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In this Supplemental Appendix, we present supporting materials for Cheng, Liao,

and Shi (2019) (cited as CLS hereafter in this Appendix):

• Section D provides primitive conditions for Assumptions 3.1, 3.2, and 3.3 and the proof of

Lemma 3.1 of CLS.

• Section E provides the proof of (4.3) in Section 4 and the proof of some Lemmas in Appendix

B.1 of CLS. The proof of Lemma A.1 in Appendix A of CLS is also included in this section.

• Section F studies the bounds of asymptotic risk difference of the pre-test GMM estimator.

• Section G contains simulation results under the truncated risk for the simulation designs in

Section 6 of CLS.

• Section H includes extra simulation studies.

Appendix D: Primitive conditions for Assumptions 3.1, 3.2, and 3.3 and

proof of Lemma 3.1 of CLS

In this section, we provide primitive conditions for Assumptions 3.1, 3.2, and 3.3 in the

linear IV model presented in Example 3.1 of CLS.

We first provide a set of sufficient conditions without imposing the normal distri-

bution assumption on (X ′�Z′
1� V

′�U)′ in Lemma D.1. Then we impose the normality

assumptions and show that these conditions can be simplified to those in Lemma 3.1 of

CLS under normality.
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For ease of notation, we define �z1vu2 ≡ EF∗ [Z1V
′U2], Ωz1z1u2 ≡ EF∗ [Z1Z

′
1U

2] and
Ωvvu2 ≡ EF∗ [V V ′U2]. The Jacobian matrices are

G1�F = −EF

[
Z1X

′] and G2�F =
(

−EF

[
Z1X

′]
−EF

[
Z∗X ′]

)
� (D.1)

Let Z2 = (Z′
1�Z

∗′)′. The variance–covariance matrix of the moment conditions is

Ω2�F = EF

[
Z2Z

′
2
(
Y −X ′θ0

)2] −EF

[(
Y −X ′θ0

)
Z2

]
EF

[(
Y −X ′θ0

)
Z′

2
]
� (D.2)

By definition, Ω1�F is the leading r1 × r1 submatrix of Ω2�F .
Let F denote the joint distribution of W = (Y�Z′

1�Z
∗′�X ′)′ induced by θ0, δ0, and F∗.

By definition, we can write

δF =Ωuuδ0�G2�F =
(

−�z1x

− δ0�ux − �vx

)
� Ω2�F =

(
Ωz1z1u2 Ω2�1r�F

Ω2�r1�F Ω2�rr�F

)
� (D.3)

where

Ω2�1r�F = �z1u3δ′
0 + �z1vu2 = Ω′

2�r1�F � and

Ω2�rr�F = Ωu2u2δ0δ
′
0 + δ0�u3v + �vu3δ′

0 +Ωvvu2 �
(D.4)

Therefore, the parameter vF defined in (3.4) depends on F through F∗ and δ0, and its
dependence on F∗ is through v∗�F∗ , where

v∗�F∗ =
(
Ωu2u2�Ωuu� vec(�z1x)

′� vec(�ux)
′� vec(�vx)

′� vech(Ωz1z1u2)′�
vec(�z1u3)′� vec(�z1vu2)′� vec(�u3v)

′� vech(Ωvvu2)′

)
� (D.5)

Define

ρ2�max ≡ max
{

sup
F∈F

ρmax(Ω2�F )� sup
F∈F

ρmax
(
G2�FG

′
2�F

)}
�

ρ2�min ≡ min
{

inf
F∈F

ρmin(Ω2�F )� inf
F∈F

ρmin
(
G2�FG

′
2�F

)}
�

CW ≡ sup
F∗∈F∗

EF∗
[∥∥(

X ′�Z′
1� V

′�U
)∥∥2]

and C	 ≡ sup
δ0∈	δ

‖δ0‖2�

(D.6)

In the proof of Lemma D.1 below, we show that ρ2�max < ∞ (see (D.14) and (D.18)).
Moreover, we have ρ2�min > 0, CW < ∞ and C	 < ∞ by Assumptions D.1(iii), D.1(ii) and
D.1(vii) respectively. Define

Bc
ρ2

≡ {
δ ∈R

r∗ : ‖δ‖ ≥ ρ2�minρ
−1
2�maxC

−1/2
	

}
� (D.7)

Let Θ0 be a nonempty set in R
dθ . Define

BΘ0 ≡ {
θ ∈R

dθ : ‖θ− θ0‖ ≤ ρ−4
2�minρ

3
2�maxC	C

2
W for any θ0 ∈Θ0

}
� (D.8)

Let {cj�	�Cj�	}r∗j=1 be a set of finite constants. We next provide the low-level sufficient
conditions for Assumptions 3.1, 3.2, and 3.3.
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Assumption D.1. The following conditions hold:

(i) EF∗ [V ] = 0, EF∗ [U] = 0, EF∗ [Z1U] = 0r1×1 and EF∗ [V U] = 0r∗×1 for any F∗ ∈ F∗;

(ii) supF∗∈F∗ EF∗ [‖X‖4+γ + ‖Z1‖4+γ + ‖V ‖4+γ +U6]<∞ for some γ > 0;

(iii) infF∗∈F∗ EF∗ [U2]> 0, infF∗∈F∗ ρmin(�xz1�z1x) > 0 and infF∈F ρmin(Ω2�F ) > 0;

(iv) infF∗∈F∗ infδ∈Bc
ρ2

‖δ‖−1‖(�xz1Ω
−1
z1z1u2�z1vu2 − �xv)δ+ �xz1Ω

−1
z1z1u2�z1u3 − �xu‖> 0;

(v) the set {v∗�F∗ : F∗ ∈ F∗} is closed;

(vi) θ0 ∈Θ0, BΘ0 ⊂ int(Θ) and Θ is compact;

(vii) 	δ = [c1�	�C1�	] × · · · × [cr∗�	�Cr∗�	] where cj�	 < 0 <Cj�	 for j = 1� � � � � r∗.

Lemma D.1. Suppose that {Wi}ni=1 are i.i.d. and generated by the linear model (3.6) and
(3.8) in CLS. Then under Assumption D.1, F satisfies Assumptions 3.1, 3.2, and 3.3.

For the linear IV model, Lemma D.1 provides simple conditions on θ0, δ0 and F∗ on
which uniformity results are subsequently established.

Proof of Lemma D.1. By Assumption D.1(i) and the definition of G1�F ,

EF

[
g1(W �θ)

] = EF∗
[
Z1

(
U −X ′(θ− θ0)

)] = G1�F (θ− θ0)� (D.9)

which together with Assumption D.1(iii) implies that θF = θ0 and hence EF [g1(W �θF)] =
0r1×1. Also θF ∈ int(Θ) holds by θF = θ0 and Assumption D.1(vi). This verifies Assump-
tion 3.1(i).

By (D.9) for any θ ∈Θ with ‖θ− θF‖ ≥ ε and any F ∈ F�∥∥EF

[
g1(W �θ)

]∥∥ ≥ ρ
1/2
min

(
G′

1�FG1�F
)‖θF − θ‖ ≥ ερ

1/2
min

(
G′

1�FG1�F
)
� (D.10)

which combined with Assumption D.1(iii) and G1�F = −�′
xz1�F∗ implies that

inf
F∈F

inf
θ∈Bc

ε(θF )

∥∥EF

[
g1(W �θ)

]∥∥ > 0� (D.11)

This verifies Assumption 3.1(ii).
Next, we show Assumption 3.1(iii). Let Z2 ≡ (Z′

1�Z
∗′)′. By the Lyapunov inequality,

Assumptions D.1(i)–(ii) and D.1(vii),

sup
F∈F

EF

[‖Z2‖2] ≤ sup
F∗∈F∗

EF∗
[‖Z1‖2] + 2 sup

F∗∈F∗
EF∗

[‖V ‖2]
+ 2 sup

δ0∈	δ

‖δ0‖2 sup
F∗∈F∗

EF∗
[
U2]< ∞� (D.12)

By (D.12), the Hölder inequality, the Lyapunov inequality and Assumption D.1(ii),

sup
F∈F

‖G2�F‖ = sup
F∈F

∥∥EF

[
Z2X

′]∥∥ ≤ sup
F∈F

(
EF

[‖Z2‖2])1/2 sup
F∗∈F∗

(
EF∗

[‖X‖2])1/2
<∞� (D.13)
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which together with the definition of G2�F and the Cauchy–Schwarz inequality implies
that

sup
F∈F

∥∥G′
2�FG2�F

∥∥ <∞� (D.14)

Similarly, by the Cauchy–Schwarz inequality, the Lyapunov inequality, Assumptions
D.1(ii) and D.1(vii), we have

sup
F∈F

EF

[‖Z2‖4] = sup
F∈F

EF

[(‖Z1‖2 + ∥∥Z∗∥∥2)2]
≤ 2 sup

F∗∈F∗
EF∗

[‖Z1‖4] + 2 sup
F∈F

EF

[∥∥Z∗∥∥4]
≤ 2 sup

F∗∈F∗
EF∗

[‖Z1‖4] + 8 sup
F∗∈F∗

EF∗
[‖V ‖4]

+ 8 sup
δ0∈	δ

‖δ0‖4 sup
F∗∈F∗

EF∗
[
U4]<∞� (D.15)

By (D.12), (D.15), Assumption D.1(ii), the Lyapunov inequality, and the Hölder inequal-
ity, we have

sup
F∈F

∥∥EF

[
Z2Z

′
2
(
Y −X ′θ0

)2]∥∥
≤ sup

F∈F
EF

[‖Z2‖2(Y −X ′θ0
)2]

≤ sup
F∈F

(
EF

[‖Z2‖4])1/2 sup
F∗∈F∗

(
EF∗

[
U4])1/2

< ∞� (D.16)

and

sup
F∈F

∥∥EF

[(
Y −X ′θ0

)
Z2

]∥∥ ≤ sup
F∈F

(
EF

[‖Z2‖2])1/2 sup
F∗∈F∗

(
EF∗

[
U2])1/2

< ∞� (D.17)

By the definition of Ω2�F , the triangle inequality, the Cauchy–Schwarz inequality and the
results in (D.16) and (D.17),

sup
F∈F

‖Ω2�F‖<∞� (D.18)

We then show that θ∗
F ∈ int(Θ). By the triangle inequality, the Cauchy–Schwarz inequal-

ity and the Hölder inequality,

‖G2�F‖ ≤ ‖�xz1‖ + ‖δ0‖‖�xu‖ + ‖�xv‖
≤ (

EF∗
[‖X‖2])1/2(

EF∗
[‖Z1‖2])1/2

+ ‖δ0‖
(
EF∗

[‖X‖2])1/2(
EF∗

[
U2])1/2

+ (
EF∗

[‖X‖2])1/2(
EF∗

[‖V ‖2])1/2

≤CW

(
2 +C

1/2
	

)
� (D.19)
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for any F ∈ F , whereCW < ∞ by Assumptions D.1(ii) and (vii). Since G′
2�F = (G′

1�F �G
′
r∗�F )

where Gr∗�F = −δ0EF∗ [UX ′] −EF∗ [V X ′], we have

G′
2�FG2�F =G′

1�FG1�F +G′
r∗�FGr∗�F � (D.20)

which implies that for any F ∈F ,

ρmin
(
G′

2�FG2�F
) ≥ ρmin

(
G′

1�FG1�F
)
� (D.21)

To show Assumption 3.1(iii), we write

QF(θ) = EF

[
Z2

(
Y −X ′θ

)]′
Ω−1

2�FEF

[
Z2

(
Y −X ′θ

)]
= θ′G′

2�FΩ
−1
2�FG2�Fθ+ 2θ′G′

2�FΩ
−1
2�FCF +C ′

FΩ
−1
2�FCF� (D.22)

where CF = EF [Z2Y ]. Since G′
2�FΩ

−1
2�FG2�F is nonsingular by (D.18), (D.21), and Assump-

tion D.1(iii), QF(θ) is minimized at θ∗
F = −(G′

2�FΩ
−1
2�FG2�F )

−1G′
2�FΩ

−1
2�FCF for any F ∈ F .

Therefore, ∥∥θ∗
F − θ0

∥∥2 = ∥∥(
G′

2�FΩ
−1
2�FG2�F

)−1
G′

2�FΩ
−1
2�FEF [Z2U]∥∥2

≤ ρ2
max(Ω2�F )

ρ2
min

(
G′

2�FG2�F
)EF

[
UZ′

2
]
Ω−1

2�FG2�FG
′
2�FΩ

−1
2�FEF [Z2U]

≤ ρ2
max(Ω2�F )ρmax

(
G′

2�FG2�F
)
�2
uu

ρ2
min(Ω2�F )ρ

2
min

(
G′

2�FG2�F
) ‖δ0‖2

≤ ρ−4
2�minρ

3
2�maxC	C

2
W (D.23)

for any F ∈ F . By Assumption D.1(vi), θ∗
F ∈ int(Θ). Moreover, for any θ ∈ Θ with ‖θ −

θ∗
F‖ ≥ ε,

QF(θ)−QF

(
θ∗
F

) ≥ ρmin
(
G′

2�FΩ
−1
2�FG2�F

)∥∥θ− θ∗
F

∥∥2

≥ ε2ρmin
(
G′

2�FΩ
−1
2�FG2�F

)
≥ ε2ρ−1

max(Ω2�F )ρmin
(
G′

2�FG2�F
)
� (D.24)

which together with (D.18), (D.21), and Assumption D.1(iii) implies that

inf
F∈F

inf
θ∈Bc

ε(θ
∗
F )

[
QF(θ)−QF

(
θ∗
F

)]
> 0� (D.25)

This verifies Assumption 3.1(iii).
Next, we verify Assumption 3.1(iv). Let Ω(22)

2�F = (Ω2�rr�F − Ω′
2�r1�FΩ

−1
z1z1u2Ω2�1r�F )

−1,

where Ω2�1r�F and Ω2�rr�F are defined in (D.4). Then

G′
2�FΩ

−1
2�Fδ2�F
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= −(
�xz1��xv + �xuδ

′
0
)(

−Ω−1
z1z1u2Ω2�1r�F

Ir∗

)
Ω(22)

2�F Ωuuδ0

=Ωuu
[(
�xz1Ω

−1
z1z1u2�z1u3 − �xu

)
δ′

0 + �xz1Ω
−1
z1z1u2�z1vu2 − �xv

]
Ω

(22)
2�F δ0

=Ωuuδ
′
0Ω

(22)
2�F δ0

(
�xz1Ω

−1
z1z1u2�z1u3 − �xu

)
+Ωuu

(
�xz1Ω

−1
z1z1u2�z1vu2 − �xv

)
Ω

(22)
2�F δ0� (D.26)

by the formula of the inverse of partitioned matrix. For any δ0 ∈ 	δ with ‖δ0‖ > 0, we
have

δ′
0
(
Ω

(22)
2�F

)2
δ0(

δ′
0Ω

(22)
2�F δ0

)2 ≥
(
ρmin

(
Ω

(22)
2�F

))2(
ρmax

(
Ω(22)

2�F

))2
1

δ′
0δ0

≥ ρ2
2�min

C	ρ
2
2�max

(D.27)

and

δ′
0Ω

(22)
2�F δ0 = δ′

0Ω
(22)
2�F δ0

(
δ′

0
(
Ω(22)

2�F

)2
δ0

)1/2(
δ′

0
(
Ω(22)

2�F

)2
δ0

)1/2 ≥ ‖δ0‖
ρ2�max

δ′
0Ω

(22)
2�F δ0(

δ′
0
(
Ω(22)

2�F

)2
δ0

)1/2 � (D.28)

where the last inequality in (D.27) and the inequality in (D.28) are due to

ρmin
(
Ω(22)

2�F

) ≥ ρmin
(
Ω−1

2�F

) = ρ−1
2�max

and

ρmax
(
Ω(22)

2�F

) ≤ ρmax
(
Ω−1

2�F

) = ρ−1
2�min�

Therefore, for any F ∈F with δ2�F =Ωuu(01×r1� δ
′
0)

′ and ‖δ0‖> 0,

∥∥G′
2�FΩ

−1
2�Fδ2�F

∥∥
‖δ2�F‖ = δ′

0Ω
(22)
2�F δ0

‖δ0‖

∥∥∥∥∥∥∥∥
(
�xz1Ω

−1
z1z1u2�z1vu2 − �xv

) Ω
(22)
2�F δ0

δ′
0Ω

(22)
2�F δ0

+ (
�xz1Ω

−1
z1z1u2�z1u3 − �xu

)
∥∥∥∥∥∥∥∥

≥ 1
ρ2�max

δ′
0Ω

(22)
2�F δ0(

δ′
0
(
Ω(22)

2�F

)2
δ0

)1/2

∥∥∥∥∥∥∥∥
(
�xz1Ω

−1
z1z1u2�z1vu2 − �xv

) Ω
(22)
2�F δ0

δ′
0Ω

(22)
2�F δ0

+ (
�xz1Ω

−1
z1z1u2�z1u3 − �xu

)
∥∥∥∥∥∥∥∥

= 1
ρ2�max

1
‖δ̃0‖

∥∥∥∥∥
(
�xz1Ω

−1
z1z1u2�z1vu2 − �xv

)
δ̃0

+ (
�xz1Ω

−1
z1z1u2�z1u3 − �xu

)∥∥∥∥∥ � (D.29)

where δ̃0 ≡Ω(22)
2�F δ0/δ

′
0Ω

(22)
2�F δ0 and the inequality is by (D.28). By (D.28) and the definition

of Bc
ρ2

, δ̃0 ∈ Bc
ρ2

. Therefore, (D.29) implies that∥∥G′
2�FΩ

−1
2�Fδ2�F

∥∥
‖δ2�F‖ ≥ 1

ρ2�max
inf

δ∈Bc
ρ2

‖δ‖−1

∥∥∥∥∥
(
�xz1Ω

−1
z1z1u2�z1vu2 − �xv

)
δ

+ (
�xz1Ω

−1
z1z1u2�z1u3 − �xu

)∥∥∥∥∥ � (D.30)
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Collecting the results in (D.18) and (D.30) and then applying Assumption D.1(iv), we get

inf
{F∈F : ‖δF‖>0}

∥∥G′
2�FΩ

−1
2�Fδ2�F

∥∥
‖δ2�F‖ > 0� (D.31)

which shows Assumption 3.1(iv) with τ = 1.
Assumption 3.1(v) is implied by Assumption D.1(vii). This finishes the verification of

Assumption 3.1.
To verify Assumption 3.2, note that g2(W �θ) = Z2(U − X ′(θ − θ0)), g2�θ(W �θ) =

−Z2X
′ and g2�θθ(W �θ) = 0(r2dθ)×dθ . Therefore, Assumption 3.2(i) holds automatically.

Moreover, Assumption 3.2(ii) is implied by Assumption D.1(ii) and the assumption that
Θ is bounded. Assumptions 3.2(iii)–(iv) follow from Assumption D.1(iii).

We next verify Assumption 3.3. By definition,

vF = (
vec(G2�F )

′� vech(Ω2�F )
′� δF

)
� (D.32)

Let Λ∗ = {v∗�F∗ : F∗ ∈ F∗}. From the expressions in (D.3), we see that Λ = {vF : F ∈ F}
is the image of Λ∗ × 	δ under a continuous mapping. By Assumption D.1(ii) and the
Hölder inequality, Λ∗ is bounded which together with Assumption D.1(v) implies that Λ∗
is compact. Since 	δ is also a compact set by Assumption D.1(vii), we know that Λ∗ ×	δ

is compact. Therefore, Λ is compact, and hence closed. This verifies Assumption 3.3(ii).
Let εF = Ωuuc	 where c	 = min{minj≤r∗ |cj�	|�minj≤r∗ |Cj�	|}. Below we show that for

any δ̃ ∈R
r∗ with 0 ≤ ‖δ̃‖ ≤ εF , there is F̃ ∈ F such that

δ̃F̃ = δ̃� ‖G2�F̃ −G2�F‖ ≤ C1‖δ̃F‖1/4 and ‖Ω2�F̃ −Ω2�F‖ ≤ C2‖δ̃‖1/4 (D.33)

for some fixed constants C1 and C2. This verifies Assumption 3.3(i) with κ= 1/4.
First, if δ̃ = 0r∗×1, then we set F̃ to be F which is induced by δ0, θ0 and F∗ with

δ0 = 0r∗×1. By definition, G2�F̃ = G2�F , Ω2�F̃ = Ω2�F , and δ̃F̃ = δF = δ0Ωuu = 0 = δ̃ which
implies that (D.33) holds.

Second, consider any δ̃ ∈ R
r∗ with 0 < ‖δ̃‖ < εF . Define δ̃0 = δ̃Ω−1

uu . Since ‖δ̃‖ < εF
and εF =Ωuuc	,

‖δ̃0‖ = ∥∥δ̃Ω−1
uu

∥∥ = ‖δ̃‖Ω−1
uu < c	� (D.34)

which combined with the definition of 	δ implies that δ̃0 ∈ 	δ. Let F̃ be the joint distri-
bution induced by δ̃0, θ0, and F∗. By the definition of F , we have F̃ ∈ F . Moreover,

δ̃F̃ = δ̃0Ωuu = δ̃� (D.35)

which verifies the equality in (D.33). By definition,

G2�F̃ =
(

−EF∗
[
Z1X

′]
− δ̃0EF∗

[
UX ′] −EF∗

[
V X ′]

)
and G2�F =

(
−EF∗

[
Z1X

′]
−EF∗

[
V X ′]

)
� (D.36)

which together with the Cauchy–Schwarz inequality and the Hölder inequality implies
that

‖G2�F̃ −G2�F‖ = ∥∥δ̃0EF∗
[
UX ′]∥∥ ≤ ‖δ̃0‖

(
ΩuuEF∗

[‖X‖2])1/2
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= ‖δ̃0‖3/4Ω
1/4
uu

(
EF∗

[‖X‖2])1/2‖δ̃0Ωuu‖1/4� (D.37)

By Assumption D.1(ii),

sup
F∗∈F∗

EF∗
[‖X‖2]<∞ and sup

F∗∈F∗
Ωuu < ∞� (D.38)

which together with (D.34), (D.37), and the definition of δ̃ implies that

‖G2�F̃ −G2�F‖ ≤ C1‖δ̃‖1/4� (D.39)

where C1 = c
3/4
	 supF∗∈F∗(EF∗ [‖X‖2])1/2 supF∗∈F∗ Ω

1/4
uu is finite.

To show the last inequality in (D.33), note that by definition θF̃ = θ0 = θF , and hence

EF̃

[
Z1Z

′
1
(
Y −X ′θF̃

)2] = EF∗
[
Z1Z

′
1U

2] = EF

[
Z1Z

′
1
(
Y −X ′θF

)2]
� (D.40)

Under F̃ ,

EF̃

[
Z1Z

∗′(Y −X ′θF̃
)2] = EF∗

[
Z1(Uδ̃0 + V )′U2] = EF∗

[
U3Z1

]
δ̃′

0 +EF∗
[
U2Z1V

′]� (D.41)

and

EF̃

[
Z∗Z∗′(Y −X ′θF̃

)2]
= EF∗

[
(Uδ̃0 + V )(Uδ̃0 + V )′U2]

= EF∗
[
U4]δ̃0δ̃

′
0 + δ̃0EF∗

[
U3V ′] +EF∗

[
U3V

]
δ̃′

0 +EF∗
[
U2V V ′]� (D.42)

Under F ,

EF

[
Z1Z

∗′(Y −X ′θF
)2] = EF∗

[
U2Z1V

′] and

EF

[
Z∗Z∗′(Y −X ′θF

)2] = EF∗
[
U2V V ′]� (D.43)

Collecting the results in (D.40), (D.41), (D.42), and (D.43), and applying the triangle in-
equality, we get ∥∥EF̃

[
Z2Z

′
2
(
Y −X ′θF̃

)2] −EF

[
Z2Z

′
2
(
Y −X ′θF

)2]∥∥
≤ ∥∥EF∗

[
U3Z1

]
δ̃′

0

∥∥ + ∥∥EF∗
[
U4]δ̃0δ̃

′
0

∥∥
+ ∥∥δ̃0EF∗

[
U3V ′]∥∥ + ∥∥EF∗

[
U3V

]
δ̃′

0

∥∥� (D.44)

By Assumption D.1(ii) and the Lyapunov inequality,

sup
F∗∈F∗

EF∗
[|U |5]<∞� sup

F∗∈F∗
EF∗

[‖Z1‖4]<∞ and sup
F∗∈F∗

EF∗
[‖V ‖4]<∞� (D.45)

By the Hölder inequality,∥∥EF∗
[
U3Z1

]∥∥ ≤ (
EF∗

[|U‖|Z1‖2]
EF∗

[|U |5])1/2
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≤ (
EF∗

[|U |5])1/2(
EF∗

[‖Z1‖4])1/4(
EF∗

[
U2])1/4

= Ω
1/4
uu

(
EF∗

[|U |5])1/2(
EF∗

[‖Z1‖4])1/4
� (D.46)

Similarly, we can show that∥∥EF∗
[
U3V ′]∥∥ ≤Ω

1/4
uu

(
EF∗

[|U |5])1/2(
EF∗

[‖V ‖4])1/4
(D.47)

and

EF∗
[
U4] ≤ (

EF∗
[
U2]

EF∗
[
U6])1/2 = Ω

1/4
uu sup

F∗∈F∗

(
EF∗

[
U6])1/2

� (D.48)

Let C2�0 = supF∗∈F∗{(EF∗ [|U |5])1/2[(EF∗ [‖Z1‖4])1/4 + (EF∗ [‖V ‖4])1/4] + (EF∗ [U6])1/2}.
Combining the results in (D.44), (D.46), (D.47), and (D.48), and applying the Cauchy–
Schwarz inequality, we get∥∥EF̃

[
Z2Z

′
2
(
Y −X ′θF̃

)2] −EF

[
Z2Z

′
2
(
Y −X ′θF

)2]∥∥
≤ 3C2�0Ω

1/4
uu ‖δ̃0‖ +C2�0Ω

1/4
uu ‖δ̃0‖2

= (
3C2�0‖δ̃0‖3/4 +C2�0‖δ̃0‖7/4)Ω1/4

uu ‖δ̃0‖1/4 ≤ C2�1‖δ̃‖1/4� (D.49)

where C2�1 = C2�0(3c
3/4
	 + c

7/4
	 ), the second inequality is by (D.34) and the definition of δ̃.

By (D.45), Assumption D.1(ii) and the definition of c	,

C2�1 <∞� (D.50)

Next, note that

EF̃

[
Z2

(
Y −X ′θF̃

)] =
(
EF∗ [Z1U]
δ̃0Ωuu

)
and EF

[
Z2

(
Y −X ′θF

)] =
(
EF∗ [Z1U]

0r∗×1

)
� (D.51)

which implies that∥∥∥∥∥ EF̃

[
Z2

(
Y −X ′θF̃

)]
EF̃

[
Z′

2
(
Y −X ′θF̃

)]
−EF

[
Z2

(
Y −X ′θF

)]
EF

[
Z′

2
(
Y −X ′θF

)]∥∥∥∥∥
=

∥∥∥∥∥
(

0r1×r1 Ωuu�F∗EF∗ [Z1U ]̃δ′
0

δ̃0EF∗
[
Z′

1U
]
Ωuu δ̃0δ̃

′
0Ω

2
uu

)∥∥∥∥∥
≤Ωuu

∥∥EF∗ [Z1U ]̃δ′
0

∥∥ +Ωuu

∥∥δ̃0EF∗ [Z1U]∥∥ +Ω2
uu‖δ̃0‖2

≤ 2Ωuu‖δ̃0‖
∥∥EF∗ [Z1U]∥∥ +Ω2

uu‖δ̃0‖2

≤ (
2Ω5/4

uu ‖δ̃0‖3/4(
EF∗

[‖Z1‖2])1/2 +Ω
7/4
uu ‖δ̃0‖7/4)‖δ̃‖1/4

≤ C2�2‖δ̃‖1/4� (D.52)
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where C2�2 = supF∗∈F∗{2Ω5/4
uu (EF∗ [‖Z1‖2])1/2c

3/4
	 + Ω

7/4
uu c

7/4
	 }, the second inequality is by

the Cauchy–Schwarz inequality, the third inequality is by the Hölder inequality. By As-
sumption D.1(ii) and the definition of c	,

C2�2 <∞� (D.53)

By the definition of Ω2�F in (D.2), we can use the triangle inequality and the results in
(D.49) and (D.52) to deduce that

‖Ω2�F̃ −Ω2�F‖ ≤ C2‖δ̃‖1/4� (D.54)

where C2 = C2�1 + C2�2 and C2 < ∞ by (D.50) and (D.53), which proves the second in-
equality in (D.33). This verifies Assumption 3.3(i) with κ= 1/4.

Proof of Lemma 3.1. Next, we apply Lemma D.1 to prove Lemma 3.1 in the paper. For
convenience, the conditions of Lemma 3.1 are stated here. The proof verifies the condi-
tions of Lemma D.1 with the following conditions in a Gaussian model. Let F∗ denote
the set of normal distributions which satisfies:

(i) φu = 0, �z1u = 0r1×1 and �vu = 0r∗×1;

(ii) infF∗∈F∗ ρmin(�xz1�z1x) > 0, supF∗∈F∗ ‖φ‖2 <∞ and
0 < infF∗∈F∗ ρmin(Ψ) ≤ supF∗∈F∗ ρmax(Ψ) <∞;

(iii) infF∗∈F∗ inf{‖δ‖≥ε} ‖δ‖−1‖(�xz1�
−1
z1z1

�z1v − �xv)δ − �xu‖ > 0 for some ε > 0 that is
small enough (where ε is given in (B.3) in the Appendix of CLS);

(iv) θ0 ∈ int(Θ) and Θ is compact and large enough such that the pseudo-true value
θ∗(F) ∈ int(Θ);

(v) 	δ = [c1�	�C1�	]× · · ·× [cr∗�	�Cr∗�	] where {cj�	�Cj�	}r∗j=1 is a set of finite constants
with cj�	 < 0 <Cj�	 for j = 1� � � � � r∗.

Specifically, we assume that Condition (ii) of Lemma 3.1 holds with some constants cρ
and Cρ such that cρ ≤ ρmin(�xz1�z1x), ‖φ‖2 ≤ Cρ, and cρ ≤ ρmin(Ψ) ≤ ρmax(Ψ) ≤ Cρ; Con-
dition (iii) of Lemma 3.1 holds with

inf
δ∈Bc

ε

‖δ‖−1∥∥(
�xz1�

−1
z1z1

�z1v − �xv
)
δ− �xu

∥∥ ≥ c� (D.55)

for some positive constant c� and

Bc
ε ≡ {

δ ∈R
r∗ : ‖δ‖ ≥ c∗�ρC−1∗�ρC−1

	

}
� (D.56)

where

C∗�W ≡ 2(dθ + r2 + 1)Cρ� c∗�ρ ≡ min
{
1� c2

ρ

}
and C∗�ρ ≡ C2

∗�W
(
2 +C

1/2
	

)2
(D.57)

and C	 ≡ supδ0∈	δ
‖δ0‖2.

Assumption D.1(i) holds under Condition (i) of Lemma 3.1. Since (X ′�Z′
1� V

′�U)′
is a normal random vector, Assumption D.1(ii) holds by ‖φ‖2 ≤ Cρ and ρmax(Ψ) ≤
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Cρ. By ρmin(Ψ) ≥ cρ and φu = 0, we have EF∗ [U2] ≥ cρ for any F∗ ∈ F∗, and hence
infF∗∈F∗ EF∗ [U2] > 0. Let F denote the distribution of W induced by F∗ with mean φ

and variance–covariance matrix Ψ . By definition, G1�F = −EF∗ [Z1X
′] = �z1x. Therefore,

inf
F∈F

ρmin
(
G′

1�FG1�F
) ≥ cρ > 0 (D.58)

holds by ρmin(�xz1�z1x) ≥ cρ > 0 for any F∗ ∈ F∗. Since �z1u = 0r1×1 and �vu = 0r∗×1 for
any F∗ ∈ F∗, U is independent with respect to (Z′

1� V
′)′ under the normality assumption.

Therefore, by Condition (i) of Lemma 3.1,

Ω2�F =
(
Ωuu�z1z1 Ωuu�z1v

Ωuu�
′
z1v

2Ω2
uuδ0δ

′
0 +Ωuu�vv

)

= Ωuu

(
Ωz1z1 Ωz1v

Ωvz1 Ωvv

)
+Ωuu

(
φz1

φv

)(
φz1

φv

)′
+

(
0r1×r1 0r1×r∗

0r∗×r1 2Ω2
uuδ0δ

′
0

)
� (D.59)

which implies that ρmin(Ω2�F )≥ ρ2
min(Ψ) where F is the distribution of W induced by F∗

with mean φ and variance–covariance matrix Ψ . Since ρmin(Ψ) ≥ cρ > 0, we have

inf
F∈F

ρmin(Ω2�F )≥ c2
ρ > 0� (D.60)

This completes the proof of Assumption D.1(iii).
By (D.59), Conditions (ii), and (v) of Lemma 3.1

sup
F∈F

ρmax(Ω2�F )≤ ρ2
max(Ψ)+ ρmax(Ψ)‖φ‖2 + 2ρ2

max(Ψ)C	 ≤ 2C2
ρ(1 +C	)� (D.61)

By (D.19) in the proof of Lemma D.1,

‖G2�F‖ ≤ 2Cρ(dθ + r2 + 1)
(
2 +C

1/2
	

)
�

which implies that

sup
F∈F

ρmax
(
G′

2�FG2�F
) ≤ 4C2

ρ(dθ + r2 + 1)2(2 +C
1/2
	

)2
� (D.62)

By (D.58) and (D.60),

min
{

inf
F∈F

ρmin(Ω2�F )� inf
F∈F

ρmin
(
G′

2�FG2�F
)} ≥ min

{
1� c2

ρ

}
� (D.63)

By (D.61) and (D.62),

max
{

sup
F∈F

ρmax(Ω2�F )� sup
F∈F

ρmax
(
G′

2�FG2�F
)} ≤ 4C2

ρ(dθ + r2 + 1)2(2 +C
1/2
	

)2
� (D.64)

From (D.63), (D.64), the definitions of c∗�ρ, C∗�ρ, and Bc
N�ρ, we have Bc

ρ2
⊂ Bc

N�ρ where
Bc
ρ2

is defined in (D.7). Moreover, by φu = 0, the normality assumption and the inde-
pendence between U and (Z′

1� V
′)′, we have Ωz1z1u2 = Ωuu�z1z1 , �z1vu2 = Ωuu�z1v, and
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�z1u3 = 0r1×1, which implies that∥∥(
�xz1Ω

−1
z1z1u2�z1vu2 − �xv

)
δ+ �xz1Ω

−1
z1z1u2�z1u3 − �xu

∥∥
= ∥∥(

�xz1�
−1
z1z1

�z1v − �xv
)
δ− �xu

∥∥� (D.65)

Assumption D.1(iv) follows by Bc
ρ2

⊂ Bc
N�ρ, (D.65) and Condition (iii) of the lemma.

We next show that Assumption D.1(v) holds. Define

v∗�F∗ =
(
Ωuu� vec(�xz1)

′� vec(�xu)
′� vec(�xv)

′�
vec(�z1v)

′� vech(�z1z1)
′� vech(�vv)

′

)
�

Under Condition (i) of Lemma 3.1 and the normality assumption, �u2u2 = 3Ω2
uu, �z1u3 =

0r1×1, �vu3 = 0r∗×1, Ωz1z1u2 = Ωuu�z1z1 , �z1vu2 = Ωuu�z1v, and Ωvvu2 = Ωuu�vv. Therefore,
to verify Assumption D.1(v), it is sufficient to show that the set {v∗�F∗ : F∗ ∈ F∗} is com-
pact because the set {v∗�F∗ : F∗ ∈ F∗} is the image of the set {v∗�F∗ : F∗ ∈ F∗} under a
continuous mapping. Let {(φn�Ψn)}n be a convergent sequence where (φn�Ψn) satis-
fies Conditions (i)–(iii) of Lemma 3.1 for any n. Let φ̃ and Ψ̃ denote the limits of φn

and Ψn under the Euclidean norm, respectively. We first show that Conditions (i)–(iii)
of Lemma 3.1 hold for (φ̃� Ψ̃ ). Since φu�n = 0, �z1u�n = 0r1×1 and �vu�n = 0r∗×1 for any n,
we have φ̃u = 0, �̃z1u = 0r1×1 and �̃vu = 0r∗×1 which shows that (φ̃� Ψ̃ ) satisfies Condi-
tion (i) of Lemma 3.1. Since φn → φ̃ and ‖φn‖2 ≤ Cρ for any n, we have ‖φ̃‖2 ≤ Cρ. By
the convergence of (φn�Ψn), �xz1�n → �̃xz1 . Since the roots of a polynomial continuously
depends on its coefficients, we have

ρmin
(
�xz1�n�

′
xz1�n

) → ρmin
(̃
�xz1 �̃

′
xz1

)
� ρmin(Ψn)→ ρmin(Ψ̃ ) and

ρmax(Ψn) → ρmax(Ψ̃ )�

which together with the assumption that �xz1�n and Ψn satisfy Condition (ii) of Lem-
ma 3.1 implies that

cρ ≤ ρmin
(̃
�xz1 �̃

′
xz1

)
and cρ ≤ ρmin(Ψ̃ ) ≤ ρmax(Ψ̃ )≤ Cρ�

This shows that Condition (ii) of Lemma 3.1 holds for (φ̃� Ψ̃ ). For any δ ∈ Bc
N�ρ, by the

triangle inequality, the Cauchy–Schwarz inequality and ‖δ‖ ≥ c2
ρC

−2
ρ C−1

	 (1 +C	)
−12−1,

‖δ‖−1∥∥(̃
�xz1 �̃

−1
z1z1

�̃z1v − �̃xv
)
δ− �̃xu

∥∥
≥ ‖δ‖−1∥∥(

�xz1�n�
−1
z1z1�n

�z1v�n − �xv�n
)
δ− �xu�n

∥∥
− ∥∥�̃xz1 �̃

−1
z1z1

�̃z1v − �xz1�n�
−1
z1z1�n

�z1v�n

∥∥
− ‖�̃xv − �xv�n‖ − 2C2

ρC	(1 +C	)c
−2
ρ ‖�xu�n − �̃xu‖�

which together with the convergence of (φn�Ψn) and Conditions (ii)–(iii) of Lemma 3.1
implies that

‖δ‖−1∥∥(̃
�xz1 �̃

−1
z1z1

�̃z1v − �̃xv
)
δ− �̃xu

∥∥
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≥ c� − ∥∥�̃xz1 �̃
−1
z1z1

�̃z1v − �xz1�n�
−1
z1z1�n

�z1v�n

∥∥
− ‖�̃xv − �xv�n‖ − 2C2

ρC	(1 +C	)c
−2
ρ ‖�xu�n − �̃xu‖

for any n. Let n go to infinity, we get

‖δ‖−1∥∥(̃
�xz1 �̃

−1
z1z1

�̃z1v − �̃xv
)
δ− �̃xu

∥∥ ≥ c�

for any δ ∈ Bc
ε. This shows that Condition (iii) of Lemma 3.1 also holds for (φ̃� Ψ̃ ). Hence

the set of (φ�Ψ) which satisfies Conditions (i)–(iii) of Lemma 3.1 is closed. By Conditions
(i)–(ii) of the lemma, we know that this set is compact because it is also bounded. Let F∗
denote the normal distribution with mean φ and variance–covariance matrix Ψ . Then
v∗�F∗ is the image of (φ�Ψ) under a continuous mapping, which implies that {v∗�F∗ :
F∗ ∈ F∗} is compact. Therefore, the set {v∗�F∗ : F∗ ∈ F∗} is compact, and hence closed.
This proves Assumption D.1(v).

Assumption D.1(vi) is used to show that θF ∈ int(Θ) and θ∗
F ∈ int(Θ) for any F ∈ F .

By θF = θ0 and Condition (iv) of Lemma 3.1, we have θF ∈ int(Θ) and θ∗
F ∈ int(Θ).

Finally, Assumption D.1(vii) is the same as Condition (v) of Lemma 3.1.

Appendix E: Proof of some auxiliary results in Sections 4 and 5 of CLS

Proof of Lemma B.2. (i) Let g2�j(w�θ) denote the jth (j = 1� � � � � r2) component of
g2(w�θ). By the mean value expansion,

g2�j(w�θ1)− g2�j(w�θ2) = g2�j�θ(w� θ̃1�2)(θ1 − θ2) (E.1)

for any j = 1� � � � � r2, where θ̃1�2 is some vector between θ1 and θ2. By (E.1) and the
Cauchy–Schwarz inequality∣∣EF

[
g2�j(w�θ1)− g2�j(w�θ2)

]∣∣ ≤ EF

[
sup
θ∈Θ

∥∥g2�θ(W �θ)
∥∥]

‖θ1 − θ2‖� (E.2)

for any j = 1� � � � � r2. By (E.2), we deduce that∥∥M2�F (θ1)−M2�F (θ2)
∥∥ ≤ √

r2EF

[
sup
θ∈Θ

∥∥g2�θ(W �θ)
∥∥]

‖θ1 − θ2‖

≤ CM�1
√
r2‖θ1 − θ2‖ (E.3)

for any F ∈ F , where CM�1 ≡ supF∈F EF [supθ∈Θ ‖g2�θ(W �θ)‖] and CM�1 < ∞ by Assump-
tion 3.2(ii). This immediately proves the claim in (i). The claim in (ii) follows by similar
argument and its proof is omitted.

(iii) By the mean value expansion,

g2�j1(w�θ1)g2�j2(w�θ1)− g2�j1(w�θ2)g2�j2(w�θ2)

= [
g2�j1�θ(w� θ̃1�2)g2�j2(w� θ̃1�2)+ g2�j1(w� θ̃1�2)g2�j2�θ(w� θ̃1�2)

]
(θ1 − θ2) (E.4)
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for any j1� j2 = 1� � � � � r2, where θ̃1�2 is some vector between θ1 and θ2 and may take differ-
ent values from the θ̃1�2 in (E.1). By (E.4), the triangle inequality and the Cauchy–Schwarz
inequality ∣∣EF

[
g2�j1(w�θ1)g2�j2(w�θ1)− g2�j1(w�θ2)g2�j2(w�θ2)

]∣∣
≤ 2EF

[
sup
θ∈Θ

∥∥g2(W �θ)
∥∥∥∥g2�θ(W �θ)

∥∥]
‖θ1 − θ2‖

≤ EF

[
sup
θ∈Θ

(∥∥g2(W �θ)
∥∥2 + ∥∥g2�θ(W �θ)

∥∥2)]‖θ1 − θ2‖ (E.5)

for any j1� j2 = 1� � � � � r2, where the second inequality is by the simple inequality that
|ab| ≤ (a2 + b2)/2. By (E.5),∥∥EF

[
g2(W �θ1)g2(W �θ1)

′ − g2(W �θ2)g2(W �θ2)
′]∥∥

≤ r2EF

[
sup
θ∈Θ

(∥∥g2(W �θ)
∥∥2 + ∥∥g2�θ(W �θ)

∥∥2)]‖θ1 − θ2‖

≤ r2CM�2‖θ1 − θ2‖ (E.6)

for any F ∈ F , where CM�2 ≡ supF∈F EF [supθ∈Θ(‖g2(W �θ)‖2 +‖g2�θ(W �θ)‖2)] and CM�2 <

∞ by Assumption 3.2(ii). Using the triangle inequality, and the inequality in (E.2), we
deduce that∣∣EF

[
g2�j1(w�θ1)

]
EF

[
g2�j2(w�θ1)

] −EF

[
g2�j1(w�θ2)

]
EF

[
g2�j2(w�θ2)

]∣∣
≤ ∣∣EF

[
g2�j1(w�θ1)− g2�j1(w�θ2)

]
EF

[
g2�j2(w�θ1)

]∣∣
+ ∣∣EF

[
g2�j1(w�θ2)

]
EF

[
g2�j2(w�θ2)− g2�j2(w�θ1)

]∣∣
≤ 2EF

[
sup
θ∈Θ

∥∥g2(W �θ)
∥∥]

EF

[
sup
θ∈Θ

∥∥g2�θ(W �θ)
∥∥]

‖θ1 − θ2‖ (E.7)

for any j1� j2 = 1� � � � � r2. By (E.7),∥∥EF

[
g2(w�θ1)

]
EF

[
g2(w�θ1)

′] −EF

[
g2(w�θ2)

]
EF

[
g2(w�θ2)

′]∥∥ ≤ r2CM�3‖θ1 − θ2‖ (E.8)

for any F ∈ F , where CM�3 ≡ 2 supF∈F EF [supθ∈Θ ‖g2(W �θ)‖]EF [supθ∈Θ ‖g2�θ(W �θ)‖] and
CM�3 <∞ by Assumption 3.2(ii).

By the definition of Ω2�F (θ), the triangle inequality and the results in (E.6) and (E.8)∥∥Ω2�F (θ1)−Ω2�F (θ2)
∥∥ ≤ r2(CM�2 +CM�3)‖θ1 − θ2‖� (E.9)

which immediately proves the claim in (iii).

Proof of Lemma B.3. By Lemma B.1(i),

g2(θ)= M2�Fn(θ)+
[
n−1

n∑
i=1

g2(Wi�θ)−M2�Fn(θ)

]
= M2�Fn(θ)+ op(1)� (E.10)
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uniformly over θ ∈ Θ. As g1(W �θ) is a subvector of g2(W �θ), by (E.10) and Assump-
tion 3.2(ii),

g1(θ)
′g1(θ)= M1�Fn(θ)

′M1�Fn(θ)+ op(1) (E.11)

uniformly over θ ∈ Θ. By Assumptions 3.1(i)–(ii) and Fn ∈ F , M1�Fn(θ)
′M1�Fn(θ) is

uniquely minimized at θFn , which together with the uniform convergence in (E.11) im-
plies that

θ̃1 − θFn →p 0� (E.12)

To show the consistency of Ω2, note that

Ω2 = n−1
n∑

i=1

g2(Wi� θ̃1)g2(Wi� θ̃1)
′ − g2(θ̃1)g2(θ̃1)

′

= EFn

[
g2(W � θ̃1)g2(W � θ̃1)

′] −M2�Fn(θ̃1)
′M2�Fn(θ̃1)+ op(1)

= Ω2�Fn(θ̃1)+ op(1) = Ω2�Fn + op(1)� (E.13)

where the first equality is by the definition of Ω2, the second equality holds by (E.10),
Lemma B.1(ii) and Assumption 3.2(ii), the third equality follows from the definition of
Ω2�Fn(θ), and the last equality holds by Lemma B.2(iii) and (E.12). This shows the con-
sistency of Ω2.

In the rest of the Supplemental Appendix, we use C denote a generic fixed positive
finite constant whose value does not depend on F or n.

Proof of Lemma B.4. As g1(θ) is a subvector of g2(θ), and Ω1�n is a submatrix of Ω2�n,
using (E.10), (E.13), and Assumptions 3.2(ii)–(iii), we have

g1(θ)
′(Ω1)

−1g1(θ) =M1�Fn(θ)
′Ω−1

1�Fn
M1�Fn(θ)+ op(1)� (E.14)

uniformly over Θ. By Assumptions 3.2(ii)–(iii),

C−1 ≤ ρmin
(
Ω−1

1�Fn

) ≤ ρmax
(
Ω−1

1�Fn

) ≤ C� (E.15)

which together with Assumptions 3.1(i)–(ii) implies that M1�Fn(θ)
′Ω−1

1�Fn
M1�Fn(θ) is

uniquely minimized at θFn . By the standard arguments for the consistency of an ex-
tremum estimator, we have

θ̂1 − θFn = op(1)� (E.16)

Using (E.16), Lemma B.1(iv) and Assumption 3.2(ii), we have

g1(θ̂1)= g1(θFn)+ [
M1�Fn(θ̂1)−M1�Fn(θFn)

] + op
(
n−1/2)

= g1(θFn)+ [
G1�Fn(θFn)+ op(1)

]
(θ̂1 − θFn)+ op

(
n−1/2)� (E.17)
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Similarly,

n−1
n∑

i=1

g1�θ(Wi� θ̂1) =G1�Fn(θ̂1)+ op(1) = G1�Fn + op(1)� (E.18)

where the first equality follows from Lemma B.1(iii) and the second equality follows by
(E.16) and Lemma B.2(ii). From the first-order condition for the GMM estimator θ̂1, we
deduce that

0 =
[
n−1

n∑
i=1

g1�θ(Wi� θ̂1)

]′
(Ω1)

−1g1(θ̂1)

= (
G′

1�FnΩ
−1
1�Fn

+ op(1)
)[
g1(θFn)+ (

G1�Fn + op(1)
)
(θ̂1 − θFn)+ op

(
n−1/2)]� (E.19)

where the second equality follows from Assumptions 3.2(ii)–(iii), (E.13), (E.17), and
(E.18). By (E.19), EFn [g1(W �θFn)] = 0, and Assumption 3.2,

n1/2(θ̂1 − θFn) = (
�1�Fn + op(1)

)
μn

(
g1(W �θFn)

) + op(1)� (E.20)

By Assumptions 3.2 and Lemma B.1(v), �1�Fn =O(1), and μn(g1(W �θFn)) = op(1), which
together with (E.20) implies that

n1/2(θ̂1 − θFn) = �1�Fnμn
(
g1(W �θFn)

) +Op(1)�

where �1�Fnμn(g1(W �θFn)) =Op(1). This completes the proof.

Proof of Lemma B.5. By (E.10), (E.13), and Assumptions 3.2(ii)–(iii), we have

g2(θ)
′(Ω2)

−1g2(θ)=M2�Fn(θ)
′Ω−1

2�Fn
M2�Fn(θ)+ op(1) =QFn(θ)+ op(1) (E.21)

uniformly over Θ. By Assumption 3.1(iii), QFn(θ) is uniquely minimized at θ∗
Fn

. The con-
sistency result θ̂2 − θ∗

Fn
→p 0 follows from standard arguments for the consistency of an

extremum estimator.

Proof of Lemma B.6. By the definition of θ̂2,

g2(θ̂2)
′(Ω2)

−1g2(θ̂2) ≤ g2(θFn)
′(Ω2)

−1g2(θFn)� (E.22)

which implies that ∥∥g2(θ̂2)
∥∥2 ≤ ρmax(Ω2)ρ

−1
min(Ω2)

∥∥g2(θFn)
∥∥2
� (E.23)

By (E.13) and Assumptions 3.2(ii)–(iii),

C−1 ≤ ρmin(Ω2) ≤ ρmax(Ω2) ≤C (E.24)

with probability approaching 1. By Lemma B.1(i), M1�Fn(θFn) = 0r1×1 and δFn = o(1),∥∥g2(θFn)
∥∥2 = op(1)� (E.25)
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which combined with (E.23) and (E.24) implies that∥∥g2(θ̂2)
∥∥ = op(1)� (E.26)

Moreover, by (E.26), Lemma B.1(i) and the triangle inequality,∥∥M2�Fn(θ̂2)
∥∥ ≤ ∥∥g2(θ̂2)−M2�Fn(θ̂2)

∥∥ + ∥∥g2(θ̂2)
∥∥ = op(1)� (E.27)

which immediately implies that ∥∥M1�Fn(θ̂2)
∥∥ = op(1)� (E.28)

The first result in Lemma B.6 follows by (E.28) and the unique identification of θFn main-
tained by Assumptions 3.1(i)–(ii).

Using θ̂2 − θFn = op(1), Lemma B.1(iv) and Assumption 3.2(ii), we have

g2(θ̂2)= g2(θFn)+ [
M2�Fn(θ̂2)−M2�Fn(θFn)

] + op
(
n−1/2)

= g2(θFn)+ [
G2�Fn(θFn)+ op(1)

]
(θ̂2 − θFn)+ op

(
n−1/2)� (E.29)

Similarly,

n−1
n∑

i=1

g2�θ(Wi� θ̂2) =G2�Fn(θ̂2)+ op(1) = G2�Fn(θFn)+ op(1)� (E.30)

where the first equality follows from Lemma B.1(iii) and the second equality follows by
θ̂2 −θFn = op(1) and Lemma B.2(ii). From the first-order condition for the GMM estima-
tor θ̂2, we deduce that

0 =
[
n−1

n∑
i=1

g2�θ(Wi� θ̂2)

]′
(Ω2)

−1g2(θ̂2)

= (
G′

2�FnΩ
−1
2�Fn

+ op(1)
)[
g2(θFn)+ (

G2�Fn + op(1)
)
(θ̂2 − θFn)+ op

(
n−1/2)]� (E.31)

where the second equality follows from Assumptions 3.2(ii)–(iii), (E.13), (E.29), and
(E.30). By (E.31) and Assumption 3.2,

n1/2(θ̂2 − θFn) = (
�2�Fn + op(1)

){
μn

(
g2(W �θFn)

) + n1/2
EFn

[
g2(W �θFn)

]} + op(1)� (E.32)

where �2�Fn = −(G′
2�Fn

Ω−1
2�Fn

G2�Fn)
−1G′

2�Fn
Ω−1

2�Fn
.

Proof for the claim in equation (4.3). Consider the case n1/2δFn → d ∈ R
r∗ . By

Lemma 4.1,

n1/2[θ̂(ω)− θFn
] = n1/2(θ̂1 − θFn)+ω

[
n1/2(θ̂2 − θFn)− n1/2(θ̂1 − θFn)

]
→D �∗

1�FZd�2�F +ω
(
�2�F − �∗

1�F
)
Zd�2�F � (E.33)
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where Zd�2�F has the same distribution as Z2�F + d0. This implies that

�
(
θ̂(ω)

) = n
[
θ̂n(ω)− θFn

]′
Υ

[
θ̂n(ω)− θFn

] →D λF(ω)� (E.34)

where

λF(ω) = Z ′
d�2�F�

∗′
1�FΥ�∗

1�FZd�2�F + 2ωZ ′
d�2�F

(
�2�F − �∗

1�F
)′
Υ�∗

1�FZd�2�F

+ω2Z ′
d�2�F

(
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
Zd�2�F �

Now we consider E[λF(ω)] using the equalities in Lemma B.9 below. First,

E
[
Z ′
d�2�F�

∗′
1�FΥ�∗

1�FZd�2�F
] = tr(ΥΣ1�F ) (E.35)

because �∗
1Zd�2�F = �1�FZ1�F and �1�FE[Z1�FZ ′

1�F ]�′
1�F = Σ1�F by definition. Second,

E
[
Z ′
d�2�F

(
�2�F − �∗

1�F
)′
Υ�∗

1�FZd�2�F
]

= tr
(
Υ�∗

1�FE
[
Zd�2�FZ ′

d�2�F
](
�2�F − �∗

1�F
)′)

= tr
(
Υ�∗

1�F
[
d0d

′
0 +Ω2�F

](
�2�F − �∗

1�F
)′)

= tr
(
Υ(Σ2�F −Σ1�F )

)
� (E.36)

where the last equality holds by Lemma B.9. Third,

E
[
Z ′
d�2�F

(
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
Zd�2�F

]
= tr

(
Υ

(
�2�F − �∗

1�F
)[
d0d

′
0 +Ω2�F

](
�2�F − �∗

1�F
)′)

= d′
0�

′
2�FΥ�2�Fd0 − tr

(
Υ(Σ2�F −Σ1�F )

)
(E.37)

by Lemma B.9. Combining the results in (E.35)–(E.37), we obtain

E
[
λF(ω)

] = tr(ΥΣ1�F )− 2ω tr
(
Υ(Σ1�F −Σ2�F )

)
+ω2[d′

0�
′
2�FΥ�2�Fd0 + tr

(
Υ(Σ1�F −Σ2�F )

)]
� (E.38)

Note that d′
0�

′
2�FΥ�2�Fd0 = d′

0(�2�F − �∗
1�F )

′Υ(�2�F − �∗
1�F )d0 because �∗

1�Fd0 = 0dθ . It is
clear that the optimal weight ω∗

F in (4.3) minimizes the quadratic function of ω in (E.38).

Proof of Lemma B.9. By construction, �∗
1�Fd0 = 0dθ×1. For ease of notation, we write

Ω2�F and G2�F as

Ω2�F =
(

Ω1�F Ω1r∗
Ωr∗1�F Ωr∗�F

)
and G2�F =

(
G1�F

Gr∗�F

)
� (E.39)

To prove part (b), we have

�∗
1�FΩ2�F�

∗
1�F = [�1�F �0dθ×r∗ ]

(
Ω1�F Ω1r∗
Ωr∗1�F Ωr∗�F

)
[�1�F �0dθ×r∗ ]
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= �1�FΩ1�F�
′
1�F = (

G′
1�FΩ

−1
1�FG1�F

)−1 = Σ1�F � (E.40)

To show part (c), note that

�∗
1�FΩ2�F�

′
2�F = −[�1�F �0dθ×r∗ ]Ω2�FΩ

−1
2�FG2�F

(
G′

2�FΩ
−1
2�FG2�F

)−1

= −�1�FG1�F
(
G′

2�FΩ
−1
2�FG2�F

)−1 = (
G′

2�FΩ
−1
2�FG2�F

)−1 = Σ2�F (E.41)

because −�1�FG1�F = Idθ×dθ . Part (d) follows from the definition of �2�F .

Proof of Lemma 4.2. We first prove the consistency of Ω̂k, Ĝk, and Σ̂k for k = 1�2. By
Lemma 4.1, we have θ̂1 = θFn + op(1). Using the same arguments in showing (E.13), we
can show that

Ω̂2 = Ω2�Fn + op(1) =Ω2�F + op(1)� (E.42)

where the second equality is by the assumption of the lemma that vFn → vF for some
F ∈ F . As Ω̂1 is a submatrix of Ω̂2, by (E.42) we have

Ω̂1 =Ω1�Fn + op(1) =Ω1�F + op(1)� (E.43)

By the consistency of θ̂1 and the same arguments used to show (E.30), we have

n−1
n∑

i=1

g2�θ(Wi� θ̂1) = G2�Fn(θFn)+ op(1) = G2�F + op(1)� (E.44)

where the second equality is by (B.10) which is assumed in the lemma. As n−1 ×∑n
i=1 g1�θ(Wi� θ̂1) is a submatrix of n−1 ∑n

i=1 g2�θ(Wi� θ̂1), by (E.44) we have

n−1
n∑

i=1

g1�θ(Wi� θ̂1) =G1�Fn(θFn)+ op(1) = G1�F + op(1)� (E.45)

From Assumption 3.2, (E.42), (E.43), (E.44), and (E.45), we see that Ω̂k and Ĝk are con-
sistent estimators of Ωk�F and Gk�F , respectively, for k= 1�2. By the Slutsky theorem and
Assumption 3.2, we know that Σ̂k is a consistent estimator of Σk�F for k= 1�2.

In the case where n1/2δFn → d ∈ R
r∗ , the desired result follows from Lemma 4.1, the

consistency of Σ̂1�F and Σ̂2�F , and the CMT. In the case where ‖n1/2δFn‖ → ∞, ω̃eo →p 0
because n1/2‖θ̂2 − θ̂1‖ →p ∞ and

n1/2(θ̂eo − θFn) = n1/2(θ̂1 − θFn)+ ω̃eon
1/2(θ̂2 − θ̂1)

= n1/2(θ̂1 − θFn)+ n1/2(θ̂2 − θ̂1) tr
[
Υ(Σ̂1 − Σ̂2)

]
n(θ̂2 − θ̂1)

′Υ(θ̂2 − θ̂1)+ tr
[
Υ(Σ̂1 − Σ̂2)

]
→D ξ1�F (E.46)

by Lemma 4.1.
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Proof of Lemma B.15. By definition,

ξ′
1�FΥξ1�F = Z ′

1�F�
′
1�FΥ�1�FZ1�F = Z ′

1Ω
1/2
1�F�

′
1�FΥ�1�FΩ

1/2
1�FZ1� (E.47)

where Z1 ∼ N(0r1� Ir1×r1). By Assumptions 3.2(ii) and 3.2(iv), and the fact that Υ is a fixed
matrix,

sup
F∈F

ρmax
(
Ω

1/2
1�F�

′
1�FΥ�1�FΩ

1/2
1�F

) ≤ C� (E.48)

By (E.48),

sup
h∈H

E
[(
ξ′

1�FΥξ1�F
)2] ≤ sup

h∈H
ρ2

max
(
Ω

1/2
1�F�

′
1�FΥ�1�FΩ

1/2
1�F

)
E

[(
Z ′

1Z1
)2] ≤ 3r1C� (E.49)

where the second inequality is by E[(Z ′
1Z1)

2] ≤ 3r1 + r1(r1 −1) = r2
1 +2r1 which is implied

by the assumption that Z1 is a r1-dimensional standard normal random vector. The first
inequality of this lemma follows as the upper bound in (E.49) does not depend on F .

For any F ∈F , define

BF ≡ (
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
�

By the Cauchy–Schwarz inequality and the simple inequality |ab| ≤ (a2 + b2)/2 (for any
real numbers a and b),

ξ
′
FΥξF ≤ 2

(
Z ′
d�2�F�

∗′
1�FΥ�∗

1�FZd�2�F +ω2
FZ

′
d�2�FBFZd�2�F

)
= 2

(
Z ′

1�F�
′
1�FΥ�1�FZ1�F +ω2

FZ
′
d�2�FBFZd�2�F

)
� (E.50)

where the equality is by �∗
1�Fd0 = 0dθ×1 (which is proved in Lemma B.9). By (E.50) and

the simple inequality (a+ b)2 ≤ 2(a2 + b2) (for any real numbers a and b),(
ξ

′
FΥξF

)2 ≤ 8
(
Z ′

1�F�
′
1�FΥ�1�FZ1�F

)2 + 8
(
ω2

FZ
′
d�2�FBFZd�2�F

)2
� (E.51)

By the first inequality of this lemma, we have suph∈H E[(ξ′
1�FΥξ1�F )

2] ≤ C. Hence by
(E.51), to show the second inequality of this lemma, it is sufficient to prove that

sup
h∈H

E
[(
ω2

FZ
′
d�2�FBFZd�2�F

)2] ≤ C� (E.52)

Recall that we have defined AF = Υ(Σ1�F −Σ2�F ) in Theorem 5.2. By the definition,

ω2
FZ

′
d�2�FBFZd�2�F

=
(
tr(AF)

)2Z ′
d�2�FBFZd�2�F(

Z ′
d�2�FBFZd�2�F + tr(AF)

)2

= tr(AF)
tr(AF)

Z ′
d�2�FBFZd�2�F + tr(AF)

Z ′
d�2�FBFZd�2�F

Z ′
d�2�FBFZd�2�F + tr(AF)

� (E.53)
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By Lemma 2.1 in Cheng and Liao (2015), tr(AF) ≥ 0 for any F ∈ F . This together with
Z ′
d�2�FBFZd�2�F ≥ 0 implies that

tr(AF)

Z ′
d�2�FBFZd�2�F + tr(AF)

≤ 1 and
Z ′
d�2�FBFZd�2�F

Z ′
d�2�FBFZd�2�F + tr(AF)

≤ 1� (E.54)

By (E.54) and tr(AF)≥ 0,

ω2
FZ

′
d�2�FBFZd�2�F ≤ tr(AF) = tr(ΥΣ1�F )− tr(ΥΣ2�F )� (E.55)

where the equality is by AF = Υ(Σ1�F − Σ2�F ). By (E.55) and the simple inequality (a +
b)2 ≤ 2(a2 + b2),

E
[(
ω2

FZ
′
d�2�FBFZd�2�F

)2] ≤ 2
(
tr(ΥΣ1�F )

)2 + 2
(
tr(ΥΣ2�F )

)2
� (E.56)

By Assumptions 3.2(ii) and 3.2(iv),

ρmin
(
G′

k�FΩ
−1
k�FGk�F

) ≥ ρmin
(
Ω−1

k�F

)
ρmin

(
G′

k�FGk�F

)
= ρmin

(
G′

k�FGk�F

)
/ρmax(Ωk�F)≥ C−1 (E.57)

for any F ∈ F and for k= 1�2. By (E.57) and the definition of Σk�F (k = 1�2),

ρmax(Σk�F) = ρ−1
min

(
G′

k�FΩ
−1
k�FGk�F

) ≤ C (E.58)

for any F ∈ F . As Υ and Σk�F are positive definite symmetric matrix, by the standard
trace inequality (tr(AB) ≤ tr(A)ρmax(B) for Hermitian matrices A≥ 0 and B ≥ 0),

tr(ΥΣk�F) ≤ tr(Υ)ρmax(Σk�F) ≤ C for k = 1�2� (E.59)

for any F ∈ F . Collecting the results in (E.56) and (E.59), we immediately get (E.52). This
completes the proof.

Proof of Lemma B.16. First, note that

min{x�ζ} − x= (ζ − x)I{x > ζ}� (E.60)

Hence we have

sup
h∈H

∣∣E[
min

{
ξ

′
FΥξF�ζ

} − ξ
′
FΥξF

]∣∣
≤ sup

h∈H
E

[∣∣ζ − ξ
′
FΥξF

∣∣I{ξ′
FΥξF > ζ

}]
≤ ζ sup

h∈H
E

[
I
{
ξ

′
FΥξF > ζ

}] + sup
h∈H

E
[
ξ

′
FΥξFI

{
ζ−1 >

(
ξ

′
FΥξF

)−1}]
≤ 2ζ−1 sup

h∈H
E

[(
ξ

′
FΥξF

)2] ≤ 2Cζ−1� (E.61)



22 Cheng, Liao, and Shi Supplementary Material

where the first inequality is by the Jensen’s inequality, the second inequality is by the
Markov inequality, the third inequality is by the monotonicity of expectation and the
last inequality is by Lemma B.15. Using the same arguments, we can show that

sup
h∈H

∣∣E[
min

{
ξ′

1�FΥξ1�F � ζ
} − ξ′

1�FΥξ1�F
]∣∣ ≤ 2Cζ−1� (E.62)

Collecting the results in (E.61) and (E.62), and applying the triangle inequality, we de-
duce that

sup
h∈H

[∣∣gζ(h)− g(h)
∣∣] ≤ 4Cζ−1� (E.63)

The claimed result of this lemma follows by (E.63) as C is a fixed constant.
By the triangle inequality, the Jensen’s inequality and Lemma B.15,

sup
h∈H

∣∣g(h)∣∣ = sup
h∈H

∣∣E[
ξ

′
FΥξF − ξ′

1�FΥξ1�F
]∣∣

≤ sup
h∈H

E
[
ξ

′
FΥξF

] + sup
h∈H

E
[
ξ′

1�FΥξ1�F
] ≤ C�

which completes the proof of the lemma.

Proof of Lemma A.1. By definition,

E
[‖θ̂eo − θ‖2] −E

[‖θ̂1 − θ‖2]
= E

[
k2σ4(Y −X)′(Y −X)(

2kσ2 + (Y −X)′(Y −X)
)2

]

+E

[
2kσ2(X − θ)′(Y −X)

2kσ2 + (Y −X)′(Y −X)

]
(E.64)

Let

J1 ≡ E

[
(X − θ)′(Y −X)

2kσ2 + (Y −X)′(Y −X)

]
and

J2 ≡ E

[
(Y −X)′(Y −X)(

2kσ2 + (Y −X)′(Y −X)
)2

]
�

(E.65)

Let X∗ = σ−1(X − θ), Y ∗ = σ−1(Y − θ) and Z∗ = (X∗′�Y ∗′)′. Then we can write

J1 = E

[
(X − θ)′(Y −X)

2kσ2 + (Y −X)′(Y −X)

]

= E

[
X∗′(Y ∗ −X∗)

2k+ (
Y ∗ −X∗)′(

Y ∗ −X∗)
]

= E

[
Z∗′D1Z

∗

2k+Z∗′D2Z
∗
]
� (E.66)

where

D1 =
(

−Ik 0k
Ik 0k

)
and D2 =

(
Ik −Ik

−Ik Ik

)
� (E.67)
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Note that

E
[
D1Z

∗Z∗′D′
1
] =D2 (E.68)

by definition and the Gaussian assumption. Let η(x) = x/(x′D2x+ 2k). Its derivative is

∂η(x)′

∂x
= 1

x′D2x+ 2k
Ik − 2(

x′D2x+ 2k
)2D2xx

′� (E.69)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s lemma (Stein
(1981)),

J1 = E
(
η

(
Z∗)′

D1Z
∗) = E

[
tr

(
∂η

(
Z∗)′

∂x
D1

)]

= E

[
tr(D1)

2k+Z∗′D2Z
∗
]

− 2E
[

tr
(
D2Z

∗Z∗′D1
)(

2k+Z∗′D2Z
∗)2

]

= E

[ −k

2k+Z∗′D2Z
∗
]

− 2E
[

Z∗′D1D2Z
∗(

2k+Z∗′D2Z
∗)2

]

= E

[ −k

2k+Z∗′D2Z
∗
]

+ 2E
[

Z∗′D2Z
∗(

2k+Z∗′D2Z
∗)2

]

= E

[
2 − k

2k+Z∗′D2Z
∗
]

+E

[ −4k(
2k+Z∗′D2Z

∗)2

]
� (E.70)

where the fourth equality follows from

D1D2 =
(

−Ik Ik
Ik −Ik

)
= −D2� (E.71)

Moreover,

k2σ4J2 = E

[
k2σ4(Y −X)′(Y −X)(

2kσ2 + (Y −X)′(Y −X)
)2

]

= E

[
k2σ2

2k+Z∗′D2Z
∗
]

−E

[
2k3σ2(

2k+Z∗′D2Z
∗)2

]
� (E.72)

which together with (E.70) implies that

E
[‖θ̂eo − θ‖2] −E

[‖θ̂1 − θ‖2]
= σ2

E

[
2k(2 − k)+ k2

2k+Z∗′D2Z
∗

]
− σ2

E

[
2k3 + 8k2(

2k+Z∗′D2Z
∗)2

]

= σ2
E

[
k(4 − k)

2k+Z∗′D2Z
∗
]

− σ2
E

[
2k2(k+ 4)(

2k+Z∗′D2Z
∗)2

]
� (E.73)
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The asserted result follows from the fact that D2 is positive semidefinite and the second
term on the right-hand side of the second equality of (E.73) is always negative.

Appendix F: Asymptotic risk of the pre-test GMM estimator

In this section, we establish similar results in Theorem 5.1 for the pre-test GMM estima-
tor based on the J -test statistic. The pre-test estimator is defined as

θ̂pre = 1{Jn > cα}θ̂1 + 1{Jn ≤ cα}θ̂2� (F.1)

where Jn = ng2(θ̂2)
′(Ω̂2)

−1g2(θ̂2) and cα is the 100(1 − α)th quantile of the chi-squared
distribution with degree of freedom r2 − dθ.

Theorem F.1. Suppose that Assumptions 3.1–3.3 hold. The bounds of the asymptotic risk
difference satisfy

AsyRD(θ̂pre� θ̂1) = min
{

inf
h∈H

[
gp(h)

]
�0

}
�

AsyRD(θ̂pre� θ̂1) = max
{

sup
h∈H

[
gp(h)

]
�0

}
�

where gp(h) ≡ E[ξ′
p�FΥξp�F − ξ′

1�FΥξ1�F ] and ξp�F is defined in (F.3) below.

Proof of Theorem F.1. The two equalities and inequalities in the theorem follow by
the same arguments in the proof of Theorem 5.1 with Lemma 4.2 for θ̂eo replaced by
Lemma F.1 for θ̂pre, Lemma B.15 replaced by Lemma F.2, and Lemma B.16 replaced by
Lemma F.3. Its proof is hence omitted.

By definition,

E
[
ξ

′
p�FΥξp�F

] = E
[
Z ′
d�2�F�

∗′
1�FΥ�∗

1�FZd�2�F
] + 2E

[
ωp�FZ ′

d�2�F
(
�2�F − �∗

1�F
)′
Υ�∗

1�FZd�2�F
]

+E
[
ω2

p�FZ
′
d�2�F

(
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
Zd�2�F

]
= tr(ΥΣ1�F )+ 2E

[
ωp�FZ ′

d�2�F
(
�2�F − �∗

1�F
)′
Υ�∗

1�FZd�2�F
]

+E
[
ω2

p�FZ
′
d�2�F

(
�2�F − �∗

1�F
)′
Υ

(
�2�F − �∗

1�F
)
Zd�2�F

]
� (F.2)

The asymptotic risk of the pre-test estimator θ̂p in Figure 2 is simulated based on the
formula in (F.2).

The following lemma provides the asymptotic distribution of the pre-test GMM es-
timator under various sequence of DGPs, which is used to show Theorem F.1.

Lemma F.1. Suppose that Assumptions 3.1–3.3 hold. Consider {Fn} such that vFn → vF for
some F ∈F .

(a) If n1/2δFn → d for some d ∈R
r∗ , then

Jn →D J∞(hd�F) ≡ (Z2�F + d0)
′LF(Z2�F + d0)�
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where LF ≡ Ω−1
2�F −Ω−1

2�FG2�F (G
′
2�FΩ

−1
2�FG2�F )

−1G′
2�FΩ

−1
2�F and d0 = (01×r1� d

′)′, and

n1/2(θ̂pre − θFn) →D ξp�F ≡ (1 −ωp�F)ξ1�F +ωp�Fξ2�F � (F.3)

where ωp�F = 1{J∞(hd�F)≤ cα}.
(b) If ‖n1/2δFn‖ → ∞, then ωp�F →p 0 and n1/2(θ̂pre − θFn)→D ξ1�F .

Proof of Lemma F.1. (a) By Assumption 3.2(ii), (E.29), and (E.32),

g2(θ̂2) = g2(θFn)+ [
G2�Fn(θFn)+ op(1)

]
(θ̂2 − θFn)+ op

(
n−1/2)

= g2(θFn)+G2�Fn�2�Fng2(θFn)+ op
(
n−1/2)

= (Ir2 +G2�Fn�2�Fn)g2(θFn)+ op
(
n−1/2)� (F.4)

which implies that

Jn = ng2(θFn)
′LFng2(θFn)+ op(1)� (F.5)

where LFn ≡Ω−1
2�Fn

−Ω−1
2�Fn

G2�Fn(G
′
2�Fn

Ω−1
2�Fn

G2�Fn)
−1G′

2�Fn
Ω−1

2�Fn
.

By n1/2δFn → d and Lemma B.1(v),

n1/2Ω
−1/2
2�Fn

g2(θFn)= Ω
−1/2
2�Fn

μn
(
g2(W �θFn)

) +Ω
−1/2
2�Fn

n1/2δFn →D Z+Ω
−1/2
2�F d0� (F.6)

where d′
0 = (01×r1� d

′) and Z is a r2 × 1 standard normal random vector. By vFn → vF ,
(F.5), (F.6), and the CMT,

Jn →D (Z2�F + d0)
′LF(Z2�F + d0)� (F.7)

Recall that Lemma 4.1(a) implies that

n1/2(θ̂1 − θFn)→D ξ1�F and n1/2(θ̂2 − θFn) →D ξ2�F � (F.8)

which together with (F.7) and the CMT implies that

n1/2(θ̂pre − θFn) = 1{Jn > cα}n1/2(θ̂1 − θFn)+ 1{Jn ≤ cα}n1/2(θ̂2 − θFn)

→D (1 −ωp�F)ξ1�F +ωp�Fξ2�F � (F.9)

which completes the proof of the claim in (a).
(b) There are two cases to consider: (i) ‖δFn‖ >C−1; and (ii) ‖δFn‖ → 0. We first con-

sider case (i). As g1(θ̂2) is a subvector of g2(θ̂2),

Jn = ng2(θ̂2)
′(Ω̂2)

−1g2(θ̂2)

≥ nρ−1
max(Ω̂2)g2(θ̂2)

′g2(θ̂2)

≥ nρ−1
max(Ω̂2)g1(θ̂2)

′g1(θ̂2)� (F.10)

By (B.22) and (B.23) in the Appendix of CLS,

‖θ̂2 − θFn‖ ≥ C−1 with probability approaching 1, (F.11)
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which together with Assumption 3.1(ii) and Lemma B.1(i) implies that

g1(θ̂2) = M1�F (θ̂2)+ op(1) ≥ C (F.12)

with probability approaching 1. By (E.42) and Assumption 3.2(ii), we have

ρmax(Ω̂2) ≤ C with probability approaching 1. (F.13)

Combining the results in (F.10), (F.12), and (F.13), we deduce that

Jn ≥ nC−1 with probability approaching 1, (F.14)

which immediately implies that

ωp�F = 1{Jn ≤ cα} = 0 (F.15)

with probability approaching 1, as cα is a fixed constant. By Lemma 4.1(b), (F.15), and
the assumption that Θ is bounded, we have

n1/2(θ̂pre − θFn) = 1{Jn > cα}n1/2(θ̂1 − θFn)+ 1{Jn ≤ cα}n1/2(θ̂2 − θFn)

= 1{Jn > cα}n1/2(θ̂1 − θFn)+ op(1) →D ξ1�F � (F.16)

where the convergence in distribution is by the CMT.
We next consider the case that ‖δFn‖ → 0 and ‖n1/2δFn‖ → ∞. In the proof of

Lemma 4.1, we have shown that θ̂2 − θFn = op(1), and that (F.4) and (F.5) hold in this
case. It is clear that

n1/2g2(θFn) = μn(g2(W �θFn)+
(

0r1×1

n1/2δFn

)
� (F.17)

which implies that

ng2(θFn)
′LFng2(θFn) = [

μn(g2(W �θFn)
]′
LFn

[
μn(g2(W �θFn)

]
+ 2

(
01×r1 n1/2δ′

Fn

)
LFn

[
μn(g2(W �θFn)

]
+

(
01×r1 n1/2δ′

Fn

)
LFn

(
01×r1 n1/2δ′

Fn

)′
� (F.18)

By Lemma B.1(v) and Assumptions 3.2(ii)–(iii),[
μn(g2(W �θFn)

]′
LFn

[
μn(g2(W �θFn)

] = Op(1)� (F.19)

In order to bound the third term in (F.18) from below, we shall show that for any d0 =
(01×r1� d

′)′ for d ∈R
r∗ with ‖d‖ = 1,

d′
0LFnd0 ≥ C−1 (F.20)
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By definition, LFn has dθ many zero eigenvalues and r2 −dθ many of eigenvalues of ones.
The matrix G2�Fn contains the dθ many eigenvectors of the zero eigenvalues of LFn , be-
cause

LFnG2�Fn = 0r2×dθ and ρmin
(
G′

2�FnG2�Fn
) ≥C−1� (F.21)

Let G⊥�Fn denote the orthogonal complement of G2�Fn with G′
⊥�Fn

G⊥�Fn = Ir2−dθ . Then
we have (

G1�Fn
Gr∗�Fn

)
a1 +

(
G1�⊥�Fn

Gr∗�⊥�Fn

)
a2 =

(
0r1×1

d

)
(F.22)

for some constant vectors a1 ∈ R
dθ and a2 ∈ R

r2−dθ . As ρmin(G
′
1�Fn

G1�Fn) ≥ C−1 by As-
sumption 3.2, we have

a1 = −(
G′

1�FnG1�Fn
)−1

G′
1�FnG1�⊥�Fna2 (F.23)

and (
Gr∗�⊥�Fn −Gr∗�Fn

(
G′

1�FnG1�Fn
)−1

G′
1�FnG1�⊥�Fn

)
a2 = d� (F.24)

Let HFn = Gr∗�⊥�Fn − Gr∗�Fn(G
′
1�Fn

G1�Fn)
−1G′

1�Fn
G1�⊥�Fn . By ρmin(G

′
1�Fn

G1�Fn) ≥ C−1, As-
sumptions 3.2(ii), (F.24), and the Cauchy–Schwarz inequality,

‖d‖2 = a′
2HFnH

′
Fn
a2 ≤ C‖a2‖2� (F.25)

which together with ‖d‖ = 1 implies that

‖a2‖2 ≥ C−1� (F.26)

Using (F.21), (F.22), and (F.26), we deduce that

d′
0LFnd0 = (G2�Fna1 +G⊥�Fna2)

′LFn(G2�Fna1 +G⊥�Fna2)

= a′
2G

′
⊥�Fn

LFnG⊥�Fna2 = ‖a2‖2 ≥ C−1� (F.27)

which proves (F.20). By (F.20),(
01×r1 n1/2δ′

Fn

)
LFn

(
01×r1 n1/2δ′

Fn

)′ ≥ C−1n‖δFn‖2� (F.28)

which together with n‖δFn‖2 → ∞ implies that(
01×r1 n1/2δ′

Fn

)
LFn

(
01×r1 n1/2δ′

Fn

)′ → ∞� (F.29)

Collecting the results in (F.18), (F.19), and (F.29), and by the Cauchy–Schwarz inequality,
we deduce that ng2(θFn)

′LFng2(θFn)→p ∞, which together with (F.5) implies that

Jn →p ∞� (F.30)

Using the same arguments in showing (F.16), we deduce that

n1/2(θ̂pre − θFn)→D ξ1�F � (F.31)

This completes the proof.
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Lemma F.2. Under Assumptions 3.2, we have

sup
h∈H

E
[(
ξ

′
p�FΥξp�F

)2] ≤C� (F.32)

Proof of Lemma F.2. By the same arguments in showing (E.51), we have(
ξ

′
p�FΥξp�F

)2 ≤ 8
(
Z ′

1�F�
′
1�FΥ�1�FZ1�F

)2 + 8
(
ω2

p�FZ
′
d�2�FBFZd�2�F

)2
� (F.33)

By the first inequality in (B.58) in the Appendix of CLS, we have suph∈H E[(ξ′
1�FΥξ1�F )

2] ≤
C. Hence by (F.33), to show the inequality in (F.32), it is sufficient to prove that

sup
h∈H

E
[(
ω2

p�FZ
′
d�2�FBFZd�2�F

)2] ≤ C� (F.34)

By definition,

ωp�F = I
{
J∞(hd�F) ≤ cα

} = I
{
Z ′
d�2�FLFZd�2�F ≤ cα

}
� (F.35)

By the simple inequality (a+ b)2 ≥ a2/2 − 2b2,

(z + d0)
′LF(z + d0) ≥ d′

0LFd0/2 − 2z′LFz (F.36)

for any z ∈R, which together with Assumption 3.2 and (F.20) implies that

(z + d0)
′LF(z + d0)≥ ‖d‖2/C − 2z′LFz ≥ ‖d‖2/C −C‖z‖2� (F.37)

Under Assumption 3.2, ‖BF‖ ≤C for any F ∈ F which together with the simple inequal-
ity (a+ b)2 ≤ 2(a2 + b2) implies that

(z + d0)
′BF(z + d0)≤ 2C

(‖d‖2 + ‖z‖2) (F.38)

for any z ∈R. Collecting the results in (F.36) and (F.38), we get

I
{
(z + d0)

′LF(z + d0)≤ cα
}
z′BFz

≤ 2CI
{‖d‖2 ≤ cαC +C2‖z‖2}(‖d‖2 + ‖z‖2)

≤ 2C
(
cαC + (

C2 + 1
)‖z‖2)� (F.39)

which implies that

sup
h∈H

E
[(
ω2

p�FZ
′
d�2�FBFZd�2�F

)2]
≤ 4C2

E
[(
cαC + (

C2 + 1
)
Z ′

2�FZ2�F
)2]

≤ C
(
cα +E

[(
Z ′

2�FZ2�F
)2]) = C

(
cα + 3ρ2

max(Ω2)r2
)
� (F.40)

This completes the proof.
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Lemma F.3. Let gp�ζ(h) ≡ E[min{ξ′
p�FΥξp�F � ζ} − min{ξ′

1�FΥξ1�F � ζ}]. Under Assumptions
3.2, we have

lim
ζ→∞ sup

h∈H

[∣∣gp�ζ(h)− gp(h)
∣∣] = 0� (F.41)

where suph∈H[|gp(h)|] ≤ C.

Proof of Lemma F.3. The proof follows the same arguments of the proof of Lem-
ma B.16 with the second inequality in (B.58) in the Appendix of CLS replaced by
(F.32).

Appendix G: Simulation results on truncated risk for Section 6

Figure G.1. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S1. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight,
respectively. The truncation parameter for the truncated MSE is ζ = 1000.
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Figure G.2. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S2. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight,
respectively. The truncation parameter for the truncated MSE is ζ = 1000.
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Figure G.3. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S3. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight,
respectively. The truncation parameter for the truncated MSE is ζ = 1000.
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Figure G.4. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S1. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight,
respectively. The truncation parameter for the truncated MSE is ζ = 1000.
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Figure G.5. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S2. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight,
respectively. The truncation parameter for the truncated MSE is ζ = 1000.
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Figure G.6. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S3. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight,
respectively. The truncation parameter for the truncated MSE is ζ = 1000.
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Table G.1. The lower and upper bounds of the finite sample relative truncated MSEs.

Design S1 Design S2 Design S3

Lower Upper Lower Upper Lower Upper

n = 50 θ̂oe 0�5732 0�7968 0�6113 0�8980 0�9694 1�0012
θ̂JS 0�9755 0�9959 0�9776 0�9978 0�9995 1�0003
θ̂pret 0�4424 0�9574 0�5057 1�0973 1�0324 1�4283

n = 100 θ̂oe 0�5325 0�8789 0�5513 0�9781 0�9733 1�0040
θ̂JS 0�9208 0�9911 0�9202 0�9956 0�9996 1�0002
θ̂pret 0�3586 1�1940 0�3937 1�3539 0�9990 1�4709

n = 250 θ̂oe 0�5316 0�9587 0�5384 1�0118 0�9720 1�0079
θ̂JS 0�7591 0�9787 0�7506 0�9923 0�9999 1�0000
θ̂pret 0�3360 1�5106 0�3598 1�6392 0�9753 1�4394

n = 500 θ̂oe 0�5331 0�9846 0�5355 1�0112 0�9700 1�0096
θ̂JS 0�6443 0�9823 0�6359 0�9953 1�0000 1�0000
θ̂pret 0�3368 1�6196 0�3495 1�6937 0�9562 1�4236

n = 1000 θ̂oe 0�5335 0�9934 0�5341 1�0082 0�9681 1�0119
θ̂JS 0�5803 0�9890 0�5737 0�9978 1�0000 1�0000
θ̂pret 0�3395 1�6433 0�3451 1�6864 0�9473 1�3953

Note: 1. θ̂JS and θ̂pret denote the GMM averaging estimator based on the weight in (6.1) and the pre-testing GMM estimator
based on J -test with nominal size 0.01, respectively; 2. the “Upper” and “Lower” refer to the upper bound and the lower bound
of the finite sample relative MSEs among all DGPs considered in the simulation design given the sample size.
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Appendix H: Simulation under the Student-t distribution

In this subsection, we report the simulation results on the finite sample properties of the
pre-test and averaging GMM estimators, when the residual term u in the structure equa-
tion (6.4) of CLS is a Student-t random variable with degree of freedom 2. The simulation
design is the same as the one in Section 6.1, except that we generate the structural error
u in the following way:

u = u∗((
η2

1 +η2
2
)
/2

)1/2 �

where η1 and η2 are independent standard normal random variables which are inde-
pendent with respect to (Z1� � � � �Z18� ε1� � � � � ε6�u

∗).1 We call this simulation design as
S4.

The finite sample untruncated and truncated MSEs are reported in Figures H.1–H.5.
It is interesting to see that in this simulation design, both the pre-test GMM estimator
and the averaging GMM estimator have smaller finite sample MSEs than the conserva-
tive GMM estimator. The main reason for this phenomenon is that the residual term u in
the structural equation is Student-t with degree of freedom 2, which implies that u has
infinite variance, and hence the conservative GMM estimator has large variance in finite
samples. When the extra IVs Z∗

j (j = 1� � � � �6) are used in the GMM estimation, the finite
sample variances of the GMM estimator is greatly reduced. Therefore, the finite samples
biases of the pre-testing GMM estimator and the averaging GMM estimator introduced
by the extra IVs Z∗

j (j = 1� � � � �6) are more than offset by the reduced finite sample vari-
ances, which enables both estimator have smaller finite sample MSEs.

1In this design, the structural error u does not enter the possibly invalid IVs (6.4). Therefore, the IVs and
the regressors are normally distributed. We thank an anonymous who suggested this simulation design.
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Figure H.1. Finite sample MSEs of the pre-test and averaging GMM estimators in S4. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.
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Figure H.2. Finite sample MSEs of the pre-test and averaging GMM estimators in S4. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively.
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Figure H.3. Finite sample biases and variances in S4. Note: “Pre-test(0.01)” refers to the
pre-test GMM estimator based on the J -test with nominal size 0.01; “Emp-opt” refers to the av-
eraging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James–Stein weight, respectively.The truncation parameter
for the truncated MSE is ζ = 1000.
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Figure H.4. Finite sample TMSEs of the pre-test and averaging GMM estimators in S4. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J -test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James–Stein weight, respec-
tively. The truncation parameter for the truncated MSE is ζ = 1000.
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Figure H.5. Finite sample TMSEs of the pre-test and averaging GMM estimators in S4.
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