx_g).3

3. MULTIVARIATE NORMAL VERSUS STUDENT f INNOVATIONS

The multivariate Student ¢ distribution generalizes the multivariate normal distribu-
tion through a single additional parameter v, which is usually known as the degrees of
freedom. For convenience, we work with its reciprocal, 1, so that Gaussianity requires
n— 0%,

3.1 The score under Gaussianity

LM tests are usually obtained from the score associated to the (marginal) likelihood
function of the observed variables, fy(Yr|¢), with Yr =vec(yy, ..., yr), evaluated un-
der the Gaussian null. Unfortunately, the functional form of fy(Yr|¢) is generally un-
known under the alternative, and the same is true of its score vector evaluated under the
null despite the fact that we can easily compute the Gaussian likelihood function. For
that reason, we rely on a variant of Louis’ (1982) score formula, which is based on the
so-called “EM principle”; see also Ruud (1991) and Tanner (1996).

Initially, we assume @ is fixed and known, and later on we consider the effect of es-
timation of mean and variance parameters. Formally, the EM principle applied to this
context says the following.

3We might also envisage an alternative situation in which the elements of &, are cross-sectionally inde-
pendent but non-Gaussian; see Almuzara, Amengual, and Sentana (2017) for details.
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ProrosiTiON 1. Let fg(E7|¢@) denote the density of Er = vec(e1, ..., e7) with respect to
Lebesgue measure on RXT, which is continuous in Er and differentiable in ¢. Then

dln fy(Yr|d) _E[ﬁlnfE(ETHD)
de N de

‘YT, ¢}. ©)

REMARK 1. The identity (5) is different from Louis’ (1982) original formula, in that it
applies when K > N but only for a subset of the parameters.

REMARK 2. Let fiyg)(Yr, ET|¢p) denote the joint likelihood function for both observed
variables {y;} and structural innovations {&;} of model (1)-(2) for a sample of size T.
This joint density will necessarily be singular in linear state-space models because of
the restrictions the observed variables Y7 place on the latent Er. The same comment
applies to the conditional likelihood function of the latent variables given the observed
ones, fgy(E7|Yr, ¢), which will usually be defined over a manifold of smaller dimen-
sion. Since the Kullback inequality implies that E[JIn fgy(Er|YT, ¢)/d¢|YT, ] =0, it
follows that we can obtain JIn fy(Y7|¢)/d¢ as the expected value of the unobservable
score corresponding to fy,g)(Yr, ET|¢) conditional on Y7 and ¢. Therefore, an alterna-
tive formulation of (5) is

Iinfy(¥rld) _ [ IInfov.e) (Y1, Erle)
de N de

Y7, ¢], (6)

where

fov.ey (Y7, ETld) = 1{vy;=D7(E;,0)) fE(ET @),

with Y7 = D7 (Er, 0) denoting the exact relationship between observed variables Y7 and

innovations E7 implied by model (1)-(2) and 1, the usual indicator function.
Importantly, while the mean and variance parameters enter in the indicator func-

tion, the shape parameters do not, so that the right-hand side of (6) is well-defined.*

REMARK 3. One must be careful in applying the “EM principle” to the score with respect
to 0. We deal with this situation in Proposition 3(b) and 6(b) (see the proof of Lemma 7
in the Online Supplemental Material A).

In the case of Student ¢ innovations, we can use the expression provided in Fioren-
tini, Sentana, and Calzolari (2003) for the score with respect to n under the Gaussian
null:

07lnf(Y7E)(YT,ET|¢) _ R(R+2) _ R+2 GH 1( GH)2
= —\S¢ N

o 1 5 St +4 (7

where sCH = ¢85 eGH and 5 = Spye,. Thus, we can regard (7) as the M-step in Louis’
(1982) formula (5). Next, we can apply the E-step by taking expectations. Specifically,
if £/7(0) denotes the Kalman smoothed values of the innovations at ¢ given Y7, which

4We thank a referee for pointing this out.
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contains past, present, and future values of the observed series, and £2;7(0) the corre-
sponding mean-square error, we have that &/|Yr, @ ~ N[g,7(0), £2,7(0)] under the null
of normality, so that

dlnfy(Yrl¢) R(R+2) R+2
an 4 2

1
E[sC"1¥r, 0]+ S E[(s7) 1¥r. 6]

only involves the computation of E [g,GHIYr, 0] and E [(;,GH)ZIYT, 6], whose expressions
we derive in the Online Supplemental Material A. Thus, we can show the following:

ProposITION 2. The score of the Student t log-likelihood with respect to the shape pa-
rameter n when n =0 is given by

T T

_ 1 1 ,

Ske7(0) = T E Ske7(0) = T E bk[‘T(O)mk”T(O),
t=1 t=1

where my7(8) = [1, M, (8), m(, (8)]', bi7(6) = [bou7(8), by, 1.(8), bl 1(8)Y,

my,7(0) = vec[e,7(0)€,7(0)'],

) (8)
my,7(0) = vec{[£,7(0) © £,7(0)][£47(0) © £,7(0)] }.

and

boyr(0) = co + {c1 + 2 e[ 25 (0) ]} [ 251 (0)] + 2¢2 tr{[ﬂﬁ?w)]z},
ba.i7(0) = {1 +2¢2 tr[ 277 (0)]} Sk ® Siic) vecIr) + dea (S ® Sii) vee[ 247 (0],
b4t|T(0) = CZ(S/RK &® S}{K)eRz,

withcg=R(R+2)/4,c1 =—(R+2)/2, c; =1/4 and £y a vector of H ones.

3.2 Asymptotic covariance matrix of the score under Gaussianity

As is well known, the Kalman smoothed process &;7(0) will typically be serially corre-
lated in spite of &, being i.i.d. Consequently, the same will be true of sy, 7(0). In addition,
the autocovariances of £,7(0) change with both ¢ and T. Nevertheless, we show in On-
line Supplemental Material B that it suffices to compute the autocovariances of powers
of &;/0(0), which is the Wiener-Kolmogorov filter of &; based on a double-infinite sam-
ple of the observable vector y;, for the purposes of obtaining the asymptotic variance of
\/TE](”T(O). For that reason, we define m;,(0) as mj,7(0) in (8) with & () in place of
£,7(0), bj(0) as b;7(0) in Proposition 2 with £2,(0) replacing _Q,|T(0),5 and 5,7(0) as
the associated average score.

5Under the usual controllability and observability conditions (see, e.g., Harvey (1989)), which we assume
henceforth, £, (0) will not depend on ¢ in steady state, so we can write £2,(0) = £2/o,(0).
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In practice, however, we do not generally know 0. Therefore, we need to obtain the
asymptotic covariance matrix of JT EkT(@T), where 07 is the Gaussian maximum likeli-
hood estimator of , which is the efficient estimator under the null. Importantly, the sec-
ond part of the following proposition shows that the sampling variability of the Gaussian
ML estimators of @ does not affect the asymptotic variance of the test:

ProposiTiON 3. Under the null hypothesis of Gaussian innovations:
(@ lm7_ o0 VIVT5i7(0)|0] = b} (0)rc4(8)bs () — b (0)K2(0)b(8) = Cic(8), where

o0

Kki(0)= Y cov[m;(6), m;_(0)], 9)

j=—o00

denotes the autocovariance generating function of m;,(0) evaluated at one.

(b) lim7_, o0 cOV[V/T5i7(0), VTS\yv7(0)|0] = 0, where Syy7(0) denotes the average
Gaussian score with respect to the conditional mean and variance parameters 6.

3.3 The test statistic

We can easily compute a LM test for multivariate normality versus multivariate Student

t distributed innovations on the basis of the value of the score of the log-likelihood func-
A A/

tion corresponding to n evaluated at the Gaussian ML estimates ¢ = (0, 0')'.

ProprosITION 4. The LM test of normality against a multivariate Student t can be ex-
pressed as

Sey7(O7)

LMSTtudent(éT) =T _ ,
C(07)

which is asymptotically distributed as a X% under the null.

The fact that n = 0 lies at the boundary of the admissible parameter space inval-
idates the usual distribution of the LR and Wald tests, which under the null will be a
50 : 50 mixture of x3 (= 0 with probability 1) and x7. Although the distribution of the LM
test statistic remains valid, intuition suggests that the one-sided nature of the alterna-
tive hypothesis should be taken into account to obtain a more powerful test. For that
reason, we follow Fiorentini, Sentana, and Calzolari (2003) in using the Kiihn-Tucker
(KT) multiplier test introduced by Gouriéroux, Holly, and Monfort (1980) instead, which
is equivalent in large samples to the LR and Wald tests. Thus, we would reject Hj at the
100:¢% significance level if the average score with respect to n evaluated under the Gaus-
sian null is strictly positive and the LM statistic exceeds the 100(1 — 25¢) percentile of a
X% distribution.® In this respect, it is important to mention that when there is a single

6Intuitively, under the null of normality

ﬁgkﬂT(éT)

VCk(O7)
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restriction, as in our case, those one-sided tests would be asymptotically locally most
powerful.

4, MULTIVARIATE NORMAL VERSUS GH INNOVATIONS
4.1 The GH as a location-scale mixture of normals

We can gain some intuition about the GH distribution by considering Bleesild’s (1981)
interpretation as a location-scale mixture of normals in which the mixing variable is
a Generalized Inverse Gaussian (GIG). Specifically, if € is a GH vector, then it can be
expressed as

e=at YR 4V e, (10)

where a, B € R, Y is a symmetric positive definite matrix of order K, £° ~ N(0, I)
and the positive mixing variable ¢ is an independent GIG with parameters —v, vy, and
8, or { ~ GIG(—v, v, 8) for short, where v € R and vy, § € R* (see Jorgensen (1982) and
Johnson, Kotz, and Balakrishnan (1994) for further details). Obviously, the distribution
of £ becomes a simple scale mixture of normals, and thereby spherical, when B is zero.
By restricting @ and Y, Mencia and Sentana (2012) derived a standardized version of
the GH distribution with zero mean and identity covariance matrix, which therefore de-
pends exclusively on three shape parameters that we can set to zero under normality: 3,
which introduces asymmetries, n = —0.5v~! and = (1 + y)~!, whose product 7 = ny
effectively controls excess kurtosis in the vicinity of the Gaussian null.

4.2 The score under Gaussianity

Asin Section 3, there is no analytical expression for the log-likelihood function under the
alternative, so once again we resort to the generalized Louis’ (1982) formula. However,
we face two additional difficulties. First, there are three different paths along which a
symmetric GH distribution converges to a Gaussian distribution. Fortunately, Mencia
and Sentana (2012) showed that the score of the relevant kurtosis parameter evaluated
under the null of normality is proportional along those three paths to the score with
respect to 7 = 1y evaluated at 7 = 0. Second, B vanishes from the log-likelihood function
asT— 0.

One standard solution in the literature to deal with testing situations with underi-
dentified parameters under the null involves fixing those parameters to some arbitrary
values, and then computing the appropriate test statistic for the chosen values. To apply
this idea to the LM test in our context, we need the following:

will be asymptotically distributed as a standard normal. Therefore, the one-sided nature of the alternative
hypothesis implies that the relevant critical value for size x is given by the (1 — »)th quantile of a standard
normal instead of the usual (1 — 5¢/2)th one.
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ProrosITION 5. The score of the asymmetric GH with respect to the parameter T when
7 =0 for fixed values of the skewness parameters B is given by

T

1
Sonr (0, )= = D[S (8) + B'ssur(0)], -
t=1

Ss/7(0) = b/st|T(0)mst|T(0),

where mst|T(0) = [m/1t|T(0)’ mi’)tlT(o)]/’ bst\T(O) = [b/]”’r(o), bi’)t|T(0)]/’

my;7(0) = &47(0),
ms, 7(0) = vec|e,7(0)[£,7(0) © £47(0)]'},
and
bi7(0) = [c3 + tr(€257 (0)) |Skk + 2Sp 257 (0),

bSI\T(a) = /RKeR ® S/RK’
with c3 = —(R +2) and £y a vector of H ones.

This result provides an intuitive interpretation for sgy, 7 (0, B) as a linear combina-
tion of a kurtosis component, sy, 7(8), and R skewness components, Sg;7(0).

4.3 Asymptotic covariance matrix of the score under Gaussianity

If we denote by 557(0) the average score with £,7(0) and £2,7(0) replaced by £;,(0)
and 02.,(0), respectively, arguments analogous to those in Section 3.2 allow us to prove
the following result:

ProrosiTION 6. Under the null hypothesis of Gaussian innovations:
(@) VT57(0) and /Tss7(0) are asymptotically independent, and

Tli_)moo V[VT8s7(0)16] = b (0)K3(0)b3(6) — b/ (0)r1(6)by(8) =Cs(6),

with k;(0) defined in (9).
(b) lim7_, o cov[v/T8s7(0), v Tsymvr(0)]0] = 0.

The second part of this proposition, combined with the second part of Proposi-
tion 3, implies that the scores of the conditional mean and variance parameters 6 and
the scores of the shape parameters ¢ are asymptotically independent under the null of
Gaussianity, so that we need not worry about parameter uncertainty, at least in large
samples. Interestingly, this implication is closely related to Proposition 3 in Fioren-
tini and Sentana (2007), which contains an analogous result for multivariate, dynamic
location-scale models with non-Gaussian innovations. It is also related to Bontemps and
Meddahi (2005), who show that univariate normality tests based on third and higher or-
der Hermite polynomials are insensitive to parameter uncertainty, too.
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In the Online Supplemental Material C, we provide a numerically reliable algorithm
for computing the asymptotic covariance matrices Cs(68) and Ci(0) for any state space
model.

4.4 The test statistic

If we combine Propositions 5 and 6, we can easily show that the LM test statistic for a
given value of g8 will be given by

2

GH,§ T 1< A , .
LM77(07,B) = —Z[Skz|r(0T)+BSst|T(0T)] ,

C(0r) + BCs(or)B | T 1=

which will also follow an asymptotic X% distribution under Hj.

But since it is often unclear what value of B8 to choose, we prefer a second approach,
which consists in computing the LM test for all possible values of 8 and then taking the
supremum over those parameter values. Remarkably, we can maximize LM?H(O, B) with
respect to B in closed form, and also obtain the asymptotic distribution of the resulting
sup test statistic. Specifically:

ProprosITION 7. The supremum with respect to 3 of the LM tests based on (11) is equal to
1 I / 1 T
GH g _ Student , g 0 1.9 )
Sl;}pLMT (01, B) =LM7 (07) + T[T ;:1 sstlT(gT):| Cs (0T)|:7 ;:1 SszT(OT)],

which is asymptotically distributed as a X%z 41 under the null.

Given that sy, 7(0) is asymptotically orthogonal to the other R moment conditions
in sg;7(0) from the first part of Proposition 6, we can conduct a partially one-sided test
by combining the KT one-sided version of the symmetric GH test and the moment test
based on sg;7(0), which should be equivalent in large samples to the corresponding LR
test (see Proposition 6 in Mencia and Sentana (2012) for a more formal argument). The
asymptotic distribution of the joint test under the null will be a 50 : 50 mixture of X%e and
X%e +1» Whose p-values are the equally weighted average of those two x> p-values.

5. FURTHER DISCUSSION

In Section 7, we will use our methods for improving GDP measurement. But since they
apply far more generally, in this section we first describe how to implement our testing
procedures in a generic model. Next, we illustrate them with two popular textbook ex-
amples: a static factor model and the so-called local-level dynamic model. Finally, we
use these examples to explicitly compare our proposed testing procedures to previous
suggestions.
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5.1 Practical implementation

Assume the researcher has already (i) specified the model and (ii) computed if necessary
the Gaussian maximum likelihood estimates, 97.

STEP 1: Compute the smoothed influence functions. Propositions 2 and 5 provide the
explicit expressions required to compute the contribution to the score of each smoothed
innovation, namely sy, 7(0) and s, 7(0), respectively. One simply needs as inputs the
smoothed innovations &,7(0), which are required to compute mj;7(0), for j=1,...,4,
and the mean-square error for the vector of innovations being tested, Qﬁ?(ﬂ), which
are necessary to compute the vector of coefficients bj,7(0), for j =0, ..., 4. Importantly,
both of these quantities can be easily obtained from a standard Kalman filter-smoother.

STEP 2: Obtain the asymptotic variance of the test statistics. Although this can be
done in different ways, in what follows we describe a numerically reliable and computa-
tionally efficient algorithm that avoids simulations.

STEP 2.1: Obtain the VARMA representation of the Wiener-Kolmogorov filter for the
innovations. It turns out that the Wiener—Kolmogorov filter always has a finite-order
VARMA representation with scalar autoregressive part for all the models in this paper.
This feature follows from the fact that their autocovariance generating functions are
rational polynomials. Specifically, there exist positive integers p and ¢, a set of scalars

é1,..., ¢p € Rand a set of matrices @y, Oy, ..., @5 € RMHK)*K gych that
(1—¢1L—--—¢,LP) <§i—1l°°> =(@g+OL+ -+ 0O,L)e,.
€0

This representation, in which importantly the VAR component is scalar, is useful to
the extent that the coefficients ¢1, ..., ¢, and matrices @, @1, ..., @, can be obtained
in terms of the parameterization of the state matrices H, F and M. This can be done
using symbolic software such as Mathematica. We refer the reader to Lemma 4 in the
Online Supplemental Material A.

STEP 2.2: Compute the autocovariance function implied by the Wiener—Kolmogorov
filter of the innovations. To do so, consider a VARMA process with scalar VAR part for a
K,-dimensional process x;,

¢ (L)x; = 0O L),

where ¢(z) =1 - 1z —--- — ¢ppz” and O(2) = Oy + @1z + --- O4z9. In Section C of
the Online Supplemental Material, we provide a detailed algorithm to compute the
ay/tocovariance function of x;, from which we can compute the autocovariances of
(§I—1|oo’ é/t|oo)/'

STEP 2.3: Compute the expressions that appear in Propositions 3 and 6. To do so, for
example, one can obtain the autocovariance function of my, ;,(0) for A =1, ..., 4 from
the expressions in (i), (ii), (iii), and (iv) in the proof of Proposition 6. Next, one can cu-
mulate the autocovariance matrices of my, ;.(0) for 4 =1...4 until some convergence
criterion is satisfied. This gives a numerical approximation to Kh(éT) forh=1,...,4.
Finally, one computes by, (67), which only requires knowledge of the contemporaneous
covariance matrix of the Wiener—Kolmogorov filter because 2., = Ix — I'y.

Codes for all the different steps above, as well as detailed derivations for the expres-
sions in STEP 2 are available upon request.
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5.2 Static factor models

We start by considering a single factor version of a traditional (i.e., static, conditionally
homoskedastic and exact) factor model. Specifically,
Y =m+cfi + vy,

(12)
(eser]) 6 8

where y; isan N x 1 vector of observable variables with constant conditional mean =, f;
is an unobserved common factor, whose constant variance we have normalized to 1 to
avoid the usual scale indeterminacy, c is the N x 1 vector of factor loadings, v;isan N x 1
vector of idiosyncratic noises, which are conditionally orthogonal to f;, I'isan N x N
diagonal positive definite matrix of constant idiosyncratic variances, and @ = (#/, ¢’, ¥')/,
with y = vecd(I').

We can easily express model (12) as in (1)-(2) with &, = (f;,v}))’, H(8) = (c,In),
F(6) =0,

1 0
M =
6 <0 diagl/z('y))
and &; = (f;, v{’)’, where v} = I'"'/2y,. Note that this specification trivially implies that
VilZi—1, ¢ ~iid. D*[w, 3(0), ¢], with 3(0)=cc +T.

While the normality of &, implies the normality of y;, in principle the distribution of y;
and ¢, will be different under the alternative.
Letting D(#) = H(0)M(0), we can show that

£1)00(0) = £4,(0) = D’(ﬂ)[D(O)D’(G)]le(O)(Yt — ),
so like in any other static model, £, (0) will be white noise, with covariance matrix
I'(0) =D'(6)[D(0)D'(6)] ' D(6).
In addition,
Q47(0) = 2400(0) = 265 (0) =1 — D'(0)[D(0)D/(0)]_]D(0),

which has rank N rather than N + 1, so that the conditional density will be degenerate.
Hence, we will have that under the null,

EIIYTa 0~ N[Sl‘[(o)a QOO(O):L

which contains all the information we need to compute the normality tests.
To provide some intuition, though, it is convenient to focus on tests that look ex-
clusively at the common factor. If we could observe f;, then we could write the joint
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log-likelihood function of y; and f; as the sum of the marginal log-likelihood function
of f; and the log-likelihood function of y; conditional on f;, which would coincide with
the marginal log-likelihood function of the idiosyncratic terms v;. If we maintained the
assumption that this conditional distribution was Gaussian, and confined the nonnor-
mality to the marginal distribution of f;, the results in Mencia and Sentana (2012) would
imply that the LM test of the null hypothesis that f; is Gaussian versus the alternative
that it follows an asymmetric Student r would be based on the following influence func-
tions:

Hs(f) = f} = 3f,
Hy(f) = f} —6f2 +3,

which coincide with the third and fourth Hermite polynomials for f; underlying the
usual Jarque and Bera (1980) test.

Unfortunately, f; is unknown. But we can easily compute the expected values of
these expressions conditional on y;, which under normality are simple functions of

(13)

fi1(8) = E(fily)) = 0 p(0)c T (y, — )
and

wr(0)=V( =
£( filye) T Ter1
In particular, we can show that the expected values of the elements of (13) are

proportional to H3[f:(0)/,/1 — w;(0)] and Hu[f1:(0)/,/1 — w(0)], respectively, where
V1f1:(0)] =1 — wy(0) by virtue of the fact that

V(o) =E[V(filyn] + V[E(fily)]-

Somewhat remarkably, therefore, the LM test for the normality of the latent common
factor will numerically coincide with the usual LM test for the normality of its best esti-
mator in the mean square error sense. Obviously, analogous calculations apply to each
element of v;.

5.3 The local-level model
Consider now the random walk plus noise model studied in Harvey and Koopman
(1992):

Ye =1+ X+ Vs,

Xt = X¢—1 +ft9

0_2
(enerl() 7 24

where x; is the “signal” component, v; the orthogonal “nonsignal” component, and 6
refers to the model parameters that characterize the autocovariance structure of the ob-
served series. Once again, we can easily express this model as in (1)-(2) with &, = (f, v})’,
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0 20
F<0>=<g 0>, M<0>=((gf 02)

and &, = (f, v})’, where f = O'f_lft and v} = o lv;.

Since there are only two shocks, we could look at (i) a test of joint normality, (ii) a
test of normality of the “signal” with the maintained hypothesis of normality for the
“nonsignal,” and (iii) vice versa.

For the sake of brevity, let us focus on the nonsignal component. Proposition 5 im-
plies that for symmetric Student ¢ alternatives, the score with respect to the reciprocal
of the degrees of freedom parameter evaluated under the null will be given by

17/3 3 1 /1
Es50.00%r] = 2 21— owr@F = 21— owr @iz o+ 1 ot o an

But the optimality of the Wiener-Kolmogorov—Kalman filter under Gaussianity implies
that

H(6)=(1,1D),

V() =V [vir(@)] +V[v; —vfir(0)],
which in turns means that
VI[vir(0)]=1— wvwr(8).

Hence, expression (14) is proportional to the fourth order Hermite polynomial of the
standardized variable vf|;.(6)/ V1 — @y 7(8). Therefore, for this model our proposed LM
test also yields exactly the same influence function as an LM test of normal versus Stu-
dent ¢ that would treat vj“T(O) as an i.i.d. series. Unlike in the static model considered in
Section 5.2, though, the elements of (14) are serially correlated.

5.4 Comparison with alternative approaches

5.4.1 Univariate tests applied to the smoothed innovations As we mentioned in the In-
troduction, Harvey and Koopman (1992) applied standard univariate normality tests for
observed variables to the smoothed values of the innovations in the underlying compo-
nents of a local level model explicitly taking into account the serial correlation in those
filtered estimates implied by the model.

Their asymmetry test is based on the skewness coefficient

Sksl =Mg; 3/7’7’18 25

where

T
mej =T (eir — &)
t=1
is the jth centered sample moment of the smoothed innovations of either the signal
(i=1) or the noise (i = 2). Under normality, the asymptotic variance of sk,, will be given
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by ¢, (0, 3), where
oo
L0, ) =M > [pe (D]
J=—00
provides the sum of powers of the autocorrelations, which are the autocorrelations of
the powers of the original Gaussian series (see Lomnicki (1961)).
Similarly, their excess kurtosis test is based on the sample excess kurtosis coefficient

2
ké‘,‘ = m8i4/m£i2 - 3’

whose asymptotic variance under normality will be given by {, (0, 4).

It is interesting to compare these tests to our LM tests based on Propositions 4 and 7.
The procedures proposed by Harvey and Koopman (1992) can be regarded as moment
tests of

E[f3®]=0,  E[fi}®) -3]=0,
E[v3®]=0,  E[v@®) -3]=0,

where f[TT(B) and v;“T(B) are standardized smoothed innovations. Thus, the main dif-
ference is that they look at third and fourth moments, while we use the log-likelihood
scores, which are proportional to the third and fourth Hermite polynomials. The main
advantage of the latter is that they are not affected by the sampling variability in 07, as
we have shown in Propositions 3 and 6. Nevertheless, Harvey and Koopman (1992) in-
dicate that their tests are also asymptotically insensitive to parameter uncertainty when
the standardization of szT(O) and v;‘IT(O) relies on sample moments (see also Bontemps
and Meddahi (2005)).7 In fact, we can show that their tests and ours are asymptotically
equivalent under the null hypothesis in the local level model in Section 5.3.

5.4.2 Reduced form tests Assuming covariance stationarity, possibly after some suit-
able transformation, we can find the autocorrelation structure of the observed series
generated by (1)-(2), as well as the corresponding Wold representation, which will typ-
ically resemble a VARMA model, with potentially long but finite AR and Ma orders, but
restricted coefficient matrices because M > N.

As a result, we will be able to write

Dy qy
[yi—7(0)] =D _Aj®)yj— m(0)] + Wi+ Y Bj(0)w,_j,
j=1 j=1

where w; is a serially uncorrelated sequence, linearly unpredictable on the basis of
lagged values of y;. In fact, assuming that the Wold representation is strictly invertible,

4y -1 4y
w; = |:IN + ZBj(())LJ} [IN — ZAj(o)LJ} [y: — 7(0)]. (15)

j=1 j=1

“In that regard, the situation seems analogous to the Jarque and Bera (1980) tests, whose distribution is
insensitive to parameter uncertainty for many models (see Fiorentini, Sentana, and Calzolari (2004)).
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This relationship is the basis for the comparison of our tests, which target the com-
ponents in &, directly, to existing tests, which target w; instead. If ,|Z;_; is i.i.d. nor-
mal, then y; will be a Gaussian process and, therefore, w;|Z,_; will be i.i.d. normal, too.
As a result, checking the normality of the latter provides an indirect way of checking
the normality of the former. Nevertheless, if some elements of &; are not normal, then
the conditional distribution of the reduced form innovations will typically be extremely
complicated, especially taking into account that they are unlikely to follow a martingale
difference sequence in dynamic contexts.? The problem is that the conditional mean of
the observed variables given their past alone will no longer be given by the one-period
ahead linear prediction generated by the Kalman filter recursions, y;;—1(0). Similarly,
the conditional variance will not usually coincide with the associated mean-square er-
ror matrix 3;,_1(0).

Still, it may be worth considering tests against the following alternative model:

Yt|Yt—1, e ,Yl, (b ~ GH[yt|t—l(0)7 2t|t—1(0)7 n, ‘1[]7 B]a

which maintains the assumption that the conditional mean and variance coincide with
their values under normality, but allows for a non-Gaussian distribution. The assump-
tion that the distribution of y; conditional on Y,_; is GH but with a mean vector and
covariance matrix given by the usual Gaussian Kalman filter recursions may be regarded
as a way of constructing a convenient auxiliary model that coincides with the model of
interest for ¢ = 0, but whose log-likelihood function and score we can obtain in closed
form for every possible value of § when ¢ # 0. The pay-off is that the resulting model
falls within the framework studied by Mencia and Sentana (2012). Specifically, if we de-
fine the standardized reduced form innovations as

_1
Wi, (0 =37 (O[y: —Vi-1(0)],
and their (square) Euclidean norm as
St)t—1(0) =W>:|,_1(0)/W;k|t_1(0) = [Yt - Yt|t—l(0)]/251171(0)[yt - Yt|t—1(0)],

we can write the influence functions underling their test as

N+2 N(N +2)
Stie-1(0) + ————.

1
sllz/tl‘st_l(a) = thZIt—l(a) _
1

st 1(0) =2, (O)W],_(O)[sh:-1(0) — (N +2)].

Propositions 3 and 5 in Mencia and Sentana (2012) provide expressions for the asymp-
totic covariance matrix of the sample average of those influence functions in terms of
3(0) =V (w;), which typically coincides with the steady state value of 3,1 (0) (see foot-
note 4).

8Although we would expect it to be closer to a normal than &, because of the averaging implicit in (15).
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6. MONTE CARLO SIMULATIONS

In this section, we study the finite sample size and power properties of the testing pro-
cedures discussed above by means of several extensive Monte Carlo exercises. We do so
in the context of three different models:?

1. the cointegrated single factor model we use in our empirical application in Sec-
tion 7,

2. the illustrative local level model in Section 5.3, and

3. a multivariate version of this local level model in which there is a single integrated
common trend, but the number of observed series is 10, each of which containing an
i.i.d. idiosyncratic component.

6.1 Simulation and estimation details

We assess the power properties of our tests by generating non-Gaussian data in three
alternative designs:

1. All structural innovations are jointly GH: &; ~ GH(n, i, B) (alternative J);

2. The distribution of the innovations to the signal component is GH while the id-
iosyncratic shocks are Gaussian: f; ~ GH(n, ¢, B), v ~ N (0, Ly) (alternative Sy);

3. The joint distribution of the innovations to the idiosyncratic variables is GH while
the common component is Gaussian: v, ~ GH(7, ¢, B), f: ~ N (0, 1) (alternative Sy).

We consider two examples of GH distributions: a symmetric Student ¢ with 8 degrees
of freedom and an asymmetric Student ¢ with 8 degrees of freedom and skewness vector
B = —£k«1. Thus, we end up with a total of seven different specifications for &;, includ-
ing the Gaussian null. For each distributional assumption, we generate 10,000 samples
of size T exploiting the location-scale mixture of normal representation of the GH dis-
tribution we discussed in Section 4.1.

We use standard MATLAB routines for estimation. In the case of the local-level
model, we rely on its Ima(1, 1) reduced form representation to improve the computa-
tional efficiency of the algorithm. Finally, we compute the asymptotic variances of the
test statistics by truncating the infinite sum in expression (9) when the additional terms
lead to increments lower than 107,19

Given that in all the models we observe a “pile-up” problem, whereby the fraction of
negative values of the average kurtosis scores exceeds 50% under the null, we employ a
parametric bootstrap procedure based on 10,000 simulated samples. In this way, we can
automatically compute size-adjusted rejection rates, as forcefully argued by Horowitz
and Savin (2000). Importantly, our bootstrap procedure does not exploit the asymptotic

9Results for a trivariate version of the static factor model (12) can be found in Section 4.2.2 of Almuzara,
Amengual, and Sentana (2017).

10In Online Supplemental Material E, we report analogous results but using a HAC estimator to compute
the asymptotic variances of the influence functions underlying our test statistics. As expected, the results
are far less reliable than when we use the theoretical expressions.
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orthogonality of the scores between mean and variance parameters on the one hand and
shape parameters on the other in Propositions 3 and 6. On the contrary;, it explicitly takes
into account the sensitivity of the critical values to the estimated values of @ in order not
to rule out higher order refinements (see Appendix D.1 in Amengual and Sentana (2015)
for details).

In all the tables, the row labels H;, Hg o and Hj, refer to the score tests in Proposi-
tions 4 and 7 corresponding to the J, Sy and Sy alternative hypotheses, while Red de-
notes the reduced form tests discussed in Section 5.4.2. For each of those labels, Kt and
Sk refer to the kurtosis and skewness components of the corresponding test statistics,
while GH indicates the sum of the two.

6.2 Small sample properties

6.2.1 Cointegrated dynamic factor model We simulate data from the model (16) thatwe
use in our empirical application in Section 7. We calibrate it to py = 0.5, pe, = pe;, =0,
o-J% =1and o-gl_ chosen such that g = gy = 1, where g; = ]%/[(1 — p,zc)a-ezi] represents the
signal-to-noise ratio for y;; for i = E, I.1!

Panels A of Tables 1 and 2 report rejection rates under the null at the 1%, 5%, and
10% levels for T =100 and T = 250, respectively, which roughly correspond to the sam-
ple sizes in our empirical application in Section 7. The results make clear that the para-
metric bootstrap works remarkably well for both sample sizes.'?

Panels B of the same tables report the rejection rates at the 5% level of the tests under
each of different alternative hypotheses that we consider. As expected, the most pow-
erful test for any given alternative is typically the score test we have designed against
that particular alternative. In that regard, we find that while the reduced form tests have
nontrivial power, especially under alternative J, they are clearly dominated by the tests
aimed at the structural innovations.

6.2.2 Univariate local level model Table 3 contains the results for samples of size T =
250 of the local-level model in Section 5.3 in which the signal-to-noise ratio ¢ = cr]% Jo?
is set to 2, as in Harvey and Koopman (1992). For comparison purposes, we also include
their original tests.

Our results confirm the asymptotic equivalence between their tests and the less
powerful two-sided versions of ours (not reported). More generally, we essentially reach

the same conclusions for size and power as in the previous example.

6.2.3 Multivariate local level model To assess the performance of our tests when the
cross-section dimension is moderately large, in Table 4 we provide results for a ten-
variate model with a single common trend and uncorrelated idiosyncratic terms. Specif-
ically, we assume 7w =0, c = £1p and y = q*lew, where the signal-to-noise ratio q is set

1'We set pe, = 0 and impose it at the estimation stage to the effect of implementing the bootstrap within
the Monte Carlo simulation in a reasonable amount of time.

12Given the number of Monte Carlo replications, the 95% asymptotic confidence intervals for the rejec-
tion probabilities under the null are (0.80, 1.20), (4.57,5.43), and (9.41, 10.59) at the 1, 5, and 10% levels.
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TAaBLE 1. Monte Carlo rejection rates (in %) under null and alternative hypotheses for the bi-
variate cointegrated, dynamic single factor model (7" = 100).

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student ¢ Asymmetric Student ¢

1% 5% 10% J Sy Sv J G Sv
Kt 1.15 4.72 9.43 55.73 6.72 44.09 71.44 12.64 55.04
Hy Sk 1.00 4.92 10.30 31.77 6.79 25.05 68.09 17.31 50.62
GH 1.02 4.67 9.79 48.13 6.88 37.11 74.04 16.26 57.02
Kt 0.94 4.71 9.60 19.54 13.83 6.70 39.00 26.72 13.38
Hg, Sk 0.91 4.69 9.79 13.03 10.07 6.11 33.83 29.56 10.26
GH 0.95 4.69 9.65 18.22 12.90 6.40 39.76 30.13 13.08
Kt 1.08 4.75 9.70 48.35 4.84 46.40 58.30 5.02 55.61
Hg, Sk 1.09 4.87 9.92 27.60 5.29 27.15 51.41 6.30 54.84
GH 1.04 4.83 9.94 42.96 5.14 41.71 61.15 5.74 60.98
Kt 1.04 4.76 9.58 53.15 7.71 37.89 70.70 14.98 48.17
Red Sk 0.88 4.61 8.91 24.33 5.02 21.65 31.23 5.30 23.59
GH 0.99 4.45 9.02 47.45 6.79 34.36 65.45 12.37 44.22

Note: Results based on 10,000 samples of size T = 100 from model (16) with px =0.5, peg = pe; =0, % =1,and o-%l. chosen
suchthat g = gq; = 1, where g; = o2/[(1— p%)o’ezi] represents the signal-to-noise ratio for y;, fori = E, I. The column labels J, S,
Sy refer to the alternative &; ~ GH(n, ¢, B) (i.e., R=3), f ~ GH(n, ¢, B), v: ~N(0,1y) (R=1),and v; ~ GH(n, , B), ft ~N(0,1)
(R =2), respectively. The row labels H;, Hy ., and Hg, refer to the score tests in Propositions 4 and 7 corresponding to the J,
Sy, and Sy alternative hypotheses, while Red denotes the reduced form tests discussed in Section 5.4.2. In Panel B, Student

refers to the DGP for the GH being symmetric Student ¢ with 8 degrees of freedom and, analogously, asymmetric Student ¢ to
the asymmetric Student ¢ with 8 degrees of freedom and skewness vector B = —£g. For each of those labels, Kt and Sk refer to
the kurtosis and skewness components of the corresponding test statistics, while GH indicates the sum of the two.

to 2, as in the univariate version. We also maintain 7' = 250. Once again, we reach analo-
gous conclusions for size and power as in the other two examples. The main difference is
that rejection rates are almost 100% under S; and Sy because the number of non-normal
innovations is substantially larger than in the univariate case. Moreover, the precision
with which the common factor is filtered is much higher than in the previous example
because, ceteris paribus, the increase in the cross-sectional dimension N increases the
observability of the latent variables. As a result, we obtain rejection rates close to the
nominal ones in cases in which the maintained assumption of normality is indeed sat-
isfied.

7. INFERRING REAL OUTPUT FROM GDP AND GDI
7.1 The model

As we mentioned in the Introduction, in theory the expenditure (GDP) and income
(GDI) measures of output should be equal, but they differ because they are calculated
from different sources. Traditionally, the difference between the two, officially known
as the “statistical discrepancy” (see Grimm (2007)), was regarded by many academic
economists as a curiosity in the US National Input and Product Accounts (NIPA) elabo-
rated by the Bureau of Economic Analysis (BEA) of the Department of Commerce. How-
ever, the Great Recession substantially renewed interest in the possibility of obtaining



1002 Almuzara, Amengual, and Sentana Quantitative Economics 10 (2019)

TABLE 2. Monte Carlo rejection rates (in %) under null and alternative hypotheses for the bi-
variate cointegrated, dynamic single factor model (7" = 250).

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student ¢ Asymmetric Student ¢

1% 5% 10% J Sy Sv J G Sv
Kt 0.83 4.67 9.72 88.54 9.89 76.00 96.80 23.30 86.98
Hy Sk 1.02 5.33 10.19 42.42 8.77 33.85 95.50 36.18 82.65
GH 0.98 4.99 9.85 80.82 9.73 66.07 98.55 34.51 90.56
Kt 1.07 4.81 9.79 34.44 22.74 8.27 64.40 48.53 22.74
Hg, Sk 1.11 5.25 10.04 17.07 12.33 6.45 55.84 58.49 16.27
GH 1.09 5.08 10.09 31.41 20.69 7.86 67.19 59.01 22.76
Kt 0.86 4.78 9.78 81.86 5.60 79.33 91.86 6.87 88.03
Hg, Sk 1.15 5.21 10.15 35.49 6.07 35.22 83.47 8.32 86.65
GH 1.03 4.89 9.83 74.06 5.83 72.00 93.88 7.99 92.91
Kt 0.93 4.68 9.61 85.85 11.43 66.66 96.22 27.25 80.75
Red Sk 1.22 5.15 10.72 31.06 5.41 27.85 41.49 6.24 31.54
GH 0.98 4.71 9.96 80.97 9.57 60.67 94.33 23.22 76.20

Note: Results based on 10,000 samples of size T' = 250 from model (16) with px =0.5, peg = pe; =0, % =1,and o-%l. chosen
such that g = g7 = 1, where g; = ¢2/[(1— p,zc)(rézl.] represents the signal-to-noise ratio for y;, fori = E, I. The column labels J, S ¢,
Sy refer to the alternative &; ~ GH(n, ¢, B) (i.e., R=3), f ~ GH(n, ¢, B), v: ~N(0,1y) (R=1),and v; ~ GH(n, , B), ft ~N(0,1)
(R = 2), respectively. The row labels Hy, Hy ., and Hg, refer to the score tests in Propositions 4 and 7 corresponding to the J,
Sf, and Sy alternative hypotheses, while Red denotes the reduced form tests discussed in Section 5.4.2. In Panel B, Student ¢
refers to the DGP for the GH being symmetric Student ¢ with 8 degrees of freedom and, analogously, asymmetric Student ¢ to
the asymmetric Student ¢ with 8 degrees of freedom and skewness vector B = —£g. For each of those labels, Kt and Sk refer to
the kurtosis and skewness components of the corresponding test statistics, while GH indicates the sum of the two.

more reliable GDP growth figures by combining the two measures (see, e.g., Nalewaik
(2010, 2011), Greenaway-McGrevy (2011), and especially Aruoba, Diebold, Nalewaik,
Schorfheide, and Song (2016), which provides the background for the Philadelphia Fed
GDPplus measure). Some national statistical offices compute a simple equally weighted
average of the different aggregate series, and in fact, BEA began providing this aver-
age in 2015. More sophisticated combination methods would give higher weights to the
more precise GDP measures, as argued by Stone, Champernowne, and Meade (1942)
(see Weale (1992) for an account of the earlier literature).

As emphasized by Smith, Weale, and Satchell (1998), though, dynamic considera-
tions also matter because the contemporaneously filtered GDP series and its successive
updates as future data becomes available will depend on the specification of the under-
lying processes. The secular growth in GDP and GDI has understandably led all previous
studies to apply a signal-extraction framework to their growth rates, but doing so rules
out by construction the possibility of saying anything about the level of U.S. output,
which is of considerable interest on its own. In addition, taken literally, the absence of
cointegration between the expenditure and income measures, with cointegrating vector
(1, —1), implies an implausible diverging statistical discrepancy. Figure 2(a) contains the
temporal evolution of the US quarterly (log) GDP and GDI series between 1984Q3 and
2015Q2, with shaded areas indicating NBER recessions. Although the two series differ,
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TaBLE 3. Monte Carlo rejection rates (in %) under the null and alternative hypotheses for the
local-level model.

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student ¢ Asymmetric Student ¢
1% 5% 10% J Sy Sy J Sr Sy

Kt 1.15 5.15 10.07 56.63 25.12 13.82 90.53 53.15 33.40
Hy Sk 1.06 5.20 10.26 24.27 13.33 8.87 95.14 63.39 36.51
GH 1.19 5.02 10.33 48.81 21.71 12.22 95.64 64.17 39.28

Kt 1.14 5.23 10.69 47.35 29.64 7.80 83.55 59.20 16.38
Hg, Sk 1.03 4.82 10.22 19.81 13.77 5.81 88.63 68.30 8.68
GH 1.22 5.17 9.94 42.65 26.21 7.24 90.45 69.28 15.45
Kt 1.03 4.72 9.93 40.70 11.13 18.34 82.43 26.60 41.91
Hg, Sk 1.05 4.89 9.92 14.67 6.47 9.49 72.92 8.18 43.37
GH 1.04 4.70 9.84 35.77 9.94 15.97 84.85 22.82 47.82

Kt 1.08 5.37 10.30 55.48 25.49 11.25 89.72 54.63 27.29
Red Sk 1.17 4.99 10.04 22.31 13.11 6.83 94.90 63.05 16.58
GH 1.20 5.22 10.09 49.66 22.93 10.34 95.58 64.10 26.14

Kt 1.14 5.49 10.68 43.99 26.97 7.33 82.00 56.92 15.26
HKy Sk 1.04 4.83 10.19 19.82 13.75 5.79 88.67 68.30 8.73
GH 1.22 5.23 9.96 41.95 25.67 7.06 90.29 69.15 15.06
Kt 1.03 4.41 10.33 36.81 9.64 16.18 80.21 24.26 39.17
HK, Sk 1.05 4.89 9.99 14.66 6.51 9.49 72.91 8.19 43.38
GH 1.05 4.81 9.98 35.25 9.70 15.51 84.54 22.41 47.29

Note: Results based on 10,000 samples of size 7 = 250 from the local-level model discussed in Section 5.3 in which the
signal-to-noise ratio ¢ = 02./03 is set to 2. The column labels J, Sf, Sy refer to the alternative &, ~ GH(n, ¢, B8) (i.e., R =2),
ft ~GH(m, ¢, B), v: ~ N(0,1) (R=1), and vt ~ GH(n, ¢, B), ft ~N(0,1) (R =1), respectively. The row labels H;, Hg ., and Hg,
refer to the score tests in Propositions 4 and 7 corresponding to the J, Sy, and Sy alternative hypotheses, Red denotes the
reduced form tests discussed in Section 5.4.2, while HK denotes the original Harvey and Koopman (1992) tests discussed in
Section 5.4.1. In Panel B, Student ¢ refers to the DGP for the GH being symmetric Student ¢ with 8 degrees of freedom and,
analogously, asymmetric Student ¢ to the asymmetric Student ¢ with 8 degrees of freedom and skewness vector B = —£g. For
each of those labels, Kt and Sk refer to the kurtosis and skewness components of the corresponding test statistics, while GH
indicates the sum of the two.

their (1, —1) cointegration relationship is evident. In turn, Figure 2(b) shows that their
first differences are also highly correlated, but with a rich dynamic bivariate structure.
Finally, Figure 2(c) makes clear that the statistical discrepancy is a persistent but station-
ary series whose movements are unrelated to the business cycle.

In view of the previous considerations, we prefer to formulate and estimate a model
with covariance stationary measurement errors and an integrated common trend in the
(log) levels of the two output measures.'? Specifically, if yz; and y;; denote (log) GDP and

13 Arguably, a sufficiently flexible specification for the measurement errors in first-differences by means
of high-order autoregressive moving average processes may mitigate and, eventually, eliminate the con-
sequences of ignoring cointegration, at least for the growth rates (see Almuzara, Fiorentini, and Sentana
(2018)).
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TaBLE 4. Monte Carlo rejection rates (in %) under null and alternative hypotheses for the mul-
tivariate local-level model.

Panel B: Alternative Hypotheses (5%)

Panel A: Null Hypothesis Student ¢ Asymmetric Student ¢
1% 5% 10% J Sy Sy J Sy Sy
Kt 0.91 4.79 9.51 100.00 13.63 100.00 100.00 34.12 100.00
Hy Sk 1.04 5.29 10.53 98.31 9.91 96.99 99.97 44.21 99.12
GH 1.17 4.91 10.46 100.00 10.24 100.00 100.00 45.78 100.00
Kt 0.96 5.16 10.20 67.44 64.58 4.98 84.78 86.99 8.44
Hsf Sk 1.08 5.36 9.60 28.13 58.96 5.10 86.72 95.72 5.88
GH 0.95 5.60 10.14 62.40 59.98 5.44 90.96 95.81 7.95
Kt 0.67 5.05 9.83 100.00 5.35 100.00 100.00 5.34 100.00
Hg, Sk 0.87 5.27 10.13 97.70 4.98 97.48 99.90 5.26 99.48
GH 0.93 5.33 10.06 100.00 4.90 100.00 100.00 5.29 100.00
Kt 0.95 4.86 9.45 100.00 14.48 100.00 100.00 36.05 100.00

Red Sk 1.10 5.18 10.23 98.18 10.84 96.63 99.93 46.46 98.15
GH 1.10 4.91 10.46 100.00 11.10 100.00 100.00 48.75 100.00

Note: Results based on 10,000 samples of size T = 250 from a 10-variate version of the local-level model with 7 =0, ¢ =
19, and y = g~ 1¢,, where g reflects the signal-to-noise ratio, which we set to 2. The column labels J, Sy, Sy refer to the
alternative £, ~ GH(n, ¢, B) (i.e., R = 11), f; ~ GH(n, ¢, B), v ~ N(0,1y) (R = 1) and v; ~ GH(n, , B), fi ~ N(0,1) (R = 10),
respectively. The row labels Hy, Hg ., and Hg, refer to the score tests in Propositions 4 and 7 corresponding to the J, S¢, and Sy

alternative hypotheses. In Panel B, Student ¢ refers to the DGP for the GH being symmetric Student ¢ with 8 degrees of freedom
and, analogously, asymmetric Student ¢ to the asymmetric Student ¢ with 8 degrees of freedom and skewness vector B = —£g.
For each of those labels, Kt and Sk refer to the kurtosis and skewness components of the corresponding test statistics, while GH
indicates the sum of the two.

GDI], respectively, the model that we consider is

<YEt> _ 1) X+ (fEt ’
YIt 1 €t
(1= pxL)(Ax; — p) = fi,

(1_PEEL)(€Et_6/2)=UEt, (16)
(1 - Pe,L)(ﬁlt + 6/2) = V¢,

fi 0\ (ef 0 0
vee | [T, @~ iid. D [Of, 10 o2 0 ]|.e],
VI 0/ \o o o

where x, is the “true GDP” common factor, whose rate of growth follows an Ar(1) pro-
cess with mean u, autoregressive coefficient p, and innovation variance o2, while eg,
and €;; are the measurement errors in the (log) expenditure and income measures,
respectively, which follow covariance stationary Ar(1) processes with unconditional
means +38/2, autoregressive coefficients p., and p¢,, and innovation variances agE and
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F1Gure 2. Expenditure (GDP) and income (GDI) measures of real output. (a) Quarterly real (log)
GDP and (log) GDI. (b) Quarterly real GDP and GDI growth. (c) Statistical discrepancy. Notes:
Data: Quarterly real GDP and GDI from 1984Q3 to 2015Q2. Statistical discrepancy is defined as
log(GDP) — log(GDI). Shaded areas represent NBER recessions.

0-51 .4 Our specification of the serial correlation structure of the latent series follows from
the empirical analysis in earlier versions of Fiorentini and Sentana (2019), who found
evidence in favor of Ar(1) processes for both the first difference of the common factor
and the levels of the measurement errors. Importantly, our model allows for system-
atic biases in the measurement errors through §, the difference between those biases

4In terms of the formulation (1)-(2), we have that 7(0) = (§/2, —8/2), &, = (1, X1, X,_1, €Es, €11),

1 0 0 0 0 0 0 0

01010 upl—px) 14+pe —px 0 0 ar 0 0
H(0)=(0 10 0 1), F(0) = 0 1 0 0 01, M@ =| 0 0 0
0 0 0 Peg 0 0 Oyg 0

0 0 0 0 pg 0 0 oy

and & = (ft’vEtavlt)/‘
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determining the mean of the statistical discrepancy while their levels fixing the initial
conditions.'®

7.2 Estimation under the null and normality tests

We initially estimate the model using data from 1984Q3 to 2007Q2. We chose the fi-
nal date to exclude the Great Recession from the sample. As for the start date, it marks
the beginning of the so-called Great Moderation, as in Nalewaik (2010). We estimate
the model in the time domain on the basis of the bivariate Gaussian likelihood of the
stationarity-inducing transformation Ayg; + Ay, and yg; — yr;, systematically explor-
ing its surface to make sure that we have found the global maximum. Panel A of Ta-
ble 5 presents the estimates of the model parameters and their corresponding standard
errors obtained from the asymptotic information matrix, which we compute using its
frequency domain closed-form expression. As expected, we find that the growth rate
of the “true” aggregate real output series is reasonably persistent. Our estimates also
suggest that GDP provides a better measure of output than GD], in the sense that GDP
measurement errors have both a smaller autoregressive coefficient—in absolute value—
and a smaller variance parameter. Indeed, the negative serial correlation coefficient for
the GDP measurement error implies a tendency to compensate prior measurement er-
rors, while the highly persistent GDI measurement error indicates that the difference
between the growth rates of GDI and the true output measure are close to white noise.

In turn, the normality tests reported in Panel B of Table 5 suggest that the soothing
effects of the so-called Great Moderation propagated beyond second moments because
the normality of the innovations to the underlying GDP growth rates is not rejected at
conventional levels. On the other hand, we clearly reject the null of Gaussian innova-
tions in the measurement errors. In fact, we reject not only when we use the joint test
but also when we look at the skewness and kurtosis components separately. In contrast,
the bivariate normality test of the reduced form innovations fails to reject its null hy-
pothesis, which confirms the power advantages of looking at the structural innovations
we documented in Section 6.

To gain some further insight, in Figure 3 we plot the temporal evolution of the
smoothed innovations (top panels), as well as the influence functions underlying the
kurtosis tests (middle panels) and skewness tests (bottom panels) for both common fac-
tor (left panels) and measurement errors (right panels). Panels 3(d) and 3(f) indicate that
an unusual measurement issue in both series around the first quarter of 2000 leads to
the rejection of the Gaussian null for the measurement errors.

In Table 6, we present analogous results for a slightly larger sample that includes
the Great Recession (1984Q3-2015Q2). As can be seen from Panel A, there are no dra-
matic changes in the parameter estimates, except perhaps for a higher persistence in the

15For identification purposes, though, we assume without loss of generality that the magnitude of those
biases is the same for the two output series. We also assume that the two measurement errors are un-
correlated, which guarantees the nonparametric identification of the signal from the noise (see Almuzara,
Fiorentini, and Sentana (2018) for further details). The fact that the two measures of output are obtained
from independent sources provides some plausibility to this assumption (but see Aruoba et al. (2016)).
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TABLE 5. Parameter estimates and normality tests during
Great Moderation.

Panel A: ML Estimates

Param. Estimate Std. err.
w 0.765 0.330
5 0.181 0.040
Px 0.536 0.105
Per —0.672 0.152
Pes 0.940 0.036
afz. 0.135 0.027
ol 0.010 0.005
o 0.153 0.025

<
<

Panel B: Normality Tests

Statistic p-value
Kt 0.646 0.211
Hg, Sk 1.540 0.215
GH 2.186 0.237
Kt 5.901 0.008
Hg, Sk 7.914 0.019
GH 13.815 0.002
Kt 1.585 0.104
Red Sk 1.478 0.478
GH 3.063 0.299

Note: Data: Quarterly real GDP and GDI from 1984Q3 to 2007Q2. Model: Bi-
variate cointegrated, dynamic single factor model (16); see Section 7 for param-
eter definitions. In Panel A, estimates are Gaussian ML of the bivariate Gaussian
likelihood of the stationary transformation Ayg; + Ayy; and yg; — yy; in the time
domain. Standard errors are obtained from the asymptotic information ma-
trix, which is computed using its frequency domain closed-form expression. In
Panel B, the row labels Hg . and Hy,, refer to the score tests in Propositions 4 and
7 corresponding to the Sy (R =1) and Sy (R = 2) alternative hypotheses, respec-
tively, while Red denotes the reduced form tests discussed in Section 5.4.2. For
each of those labels, Kt and Sk refer to the kurtosis and skewness components of
the corresponding test statistics, while GH indicates the sum of the two.

common factor, whose innovations have an unsurprisingly larger variance, too. Never-
theless, the smoothed series are almost identical over the overlapping period. Figure 4
presents the evolution of the two output measures and our smoothed estimate in the
period surrounding the Great Recession. As can be seen, GDP kept increasing over the
entire 2007 while GDI began to show early warning signs of stagnation 1 year before. In
the fourth quarter of 2008, though, both series experimented a dramatic drop, with GDI
recovering slightly earlier than GDP. Our estimate tends to closely follow the GDP series,
but taking into account the differing behavior of GDI around the turning points.

The large fall in output experienced in 2008Q4 implies that we also reject the nor-
mality of the common factor over this extended period. In that regard, we would like to
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F1GURE 3. Smoothed innovations and influence functions for the kurtosis and skewness tests:
Sample 1984Q3 to 2007Q2. (a) Smoothed innovations for the underlying factor. (b) Smoothed
innovations for the measurement errors. (c) Influence functions for the underlying factor (kur-
tosis). (d) Influence functions for the measurement errors (kurtosis). (e) Influence functions for
the underlying factor (skewness). (f) Influence functions for the measurement errors (skewness).
Notes: Smoothed innovations and influence functions were obtained by fitting the bivariate
cointegrated, dynamic single factor model (16) to the quarterly real GDP and GDI from 1984Q3
to 2007Q2; see Table 5 for parameter estimates. Shaded areas represent NBER recessions.
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TABLE 6. Parameter estimates and normality tests during
the Great Moderation and the Great Recession.
Panel A: ML Estimates

Param. Estimate Std. err.
“w 0.642 0.196
5 0.033 0.036
Px 0.643 0.080
Per —0.384 0.204
Pes 0.938 0.032
afz. 0.169 0.031
ol 0.022 0.010
o 0.150 0.023

<
<

Panel B: Normality tests

Statistic p-value
Kt 64.691 0.000
Hg, Sk 22.542 0.000
GH 87.233 0.000
Kt 8.210 0.002
Hg, Sk 4.398 0.111
GH 12.607 0.004
Kt 20.828 0.000
Red Sk 7.818 0.020
GH 28.645 0.000

Note: Data: Quarterly real GDP and GDI from 1984Q3 to 2015Q2. Model: Bi-
variate cointegrated, dynamic single factor model (16); see Section 7 for param-
eter definitions. In Panel A, estimates are Gaussian ML of the bivariate Gaussian
likelihood of the stationary transformation Ayg; + Ayy; and yg; — yy; in the time
domain. Standard errors are obtained from the asymptotic information ma-
trix, which is computed using its frequency domain closed-form expression. In
Panel B, the row labels Hg . and Hy,, refer to the score tests in Propositions 4 and
7 corresponding to the Sy (R =1) and Sy (R = 2) alternative hypotheses, respec-
tively, while Red denotes the reduced form tests discussed in Section 5.4.2. For
each of those labels, Kt and Sk refer to the kurtosis and skewness components of
the corresponding test statistics, while GH indicates the sum of the two.

emphasize that plots of the influence functions sy ,7(8) and s ;7(8)’s seem to be more
informative than plots of the smoothed innovations for the purposes of detecting non-
normality. For example, Figure 5, which is entirely analogous to Figure 3 but including
the Great Recession, confirms that 2008Q4 has a huge impact on the skewness and kur-
tosis scores of the common factor, resulting in a strong rejection of the null.
Nevertheless, if we take a longer historical perspective, and start our sample soon
after the Treasury-Federal Reserve Accord whereby the Fed stopped its wartime pegging
of interest rates, the Great Recession is no longer an isolated outlier. There are several
other periods, including the turbulences in the late 1970s, early 1980s, in which the nor-
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F1Gure 4. GDP, GDI, and smoothed estimate of real output around the Great Recession. Notes:
The smoothed estimate x;7 was obtained by fitting the bivariate cointegrated, dynamic single
factor model (16) to the quarterly real GDP and GDI from 1984Q3 to 2015Q2; see Table 5 for
parameter estimates. The shaded area represents the NBER recession.

mality of the “true GDP” innovations is clearly rejected (see the Online Supplemental
Material F for details).

7.3 The model under the alternative

Given those rejections, the natural next step is to estimate the parameters and obtain
smoothed versions of the latent variables under the alternative distributions that we
have considered. In view of the fact that the rejection of the null comes from both skew-
ness and kurtosis, we consider an asymmetric Student ¢, a popular member of the asym-
metric GH distribution, as DGP for the structural innovations. To estimate the model,
we rely on a Metropolis-within-Gibbs algorithm which exploits the interpretation of the
asymmetric Student ¢ as a location-scale mixture of normals in (10). We estimate this
model with 500,000 draws for the parameters and 250,000 for the latent variables, which
correspond to 1in 20 and 1 in 40 of the 107 original simulations (see the Online Supple-
mental Material D for further details on the posterior simulator).

For the sake of brevity, we focus on the shape parameters, which are reported in Fig-
ure 6, with the left and right panels corresponding to the posterior distributions for the
samples 1984Q3-2007Q2 and 1984Q3-2015Q2, respectively. Interestingly, when we ex-
clude the Great Recession from the sample, the 95% credible intervals of all the skewness
parameters include the origin. In the longer sample, in contrast, the asymmetry coeffi-
cient of the latent “true GDP” series becomes statistically significantly different from
zero, which is in line with the evidence obtained from our proposed score test statistics
in the previous section. Similarly, there is a shift in the mode and median of the recip-
rocal of the degrees of freedom (top panels) toward a lower number when we use the
longer sample. The results in Figure F2 in the Online Supplemental Material F confirm
the agreement between our proposed tests and the posterior intervals.
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F1GURE 5. Smoothed innovations and influence functions for the kurtosis and skewness tests:
Sample 1984Q3 to 2015Q2. (a) Smoothed innovations for the underlying factor. (b) Smoothed
innovations for the measurement errors (c) Influence functions for the underlying factor (kur-
tosis). (d) Influence functions for the measurement errors (kurtosis). (e) Influence functions for
the underlying factor (skewness). (f) Influence functions for the measurement errors (skewness).
Notes: Smoothed innovations and influence functions were obtained by fitting the bivariate
cointegrated, dynamic single factor model (16) to the quarterly real GDP and GDI from 1984Q3
to 2015Q2; see Table 5 for parameter estimates. Shaded areas represent NBER recessions.
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FIGURE 6. Posterior densities of shape parameters under the asymmetric Student ¢ alternative.
(@) m, 1984Q3 to 2007Q2. (b) n, 1984Q3 to 2015Q2. (c) By, 1984Q3 to 2007Q2. (d) By, 1984Q3 to
2015Q2. (€) By, 1984Q3 to 2007Q2. (f) By, 1984Q3 to 2015Q2. (g) B, , 1984Q3 to 2007Q2. (h) By,
1984Q3 to 2015Q2. Notes: Data: Quarterly real GDP and GDI from 1984Q3 to 2007Q2 (2015Q2)
in left (right) panels. Model: Bivariate cointegrated, dynamic single factor model (16) with mul-
tivariate asymmetric Student ¢ innovations; see Section 7 for parameter definitions. 7 refers to
the reciprocal of degrees of freedom while B« (By,) [By,] refers to the skewness parameter of the
“true GDP” (expenditure) [income] measure. Solid vertical lines refer to the median values while
dashed lines report the 2.5% and 97.5% quantiles.
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Finally, in Figure 7 we compare Ax;7 under the null and under asymmetric ¢ inno-
vations. In order to account for parameter uncertainty in both models, we also estimate
the Gaussian specification using a simplified version of the MCMC algorithm which im-
poses 1 = 0 but uses the same number of draws. The top panel (Figure 7(a)) reports the
median of the posteriors, while the bottom one (Figure 7(b)) reports the centered 95%
error bands, computed by subtracting the median from the quantiles 97.5% and 2.5%.
As can be seen, the median values are quite similar across distributions, but the drop
in 2008Q4 seems to be sharper under asymmetric Student ¢ innovations. Perhaps more
interestingly, while we find that the asymmetric ¢ seems to generate narrower (wider) in-
tervals on the right (left) of the distribution in normal times, their magnitudes increase
substantially during the Great Recession, exacerbating the asymmetry of the error band
too. Importantly, this pattern starts to appear—albeit moderately—a few quarters be-
fore 2008Q4. In contrast, the Gaussian error bands are symmetric and almost constant
irrespective of whether the economy is in a recession or not.

8. CONCLUSIONS

We exploit the EM principle to derive simple to implement and interpret LM-type tests
of normality in all or a subset of the innovations to the latent variables in state space
models against GH alternatives, which include the symmetric and asymmetric Student
t, together with many other popular distributions. We decompose our tests into third
and fourth moment components, and obtain one-sided LR analogues, whose asymp-
totic distribution we provide.

We perform a Monte Carlo study of the finite sample size and power of our proce-
dures, explicitly comparing them to previously proposed tests. For all the models that we
consider, our results detect a pile-up problem, whereby the fraction of negative values
of the average kurtosis scores exceeds 50% under the null. For that reason, we employ
a parametric bootstrap procedure, which improves the reliability of our tests under the
null. In terms of power, we find that the most powerful test for any given alternative is
usually the score test we have designed against it. We also find that while the tests that
are based on the reduced form innovations have nontrivial power, they are clearly dom-
inated by our proposed tests, which aim at the structural innovations.



1014 Almuzara, Amengual, and Sentana Quantitative Economics 10 (2019)

Gaussian

——= Asymmetric ¢

. . . . 0.05 . . . . .
2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

(@ (b)

-0.08

FIGURE 7. Smoothed “true GDP” growth under Gaussian and asymmetric Student ¢ innovations.
(a) Posterior median of Ax, 7. (b) Posterior 95% error bands for Ax;r. Notes: Data: Quarterly
real GDP and GDI from 1984Q3 to 2015Q2. Model: Bivariate cointegrated, dynamic single factor
model (16) with multivariate asymmetric Student ¢ innovations; see Section 7 for parameter def-
initions. Results are based on 25,000 draws from the posterior simulator. Error bands refer to the
2.5% and 97.5% quantiles from which the median values where subtracted.

When we apply our tests to a common trend model which combines the levels of the
expenditure and income versions of US aggregate real output to improve its measure-
ment, we reject normality of the innovations to the true GDP if the sample span extends
beyond the Great Moderation (1984Q3-2007Q2). In contrast, the GDP/GDI measure-
ment errors seem to be nonnormal regardless of the period. For that reason, we develop
a nonlinear, simulation-based filtering procedure that improves over the Kalman filter,
and highlights the importance of taking nonnormality into account during turbulent
periods such as the Great Recession.

From a methodological point of view, our EM-based approach can be successfully
used in cross-sectional contexts, too. In particular, it is straightforward to employ it for
proving that many of the diagnostics suggested by Pagan and Vella (1989) for Tobit mod-
els do indeed coincide with the LM tests against specific alternatives in Chesher and
Irish (1987) and Gouriéroux, Monfort, Renault, and Trognon (1987). While the linearity
implicitin (1)-(2) helps us obtain closed-form expressions for all the relevant quantities,
it is not a requirement for applying our methodology in different contexts. Analyzing
other latent variable models in which non-Gaussianity might be relevant constitutes a
very interesting avenue for future research.
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