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In this Supplemental Appendix, we present supporting materials for Cheng, Liao,
and Shi (2019) (cited as CLS hereafter in this Appendix):

e Section D provides primitive conditions for Assumptions 3.1, 3.2, and 3.3 and the proof of
Lemma 3.1 of CLS.

Section E provides the proof of (4.3) in Section 4 and the proof of some Lemmas in Appendix
B.1 of CLS. The proof of Lemma A.1 in Appendix A of CLS is also included in this section.

Section F studies the bounds of asymptotic risk difference of the pre-test GMM estimator.

e Section G contains simulation results under the truncated risk for the simulation designs in
Section 6 of CLS.

e Section H includes extra simulation studies.

APPENDIX D: PRIMITIVE CONDITIONS FOR ASSUMPTIONS 3.1, 3.2, AND 3.3 AND
PROOF OF LEMMA 3.1 oF CLS

In this section, we provide primitive conditions for Assumptions 3.1, 3.2, and 3.3 in the
linear IV model presented in Example 3.1 of CLS.

We first provide a set of sufficient conditions without imposing the normal distri-
bution assumption on (X', Z{,V”’,U)’ in Lemma D.1. Then we impose the normality
assumptions and show that these conditions can be simplified to those in Lemma 3.1 of
CLS under normality.
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For ease of notation, we define I’ Ep[Z1V'U?], 0 Ep+[Z1Z] U?] and

zou? = zut =
Q2 =Ep[VV'U 2]. The Jacobian matrices are
—Er[Z1X]
Gir=-Er[Z1X'] and Gyr= ( _Ef[z°X]) (D.1)

Let Z, = (Z}, Z*)'. The variance-covariance matrix of the moment conditions is
O p=Ep[Z,Z5(Y - X/00)2] —Er[(Y — X'00) Z2|Er[(Y — X'60) Z}]. (D.2)

By definition, £ r is the leading r; x r; submatrix of {2, r.
Let F denote the joint distribution of W = (Y, Z;, Z*, X’)’ induced by 6y, &9, and F*.
By definition, we can write

r 0,2 DiF
8 = Duudo, Gop = 2 ), = | aae RIRE) D3
F uu0> U2,F ( — Borux — va) 2F (QZ,rl,F QZ,rr,F ( :

where

‘QZ,U,F = Fz1 u3 86 + levuz = ‘(2/2,r1,F’ and
(D.4)
'QZ,W,F = Qu2u26066 + aoru% + Fvu3 66 + 'viuz'

Therefore, the parameter vy defined in (3.4) depends on F through F* and &y, and its
dependence on F* is through v, r+, where

o oo — [Puis Quus veeTzy ), veeTun)', veeToy)', veeh (2, -, 2)'s (D.5)
o Fr = vee(T', ,3)'s vee(T',, ,2) s vee(T 3,) , vech(£2,,,2)’ ’ )
Define
P2,max = max{ sup Pmax(QZ,F)7 sup Pmax(GZ,FG/z’F) } >
FeF FeF
P2,min = min{ﬁig;__pmin(-QZ,F), Pilelg__pmin(GZ,FG/z,F)}a (D.6)

Cw= sup Ep[| (X', Z,V,U)|*] and Cy= sup |8l
FreF* LY

In the proof of Lemma D.1 below, we show that p; max < 0o (see (D.14) and (D.18)).
Moreover, we have p; yin > 0, Ciy < oo and Cy < oo by Assumptions D.1(iii), D.1(ii) and
D.1(vii) respectively. Define

* — -1/2
B, ={8€R” 18] = pominPymaxCa |} (D.7)
Let ©) be a nonempty set in R%. Define
Bg, = {0 €R¥: |10 — 00|l < p 1inP3.max CACiy for any 6y € Op}. (D.8)

Let {cja,C;, A};*zl be a set of finite constants. We next provide the low-level sufficient
conditions for Assumptions 3.1, 3.2, and 3.3.
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AssumptiON D.1. The following conditions hold:

() Ep[V]1=0,Ep:[U] =0, Ep<[Z1U] =0, x1 and Ep<[VU] = 0+ 1 for any F* € F*;
(i) suppecz Ep«[IIXI1*TY + [ Z1 [T + [VI*TY + U®] < oo for some y > 0;
(iii) infpee s Ep+[U%] > 0, infpec 7+ pmin(Txz, Tzyx) > 0 and infre r pmin(122,7) > 0;
[)8+Tp, 0! T

2212 Feull > 0;

: 1
(V) infpscpinfsepg 18171 1Tz, 2 T

ziou? ziud
(v) theset{v, g+ : F* € F*}is closed,
(vi) 6y € Oy, Bg, C int(®) and O is compact;

(vii) As = [c1,a, Cral X -+ x [+ A, Crx Al where Cja< 0< ijAfOTjZ 1,...,r

Lemma D.1. Suppose that {W;}!_, are i.i.d. and generated by the linear model (3.6) and
(3.8) in CLS. Then under Assumption D.1, F satisfies Assumptions 3.1, 3.2, and 3.3.

For the linear IV model, Lemma D.1 provides simple conditions on 6y, §; and 7* on
which uniformity results are subsequently established.

PrOOF OF LEMMA D.1. By Assumption D.1(i) and the definition of Gy f,
Er[g1(W,0)] =Ep[Z1(U — X'(6 — 6p)) ] = G1,r(6 — 6p), (D.9)

which together with Assumption D.1(iii) implies that 6 = 6y and hence Er[g1 (W, 0r)] =
0y, x1- Also 0F € int(®) holds by 6r = 6y and Assumption D.1(vi). This verifies Assump-
tion 3.1(i).

By (D.9) for any 6 € @ with || — 6| > ¢ and any F € F,

|EF[g1W, 0)]| = prti (G £ G1r) 165 — 01l = ep)2 (G £ G1.F), (D.10)
which combined with Assumption D.1(iii) and Gy r = —F; 21 F* implies that
inf inf |Ep[g1(W,0)]|>0. (D.11)

FeF 0B (0F)

This verifies Assumption 3.1(ii).
Next, we show Assumption 3.1(iii). Let Z, = (Z}, Z*)’. By the Lyapunov inequality,
Assumptions D.1(i)-(ii) and D.1 (vii),

sup Er[1Z21*] < sup Ep<[I1Z111*] +2 sup Ep[IV]%]

FeF FreF* FreF*
+2 sup [[8ol> sup Ep+[U?] < o0. (D.12)
50€A5 FreF*

By (D.12), the Holder inequality, the Lyapunov inequality and Assumption D.1(ii),

sup |G, ¢ | = sup |Ex[ZoX']| < sup (B[ Z212]) sup (Er-[I1X]2])"* <00, (D.13)
FeF FeF FeF FreF*
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which together with the definition of G, r and the Cauchy-Schwarz inequality implies
that
sup | Gy pGa,r | < oo, (D.14)
FeF

Similarly, by the Cauchy-Schwarz inequality, the Lyapunov inequality, Assumptions
D.1(ii) and D.1(vii), we have

sup Ex[[1Zl1*] = sup Ex[(1 2112 + | Z2*|*)7]
FeF FeF

<2 sup EF*[||Zl||4] +2sup Ep[[|Z* ”4]
F*eF* FeF

<2 sup Ep[IZ1I1*] +8 sup Ep[IV]*]

FreF* FreF*
+8 sup [I8]* sup Ep+[U*] < o0. (D.15)
8pels FreF*

By (D.12), (D.15), Assumption D.1(ii), the Lyapunov inequality, and the Hoélder inequal-
ity, we have

sup [EF[Z2Z)(Y — X'60)°]|
FeF

< sup Er [ Zal2(Y — X'6p)°]

FeF
< sup (Er[1Z214]) " sup (Bp-[U*])"* < o0, (D.16)
FeF F*eF*
and
sup [E£[(Y — X"60) Z2]|| < sup (E£[I1Z2112])"* sup (Ep-[U%])"* < 0. (D.17)
FeF FeF FreF*

By the definition of (2, r, the triangle inequality, the Cauchy-Schwarz inequality and the
results in (D.16) and (D.17),

sup [|422,F|| < oo. (D.18)
FeF

We then show that 6%, € int(®). By the triangle inequality, the Cauchy-Schwarz inequal-
ity and the Holder inequality,

1G2, £l < 1Tz, | + 180T xull + ol
< ®p-[1X12]) (@5 [12117])) 2
+ 180l B [1X 1)) V2 (- [U2]) 2
+ Ep-[IX 1) P Er-[1V12])

<Cw(2+C)/), (D.19)
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forany F € F, where Cjy < oo by Assumptions D.1(ii) and (vii). Since G/z, F= (G’L 7 G/r*7 7)

where G+ p = —80Ep+[UX'] — Ep«[VV X'], we have
G, pGar =G| pG1r+ G G F, (D.20)
which implies that for any F € F,
Pmin(G), rG2,F) = pmin (G G1,F). (D.21)
To show Assumption 3.1(iii), we write
Or(0) =Er[Za(Y — X'0)] Q5 L Er[Zo(Y — X'6)]
= 0'G) 25 ;G20 +260'G) 105 .Cr + Cp0); ;. Cr, (D.22)
where Cr =Ep[Z,Y]. Since G/z, F‘Q2_, 1FG27 r is nonsingular by (D.18), (D.21), and Assump-

tion D.1(iii), Qr(6) is minimized at 0% = —(G} 2, .G, )~ G} (05 .Cp forany F € F.
Therefore,

[0 = 00" = (G5 52, Go.r) ™' Gy p 2, P EFIZ2UN|

prznax(-QZ,F)
" Pin(GrG2F)
_ Pax (22,1 pmax(G, G2, ) Ui
Pmin (22,7) Piin (G5 £ G2, 1)

4 3 2
< P2 minP2,maxCaCiy (D.23)

EF[UZQ]QZ*}GLFG’Z’ F.Qz”lF]EF[ZgU]

2
160l

for any F € . By Assumption D.1(vi), 6% € int(®). Moreover, for any 6 € ©@ with |6 —
0pll =&
F - ’

Qr(0) = Qr(6) = pmin(Gh, p 2 1 Ga,r) [ 0 — 07|
> & puin(G 25, +Gar)
> 32p;1;x((22,F)pmin(G/2, rG2F)s (D.24)
which together with (D.18), (D.21), and Assumption D.1(iii) implies that

. . _ 3
;gfeeégfe;)[QF(a) Or(6%)] > 0. (D.25)

This verifies Assumption 3.1(iii).
Next, we verify Assumption 3.1(iv). Let (2;2? = rF — _(2/2 " F_Qz_llzluzh(zz’lr, L
where (2, 1, r and (), ,, r are defined in (D.4). Then

/ -1
Gz,F-Qz,FSZ,F
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N N R Ty A eSS
= _(szl s Py + rxu‘S()) 1 11 ‘QZ,F 04 do
r*

= 0uu[(Tezy 271 T, = D)8+ Tz 271 T, 2 — T JOT7 8

z1z1u? z1z1u2
22 _
= .()W66.(2571?)50({‘”1.(221121”21“2] w2 = Txu)
— 22
Qo 2 Ty = Do) 25700, (D26)

by the formula of the inverse of partitioned matrix. For any 8y € As with ||6¢| > 0, we
have

2)\2 22)\1\2
56(”5}) 50> (Pmin(ﬂg,F))) 1 - p%,min

(D.27)
2= 28 5. = 2
(55257280)"  (pmax(2577))” %0%0 ~ Cap2ma
and
(22) (2272« \1/2 (22)
/ 4(22) 5692,F 60(56(‘(22,F) 80) l16oll 86‘02,F do
8042, 1 60 = /(22824 \1/2 = p /(2282 o 11727 (D.28)
(60(‘02,F) 89) 2,max (50(02,F) 89)
where the last inequality in (D.27) and the inequality in (D.28) are due to
22 _ _
Pmin(ﬂé,F)) Z Pmin (9217) = p2,1nax
and
(22) -1 -1
PmaX(Qz,F ) < PmaX(Qz,F) = P2, min
Therefore, for any F € F with &3 p = £,,,(01,,, 8;)" and [ 8¢ > 0,
0%
-1 (22) -1 2,F €0
195.p 2 P02l _ 308227 30 | (Cun 2] Ty = To)
182,71 18]l » 0°°2,F 0
+ (szlgzlzluzrzlu3 - FX”)
072
1 (22) 1 2,F ©0
o1 8l 0 | (Taz 2, ol — va)m
= P2.max (5 (0(22))280)1/2 » 0"72,F 90
0 2,F “+ (szlgzlzluzrzlu3 - qu)
—1 <
_ 1 3 (rle‘gzl Z] uirﬂvuz - va) 60 (D29)
p2,max |60l || + (szlgz_lzluzrzlu3 - qu)

where 50 = ng? 5o/ 66!2%2? 8¢ and the inequality is by (D.28). By (D.28) and the definition

of B, , 8 € B;, . Therefore, (D.29) implies that
/ -1 -1
H GZ,F'QZ,F527F H . 1 inf ”6”71 (szl 92121 ulzrzlvu2 - va)5 . (D.30)
62,7 "~ P2,max d€BS, +(Cxz 2, oTs — D)
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Collecting the results in (D.18) and (D.30) and then applying Assumption D.1(iv), we get

|G, 62 p02r |

i >0, (D.31)
(FeF: |I5F|1>0} 162, Fl

which shows Assumption 3.1(iv) with 7 = 1.

Assumption 3.1(v) is implied by Assumption D.1(vii). This finishes the verification of
Assumption 3.1.

To verify Assumption 3.2, note that g(W, 0) = Z,(U — X'(6 — 6p)), g2,0(W, 0) =
—Z,X'" and g5 99(W, 0) = 0(;,4,)xd,- Therefore, Assumption 3.2(i) holds automatically.
Moreover, Assumption 3.2(ii) is implied by Assumption D.1(ii) and the assumption that
0 is bounded. Assumptions 3.2(iii)—(iv) follow from Assumption D.1(iii).

We next verify Assumption 3.3. By definition,

vp = (VeC(Gz,F)/, VeCh(Qg,F)/, SF). (D.32)

Let Ay = {v, p+ : F* € F*}. From the expressions in (D.3), we see that A = {vr: F € F}
is the image of A, x As under a continuous mapping. By Assumption D.1(ii) and the
Hoélder inequality, A, is bounded which together with Assumption D.1(v) implies that A,
is compact. Since A; is also a compact set by Assumption D.1(vii), we know that A, x As
is compact. Therefore, A is compact, and hence closed. This verifies Assumption 3.3(ii).

Let ep = 0yucp where ¢y = min{min;<,« [¢j al, min;<,« |C; |}. Below we show that for
any & € R” with 0 < ||8]| < &, there is F € F such that

5p=08, Gy p—Gorl <Cil5plV* and |2, 35— 2 rll < G814 (D33)

for some fixed constants C; and C,. This verifies Assumption 3.3(i) with k = 1/4.
First, if & = 0,451, then we set F to be F which is induced by 8¢, 6y and F* with
80 = Opex1. By definition, G, z = G5, £, j =, and 8 = 8 = 8002, = 0 = which
implies that (D.33) holds.
Second, consider any 5 e R™ with 0 < ||§]| < ep. Define 8 = 5.(2;;. Since ||3]| < eF
and EF = .QuuCA,
1801l = 324 | = 181251 < ca, (D.34)

which combined with the definition of A5 implies that 5y € As. Let F be the joint distri-
bution induced by &y, 6y, and F*. By the definition of 7, we have F € F. Moreover,

85 = 80, =5, (D.35)

which verifies the equality in (D.33). By definition,

L —Ep+[Z1X'] _(-Ep[Z1X]
G, p= < 3B [UX] - Ep- [VX’]) and Gy r= ( —Er[VX]) (D.36)

which together with the Cauchy-Schwarz inequality and the Hélder inequality implies
that

1G, 7 — Go,rll = | SoEr[UX']] < 180l (QuEr-[I1X12]) "
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= 18011420 (B [1X 12]) " 150 20 /4. (D.37)
By Assumption D.1(ii),
sup Ep<[|X)?] <00 and sup 0 < oo, (D.38)
FreF* FreF*

which together with (D.34), (D.37), and the definition of s implies that
1G, 7 — Go,rll < C1II8|M4, (D.39)

where C| = ci/4 SUp g e px (B (11X 122 SUP e e 5 (2%4 is finite.

To show the last inequality in (D.33), note that by definition 63 = 6y = 6, and hence
Ex[Z1Z,(Y — X'605)°] =B[22, U] = Er[ 21 Z} (Y — X'6F)]. (D.40)
Under F,

Ef[Z12%(Y — X'65)°] = Ep-[Z1(USo + V) U] =Ep-[U* 2118 + B [U*Z,V'], (DAD)

and
Ex[Z* 27 (Y — X'07)°]
=Ep[(USp + V) (U8 + V) U
=Ep[U*]805) + S0Ep+[UV'] + Ep+[UV ]85 + Ep: [U*VV']. (D.42)
Under F,

Er[Z,Z%(Y — X'0r)°] =Ep:[U*Z,V'] and
(D.43)
Er[Z*Z* (Y - X'0F)’] = Ep-[UPVV'].
Collecting the results in (D.40), (D.41), (D.42), and (D.43), and applying the triangle in-
equality, we get
[EF[2223(Y = X'05)"] ~ Er[2:25(Y — X"0r)|
< |Ep[UZ1]5)| + [Er[U*]005 |
+ | 80Er [UPV']] + | Er-[UV]5). (D.44)
By Assumption D.1(ii) and the Lyapunov inequality,

sup Ep[|UI°] < o0, sup Ep+[IZ1]*] <00 and  sup Ep[|V]*] <oco. (D.45)
FreF* FreF* F*eF*

By the Holder inequality,

B [U3Z1]| < EBr-[lUNZ1IPJER[1U1P])
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< B [UP) 2 E®r(1204) " B [02])

= 0l Ep[IUPY) Y B [12114]) (D.46)

Similarly, we can show that
|Er-[0%V]] < @il B [1UP) " Er- [V 1*]) (D.47)

and

V2= ot sup (Br[UC])Y. (D.48)

FreF*

Ep-[U*] < (Bp-[U*]E-[U®])

Let G0 = suppecr {Ep[IUPDVA[Ep[I Z 1*DV* + EpLIVI*DY4 + Ep-[UDHV2).
Combining the results in (D.44), (D.46), (D.47), and (D.48), and applying the Cauchy-
Schwarz inequality, we get

|E#[2225(Y — X'07)°] — Er[2225(Y — X'0F)°]|
<3C.00 130l + Co02u 130112
= (3C2.0l13017* + Ca.01 3017 2l 18011V < C21 151114, (D.49)

where C; 1 = C2,0(3ci/ 4 + CZ/ 4) the second inequality is by (D.34) and the definition of 5.

By (D.45), Assumption D.1(ii) and the definition of c,,
C2,1 < OQ. (D.SO)
Next, note that

Er[Z1U]

EAZa(Y — X'67)] = ( L ) and EF[Zz<Y—X/9F)]=(EFgfﬁU]), Ds1)

which implies that

IEF[ZZ(Y—X/OF)]IE;[ZZ Y - X'07)]
—Er[Z2(Y — X'0p) [E[Z5(Y — X0F)]

< Q4 |Ep [ Z1UT8 || + Quu||S0EF=[Z1 U1 | + 22,1801

S0EF:[Z, U] 506,022

< Or, QB Z4 U]ag,)

< 20uul180 Il |[EF<[Z1U1|| + 22,1801
< LB Er[1Z01P]) 7 + Q0150174 15114

< CoalI8IIV4, (D.52)
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where C; ; = supF*GF*{2.Qf/u4(]EF*[||Zl ||2])1/2ci/4 + QZ,/L,4CZ/4}, the second inequality is by
the Cauchy-Schwarz inequality, the third inequality is by the Holder inequality. By As-
sumption D.1(ii) and the definition of c,,

Crp < 0. (D.53)

By the definition of (2, r in (D.2), we can use the triangle inequality and the results in
(D.49) and (D.52) to deduce that

12, 7 — Q2.5 < CoI3]1M4, (D.54)

where C; = C;1 + G, 2 and C; < oo by (D.50) and (D.53), which proves the second in-
equality in (D.33). This verifies Assumption 3.3(i) with « = 1/4. O

Proor oF LEMMma 3.1. Next, we apply Lemma D.1 to prove Lemma 3.1 in the paper. For
convenience, the conditions of Lemma 3.1 are stated here. The proof verifies the condi-
tions of Lemma D.1 with the following conditions in a Gaussian model. Let 7* denote
the set of normal distributions which satisfies:

i) ¢u=0, Fz1u = 0r1><1 and I'y, = 0,1
(i) infpscF+ Pmin(rlerzlx) >0, SUP e = ”d’”2 < oo and
0< ian*EJ-'* Pmm(lp) < SupF*E.F* pmax(‘q/) < 005
(i) infpscs infysy=e) 181 (Txz, T7h Ty — Tap)d — Lyl > 0 for some & > 0 that is

XZ1+ 211
small enough (where ¢ is given in (B.3) in the Appendix of CLS);
(iv) 6 € int(®) and O is compact and large enough such that the pseudo-true value
0*(F) € int(O);

) As =I[c1,a, Cral X -+ X [ A, Cpx Al Where {c; a, Cj,A};*zl is a set of finite constants

WithC]',A <0< CLA forj:l,...,r*.

Specifically, we assume that Condition (ii) of Lemma 3.1 holds with some constants c,
and Cp such that Cp =< Pmin(rlerzlx)» ||¢||2 = Cpr and Cp = Pmin(¥) < pmax(¥) < Cp; Con-
dition (iii) of Lemma 3.1 holds with

Anf 1817 (Pazy T2, Tao = T8 = T | 2 e (D.55)

xzl 57,
for some positive constant ¢ and
BE={8€R" 1|8l = ¢x,pC; 1 Cy '}, (D.56)
where
Cow=2(dg+r2+1)Cp,  cp=min{l,c2} and C.,=C2,(2+CY%)° (D57)

and Cy = sup;, 4, lI80ll*.
Assumption D.1(i) holds under Condition (i) of Lemma 3.1. Since (X', Z}, V', U)’
is a normal random vector, Assumption D.1(ii) holds by |¢|> < Cp and pmax(¥) <
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Cp. BY pmin(¥) > ¢, and ¢, = 0, we have Ep«[U?] > ¢, for any F* e F*, and hence
infpec 7+ Ep«[U?] > 0. Let F denote the distribution of W induced by F* with mean ¢
and variance—covariance matrix ¥. By definition, G| p = —Ep«[Z; X'] =T;,». Therefore,

inf pmin(G) G > 0 D.58
;efpmln( 1,F 1,F)_Cp> ( )

holds by pmin(I'xz,I'z,x) = ¢, > 0 for any F* € F*. Since I';,, = 0, x1 and I'y, = 0,+ 1 for
any F* € F*, U isindependent with respect to (Z’, V')’ under the normality assumption.
Therefore, by Condition (i) of Lemma 3.1,

'-Quurzlzl '-Quurzlv
Qul, 202,808, + Quul'yy

zZ1v

/
‘QZ Z ‘QZ v ¢Z d)z Oy xr Oy xr*
— Q 141 1 —{—Q 1 1 + 1X7r 1 , (D59)
e (QUZL \-vi “ q—')v ({bv Or*xrl 203u6086
which implies that ppin (22 F) > pﬁlin( V) where F is the distribution of W induced by F*
with mean ¢ and variance—covariance matrix V. Since pmin(¥) > ¢, > 0, we have

D r=

>

inf pmin(£2 ) D.60
bllel}_l)mm( 2,F)Zcp> ( )

This completes the proof of Assumption D.1(iii).
By (D.59), Conditions (ii), and (v) of Lemma 3.1

SUP pmax(22,F) < Pruax (V) + pmax(P) D17 + 29 (W)Ca <2Co (14 Cp). (D61
FeF

By (D.19) in the proof of Lemma D.1,
1Ga, £l <2C,(dy + 12+ D(2+CY),
which implies that

SUp pmax (G Ga.p) < 4C2(dg + 12 + 1?2+ CY?). (D.62)
FeF

By (D.58) and (D.60),
min{ inf pin(22,7). inf pmin (G, pGo,r) | = min{1, ). (D.63)
By (D.61) and (D.62),

’ 2
max{ Sup pmax(£22, ), sup Pmax(Gz,FGZ,F)} < 4C§(d9 +ry+ 1)2(2 + Ci/Z) . (D.64)
FeF FeF

From (D.63), (D.64), the definitions of ¢, ,, C,,, and ij,p, we have BI‘;Z - va, p where

Bf,z is defined in (D.7). Moreover, by ¢, = 0, the normality assumption and the inde-
pendence between U and (Z}, V"), we have 0l T 0,15, and

z1z1u? = ziou? =
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le 2 = 0y, x1, which implies that
” (szl‘gzllz u2rzlvu2 - I‘/W)5 + rle ‘QZ ]z uzrz1 ul — Ixu ||
= || (l"lel“z_lz1 v — FXU)S —T' || (D.65)

Assumption D.1(iv) follows by By, C B, ,, (D.65) and Condition (iii) of the lemma.
We next show that Assumptlon D.1 (V) holds. Define

b _ -Quu,Vec(rle)/aVec(rxu)/,VeC(rxv)/:
ST\ vee(Ty,0), veeh(Ty,2,), veeh(Tyy) ]

Under Condition (i) of Lemma 3.1 and the normality assumption, I' 2> = 3.(2W, le B =
0, x1> Tyys = 01, Qzlzluz =0l 2, levuz =0ul'z v, and Q2 = QWFUU. Therefore,
to verify Assumption D.1(v), it is sufficient to show that the set {v, g« : F* € 7*} is com-
pact because the set {v, p« : F* € F*} is the image of the set {v, g+ : F* € F*} under a
continuous mapping. Let {(¢,, ¥,)}, be a convergent sequence where (¢, ¥,) satis-
fies Conditions (i)-(iii) of Lemma 3.1 for any n. Let é and ¥ denote the limits of ¢,
and ¥, under the Euclidean norm, respectively. We first show that Conditions (i)-(iii)
of Lemma 3.1 hold for (q’) EI/) Slnce Sun=0,12un=0,x1 and FW n= = 0,+41 for any n,
we have qSu =0, leu =0,,x1 and I‘W = 0,+41 which shows that (qS lIf) satisfies Condi-
tion (i) of Lemma 3.1. Since ¢, — qS and | ¢,|? < C, for any n, we have ||d)||2 < C,. By
the convergence of (¢, W), I'xz) .0 — Fm Since the roots of a polynomial contlnuously
depends on its coefficients, we have

pmin(rle,nr;zl,n) — Pmin (szl FXZl) Pmin(¥n) — Pmin({f’) and
Pmax(¥Yn) = Pmax(w),

which together with the assumption that I'y,, , and ¥, satisfy Condition (ii) of Lem-
ma 3.1 implies that

Cp = Pmin(r r ) and Cp =< Pmin({f/) =< Pmax(fp) =< Cp-

X211t xzp

This shows that Condition (ii) of Lemma 3.1 holds for ( ¢7 , f’) For any 6 € Bf; by the
triangle inequality, the Cauchy-Schwarz inequality and ||8]| > c3C; 2¢c! L (1+ CA) 12-1

~

1817 (Txz, T2, Tapo — Ta)8 — T
> 11807 (Tazy, T2, wT 2o — Trwn)8 = T |

XZ1,n" z121,n

- HF F_l FZIU =T F_ lev n

X214 219 XZ1,n" z121,n

- ||va - rxv nll — 2C2CA(1 + CA)C_ ”qu n— xu”,

which together with the convergence of (¢,, ¥,) and Conditions (ii)—(iii) of Lemma 3.1
implies that

~ ~

181~ (Trzy T2 Tapo — Tro) 6 — T
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”F lev =TI Fi lev,n“

Xz1 z1z1 XZ1,n* z121,n

- ||fxv - va,n” - ZCgCA(l + CA)C;ZHqu,n - qu I
for any n. Let n go to infinity, we get

1817 (Taz, T2, Tapo — Tn) 8 — T 2 er

for any 6 € B¢. This shows that Condition (iii) of Lemma 3.1 also holds for ((Z , {IV’). Hence
the set of (¢, ¥) which satisfies Conditions (i)—(iii) of Lemma 3.1 is closed. By Conditions
(i)—(ii) of the lemma, we know that this set is compact because it is also bounded. Let F*
denote the normal distribution with mean ¢ and variance—covariance matrix ¥. Then
v, F+ is the image of (¢, ¥) under a continuous mapping, which implies that {v, g« :
F* € F*} is compact. Therefore, the set {v, p= : F* € F*} is compact, and hence closed.
This proves Assumption D.1(v).

Assumption D.1(vi) is used to show that 6 € int(®) and 60}, € int(®) for any F € F.
By 6 = 6 and Condition (iv) of Lemma 3.1, we have 6 € int(®) and 6}, € int(0).

Finally, Assumption D.1(vii) is the same as Condition (v) of Lemma 3.1. O

APPENDIX E: PROOF OF SOME AUXILIARY RESULTS IN SECTIONS 4 AND 5 oF CLS

ProoF oF LEMMA B.2. (i) Let g j(w, 6) denote the jth (j =1,...,r) component of
g2(w, 0). By the mean value expansion,

2,j(w, 01) — g2, ;(w, 02) = g2 o (w, 612) (81 — 62) (E.1)

for any j =1,...,r;, where 51,2 is some vector between 0; and 6,. By (E.1) and the
Cauchy-Schwarz inequality

[Er{g2,10, 60) = 82,5, 02)]| <Er[supl 2,007, 0)] 161 — €21, (E2)
[US
foranyj=1,...,r. By (E.2), we deduce that
M7 (01) = Mo p(02)] < V7B suplg2,0 0] [101 — 2]
fe

< Cum, 14121101 — 62l (E.3)

for any F € F, where Cy;1 = supp. r Er[supyeg l182,0(W, 0)[I1 and Cys,1 < oo by Assump-
tion 3.2(ii). This immediately proves the claim in (i). The claim in (ii) follows by similar
argument and its proof is omitted.

(iii) By the mean value expansion,

gz,jl(wa Ol)gz,]z(w> 01) - gz,]l(w7 02)g2,]2(w7 02)
=[g2,j,.0(w, 51,2)g2,j2(w, 012) + 82,j; (w, 51,2)g2,j2,9(w, 51,2)](01 -6 (E4)
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foranyji, j,=1,...,r, where 51,2 is some vector between 6; and 0, and may take differ-
ent values from the 51,2 in (E.1). By (E.4), the triangle inequality and the Cauchy-Schwarz
inequality

|EF[82,j, (w, 01)82,, (W, 61) — &2, (w, 62)&2, j, (w, 62)]|

= 2B [sup|g20¥, 0) [ | g2,6 W, 0] ]161 = 621
0c®
=B [sup([| g2, 0)[* + g2, 0)[*) [ 161 = 621 (E.5)
0<®

for any ji, j, =1,...,r, where the second inequality is by the simple inequality that
lab| < (a® + b*)/2. By (E.5),

IEF[g2(W, 00)82(W, 01) — g2(W, 02)82(W, 62)']|
< raEg[sup([ 200, )" + 82,00, 0)[) 161 — 62
0e®
<nCy2l01— 02 (E.6)

forany F € F, where Cp 2 =supp. r Er[supyce(lIg2(W, 0)|12+ llg2,0(W, 6)|1*)] and Cup<
oo by Assumption 3.2(ii). Using the triangle inequality, and the inequality in (E.2), we
deduce that

|Er[g2,j, (w, 0D]EF[g2,;,(w, 01)] — Er[g2, ), (w, 02)|EF[g2,j,(w, 62)]|
< |Er[g2,j,(w, 61) — g2,j, (w, 02)|EF[g2,}, (w, 61)]]
+ |EF[82,j, (w, 02)[EF[g2,j,(w, 62) — g2,j,(w, 61)]

< 2E; [sup||g2(W. 0) | [E[sup|g2.0 . 0)] |61 — 021 (E.7)
6O 6O

forany ji, j»=1,...,m. By (E.7),
|EF[g2(w, 01)|EF[g2(w, 61)'] — Er[g2(w, 02)|EF[g2(w, 62)']|| <r2Cy 31161 — 621 (E.8)
forany F € F, where C 3 =2supp. 7 Er[supgeg llg2(W, O) |[IEF[supgep 182,0(W, 6)]]] and

Cum 3 < oo by Assumption 3.2(ii).
By the definition of 2, r(6), the triangle inequality and the results in (E.6) and (E.8)
1422,7(01) — 22, (62) | < r2(Cpr2 4+ Car 3)1161 — 6211, (E.9)

which immediately proves the claim in (iii). O

ProoF oF LEMMA B.3. By Lemma B.1(i),

£2(0) =M £, (0) + [nl > &(W, 0) - Mz,F,,(O)} =M £, (0) + 0p(1), (E.10)
i=1
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uniformly over 6 € ©. As g1 (W, 0) is a subvector of g,(W, 0), by (E.10) and Assump-
tion 3.2(ii),

81(0)'81(0) = M1 £, () M1,F,(6) + 0p(1) (E.11)

uniformly over 6 € @. By Assumptions 3.1(1)-(ii) and F, € F, M r,(6)M; F,(6) is
uniquely minimized at 6f,, which together with the uniform convergence in (E.11) im-
plies that

61 — 65, — 0. (E.12)
To show the consistency of 0,, note that

n
Dy =n""Y " gr(W;, 01)g2(Wi, 01) — 5(01)82(61)

i=1

=Er, [g2(W, 00)g2(W, 01)'] — My, (61) Mo F, (1) + 0 (1)
=05, (61) + 0p(1) =Dy 5, + 0,(1), (E.13)

where the first equality is by the definition of £,, the second equality holds by (E.10),
Lemma B.1(ii) and Assumption 3.2(ii), the third equality follows from the definition of
), F,(0), and the last equality holds by Lemma B.2(iii) and (E.12). This shows the con-
sistency of (2,. O

In the rest of the Supplemental Appendix, we use C denote a generic fixed positive
finite constant whose value does not depend on F or n.

PROOF OF LEMMA B.4. As g,(6) is a subvector of g,(6), and £ , is a submatrix of (2, ,,,
using (E.10), (E.13), and Assumptions 3.2(ii)-(iii), we have

£1(0) (21)7'81(6) = My £, (6) Q7 , M1 £,(8) +0p(1), (E.14)
uniformly over ©. By Assumptions 3.2(ii)—(iii),
C™ < pmin(27 }; ) < pmax(27 ;) < C, (E.15)

which together with Assumptions 3.1(i)—(ii) implies that Ml,pn(a)’ﬂl_}an,Fn(e) is
uniquely minimized at 0f,. By the standard arguments for the consistency of an ex-
tremum estimator, we have

01— 0F, =0,(1). (E.16)

Using (E.16), Lemma B.1(iv) and Assumption 3.2(ii), we have

21(01) =81(0r,) + [M1F,(01) — M1 £, (05,)] + 0p(n~1/?)
=210, +[G1F,(9F,) + 0, (1)](01 — 05,) + 0, (n~1/?). (E.17)
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Similarly,

n
n~'Yy " g10(Wi, 01) = G1.£,(01) + 0,(1) = Gy 5, + 0 (1), (E.18)
i=1
where the first equality follows from Lemma B.1(iii) and the second equality follows by
(E.16) and Lemma B.2(ii). From the first-order condition for the GMM estimator 51, we
deduce that

0= |:”_1 Zgl,é)(”/iaal):| @) 'g ()

i=1
= (G5, 00 f, +0p(D)[21(0F,) + (G1.F, + 0,(1)) (61 — 0F,) + 0, (n~/?)], (B.19)

where the second equality follows from Assumptions 3.2(ii)-(iii), (E.13), (E.17), and
(E.18). By (E.19), EF,[g1(W, 6F,)]1 = 0, and Assumption 3.2,

n2(8; — 0r,) = (T1.F, + 0, (1) wa(g1(W, 05,)) + 0 ,(1). (E.20)

By Assumptions 3.2 and Lemma B.1(v), I' g, = O(1), and u, (g1 (W, 0F,)) = 0,(1), which
together with (E.20) implies that

n'2(01 = 0,) = T1,5,mn(g1 (W, 05,)) + Op(1),
where I'y g, (g1(W, 6£,)) = Op(1). This completes the proof. O
Proor oF LEMMA B.5. By (E.10), (E.13), and Assumptions 3.2(ii)-(iii), we have
£2(0) (122)7'8,(0) = M3 £, (0) Q £, M2,F,(0) +0p(1) = OF,(0) + 0,(1) (E.21)

uniformly over @. By Assumption 3.1(iii), Of, (6) is uniquely minimized at 6* The con-
sistency result 8, — 0%, — p 0 follows from standard arguments for the con31stency of an
extremum estimator. O

PROOF OF LEMMA B.6. By the definition of 6,

2,(62)(22)718,(02) < 2,(05,) (22)7'%,(6F,), (E.22)
which implies that
12202 |” < pmax (@22 () 22005, |- (E.23)

By (E.13) and Assumptions 3.2(ii)—(iii),
C™! < pmin(22) < pmax(2) < C (E.24)

with probability approaching 1. By Lemma B.1(i), M1 r,(0F,) =0, x1 and g, = o(1),

122005 | =0, (1), (E.25)
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which combined with (E.23) and (E.24) implies that
|82(82)] = 0, (D). (E.26)
Moreover, by (E.26), Lemma B.1(i) and the triangle inequality,
|Ma,r, (82| < |82(62) — Mo, (82)]| + [ 82(82)] = 0, (1), (E.27)
which immediately implies that
| M1, (02)] = 0, (D). (E.28)

The first result in Lemma B.6 follows by (E.28) and the unique identification of 6, main-
tained by Assumptions 3.1(i)-(i).
Using 32 — 0, = 0p(1), Lemma B.1(iv) and Assumption 3.2(ii), we have

22(02) = 8,(0F,) + [Ma.F,(82) — M. £, (0,)] + 0, (n"1/?)

=2,(0r,) +[Ga.F,(0F,) + 0,(1)](02 — 0F,) + 0, (n~1/?). (E.29)
Similarly,
n
n' " g.0(Wi, 02) = Go1,(02) + 0,(1) = Go, £, (0F,) + 0 (1), (E.30)

i=1

where the first equality follows from Lemma B.1(iii) and the second equality follows by
52 — 0F, = 0p(1) and Lemma B.2(ii). From the first-order condition for the GMM estima-
tor 6,, we deduce that

0= [w Zgz,e(l’Vi,b\z)i| (2)"'5,(62)
i=1
= (Gyr, %% +0p(D)[82(0F,) + (Gar, +0p(1) (B — 65,) +0,p(n~ )], E3D)

where the second equality follows from Assumptions 3.2(ii)—(iii), (E.13), (E.29), and
(E.30). By (E.31) and Assumption 3.2,

n'2(0, — 0,) = (To.F, + 0p(D){a(g20W, 05,)) + n'*Er, [g2(W, 05,)]} + 0,(1), (E32)

where I'; , = —(G), FnQZ—}Fn G, Fn)—lG/L Fnﬂ_l 0

2,Fy

PROOF FOR THE CLAIM IN EQUATION (4.3). Consider the case n]/ZSFn —deR". By
Lemma4.1,

”]/2[§(w) —0F,| = n'2(6, — 0r,) + w[nl/z(lﬁ\z —0p,) — n'2(0, — 0r,)]

—p T} pZanFr+olor—T] ) Za2r, (E.33)
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where Z; » r has the same distribution as 2, r + dy. This implies that
£(6(w)) = n[0(w) = 05, ] Y[6a(@) — 05,] > D Ar(w), (E.34)
where
AF(w) = Z&,z,FrT:FYFT,FZd,Z,F + 2wZ£1,2,F(F2,F - FT,F)/YFT,FZd,lF
+ 0’25 p(Por =17 ) Y(Cop =T p) Za.r-
Now we consider E[Ar(w)] using the equalities in Lemma B.9 below. First,
]E[Zé,z,FFTfFYFT,FZd,z,F] =tr(Y3,F) (E.35)

because FTZd,Z,F = rl’pzl’F and F],FE[Zl,FZi F]F/l F= 21,[: by definition. Second,

E[2} 5, (T =T ) YT} pZa2r]
= tr(YFT,FE[Zd,Z,FZZJ,z,F] (T2F — FT,F)/)
— (YT} p[dody + 0 7] (C2.r ~ T 1))
=tr(Y(22,F — 31,F)), (E.36)
where the last equality holds by Lemma B.9. Third,
E[2) 5 p(Cor =TT £) Y (Cor =T p) Za2.r]
=tr(Y (Po.p = T p)[dod + 02, F ]| (Pa.r = T p)')
=dyl [ YT5 pdo —tr(Y (3o, F — 31,F)) (E.37)
by Lemma B.9. Combining the results in (E.35)-(E.37), we obtain
E[Ar(0)]=tr(Y3 p) = 20tr(Y(Z1,F — 32.F))
+ 0 [dT YT pdy + tr(Y (31, — 32,)) . (E.38)

Note that dyI", ;YT rdy = dy(I'2 p — T )Y (T2 — T} p)dp because I' do = 0g4,. It is
clear that the optimal weight w3 in (4.3) minimizes the quadratic function of o in (E.38).
U

Proor oF LEMMA B.9. By construction, I'] ;dy = 0g4,1. For ease of notation, we write
Qz,p and GZ,F as

Qp= ( G e ) and Gop= (G”) . (E.39)

To prove part (b), we have

D Dy

1Lrs el p=1l'1F, dgxr]<(2r*1’F O r

) [Fl,F, Odg xr*]
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1
=T1 ;01 ;T p= (G} p O Grr) =31r. (E.40)

To show part (c), note that

_ _ -1
T} p 20T = =15, 04y r 120, 725 :Go, 1 (G (05 },Gz,p)

= —Fl,FG1,F(G/2,F-Qz_}G2,F)_1 = (G} Gz F) =3 (EA41

because —I't G, F = I4,xq,- Part (d) follows from the definition of I'; f. O

Proor oF LEMMA 4.2. We first prove the consistency of ﬁk, @k, and fk for k =1,2. By
Lemma 4.1, we have 51 = 0F, + 0,(1). Using the same arguments in showing (E.13), we
can show that

D=0 5, +0,(1) =Dy 5 +0,(1), (E.42)
where the second equality is by the assumption of the lemma that vr, — vr for some
FeF.As .(21 is a submatrix of .(22, by (E.42) we have

Q1 =015, +0,(1) =Dy p +0,(1). (E.43)

By the consistency of §; and the same arguments used to show (E.30), we have

n
n'Y " g2.0(Wi, 01) = Go, £, (0F,) + 0, (1) = Ga.p + 0 (1), (E.44)
i=1

where the second equality is by (B.10) which is assumed in the lemma. As n~! x
Yo 81.e(W, 07) is a submatrix of n~! Yo 82.0(W, 1), by (E.44) we have

n
n™tY " g16(Wi, 01) = G1,£,(05,) + 0,(1) = Gy r + 0, (1). (E.45)
i=1

From Assumption 3.2, (E.42), (E.43), (E.44), and (E.45), we see that ﬁk and ék are con-
sistent estimators of (2 r and Gy r, respectively, for k = 1, 2. By the Slutsky theorem and
Assumption 3.2, we know that fk is a consistent estimator of 3 r fork =1, 2.

In the case Where nl/ 25 F, —>dEe€ R"", the desired result follows from Lemma 4.1, the
consistency of 21 rand 22 r, and the CMT. In the case where ||n!/28, || — 00, Beo —> 0
because 7'/2|[6; — || — , oo and

12 (0eo — 0F,) = nV%(01 — 0F,) + Beon'/* (82 — 01)

n1/2(§2 — ’9\1) tr[Y(/Z\l — gz)]
n(02—61)'Y (0 — ) + [V (31 — 32)]
—p éL,F (E.46)

=n'2(0, — 0r,) +

by Lemma 4.1. O
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ProoF oF LEMMA B.15. By definition,
/ / / r A 1/2 1 1/2
& rYé,r=2 pl pYl1 rZ1 = Zlgl,Frl,FYFLF‘Ql,le’ (E.47)

where Z; ~ N(0,,, I+, xr, ). By Assumptions 3.2(ii) and 3.2(iv), and the fact that Y is a fixed
matrix,

sup pmax(2y 3T o YT1p02}) < C. (E.48)
FeF
By (E.48),
2 2
sup E[(£] 1Y &1,7)"] < sup oo (@171, YT r Q) DE[(221)7] <30C, (B.49)
heH heH

where the second inequality is by E[(Z] 2 Y1 <3r+r(n—-1)= rl2 + 2r; which is implied

by the assumption that Z; is a r;-dimensional standard normal random vector. The first

inequality of this lemma follows as the upper bound in (E.49) does not depend on F.
For any F € F, define

Br=(Tyr — F{)F)'Y(I‘LF —T% p).

By the Cauchy-Schwarz inequality and the simple inequality |ab| < (a®> 4+ b*)/2 (for any
real numbers ¢ and b),

o _
EpYEp <2(Z2, pUY Y] p2anr + “’erzéi,z,FBFZd,LF)
=2(2] ;T pYT1LFZ21F + a%zg,z, #BFZ42.F), (E.50)

where the equality is by I'] ;do = 04,1 (which is proved in Lemma B.9). By (E.50) and
the simple inequality (a + b)? < 2(a” + b?) (for any real numbers a and b),

(EYEr) <8(Z) pT) YT 1 pZ1r) +8(@32) 5 pBrZanr) - (E.51)

By the first inequality of this lemma, we have sup, y E[(&] ;Y ¢1, r)?] < C. Hence by
(E.51), to show the second inequality of this lemma, it is sufficient to prove that

sup B[ (@72} 5, FBFZd,Z,F)Z] <C. (E.52)
heH

Recall that we have defined Ar = Y (31 r — 35 r) in Theorem 5.2. By the definition,

@52y, pBr2anr
2
(tr(AF)) 24 2.7 BFrZa0.F
2
(Z42.7BFZa 2, F + tr(AF))

tr(Ar) 2y, PBFrZan F
ZL/i,Z,FBFZd’Z,F +tr(Af) Z(;Z,Z,FBFZd,ZyF +tr(Af)’

=tr(Ar) (E.53)
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By Lemma 2.1 in Cheng and Liao (2015), tr(AF) > 0 for any F € F. This together with
2} 5 pBFZ4.,F = 0 implies that

z BrZ
___tr) <1 and ——42LTTEAAE g (E.54)
Zy2rBrZan,r+tr(Ar) Zy2rBrZan,r+tr(Ar)
By (E.54) and tr(AF) > 0,
@2y 5 pBrZaor <tr(Ap) =tr(Y3y p) —tr(Y 32 F), (E.55)

where the equality is by Ar = Y'(31, r — 33 r). By (E.55) and the simple inequality (a +
b)? <2(a* + b,

E[(@32) 5 pBrZar) ] <2(tr(YS)p) +2(tr(Y 30, p)) (E.56)
By Assumptions 3.2(ii) and 3.2(iv),
Pmin(G;{,F-Q/;lFGk,F) > Pmin (-Q;,lF)pmin(GL,FGk,F)
= pmin (G rGr.F)/pmax(Qk,p) = C' (E.57)
for any F € F and for k =1, 2. By (E.57) and the definition of 3} r (k =1, 2),
pmax(2k,F) = p;liln(G},F-Q,;lFGk,F) <C (E.58)

for any F € 7. As Y and 3  are positive definite symmetric matrix, by the standard
trace inequality (tr(AB) < tr(A)pmax(B) for Hermitian matrices 4 > 0 and B > 0),

tr(Y S, p) < tr(Y) pmax(3pp) < € fork=1,2, (E.59)

for any F € F. Collecting the results in (E.56) and (E.59), we immediately get (E.52). This
completes the proof. O

Proor oF LEMMA B.16. First, note that
min{x, {} —x=({ —x)I{x > {}. (E.60)
Hence we have

sup |E[min{&rYEr, £} — ERYER]|

< ZuEE[IZ — EYERI{EpYER > (]

<¢sup E[I{E:YEr > {}]+ sup E[EYERI{(" > (EpYER) )]

<20 ' sup E[(€pYEp) ] <2C¢ 7, (E.61)
heH
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where the first inequality is by the Jensen’s inequality, the second inequality is by the
Markov inequality, the third inequality is by the monotonicity of expectation and the
last inequality is by Lemma B.15. Using the same arguments, we can show that

sup|[E[min{¢| ;Y& 5, ¢} — € pYér]| <2C¢7 (E.62)
heH
Collecting the results in (E.61) and (E.62), and applying the triangle inequality, we de-
duce that
sup[|g¢(h) — g(h)|] <4C¢ . (E.63)
heH

The claimed result of this lemma follows by (E.63) as C is a fixed constant.
By the triangle inequality, the Jensen’s inequality and Lemma B.15,

sup|g(h)| = sup|E[E; Y Ef — & pYELr]|
heH heH

< supE[E;YEx] + supE[£] V¢ r] < C,
heH heH

which completes the proof of the lemma. O
ProoOF oF LEMMA A.1. By definition,
E[[10e0 — 01%] — E[116: — 611%]

B ]E[ Kot (Y = X) (Y - X) ]
(2ko? + (Y — X)(Y — X))?

2 Y .
[ Zk;J' (X = 6)(Y - X) ] E 60
2ko” 4+ (Y — X)) (Y — X)
Let
Ji= |: §X—0)(Y—X) ] and
2ko”+ (Y = X)(Y = X)
/ (E.65)
JZEE[ (¥ - Xy (¥ = X) }
(2ka? + (Y — X) (Y = X))
Let X*=0"1(X - 0), Y*=0"1(Y — 0) and Z* = (X*, Y*)'. Then we can write
J1=E|: EX—O)(Y—X) i|
2+ (Y — X) (Y — X)
X*/ * _ * %/ *
:E[ v X ) }:E[%], (E.66)
2k+(Y*—X*) (Y*—X*) 2k +Z¥' D)7

where

(I 0o (I I
D1_<Ik Ok) and Dz_(_lk Ik)' (E.67)
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Note that
IE[DIZ*Z*’D’l] =D, (E.68)
by definition and the Gaussian assumption. Let n(x) = x/(x'D,x + 2k). Its derivative is

anx) L 2
dx  xX'Dyx+2k k (x/sz—i-Zk)z

Doxx'. (E.69)

By Lemma 1 of Hansen (2016), which is a matrix version of the Stein’s lemma (Stein
(1981)),

I\ =E(n(Z*) D, Z%) :E[tr(%f*)/m)]

:E‘ tr(D;) ] _2E' tr(D2Z*Z*Dy) 7
_2k+Z*/Dzz*_ —(2k+Z*/D22*)2_
[ —k 1 [ Z¥DiDyZ* 7
=E| ey x| T 2E po—
_2k+Z DyZ i -(Zk—i-Z*/DzZ*) ]
[ —k 1 [ ZYDyZ*
=E|-——0——s | +2E =
_2k+Z DyZ i -(Zk—i-Z*/DzZ*) ]
[ 2—k 1 —4k
=E E R E.70
_2k+Z*/Dzz*_ + |:(2k +Z*/DZZ*)2] ( )

where the fourth equality follows from

I I
D\D; = ( Ikk _’I‘k) =-Ds. (E.71)

Moreover,

2 4 _ / _

(2ko? 4+ (Y = X)' (Y - X)

2 2 3 2
=IE[ k :’ *]—E[ 2k’ o 2:|’ (E.72)
2k+ 7 DzZ (2k+ Z*/Dzz*)
which together with (E.70) implies that
E[18e0 — 01%] — E[1181 — 611%]

2]E[zk(z —k) +k2} ZE[ 2k3 + 8k* }
=0 Y o~ = | — O
2k +Z¥DyZ* (2k + Z*/DZZ*)Z

_ 2
- UZE[%} - UZE[ 2Kkt } (E.73)
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The asserted result follows from the fact that D; is positive semidefinite and the second
term on the right-hand side of the second equality of (E.73) is always negative. O

APPENDIX F: ASYMPTOTIC RISK OF THE PRE-TEST GMM ESTIMATOR

In this section, we establish similar results in Theorem 5.1 for the pre-test GMM estima-
tor based on the J-test statistic. The pre-test estimator is defined as

Opre = 1y > ca) 01 + 1{J < ca} B2, (E1)

where J,, = ngz(b\z)’(fl\z)_lgz(@) and ¢, is the 100(1 — a)th quantile of the chi-squared
distribution with degree of freedom r, — dg.

THEOREM E1. Suppose that Assumptions 3.1-3.3 hold. The bounds of the asymptotic risk
difference satisfy

ASYRD (Dpre, 1) = min{ inf [g,(m)]. 0},

inf
heH

Asym(,épre, 51) = maX{ Sup [gp(h)]a 0} >
heH

where g, (h) = E[E;;,FYEP,F — & pYé rland EP’F is defined in (E3) below.

Proor oF THEOREM E1. The two equalities and inequalities in the theorem follow by
the same arguments in the proof of Theorem 5.1 with Lemma 4.2 for 6, replaced by
Lemma E1 for 5pre, Lemma B.15 replaced by Lemma E2, and Lemma B.16 replaced by
Lemma E3. Its proof is hence omitted. O

By definition,
E[&, pYEp r| =E[Z 5 7T} YT pZa0,r) +2E[@p,r Z) 5 p(Tor =T} p) YT p 240,
+E[@y p 25 ¢ (T2.r —T1 p) Y (Cor =T p) Za2.r ]
= tr(YZ1,p) + 2E[@p r 2} 5 p(To.r — T} p) YT p2a2.r
+E[@, p 25 p(Tor =5 p) Y(Co p =T p) Za 0.5 ). (E2)

The asymptotic risk of the pre-test estimator §p in Figure 2 is simulated based on the
formulain (E2).

The following lemma provides the asymptotic distribution of the pre-test GMM es-
timator under various sequence of DGPs, which is used to show Theorem E1.

Lemma E1. Suppose that Assumptions 3.1-3.3 hold. Consider {F,} such that vr, — vF for
someF e F.
(@) If n'/?8f, — d for somed e R"", then

Jn =D Jsc(ha ) = (225 +do) LF(Z2 F +dp),
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where Ly = 0 . — Q5 Gy 1(Gh 105 ;Go. 1)~ Gy 105 and dy = (01, d'), and

nl/z(apre —0r)—>pép =0 —@pp)é1F+®préoF, (E3)

where ), p = 1{Joo(hg F) < ca}.
(b) If |n'/28F, || — oo, then @, p — , 0 and n'/*(Opre — 0F,) —p €1.F-

Proor oF LEmMmaA E1. (a) By Assumption 3.2(ii), (E.29), and (E.32),
8(02) =2,(0r,) + [Go.£, (05,) + 0,(1)] (62 — 0F,) + 0, (n7"1?)
=2,(0r,) + G2, 2.1, 82(0F,) + 0p(n'/?)
= (I, + G2,5,T2,1,)82(0F,) + 0 (n~17?), (E4)
which implies that

Jn=ng,5(0F,) LF,8,(0F,) + 0p(1), (E5)
where Ly, = (zg,;n - Qg}n Gz,Fn(G’Z’FnQi}n Ga,r,) "' G, Fﬂi?ﬂ-
By n'/26p, — d and Lemma B.1(v),

12— 2 -1/2 1/2
n'20, 158y (08,) = Oy 1 pn (8200, 05,)) + Q5 i P6r, —p 240, do,  (E6)

where d, = (01,,,,d’) and Z is a r; x 1 standard normal random vector. By vg, — vr,
(E5), (E6), and the CMT,

Jn—=p (Z2F +do) Lr(Z2,F + dp). (E7)
Recall that Lemma 4.1(a) implies that
n'2(0, — 6r,) »p é&1.F and n'?(8; - 6F,) —>p éor, (E8)
which together with (E7) and the CMT implies that
"2 Opre — 05,) = 1Wn > ca}n'? (01 = 05,) + 1, < ca)n'/? (62— 05,
—p(l—wpr)é1rt+opréF, (E9)

which completes the proof of the claim in (a).
(b) There are two cases to consider: (i) ||6 F,ll > C~1; and (ii) ||6 F, || — 0. We first con-
sider case (i). As gl(ez) is a subvector of g2(02),

In=1g,(82) () 7'5,(82)
= 1pmix(22)82(82)'82(82)
> npis ()2, (2)'31(02). (E10)
By (B.22) and (B.23) in the Appendix of CLS,

16, — 0F,|l > C~!  with probability approaching 1, (E11)
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which together with Assumption 3.1(ii) and Lemma B.1(i) implies that
81(02) = My p(82) +0,(1) = C (E12)
with probability approaching 1. By (E.42) and Assumption 3.2(ii), we have
pmax(fl\z) < C with probability approaching 1. (E13)
Combining the results in (E10), (E12), and (E13), we deduce that
Jy > nC~1  with probability approaching 1, (F14)
which immediately implies that
wpFr=lln=<ca}=0 (E15)

with probability approaching 1, as ¢, is a fixed constant. By Lemma 4.1(b), (E15), and
the assumption that 0 is bounded, we have

nY2(Opre — 0F,) = 1y > ca}nV2(01 — 05, + 1J, < ca}n'/?(62 — 605,)

=1{J > ca}n'? (01 — 6F,) + 0,(1) =p &1, (E16)

where the convergence in distribution is by the CMT.

We next consider the case that |55, | — 0 and |n'/?8f,|| — oo. In the proof of
Lemma 4.1, we have shown that ?2 — 0F, = 0p(1), and that (E4) and (E5) hold in this
case. It is clear that

_ 0, .
n'2g,(05,) = pn(g2(W, 05, + <n1/r58; ) , (E17)

which implies that
ng2(0F,) LE,82(0F,) = [mn(82(W, 05,)] L, [ta(g2(W, 0F,)]
+2(0rr, 7128, ) LE,[n(22(W, OF,)]
+ (le,1 nl/zé’Fn)LFn (olx,1 nl/ZS%H)/. (E18)
By Lemma B.1(v) and Assumptions 3.2(ii)—(iii),
[n(g2(W, 0] LE, [1n(g2(W, 0,)] = Op(1). (E19)

In order to bound the third term in (E18) from below, we shall show that for any dy =
(01, d") for d e R™ with ||d|| =1,

dyLF,dy>C™" (E20)
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By definition, Lr, has dy many zero eigenvalues and r, — dg many of eigenvalues of ones.
The matrix G , contains the dy many eigenvectors of the zero eigenvalues of Lp,, be-
cause

Lr,Gop, =0pxq, and  pmin(Gh  Gop,) = C L. (E21)

Let G r, denote the orthogonal complement of G, r, with Gl, £, GLF, =1n—a, Then

we have
G F, G1,1,F, 07, x1
T lar+ N L apy = 1 (E22)
(Gr*,F,,> (Gr*,L,Fn d
for some constant vectors a; € R% and a, € R27%_ As Pmin(G) FnGl,Fn) > C! by As-
sumption 3.2, we have

1
a1=—(G1 f,G1r,) G\f,G11F% (E23)

and
(Gr1.5, = G 1, (Gl 5, G1E,) Gy, G v, a2 = d. (F24)

Let Hr, = Gy, 1,F, — G 1, (G g G1E) "G p G11F,- BY pmin(G) p G1R,) = C7!, As-
sumptions 3.2(ii), (E24), and the Cauchy-Schwarz inequality,

|d|* = ayHF, Hp, az < Cllaz |, (E25)
which together with ||d|| = 1 implies that
laz))> = C~1. (F26)
Using (E21), (E22), and (E26), we deduce that
dyLF,dy=(Go,r,a1 + G F,a2) LF,(Go, 5,01 + G F,a2)
=a,G! f,Lr,GLra= a2’ = C, (E27)
which proves (E20). By (E20),
(Ovsr, 7285, ) L, (01, n728,) = C'nlos, I, (R28)
which together with n||8F, |> — oo implies that
(O1r, 7283, ) L, (01, nV285;,) = 0. (F29)

Collecting the results in (E18), (E19), and (E29), and by the Cauchy-Schwarz inequality,
we deduce that ng,(6F,) LF,8,(0F,) — p oo, which together with (E5) implies that

Jn— p 00. (E30)
Using the same arguments in showing (E16), we deduce that
n'2(Opre — 0F,) = p 1,5 (E31)

This completes the proof. U
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LemMma E2. Under Assumptions 3.2, we have

sup E[ (£, pYE, r)’] < C. (E32)
heH

Proor orF LEMMA E2. By the same arguments in showing (E.51), we have
— Ry 2 _ 2
(E, rYEpr) <8(2{ (Tl pYTLr21F) +8(6% p 2y, pBrZanr) - (E33)

By the first inequality in (B.58) in the Appendix of CLS, we have sup;, . E[( §’1,F Y &4 7F)2] <
C. Hence by (E33), to show the inequality in (E32), it is sufficient to prove that

_ 2
sup E[(@, 12} 5 1BrZ42.F) ] <C. (E34)
heH

By definition,

@y F=1{Joo(hgF) <ca}= I{ZQ,Z’FLFZd,Z,F <cal. (E35)

By the simple inequality (a + b)? > a?/2 — 2b?,
(z+dy) Lr(z+dy) > dyLpdy/2 —22' Lz (E36)
for any z € R, which together with Assumption 3.2 and (E20) implies that
(z+do) Lp(z +do) = |d|?/C —22'Lrz = ||d|)*/ C = Cllz|. (E37)

Under Assumption 3.2, ||Br|| < C for any F € F which together with the simple inequal-
ity (a + b)? < 2(a® + b?) implies that

(z+do)'Br(z +dp) <2C(I1II* + 11]1%) (E38)
for any z € R. Collecting the results in (E36) and (E38), we get
H(z+dy)Lp(z+dy) < ca}z'Brz

<2CH{|1d|* < caC + C*[12)*} (I41I* + 1I211%)
<2C(caC + (CT+ 1)), (E39)

which implies that

sup E[(@ 12} 5 rBrZar) ]
heH

<4C%E[(caC + (CP+ 1) 2} 1 22 5)’]
< C(ca +E[(Z} 1 22,7)’]) = Clca +3phax (22)12). (F40)

This completes the proof. O
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LEMMA E3. Letg, ((h) = E[min{E/p’FYEp,F, £} —min{&] pY' € r, {}]. Under Assumptions
3.2, we have

lim sup||gp,¢(h) — gp(h)|] =0, (E41)
(=0 ey
where sup;, .y llgp(h)|] < C.

Proor oF LEmMA E3. The proof follows the same arguments of the proof of Lem-
ma B.16 with the second inequality in (B.58) in the Appendix of CLS replaced by
(E32). O

APPENDIX G: SIMULATION RESULTS ON TRUNCATED RISK FOR SECTION 6

Min of TMSEs (n = 100) Min of TMSEs (n = 500)

= = = ' Pre-test(0.01) = = = ' Pre-test(0.01)
1.5 Emp-opt 15 Emp-opt
Rest-JS : Rest-JS
1 ~
R 1 ,l ___________
__/_,___,_.——————’_‘ /~
05— __--"" 057~
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Co Co
Max of TMSEs (n = 100) Max of TMSEs (n = 500)
15 I
1.5 ’ s N
———————— 1 S
- 1 ~
! Pad f 1 e Ssmd
_/,//_’ /[//__
05 ~ 7 = = = Pre-test(0.01) 0.5F7 = = = Pre-test(0.01)
r- Emp-opt e Emp-opt
Rest-JS Rest-JS
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Co Co
Weight (n = 100) Weight (n = 500)
——— 0.95-quantile ———— 0.95-quantile
1 median 1 median
——— 0.05-quantile k. ———— 0.05-quantile

FiGure G.1. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S1. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James-Stein weight,
respectively. The truncation parameter for the truncated MSE is ¢ = 1000.
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Min of TMSEs (n = 100) ,Min of TMSEs (n = 500)
= = = Pre-test(0.01) = = = Pre-test(0.01)
1.5 Emp-opt 15 Emp-opt
Rest-JS ) Rest-JS
1 L I e e e e
Z
050 _ -~ 057
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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9 median 1 median
——— 0.05-quantile q ——— 0.05-quantile

F1GURE G.2. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S2. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James-Stein weight,
respectively. The truncation parameter for the truncated MSE is ¢ = 1000.
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Min of TMSEs (n = 100) Min of TMSEs (n = 500)

= = = Pre-test(0.01) = = = 'Pre-test(0.01)
Emp-opt 1.05 Emp-opt
11 Rest-JS . Rest-JS

N\
’

’
. A 1 -
’ \ /
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F1GURE G.3. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S3. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-]JS” refers to the averaging estimators based on the restricted James-Stein weight,

respectively. The truncation parameter for the truncated MSE is ¢ = 1000.
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Min of TMSEs (n = 50) Min of TMSEs (n = 250) Min of TMSEs (n = 1000)
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F1GURE G.4. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S1. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-]JS” refers to the averaging estimators based on the restricted James-Stein weight,
respectively. The truncation parameter for the truncated MSE is ¢ = 1000.
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Min of TMSEs (n = 50)

Min of TMSEs (n = 250)
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Min of TMSEs (n = 1000)
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F1GURE G.5. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S2. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-JS” refers to the averaging estimators based on the restricted James-Stein weight,
respectively. The truncation parameter for the truncated MSE is ¢ = 1000.
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. Min of TMSEs (n = 50) ; 1Min of TMSEs (n = 250) ; 1l\llin of TMSEs (n = 1000)
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F1GURE G.6. Finite sample truncated MSEs of the pre-test and averaging GMM estimators in
S3. Note: “Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nomi-
nal size 0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal
weight; “Rest-]JS” refers to the averaging estimators based on the restricted James-Stein weight,
respectively. The truncation parameter for the truncated MSE is ¢ = 1000.
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TaBLE G.1. The lower and upper bounds of the finite sample relative truncated MSEs.

Design S1 Design S2 Design S3
Lower Upper Lower Upper Lower Upper
n=>50 Boe 0.5732 0.7968 0.6113 0.8980 0.9694 1.0012
O)s 0.9755 0.9959 0.9776 0.9978 0.9995 1.0003
ﬁpm 0.4424 0.9574 0.5057 1.0973 1.0324 1.4283
n=100 Boe 0.5325 0.8789 0.5513 0.9781 0.9733 1.0040
Oys 0.9208 0.9911 0.9202 0.9956 0.9996 1.0002
gpret 0.3586 1.1940 0.3937 1.3539 0.9990 1.4709
n=250 Boc 0.5316 0.9587 0.5384 1.0118 0.9720 1.0079
515 0.7591 0.9787 0.7506 0.9923 0.9999 1.0000
@\pret 0.3360 1.5106 0.3598 1.6392 0.9753 1.4394
n=>500 Boe 0.5331 0.9846 0.5355 1.0112 0.9700 1.0096
48 0.6443 0.9823 0.6359 0.9953 1.0000 1.0000
§pret 0.3368 1.6196 0.3495 1.6937 0.9562 1.4236
n=1000 Boc 0.5335 0.9934 0.5341 1.0082 0.9681 1.0119
515 0.5803 0.9890 0.5737 0.9978 1.0000 1.0000
Opret 0.3395 1.6433 0.3451 1.6864 0.9473 1.3953

Note: 1. é]s and épret denote the GMM averaging estimator based on the weight in (6.1) and the pre-testing GMM estimator
based on J-test with nominal size 0.01, respectively; 2. the “Upper” and “Lower” refer to the upper bound and the lower bound
of the finite sample relative MSEs among all DGPs considered in the simulation design given the sample size.
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APPENDIX H: SIMULATION UNDER THE STUDENT-T DISTRIBUTION

In this subsection, we report the simulation results on the finite sample properties of the
pre-test and averaging GMM estimators, when the residual term « in the structure equa-
tion (6.4) of CLS is a Student-t random variable with degree of freedom 2. The simulation
design is the same as the one in Section 6.1, except that we generate the structural error
u in the following way:

*

_ u
(2 12y 127
((n1 +m3)/2)
where 7; and 7, are independent standard normal random variables which are inde-
pendent with respect to (Zi, ..., Zig, &1, ..., &, u*).! We call this simulation design as

S4.

The finite sample untruncated and truncated MSEs are reported in Figures H.1-H.5.
It is interesting to see that in this simulation design, both the pre-test GMM estimator
and the averaging GMM estimator have smaller finite sample MSEs than the conserva-
tive GMM estimator. The main reason for this phenomenon is that the residual term u in
the structural equation is Student-t with degree of freedom 2, which implies that u has
infinite variance, and hence the conservative GMM estimator has large variance in finite
samples. When the extra [Vs Z;.* (j=1,...,6) are used in the GMM estimation, the finite
sample variances of the GMM estimator is greatly reduced. Therefore, the finite samples
biases of the pre-testing GMM estimator and the averaging GMM estimator introduced
by the extra IVs Z}* (j=1,...,6) are more than offset by the reduced finite sample vari-
ances, which enables both estimator have smaller finite sample MSEs.

!n this design, the structural error u does not enter the possibly invalid IVs (6.4). Therefore, the IVs and
the regressors are normally distributed. We thank an anonymous who suggested this simulation design.
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Ficure H.1. Finite sample MSEs of the pre-test and averaging GMM estimators in S4. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James-Stein weight, respec-
tively.
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Ficure H.2. Finite sample MSEs of the pre-test and averaging GMM estimators in S4. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James-Stein weight, respec-

tively.
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Ficure H.3. Finite sample biases and variances in S4. Note: “Pre-test(0.01)” refers to the
pre-test GMM estimator based on the J-test with nominal size 0.01; “Emp-opt” refers to the av-
eraging GMM estimator based on the empirical optimal weight; “Rest-JS” refers to the averaging
estimators based on the restricted James-Stein weight, respectively.The truncation parameter
for the truncated MSE is ¢ = 1000.
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FiGuRre H.4. Finite sample TMSEs of the pre-test and averaging GMM estimators in S4. Note:
“Pre-test(0.01)” refers to the pre-test GMM estimator based on the J-test with nominal size
0.01; “Emp-opt” refers to the averaging GMM estimator based on the empirical optimal weight;
“Rest-JS” refers to the averaging estimators based on the restricted James-Stein weight, respec-
tively. The truncation parameter for the truncated MSE is ¢ = 1000.
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Ficure H.5. Finite sample TMSEs of the pre-test and averaging GMM estimators in S4.
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