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For convenience of the reader, we commence by gathering some notation that ap-
pear in the paper, most of which are standard in the literature.

Mm×k The space ofm× k real matrices form�k ∈ N.

Ik The identity matrix of size k.

0k�1k The k× 1 vectors of zeros and ones.

Aᵀ The transpose of a matrixA ∈ Mm×k.

tr(A) The trace of a square matrixA ∈ Mk×k.

vec(A) The column vectorization ofA ∈ Mm×k.

‖A‖ The Frobenius norm of a matrixA ∈ Mm×k.

σj(A) The jth largest singular value of a matrixA ∈ Mm×k.

Sm×k A subset of Mm×k: Sm×k ≡ {U ∈ Mm×k :UᵀU = Ik}.

C(T) The space of continuous functions on a (topological) space T .

ϕ : D� E A correspondence from a set D to another set E.

Due to the fundamental role played by the singular value decomposition in the pa-
per, we next provide a brief review and emphasize facts that are relevant to our develop-
ment. Conceptually, the singular value decomposition generalizes the spectral decom-
position to arbitrary (possibly rectangular) matrices. LetΠ ∈ Mm×k withm≥ k. Then the
singular value decomposition ofΠ is

Π = PΣQᵀ�

where P ∈ Sm×m and Q ∈ Sk×k are orthornormal, and Σ ∈ Mm×k is a diagonal matrix
with its diagonal entries in descending order—throughout the paper such a decompo-
sition format is silently understood. The columns of P , called the left singular vectors
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of Π, are eigenvectors of ΠΠᵀ (which is symmetric), the columns of Q, called the right
singular vectors of Π, are eigenvectors of ΠᵀΠ (which is also symmetric), and the diag-
onal entries of Σ, called the singular values, are the corresponding square roots of the
eigenvalues of ΠΠᵀ and also of ΠᵀΠ. Such a decomposition allows us to conclude that
rank(Π) is precisely equal to the number of nonzero singular values.

The matrix Σ is uniquely determined, though not the matrices P andQ. If rank(Π)=
r0, then we may partition P as P = [P1�P2] such that P1 consists of precisely the first r0
columns of P that are associated with the nonzero singular values of Π; similarly, we
may partitionQ asQ= [Q1�Q2]. Then the null space ofΠ is precisely the column space
ofQ2, and the null space ofΠᵀ is precisely the column space of P2. Moreover, P2 andQ2
are uniquely determined respectively up to postmultiplication by (m− r0)× (m− r0) and
(k− r0)× (k− r0) orthonormal matrices. Fortunately, the singular values σj(P

ᵀ
2MQ2) (as

in (14)) for anyM ∈ Mm×k are invariant to such transformations.
For convenience of applied researchers who work with Stata, we have developed a

command bootranktest that may be used to test whether a matrix of the formE[V Zᵀ]
has full rank based on our two-step test. In the first step, we use the KP test to obtain the
rank estimator by choosing β= 0�05/15. Its syntax is as follows:

bootranktest (varlist1) (varlist2) [if] [in]

where varlist1 should have more variables than varlist2. As of now, this command
is designed for i.i.d. data and employs Efron’s (1979) empirical bootstrap with 500 boot-
strap repetitions. We plan to refine it by adding more features in future.

The remainder of the supplement is organized as follows. Appendix A presents the
proofs of our main results. Appendix B provides additional details and discussions re-
garding comparisons with Kleibergen and Paap (2006), while Appendix C derives some
estimation results based on a sequential testing procedure. Appendix D contains some
supporting lemmas. Additional examples are presented in Appendix E where special at-
tention is paid to inference on cointegration rank.

Appendix A: Proofs of main results

Proof of Lemma 3.1. The proof is based on a simple application of the representation
of extremal partial trace. Recall that σ2

1 (Π)� � � � �σ
2
k(Π) are eigenvalues of ΠᵀΠ in de-

scending order. Let d ≡ k− r. It follows by Proposition 1.3.4 in Tao (2012) that

φr(Π)=
k∑

j=r+1

σ2
j (Π)= inf

u1�����ud

d∑
j=1

uᵀ
jΠ

ᵀΠuj� (A.1)

where the infimum is taken over all u1� � � � � ud ∈ Rk that are orthonormal. Noting U ≡
[u1� � � � � ud] ∈ Sk×d , we obtain by (A.1) and the definition of Frobenius norm that

φr(Π)= inf
U∈Sk×d

tr
(
UᵀΠᵀΠU

) = inf
U∈Sk×d

‖ΠU‖2� (A.2)

The infimum in (A.2) is achieved on Sk×d because U �→ ‖ΠU‖2 is continuous, and Sk×d
is compact since it is closed and bounded. This completes the proof of the lemma.
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Proof of Proposition 3.1. Let d ≡ k − r, and define ψ1 : Mm×k → C(Sk×d) by
ψ1(Π)(U) = ‖ΠU‖2, and ψ2 : C(Sk×d) → R by ψ2(f ) = min{f (U) : U ∈ Sk×d}, so that
φr = ψ2 ◦ ψ1 by Lemma 3.1. For part (i), we proceed by verifying first-order Hadamard
directional differentiability of ψ1 and ψ2, and then conclude by the chain rule.

Let {Mn} ⊂ Mm×k be a sequence satisfying Mn →M ∈ Mm×k, and tn ↓ 0 as n→ ∞.
For each n ∈ N, define gn : Sk×d → R by

gn(U)=
∥∥(Π + tnMn)U

∥∥2 − ‖ΠU‖2

tn
= ‖ΠU + tnMnU‖2 − ‖ΠU‖2

tn
�

and g : Sk×d → R by g(U)= 2 tr((ΠU)ᵀMU). Then by simple algebra we have

sup
U∈Sk×d

∣∣gn(U)− g(U)∣∣ = sup
U∈Sk×d

∣∣2 tr
(
(ΠU)ᵀ(Mn −M)U) + tn‖MnU‖2∣∣

≤ sup
U∈Sk×d

{
2‖ΠU‖∥∥(Mn −M)U∥∥ + tn‖MnU‖2}� (A.3)

where the inequality follows by the triangle inequality and the Cauchy–Schwarz inequal-
ity for the trace operator. For the right-hand side of (A.3), we further have

sup
U∈Sk×d

{
2‖ΠU‖∥∥(Mn −M)U∥∥ + tn‖MnU‖2}

≤ sup
U∈Sk×d

{
2‖Π‖‖U‖‖Mn −M‖‖U‖ + tn‖Mn‖2‖U‖2} = o(1)� (A.4)

where we exploited the submultiplicativity of Frobenius norm and the facts that ‖U‖ =√
d, Mn →M and tn ↓ 0 as n→ ∞. We thus conclude from (A.3) and (A.4) that gn → g

uniformly in C(Sk×d), or equivalently ψ1 is first-order Hadamard directionally differen-
tiable atΠ with derivative ψ′

1�Π : Mm×k → C(Sk×d) given by

ψ′
1�Π(M)(U)= 2 tr

(
(ΠU)ᵀMU

)
� (A.5)

On the other hand, Theorem 3.1 in Shapiro (1991) implies that ψ2 :C(Sk×d)→ R is first-
order Hadamard directionally differentiable at any f ∈ C(Sk×d) with derivative ψ′

2�f :
C(Sk×d)→ R given by: for Ψ(f)≡ arg minU∈Sk×d f (U),

ψ′
2�f (h)= min

U∈Ψ(f)
h(U)� (A.6)

Combining (A.5), (A.6), and the chain rule (Shapiro (1990, Proposition 3.6)), we may now
conclude that φr : Mm×k → R is first-order Hadamard directionally differentiable at any
Π ∈ Mm×k with the derivative φ′

r�Π : Mm×k → R given by

φ′
r�Π(M)=ψ′

2�ψ1(Π)
◦ψ′

1�Π(M)= min
U∈Ψ(Π)

2 tr
(
(ΠU)ᵀMU

)
�

This completes the proof of part (i) of the proposition.
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For part (ii), note that φr(Π) = 0 implies that ΠU = 0 for all U ∈ Ψ(Π), and hence
φ′
r�Π(M)= 0 for allM ∈ Mm×k. Recall that {Mn} ⊂ Mm×k withMn →M ∈ Mm×k and tn ↓ 0

as n→ ∞. By Lemma 3.1, we have∣∣φr(Π + tnMn)−φr(Π + tnM)
∣∣

=
∣∣∣ min
U∈Sk×d

∥∥(Π + tnMn)U
∥∥ − min

U∈Sk×d

∥∥(Π + tnM)U
∥∥∣∣∣

×
(

min
U∈Sk×d

∥∥(Π + tnMn)U
∥∥ + min

U∈Sk×d

∥∥(Π + tnM)U
∥∥)
� (A.7)

where the equality also exploited the elementary formula a2 − b2 = (a+ b)(a− b). For
the first term on the right-hand side of (A.7), we have∣∣∣ min

U∈Sk×d

∥∥(Π + tnMn)U
∥∥ − min

U∈Sk×d

∥∥(Π + tnM)U
∥∥∣∣∣ ≤ tn

√
d‖Mn −M‖ = o(tn)� (A.8)

where the inequality follows by the Lipschitz continuity of the infimum operator, the
triangle inequality, ‖ · ‖ being submultiplicative, and ‖U‖ = √

d for U ∈ Sk×d . For the
second term on the right-hand side of (A.7), we have: for any fixed U∗ ∈Ψ(Π),

min
U∈Sk×d

∥∥(Π + tnMn)U
∥∥ + min

U∈Sk×d

∥∥(Π + tnM)U
∥∥

≤ ∥∥(Π + tnMn)U
∗∥∥∥∥(Π + tnM)U∗∥∥ ≤ tn‖Mn‖

∥∥U∗∥∥ + tn‖M‖∥∥U∗∥∥
=O(tn)� (A.9)

where we exploitedΠU∗ = 0, the submultiplicativity of Frobenius norm, ‖U∗‖ = √
d and

Mn →M as n→ ∞. Combining (A.7)–(A.9), we thus obtain∣∣φr(Π + tnMn)−φr(Π + tnM)
∣∣ = o(t2n)� (A.10)

Next, for ε > 0, let Ψ(Π)ε ≡ {U ∈ Sk×d : minU ′∈Ψ(Π) ‖U ′ −U‖ ≤ ε} and Ψ(Π)ε1 ≡ {U ∈
Sk×d : minU ′∈Ψ(Π) ‖U ′ −U‖ ≥ ε}. In what follows, we consider the nontrivial case when
Π �= 0 and M �= 0. Then we must have Ψ(Π) � Sk×d , and hence Ψ(Π)ε1 �= ∅ for ε suffi-
ciently small. Let σ+

min(Π) denote the smallest positive singular value of Π which exists
since Π �= 0, and 
≡ 3

√
2[σ+

min(Π)]−1 maxU∈Sk×d ‖MU‖> 0 since M �= 0. Then it follows
that for all n sufficiently large

min
U∈Ψ(Π)tn
1

∥∥(Π + tnM)U
∥∥ ≥ min

U∈Ψ(Π)tn
1

‖ΠU‖ − tn max
U∈Sk×d

‖MU‖

≥
√

2
2
tnσ

+
min(Π)
− tn max

U∈Sk×d
‖MU‖> tn max

U∈Sk×d
‖MU‖

≥ min
U∈Ψ(Π)

∥∥(Π + tnM)U
∥∥ ≥ √

φr(Π + tnM)� (A.11)

where the first inequality follows by the triangle inequality and the fact that Ψ(Π)tn
1 ⊂
Sk×d , the second inequality follows by Lemma D.1, the third inequality is due to the
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definition of 
, and the fourth inequality holds by the fact thatΠU = 0 forU ∈Ψ(Π). By
(A.11), we thus obtain that, for all n sufficiently large

φr(Π + tnM)= min
U∈Ψ(Π)tn


∥∥(Π + tnM)U
∥∥2
� (A.12)

Now, for fixed U ∈Ψ(Π), 
> 0 and t ∈ R, let �
 ≡ {V ∈ Mk×d : ‖V ‖ ≤ 
} and �
U(t)≡
{V ∈ �
 : U + tV ∈ Sk×d} = {V ∈ �
 : V ᵀU + UᵀV = −tV ᵀV }. Define a correspondence
ϕ : R � Sk×d × �
 by ϕ(t)= {(U�V ) :U ∈Ψ(Π)�V ∈ �
U(t)}. Then the right-hand side of
(A.12) can be written as

min
U∈Ψ(Π)tn


∥∥(Π + tnM)U
∥∥2 = min

(U�V )∈ϕ(tn)
∥∥(Π + tnM)(U + tnV )

∥∥2

= t2n min
(U�V )∈ϕ(tn)

‖ΠV +MU‖2 + o(t2n)� (A.13)

where we exploited ΠU = 0 for all U ∈ Ψ(Π) and ‖MV ‖ ≤ ‖M‖
 for all V ∈ �
. By
Lemma D.2, ϕ(t) is continuous at t = 0. Since ϕ is obviously compact-valued, we may
then obtain by Theorem 17.31 in Aliprantis and Border (2006) that

min
(U�V )∈ϕ(tn)

‖ΠV +MU‖2 = min
(U�V )∈ϕ(0)

‖ΠV +MU‖2 + o(1)

= min
U∈Ψ(Π)

min
V ∈Mk×d

‖ΠV +MU‖2 + o(1)� (A.14)

where the second equality holds by letting 
 sufficiently large in view of Lemma D.3.
Combining (A.12), (A.13), and (A.14) then yields

φr(Π + tnM)= t2n min
U∈Ψ(Π)

min
V ∈Mk×d

‖ΠV +MU‖2 + o(t2n)� (A.15)

The proposition now follows from result (A.15) and Lemma D.4.

Proof of Theorem 3.1. The first and second results are respectively straightforward
implications of Theorems 2.1 in Fang and Santos (2018) and Chen and Fang (2019) by
noting that φ′

r�Π0
= 0 under H0. In particular, their Assumptions 2.1 are satisfied in view

of Proposition 3.1 and their Assumptions 2.2 are satisfied by Assumption 3.1.

Proof of Theorem 3.2. By the rate conditions on {κn} and Assumption 3.1, the nu-
merical estimator (16) satisfies the condition (15) by Proposition 3.1 in Chen and Fang
(2019), while the analytic estimator in (17) and (9) does so by Lemma D.6. In turn, fol-
lowing exactly the same proof of Corollary 3.2 in Fang and Santos (2018), we obtain that

ĉn�1−α
p−→ c1−α by Assumption 3.2 and the quantile restrictions on c1−α. Thus, under H0,

the first claim follows from combining Theorem 3.1, Slutsky’s lemma, c1−α being a con-
tinuity point of the limiting law and the Portmanteau theorem.

For the second claim, Consider first the numerical estimator (16). Note that by As-
sumption 3.2, M̂∗

n =OPW (1) in PX-probability. Together with Assumption 3.1, κn = o(1)
as n→ ∞ and continuity of φr , we in turn see that, in PX-probability,

φr
(
Π̂n + κnM̂∗

n

) =OPW (1)� (A.16)
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By the definition of ĉn�1−α, it follows from (A.16) and φr(Π̂n)≥ 0 that

κ2
nĉn�1−α ≤OPW (1) (A.17)

in PX-probability. By Assumption 3.1 and continuity of φr atΠ0, we have: under H1,

φr(Π̂n)
p−→φr(Π0) > 0� (A.18)

Combining results (A.17) and (A.18), together with τnκn → ∞, we thus conclude that

P
(
τ2
nφr(Π̂n) > ĉn�1−α

) = P(
(τnκn)

2φr(Π̂n) > κ
2
nĉn�1−α

) = 1� (A.19)

For the analytic estimator, let d̂n ≡ k− r̂n and d ≡ k− r. By Lemma 3.1, we have

φ̂′′
r�n

(
M̂∗

n

) = min
U∈Sd̂n×d

∥∥P̂ᵀ
2�nM̂

∗
nQ̂2�nU

∥∥2 ≤ ∥∥M̂∗
n

∥∥2
mkd� (A.20)

where the second inequality exploited ‖P̂ᵀ
2�n‖2‖Q̂2�n‖2 ≤mk and ‖U‖2 = d. Since M̂∗

n =
OPW (1) in PX-probability by Assumption 3.2, it follows from (A.20) that

ĉn�1−α ≤OPW (1) (A.21)

in PX-probability. Combining (A.18) and (A.21), together with τn → ∞, we thus obtain

P
(
τ2
nφr(Π̂n) > ĉn�1−α

) = 1� (A.22)

This completes the proof of the second claim.

Proof of Theorem 3.3. For notational simplicity, define

An = {r̂n > r}� Bn = {
τ2
nφr(Π̂n) > ĉn�1−α+β

}
� Cn = {r̂n = r0}� (A.23)

It follows that, under H0,

lim sup
n→∞

E[ψn] ≤ lim sup
n→∞

P
(
(An ∪Bn)∩Cn

) + lim sup
n→∞

P
(
(An ∪Bn)∩Ccn

)
≤ lim sup

n→∞
P(An ∩Cn)+ lim sup

n→∞
P(Bn ∩Cn)+ lim sup

n→∞
P

(
Ccn

)
≤ 0 + α−β+β= α� (A.24)

where we exploitedAn∩Cn = ∅ under H0, lim supn→∞ P(Bn∩Cn)≤ α−β by Theorem 3.2,
and lim supn→∞ P(Ccn) ≤ β. This completes the proof of the first claim. For the second
claim of the theorem, note that

lim inf
n→∞ E[ψn] ≥ lim inf

n→∞ P
(
τ2
nφr(Π̂n) > ĉn�1−α+β

) = 1� (A.25)

where the equality follows by the proof of Theorem 3.2.
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Proof of Proposition 3.2. By Assumption 3.1′(ii)(iii), we have

τ{Π̂n −Π0} = τn{Π̂n −Π0�n} + τn{Π0�n −Π0} L−→ M+
� (A.26)

This in turn allows us to conclude by Proposition 3.1 and φr(Π0)= 0.

Appendix B: Comparisons with the KP test

In this section, we first review the KP test for the reader’s convenience, and then provide
additional results regarding comparisons with Kleibergen and Paap (2006).

To describe the KP test, let Π̂n be an estimator forΠ0 ∈ Mm×k such that

√
n
{
vec(Π̂n)− vec(Π0)

} L−→N(0�Ω0)� (B.1)

where the covariance matrix Ω0 admits a consistent estimator Ω̂n. Let Π̂n = P̂nΣ̂nQ̂
ᵀ
n be

a singular value decomposition of Π̂n, where P̂n ∈ Sm×m, Q̂n ∈ Sk×k, and Σ̂n ∈ Mm×k is
diagonal with diagonal entries in descending order. For r the hypothesized value in (2),
rewrite P̂n = [P̂1�n� P̂2�n] and Q̂n = [Q̂1�n� Q̂2�n] with P̂1�n ∈ Mm×r and Q̂1�n ∈ Mk×r , and let

Σ̂2�n be the right bottom (m − r) × (k − r) submatrix of Σ̂n. Then the testing statistic
proposed by Kleibergen and Paap (2006) for the hypotheses (2) is

Tn�kp = n · vec(Σ̂2�n)
ᵀ[(Q̂2�n ⊗ P̂2�n)

ᵀΩ̂n(Q̂2�n ⊗ P̂2�n)
]−1 vec(Σ̂2�n)� (B.2)

where ⊗ signifies the Kronecker product, and the inverse is assumed to exist asymptot-
ically. A special case of the testing statistic designed by Robin and Smith (2000) shares
exactly the same form but without the weighting matrix,1 that is,

Tn�rs = n · vec(Σ̂2�n)
ᵀ vec(Σ̂2�n)� (B.3)

Kleibergen and Paap (2006) show that if rank(Π0)= r, then

Tn�kp
L−→ χ2((m− r)(k− r))� (B.4)

Thus, the KP test rejects the null H′
0 in (2) at the significance level α if Tn�kp is larger than

the (1 − α)-quantile of χ2((m− r)(k− r)).
In Section 2, we have shown that the KP test may be invalid since the χ2-limit of the

KP statistic is derived under H′
0, ignoring the possibility rank(Π0) < r. As an alternative,

one may construct a valid test for (1) by a multiple test on rank(Π0)= 0�1� � � � � r. Indeed,
to show the validity of a multiple test, letψn�r be a nonrandomized test for hypotheses of
the form (2) that rejects the null if ψn�r = 1 and fails to reject if ψn�r = 0. Moreover, sup-
pose that ψn�r is a consistent test that has asymptotic null rejection rates exactly equal
to α. Then one may design a valid multiple test ψn for (1) by setting ψn = ∏r

j=0ψn�j , that

1Robin and Smith (2000) proposed a class of testing statistics (indexed by functions h in their paper)
which are asymptotically equivalent.
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is, ψn rejects H0 if and only if all ψn�j ’s reject. It follows that ψn has size control because,
under H0 and for r0 ≡ rank(Π0),

lim sup
n→∞

E[ψn] = lim sup
n→∞

P(ψn�0 = 1� � � � �ψn�r = 1)≤ lim sup
n→∞

P(ψn�r0 = 1)= α� (B.5)

and that ψn is also consistent because, under H1,

lim inf
n→∞ E[ψn] = lim inf

n→∞ P(ψn�0 = 1� � � � �ψn�r = 1)

≥ 1 −
r∑
j=1

[
1 − lim inf

n→∞ P(ψn�j = 1)
]

= 1� (B.6)

where the inequality holds by the Boole’s inequality and consistency of each ψn�j . This
shows that ψn is valid, in fact consistent but may be conservative. The source of conser-
vativeness ofψn is inherent in the inequality of (B.5) which is generically strict. Moreover,
ψn is conservative whenever ψn�r is, because

lim sup
n→∞

E[ψn] = lim sup
n→∞

P(ψn�0 = 1� � � � �ψn�r = 1)≤ lim sup
n→∞

P(ψn�r = 1) < α� (B.7)

The remainder of this section is devoted to additional comparisons of our tests with
the KP test based on the simulation designs and empirical application in Kleibergen and
Paap (2006). First, following those authors, we consider, for Rt ∈ R10�Ft ∈ R4,

Rt =Π0Ft + εt� (B.8)

where {Ft} i�i�d�∼ N(0�ΣF) and {εt} are independently generated according to

εt = vt + �vt−1 (B.9)

with {vt} i�i�d�∼ N(0�Σv). We are interested inΠ0 which is specified as

Π0 = βαᵀ + δΠ1� (B.10)

where δ ∈ R, α ∈ R4, β ∈ R10 and Π1 ∈ M10×4. Kleibergen and Paap (2006) try a wide
range of values for δ; we shall focus on δ = 0�0�01� � � � �0�1 since we are concerned with
local power. Other unknown parameters involved are configured to be exactly the same
as those in Kleibergen and Paap (2006):

• ΣF is specified as the sample correlation matrix of {Ft}nt=1, where {Ft}nt=1 is the real
data to be studied for the empirical application;

• α= (0�0813�−0�0271�−0�6203�−0�0460)ᵀ;

• β = (−0�3411�−0�1277�−0�3838�−0�5312�−0�2728�−0�3527�−0�2188�−0�293�
−0�2035�−0�3427)ᵀ;

• Π1 = Π̄n − βαᵀ, where Π̄n = ∑n
t=1RtF

ᵀ
t (

∑n
t=1 FtF

ᵀ
t )

−1 with {Rt�Ft}nt=1 being the
real data in the empirical application;



Supplementary Material Improved inference 9

• � is specified as

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0�0312 0�0255 −0�0185 0�0591 0�0389 0�0953 −0�1515 0�2286 −0�0806 −0�1659
0�0346 −0�0166 −0�0608 0�0743 0�0794 −0�0043 −0�2194 0�2959 −0�0043 0�0016

−0�0304 0�0624 −0�1347 0�1054 −0�0369 −0�0187 −0�0989 0�3571 0�0133 −0�1731
−0�0414 0�0951 0�0029 −0�0497 −0�0586 0�0910 −0�0903 0�1850 0�0616 −0�0865
−0�0570 −0�0845 0�0606 −0�0143 −0�1971 0�0528 0�0403 0�1935 −0�0114 0�1141
−0�0649 −0�0738 0�0030 0�0335 0�0346 −0�0432 −0�0787 0�2199 −0�0266 −0�0013
−0�0334 −0�1163 −0�0139 −0�0218 −0�0390 0�0128 −0�0645 0�1299 0�1105 0�0097
−0�1029 0�0368 0�0737 −0�0005 −0�1686 0�0254 0�0184 0�0966 −0�0176 0�0596
−0�1153 0�0008 0�0373 0�0185 −0�0927 0�1029 0�0546 0�0529 −0�1792 0�0798
−0�0737 −0�0669 0�0500 0�1466 −0�1359 0�0617 0�1090 0�0402 −0�0659 −0�0440

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

• Σv is specified as

Σv = 1
100

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0�19 0�09 0�07 0�05 0�04 0�03 0�02 −0�01 0�00 −0�01
0�09 0�11 0�06 0�05 0�04 0�04 0�03 0�01 0�02 0�01
0�07 0�06 0�10 0�05 0�04 0�04 0�03 0�03 0�02 0�01
0�05 0�05 0�05 0�08 0�04 0�04 0�04 0�03 0�02 0�01
0�04 0�04 0�04 0�04 0�08 0�05 0�05 0�05 0�04 0�03
0�03 0�04 0�04 0�04 0�05 0�08 0�06 0�05 0�05 0�03
0�02 0�03 0�03 0�04 0�05 0�06 0�08 0�06 0�05 0�03

−0�01 0�01 0�03 0�03 0�05 0�05 0�06 0�10 0�07 0�05
0�00 0�02 0�02 0�02 0�04 0�05 0�05 0�07 0�09 0�04

−0�01 0�01 0�01 0�01 0�03 0�03 0�03 0�05 0�04 0�07

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Given the above configurations, we test the hypotheses H0 : rank(Π0) ≤ r vs. H1 :
rank(Π0) > r for r = 3 at α = 5%. Thus, H0 holds if and only if δ = 0, in which case
rank(Π0) < r. Note that Kleibergen and Paap (2006) instead consider H′

0 : rank(Π0) = 1
vs. H′

1 : rank(Π0) > 1 so that the possibility rank(Π0) < 1 is excluded. We estimate Π0
based a sample {Rt�Ft}nt=1 of size n= 330 (as in Kleibergen and Paap (2006)) that is gen-
erated according to the process (B.8). The number of simulation replications is set to be
5000, while the number of block bootstrap repetitions (with block size 2) is 500 for each
simulation replication. We implement the three of our tests in same manner as we did
in Section 4, and compare with the multiple KP test (based on the HACC estimator for
the long run variance), although the results for the direct application of the KP test are
similar and available upon request.

Table B.1 summarizes the simulation results. We find patterns similar to those ex-
hibited in Table 2. In particular, the multiple KP test is severely undersized, and its lo-
cal power is overall dominated by our tests, though again the test based on numerical
derivative estimators (CF-N) is somewhat sensitive to the choices of the step size. The
two-step test (CF-T) and the test based on numerical derivative estimators (CF-A), on
the other hand, show strong insensitivity to the choices of the tuning parameters.

Finally, following Kleibergen and Paap (2006), we study a stochastic discount factor
model based on the conditional capital asset pricing model proposed in the influential
work of Jagannathan and Wang (1996). Suppose that Rt ∈ Rm is a vector of returns on m
assets at time t and Ft ∈ Rk is a vector of k common factors at time t. According to the
stochastic discount factor model, Rt and Ft are related through

E
[
Rt+1F

ᵀ
t+1γ0|It

] = 1m� (B.11)
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Table B.2. The p-values for different tests.

CF-T CF-A CF-N

Block Size α/10 α/15 α/20 n−1/5 n−1/4 n−1/3 n−1/5 n−1/4 n−1/3

Panel A: Our tests†

b= 1 0�15 0�15 0�15 0�08 0�08 0�08 0�11 0�12 0�12
b= 2 0�15 0�15 0�15 0�10 0�09 0�09 0�11 0�11 0�12
b= 3 0�18 0�18 0�18 0�10 0�10 0�10 0�13 0�13 0�14
b= 4 0�16 0�16 0�16 0�08 0�08 0�08 0�13 0�13 0�14

Panel B: the KP-M test‡

0�91

Note: † The three values under CF-T are the choices of β, and those under CF-A and CF-N are the choices of κn as in (9)
and (16), respectively.
‡ The p-value for KP-M is given by the smallest significance level such that the null hypothesis is rejected, which is equal to the
maximum p-value of all Kleibergen and Paap’s (2006) tests implemented by the multiple testing method.

where It represents information at time t, and γ0 ∈ Rk is a vector of risk premia. If {Rt�Ft}
is governed by a stationary linear process:

Rt =Π0Ft + εt� (B.12)

where E[εt+1Ft+1|It] = 0 and E[Ft+1F
ᵀ
t+1] is nonsingular, then γ0 is identified if and only

if the coefficient matrix Π0 is of full rank. For this, we may test H0 : rank(Π0) ≤ r vs.
H1 : rank(Π0) > r with r = k− 1.

We use the same data set as in Kleibergen and Paap (2006). There are returns Rt on
10 portfolios and 4 factors in Ft with monthly observations from July 1963 to December
1990, so m = 10, k = 4, and n = 330. The factors in Ft consist of constant, the return on
a value-weighted portfolio, a corporate bond yield spread and a measure of per capita
labor income growth. We estimateΠ0 by

Π̂n =
n∑
t=1

RtF
ᵀ
t

(
n∑
t=1

FtF
ᵀ
t

)−1

� (B.13)

Since the return sequence {Rt} exhibits first-order autocorrelation, we thus follow
Kleibergen and Paap (2006) and compute the KP statistic by employing the HACC esti-
mator with one lag (West (1997)) for the long run covariance matrix. We implement our
CF-T, CF-A, and CF-N tests by adopting the block bootstrap (Lahiri (2003)) with block
size b = 1�2�3�4, employing the same choices of tuning parameters as before, and set-
ting the number of bootstrap repetitions to be 1000.

Table B.2 reports the p-values of CF-T, CF-A, and CF-N, as well as that of the KP-M
test. The differences between our p-values and those of the KP-M tests are substantial:
ours are uniformly less than 20% while the latter are over 90%. Thus, while the KP-M test
strongly support the null, our tests are inconclusive depending on the significance levels
and of course also the choices of the tuning parameters. It is worth noting that our three
tests are quite insensitive across all choices of tuning parameters and the block size; in
particular, the p-values of CF-T and CF-A are invariant to these choices.
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Appendix C: Estimation of the rank

There are settings as evident in Examples E.1 and E.3–E.5 in Appendix E.2 where one
would like to construct an estimate of the rank. The need of rank estimation is further
reinforced should one deem our test based on (17) desirable. Following Cragg and Don-
ald (1997) and Robin and Smith (2000), we adopt a sequential testing procedure that has
been previously employed in the literature of model selection (Pötscher (1983), Bauer,
Pötscher, and Hackl (1988), Hosoya (1989)).2

Specifically, one may progressively test if the true rank is equal to 0�1� � � � �k− 1 and
set the estimator r̂n to be the smallest r ∈ {0�1� � � � �k− 1} that cannot be rejected if such
a r exists and to be k if it does not. The conventional setup (2) then suits well to this
end because the possibility of rank(Π0) strictly smaller than the hypothesized value is
“ruled out” in each step by previous test(s). However, we argue that accommodating the
possibility rank(Π0) < r, as we do in what follows, may once again lead to more reliable
results. Heuristically, there are two possible errors involved in the procedure, namely,
falsely rejecting a true null (i.e., type I error) and not rejecting a false null (i.e., type II
error). Sequentially, testing nulls of the form (2) ignore type I errors potentially made in
previous steps, and may have trivial or poor power when Π0 is local to a matrix whose
rank is “small,” that is, the capability of controlling type II error is limited. These are the
two channels through which our rank estimator improves upon existing ones. Given a
confidence level 1 − α, we formally define the rank estimator r̂n as

r̂n = min
{
r = 0� � � � �k− 1 : τ2

nφr(Π̂n)≤ ĉn�1−α(r)
}

(C.1)

if the set is nonempty, and r̂n = k if the set is empty, where ĉn�1−α(r) is defined by (18) for
which we also make its dependence on r explicit.

The following theorem shows that the estimator r̂n in (C.1) picks up the true rank
with probability at least 1 − α (asymptotically).

Theorem C.1. Let Assumptions 3.1 and 3.2 hold, and the cdf of the limiting law in (14)
when r = r0 be continuous and strictly increasing at its (1 − α)-quantile for α ∈ (0�1).
Then the rank estimator r̂n defined by (C.1) satisfies

lim
n→∞P(r̂n = r0)=

{
1 − α if r0 <k�

1 if r0 = k� (C.2)

limn→∞ P(r̂n < r0)= 0, and limn→∞ P(r̂n > r0)= α (for r0 < k).

Theorem C.1 implies that the procedure will select an estimator that is no smaller
than the truth (asymptotically), and the probability of choosing a larger value (i.e., false
selection) is controlled by the significance level α; see Johansen (1995) for related results
in cointegration settings. These properties are intrinsically connected to the size control
and consistency of our test. Moreover, by Theorem C.1, the sequential procedure can be

2One may alternatively employ information criteria as in Cragg and Donald (1997). We do not pursue
this possibility here in order to coherently present what is essential to our paper.
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utilized in our two-step test to provide a preliminary rank estimator, although we stress
that existing tests can also be employed in this regard—the downside of these tests is
that they may yield less accurate rank estimators as argued previously.

While the construction of a “confidence set/singleton” is of interest in its own right,
one may also be interested in obtaining a consistent estimator, for which the proba-
bility of false selection should be negligible. One such an estimator is given by (9) or
Lemma D.7, where a tuning parameter is involved. This estimator is somewhat crude
in that the probability of false selection is unclear and appears challenging to control.
Employing the sequential procedure, we may achieve consistency while controlling the
estimation error. As suggested by (C.2) and noted in the literature (Pötscher (1983)), we
must adjust the significance level α= αn according to the sample size so that αn → 0 at
a suitable rate, in order to obtain a consistent estimator. This turns out to be nontrivial
in the current setup (where rank(Π0)≤ r is tested in each step) as we elaborate next.

If one sequentially tests rank(Π0)= r for r = 0� � � � �k−1 based on, for example, Cragg
and Donald (1997) or Kleibergen and Paap (2006), the critical values are then obtained
from chi-squared distributions. The rate at which αn should tend to zero in order to
deliver consistency has been well understood in this case by exploiting the analytic ex-
pansions of the cdfs of chi-squares; see Theorem 5.8 in Pötscher (1983) for this result,
Cragg and Donald (1997) for an application of it in rank estimation, and Andrews (1999)
in moment selection. There are, unfortunately, two challenges for us. First, the limiting
distributions whose critical values we aim to approximate is highly nonstandard in gen-
eral, and as a result, deriving rate conditions on αn through analytic expansions appears
challenging to us. Second, our critical values are obtained through bootstrap, and we
believe that it is nontrivial to control the sample uncertainty embodied in these critical
values as αn ↓ 0. Nonetheless, we show that the our rank estimator is consistent under
the same rate conditions on αn as in Cragg and Donald (1997) and Robin and Smith
(2000). To formalize our discussions below, we thus impose the following.

Assumption C.1. {αn}∞n=1 satisfy (i) αn ↓ 0, and (ii) τ−2
n logαn → 0.

Assumption C.1 is quite mild in that it merely requires that, loosely speaking, αn ap-
proach zero slower than exponentially decaying rates (not too fast). In this way, it en-
compasses a wide range of choices for αn. Given the adjusted significance level αn, we
may now formally define the rank estimator to be

r̃n = min
{
r = 0� � � � �k− 1 : τ2

nφr(Π̂n)≤ ĉn�1−αn(r)
}

(C.3)

if the set is nonempty, and r̃n = k if the set is empty.
The next theorem establishes if Assumption C.1 holds and M is Gaussian (in addi-

tion to previous assumptions), then the estimator r̃n is indeed consistent.

Theorem C.2. Suppose that Assumptions 3.1, 3.2, and C.1 hold. Let r̃n be given by (C.3).
If M is Gaussian but not constant (in Mm×k), then limn→∞ P(r̃n = r0)= 1.



14 Chen and Fang Supplementary Material

We reiterate that Theorem C.2 may be of use not only in estimation problems but
also in conducting our rank test based on the analytic derivative estimator; see (17) and
Lemma D.6. On a technical note, the Gaussianity condition plays an instrumental but
not essential role. Concretely, it allows us to relate the significance levels to the corre-
sponding critical values through a concentration inequality for Gaussian random vec-
tors/matrices; see Lemmas D.8–D.10. Thus, this condition can be relaxed whenever a
suitable concentration inequality for M is available (Ledoux (2001)).

Proof of Theorem C.1. For notational simplicity, define: for r = 0� � � � �k− 1,

An�r = {
τ2
nφr(Π̂n) > ĉn�1−α(r)

}
� (C.4)

that is, An�r are the events of rejecting the nulls. Consider the first the case when r0 = k.
Then we must have {r̂n = r0} =An�0 ∩An�1 ∩ · · · ∩An�k−1, and hence

lim inf
n→∞ P(r̂n = r0)= lim inf

n→∞ P(An�0 ∩An�1 ∩ · · · ∩An�k−1)

≥ 1 −
k−1∑
r=0

[
1 − lim inf

n→∞ P(An�r)
]

= 1� (C.5)

where the inequality follows from the Boole’s inequality, and the last step is because of
the consistency result of Theorem 3.2.

Next, suppose r0 <k. Then {r̂n = r0} =An�0 ∩ · · · ∩An�r0−1 ∩Acn�r0 , and hence

lim sup
n→∞

P(r̂n = r0)= lim sup
n→∞

P
(
An�0 ∩ · · · ∩An�r0−1 ∩Acn�r0

)
≤ lim sup

n→∞
P

(
Acn�r0

) = 1 − lim inf
n→∞ P(An�r0)= 1 − α� (C.6)

where the last step follows from the first claim of Theorem 3.2. Moreover,

lim inf
n→∞ P(r̂n = r0)= lim inf

n→∞ P
(
An�0 ∩ · · · ∩An�r0−1 ∩Acn�r0

)

≥ 1 −
r0−1∑
r=0

[
1 − lim inf

n→∞ P(An�r)
]
− lim sup

n→∞
P(An�r0)

= 1 − α� (C.7)

where we exploited the size control and the consistency results in Theorem 3.2.
Turning to the second claim, note that if r̂n < r0, then r0 > 0 and {r̂n < r0} ⊂Acn�0 ∪

· · · ∪Acn�r0−1. It follows that

lim sup
n→∞

P(r̂n < r0)≤ lim sup
n→∞

P
(
Acn�0 ∪ · · · ∪Acn�r0−1

)

≤
r0−1∑
r=0

lim sup
n→∞

P
(
Acn�r

) =
r0−1∑
r=0

[
1 − lim inf

n→∞ P(An�r)
]

= 0� (C.8)
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where the last step is because of the consistency result of Theorem 3.2. The last claim is
a simple implication of the first two claims. We are thus done.

Proof of Theorem C.2. For notational simplicity, define: for r = 0� � � � �k− 1,

An�r = {
τ2
nφr(Π̂n) > ĉn�1−αn(r)

}
� (C.9)

First, note that r̃n < r0 if and only if r0 ≥ 1 and

{r̃n = r} =An�0 ∩ · · · ∩An�r−1 ∩Acn�r (C.10)

for some r = 0� � � � � r0 − 1. Fix r ∈ {0�1� � � � � r0 − 1}. It follows from (C.10) that

P(r̃n = r)≤ P(
Acn�r

) = 1 − P
(
φr(Π̂n) >

ĉn�1−αn
τ2
n

)
→ 0� (C.11)

where we exploited ĉn�1−αn/τ2
n = op(1) by Assumption C.1(ii), Lemma D.10 andφr(Π̂n)

p−→
φr(Π0) > 0 by the continuous mapping theorem and rank(Π0)≡ r0 > r. Since the result
(C.11) is true for any r = 0� � � � � r0 − 1, we thus obtain

lim sup
n→∞

P(r̃n < r0)= 0� (C.12)

Next, note that r̃n > r0 if and only if r0 ≤ k− 1 and either the relation (C.10) holds for
some r = r0 + 1� � � � �k− 1 or the following event occurs:

{r̃n = k} =An�0 ∩ · · · ∩An�k−1 ∩An�k� (C.13)

Hence, {r̃n = r} ⊂An�r0 for all r = r0 + 1� � � � �k. Fix r = {r0 + 1� � � � �k}. We thus have

P(r̃n = r)≤ P(An�r0)= P(
τ2
nφr0(Π̂n) > ĉn�1−αn

)
� (C.14)

Fix ε ∈ (0�1) so that c1−ε is a continuity point of the cdf F of φ′′
r�Π0

(M). This can be
done without loss of generality because the set of discontinuity points is countable. By
Assumption C.1(i), it holds that: for all n sufficiently large,

F(c1−ε)= 1 − ε < 1 − αn� (C.15)

and hence c1−αn > c1−ε. In turn, we obtain from (C.15) and Assumption C.1(i) that there
exists some δ > 0 satisfying: for all n sufficiently large,

F(c1−ε)+ δ < 1 − αn� (C.16)

Note that if ĉn�1−αn ≤ c1−ε, then we obtain from (C.16) that

F(c1−ε)+ δ < 1 − αn ≤ F̂n(ĉn�1−αn)≤ F̂n(c1−ε)� (C.17)

By Lemma 10.11 in Kosorok (2008), we may thus conclude that

lim sup
n→∞

P(ĉn�1−αn ≤ c1−ε)≤ lim sup
n→∞

P
(
F̂n(c1−ε)− F(c1−ε) > δ

) = 0� (C.18)
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Combination of results (C.14) and (C.18), together with Assumption 3.1, now yields

lim sup
n→∞

P(r̃n = r)≤ lim sup
n→∞

P
(
τ2
nφr0(Π̂n) > c1−ε

) = 1 − F(c1−ε)≤ ε� (C.19)

Since ε > 0 and r ∈ {r0 + 1� � � � �k} are both arbitrary, it follows from (C.19) that

lim sup
n→∞

P(r̃n > r0)= 0� (C.20)

The theorem now follows from results (C.12) and (C.20) since

lim inf
n→∞ P(r̃n = r0)≥ 1 − lim sup

n→∞
P(r̃n < r0)− lim sup

n→∞
P(r̃n > r0)= 1�

Appendix D: Auxiliary lemmas

Lemma D.1. Suppose Π ∈ Mm×k with Π �= 0 and rank(Π) ≤ r. For ε > 0, let Ψ(Π)ε1 be
given as in the proof of Proposition 3.1. Let σ+

min(Π) be the smallest positive singular value
ofΠ. Then for all sufficiently small ε > 0, we have

min
U∈Ψ(Π)ε1

‖ΠU‖ ≥
√

2
2
σ+

min(Π)ε�

Proof. Let Π = PΣQᵀ be a singular value decomposition of Π, where P ∈ Sm×m,
Q ∈ Sk×k, and Σ ∈ Mm×k is diagonal with diagonal entries in descending order. Let
d ≡ k − r and d0 ≡ k − r0 with r0 ≡ rank(Π). For U ∈ Sk×d , let UQ ≡ QᵀU and write

Uᵀ
Q = [U(1)ᵀQ �U(2)ᵀQ ] such that U(1)Q ∈ Mr0×d . Then we have that for U ∈ Sk×d ,

‖ΠU‖ = ∥∥PΣQᵀU
∥∥ = ‖ΣUQ‖ ≥ σ+

min(Π)
∥∥U(1)Q ∥∥� (D.1)

where the second equality follows by PᵀP = Im, and the inequality follows by the fact
that Σ is diagonal with diagonal entries in descending order with σ+

min(Π)= σr0(Π) the

smallest positive entry. Let U(2)Q = P(2)U Σ(2)U Q(2)
ᵀ

U be a singular value decomposition of

U(2)Q where Q(2)U ∈ Sd×d , P(2)U ∈ Sd0×d0 and Σ(2)U ∈ Md0×d . Since r0 ≤ r, and hence d0 ≥ d, it

follows that, for U ∈ Sk×d ,

∥∥U(2)Q ∥∥2 =
d∑
j=1

σ2
j

(
U
(2)
Q

) ≤
d∑
j=1

σj
(
U
(2)
Q

) = tr
([Id�0r−r0]Σ(2)U

)
� (D.2)

where the inequality follows by the fact that σj(U
(2)
Q ) ∈ [0�1] as singular values of U(2)Q

due to U(2)ᵀQ U(2)Q + U(1)ᵀQ U(1)Q = Id , and the second equality follows by noting that the

diagonal entries of Σ(2)U are singular values of U(2)Q . Since ‖U(1)Q ‖2 + ‖U(2)Q ‖2 = ‖UQ‖2 = d,

thus combining (D.1) and (D.2) yields that for U ∈ Sk×d ,

‖ΠU‖ ≥ σ+
min(Π)

√
d− tr

([Id�0r−r0]Σ(2)U
)
� (D.3)
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Since ‖U(1)Q ‖2 +‖Σ(2)U ‖2 = ‖U(1)Q ‖2 +‖U(2)Q ‖2 = d and ‖[Id�0r−r0]ᵀ‖2 = d, then simple alge-

bra yields that for U ∈ Sk×d ,

2
(
d− tr

([Id�0d−r0]Σ(2)U
)) = ∥∥U(1)Q ∥∥2 + ∥∥Σ(2)U − [Id�0r−r0]ᵀ∥∥2

� (D.4)

Write Q= [Q1�Q2] such that Q1 ∈ Mk×r0 . Since Qᵀ
1Q1 = Ir0 , Qᵀ

2Q2 = Id0 and Qᵀ
1Q2 = 0 as

well as P(2)U andQ(2)U are orthonormal, we then have that for U ∈ Sk×d ,

∥∥U(1)Q ∥∥2 + ∥∥Σ(2)U − [Id�0r−r0]ᵀ∥∥2 = ∥∥Q1U
(1)
Q +Q2P

(2)
U

(
Σ
(2)
U − [Id�0r−r0]ᵀ)Q(2)ᵀU

∥∥2
� (D.5)

Since U(1)Q =Qᵀ
1U and U(2)Q =Qᵀ

2U by construction and Q1Q
ᵀ
1U +Q2Q

ᵀ
2U =U by QQᵀ =

Ik, we then have that, for U ∈ Sk×d ,

|Q1U
(1)
Q +Q2P

(2)
U

(
Σ2 − [Id�0r−r0]ᵀ)Q(2)ᵀU ‖2 = ∥∥U −Q2P

(2)
U [Id�0r−r0]ᵀQ

(2)ᵀ
U

∥∥2
� (D.6)

Noting thatQ2P
(2)
U [Id�0r−r0]ᵀQ(2)ᵀU ∈Ψ(Π), we have by (D.4)–(D.6) that, for U ∈ Sk×d ,

2
(
d− tr

([Id�0r−r0]Σ(2)U
)) ≥ min

U ′∈Ψ(Π)
∥∥U −U ′∥∥2

� (D.7)

Since Π �= 0, then Ψ(Π)ε1 �= ∅ for all sufficiently small ε > 0. Fix such an ε > 0. By the
definition of Ψ(Π)ε1, combining (D.3) and (D.7) yields that for all U ∈Ψ(Π)ε1,

‖ΠU‖ ≥
√

2
2
σ+

min(Π) min
U ′∈Ψ(Π)

∥∥U −U ′∥∥ ≥
√

2
2
σ+

min(Π)ε� (D.8)

Then the lemma follows by applying minimum over Ψ(Π)ε1 to both sides of (D.8) and
noting that the result continues to hold for all sufficiently small ε > 0.

Lemma D.2. The correspondence ϕ in the proof of Proposition 3.1 is continuous at 0.

Proof. Fix U0 ∈ Ψ(Π), and define the correspondence ϕ̄ : R � �
 by ϕ̄(t) = �
U0
(t),

where Ψ(Π), �
 and �
U0
(t) are given in the proof of Proposition 3.1. Let d ≡ k− r. For

each tn and each V0 ∈ ϕ̄(0), define f : �
 → Mk×d by

f (V )= V0 − tn

2
U0V

ᵀV �

Since f is continuous and �
 is compact, f is a compact map in the sense of Granas and
Dugundji (2003). By Theorem 0.2.3 in Granas and Dugundji (2003), one of the following
two cases must happen: (i) f has a fixed point V1n ∈ �
, and (ii) there exists some V2n ∈
�
 such that ‖V2n‖ = 
 and V2n = λnf (V2n) with λn ≡ 


‖f (V2n)‖ ∈ (0�1). In case (i), since
U0 ∈Ψ(Π), V0 ∈ ϕ̄(0) and f (V1n)= V1n, we have by simple algebra:

V ᵀ
1nU0 +Uᵀ

0V1n =
(
V0 − tn

2
U0V

ᵀ
1nV1n

)ᵀ

U0 +Uᵀ
0

(
V0 − tn

2
U0V

ᵀ
1nV1n

)
= −tnV ᵀ

1nV1n� (D.9)
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This together with V1n ∈ �
 implies that V1n ∈ ϕ̄(tn). Moreover, since f (V1n)= V1n, ‖U0‖ =√
d and V1n ∈ �
, then by the submultiplicativity of Frobenius norm we have

‖V1n − V0‖ =
∥∥∥∥ tn2 U0V

ᵀ
1nV1n

∥∥∥∥ ≤ tn

2

√
d
2� (D.10)

In case (ii), since U0 ∈ Ψ(Π), λ2
nV0 ∈ ϕ̄(0) and λnV2n = λ2

nf (V2n), then by analogous cal-
culations as in (D.9), we have

(λnV2n)
ᵀU0 +Uᵀ

0(λnV2n)= −tn(λnV2n)
ᵀ(λnV2n)�

This together with λnV2n ∈ �
 due to λn ∈ (0�1) and V2n ∈ �
 implies that λnV2n ∈ ϕ̄(tn).
Moreover, since λnV2n = λ2

nf (V2n), similar to (D.10) we have

‖λnV2n − V0‖ ≤ ∥∥λ2
nf (V2n)− λ2

nV0
∥∥ + ∣∣λ2

n − 1
∣∣‖V0‖ ≤ tn

2

√
d
2 + ∣∣λ2

n − 1
∣∣
� (D.11)

where the first inequality follows the triangle inequality and the second inequality fol-
lows since λn ∈ (0�1). Now, for each n ∈ N, define V ∗

n to be V1n if case (i) happens and
λnV2n otherwise. Let δn ≡ 1 if case (i) happens and δn ≡ λn otherwise. Then V ∗

n ∈ �
U0
(tn)

for all n ∈ N, and combination of (D.10) and (D.11) yields

∥∥V ∗
n − V0

∥∥ ≤ tn

2

√
d
2 + ∣∣δ2

n − 1
∣∣
→ 0�

where we exploited the fact that if V2n exists infinitely often, δn = λn = 

‖f (V2n)‖ → 1 due

to f (V2n)→ V0 as n→ ∞ and ‖V0‖ ≤ 
, and tn → 0 as n→ ∞. It follows that ϕ̄(t) is lower
hemicontinuous at t = 0 by Theorem 17.21 in Aliprantis and Border (2006).

The lower hemicontinuity of ϕ(t) at t = 0 follows easily from that of ϕ̄(t) again by
Theorem 17.21 in Aliprantis and Border (2006). To see this, let tn → 0 and (U0� V0) ∈ ϕ(0).
Define (U∗

n�V
∗
n ) to beU∗

n =U0 and V ∗
n be as in previous construction for all n ∈ N. Clearly,

(U∗
n�V

∗
n )→ (U0� V0), implying that ϕ(t) is lower hemicontinuous at t = 0. Since ϕ(t) is

contained in the compact set Sk×d × �
 for all t, ϕ(t) is upper hemicontinuous at t = 0
by Theorem 17.20 in Aliprantis and Border (2006). We have therefore showed that ϕ(t) is
continuous at t = 0.

Lemma D.3. Suppose Π ∈ Mm×k with rank(Π) ≤ r, and M ∈ Mm×k with M �= 0. Let
Ψ(Π)= arg minU∈Sk×(k−r) ‖ΠU‖2, and forU ∈Ψ(Π) and 
> 0 let �
U(0) be as in the proof
of Proposition 3.1. For 
 sufficiently large, it follows that for all U ∈Ψ(Π),

min
V ∈�
U(0)

‖ΠV +MU‖2 = min
V ∈Mk×(k−r)

‖ΠV +MU‖2�

Proof. The conclusion is trivial if Π = 0. Suppose that Π �= 0 and let d ≡ k − r. Let
r0 = rank(Π) and Π = PΣQᵀ be a singular value decomposition of Π, where P ∈ Sm×m,
Q ∈ Sk×k, and Σ ∈ Mm×k is diagonal with diagonal entries in descending order. Since
Π �= 0 and r0 ≤ r, we may write Σ= [Σ1�0] with Σ1 ∈ Mm×r0 of full rank so that

min
V ∈Mk×d

‖ΠV +MU‖2 = min
V ∈Mr0×d

‖[PΣ1V +MU‖2� (D.12)
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By the projection theorem, the minimum on the right-hand side of (D.12) is attained
at some point, say V ∗

1 ∈ Mr0×d . Moreover, V ∗
1 is uniformly bounded over U ∈ Ψ(Π). Let

V ∗ ≡Q[V ∗ᵀ
1 �0]ᵀ ∈ Mk×d , then the minimum on the left-hand side of (D.12) is attained at

V ∗. Decompose Q as Q = [Q1�Q2], where Q1 ∈ Mk×r0 . Then V ∗ = Q1V
∗

1 ∈ �
U(0) for all
U ∈ Ψ(Π), when 
 is sufficiently large. It implies that the minimum on the right-hand
side of (D.12) is attained within �
U(0) as well for all U ∈ Ψ(Π), when 
 is sufficiently
large. This implies that when 
 is sufficiently large,

min
V ∈�
U(0)

‖ΠV +MU‖2 ≤ min
V ∈Mk×d

‖ΠV +MU‖2

for all U ∈Ψ(Π). The reverse inequality is simply true since �
U(0)⊂ Mk×d all U ∈Ψ(Π)
and all 
> 0. This completes the proof of the lemma.

Lemma D.4. If r0 ≡ rank(Π)≤ r, then for anyM ∈ Mm×k,

min
U∈Ψ(Π)

min
V ∈Mk×d

‖ΠV +MU‖2 =
k−r0∑

j=r−r0+1

σ2
j

(
Pᵀ

2MQ2
)
� (D.13)

where Ψ(Π)= arg minU∈Sk×(k−r) ‖ΠU‖2.

Proof. Let d ≡ k− r and d0 ≡ k− r0. Noting that the column vectors in Q2 form a or-
thonormal basis for the null space of Π0, we may rewrite Ψ(Π) as Ψ(Π) = {Q2V : V ∈
Sd0×d}. This, together with the projection theorem, implies

φ′′
r�Π(M)= min

V ∈Sd0×d

∥∥(
I −Π(

ΠᵀΠ
)−
Πᵀ)MQ2V

∥∥2
� (D.14)

where A− denotes the Moore–Penrose inverse of a generic matrix A. By the singular
value decomposition ofΠ, we have(

I −Π(
ΠᵀΠ

)−
Πᵀ)P = P − PΣQᵀ(QΣᵀPᵀPΣQᵀ)−

QΣᵀPᵀP

= P − PΣQᵀQ
(
ΣᵀPᵀPΣ

)−
QᵀQΣᵀPᵀP = P − PΣ(

ΣᵀΣ
)−
Σᵀ

= [0�P2]� (D.15)

where the second equality exploited Theorem 20.5.6 in Harville (2008), the third equality
follows from P andQ being orthonormal, and the fourth equality is obtained by carrying
out the Moore–Penrose inverse by Exercise 2.7.4 in Magnus and Neudecker (2007) and
noting that Σ is diagonal. In view of (D.15), we have

min
V ∈Sd0×d

∥∥(
I −Π(

ΠᵀΠ
)−
Πᵀ)MQ2V

∥∥2

= min
V ∈Sd0×d

∥∥[0�P2]PᵀMQ2V
∥∥2

= min
V ∈Sd0×d

∥∥P2P
ᵀ
2MQ2V

∥∥2 = min
V ∈Sd0×d

∥∥Pᵀ
2MQ2V

∥∥2
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=
k−r0∑

j=r−r0+1

σ2
j

(
Pᵀ

2MQ2
)
� (D.16)

where the third equality follows from Pᵀ
2P2 = Im−r0 and the final equality follows from

Lemma 3.1. Combining (D.14) and (D.16) concludes the proof of the lemma.

Lemma D.5. Suppose rank(Π)≤ r and letφ′′
r�Π : Mm×k → R be given as in Proposition 3.1.

If rank(Π)= r, there exists a bilinear map�′′
r�Π : Mm×k× Mm×k → R such thatφ′′

r�Π(M)=
�′′
r�Π(M�M) for allM ∈ Mm×k; if rank(Π) < r, such a �′′

r�Π does not exist.

Proof. Let Π = PΣQᵀ is a singular value decomposition of Π, where P ∈ Sm×m whose
last m − r columns constitutes P2, Q ∈ Sk×k whose last k − r columns constitutes Q2„
and Σ ∈ Mm×k is diagonal with diagonal entries in descending order. Let d ≡ k − r. If
rank(Π)= r, then Lemma D.4 and Lemma 3.1 imply

φ′′
r�Π(M)= min

V ∈Sd×d
∥∥Pᵀ

2MQ2V
∥∥2 = ∥∥Pᵀ

2MQ2
∥∥2
�

for all M ∈ Mm×k, which is a quadratic form corresponding to the bilinear form
�′′
r�Π(M1�M2)≡ tr(Qᵀ

2M
ᵀ
1P2P

ᵀ
2M2Q2) forM1 ∈ Mm×k andM2 ∈ Mm×k.

Next, assume that rank(Π) < r. Suppose for the sake of a contradiction that there
exists a bilinear map �′′

r�Π corresponding to φ′′
r�Π . Bilinearity of �′′

r�Π then implies that

φ′′
r�Π(M1)+φ′′

r�Π(M2)= φ′′
r�Π(M1 +M2)+φ′′

r�Π(M1 −M2)

2
(D.17)

for all M1 ∈ Mm×k and M2 ∈ Mm×k. Let r0 ≡ rank(Π) and d0 ≡ k− r0. If M = P2HQ
ᵀ
2 for

someH ∈ M(m−r0)×d0 , then Lemma D.4 and Lemma 3.1 imply

φ′′
r�Π(M)= σ2

r−r0+1(H)+ · · · + σ2
d0
(H)� (D.18)

Now, let H1 ∈ M(m−r0)×d0 be diagonal with the (j� j)th entry equal to 1 for j = 1� � � � � d0

andH2 ∈ M(m−r0)×d0 be diagonal with the (j� j)th entry equal to −1 for j = 1 and 1 for j =
2� � � � � d0. SetMi = P2HiQ

ᵀ
2 for i= 1�2, the result in (D.18) impliesφ′′

r�Π(M1)=φ′′
r�Π(M2)=

k− r, φ′′
r�Π(M1 +M2)= 4(k− r)− 4 and φ′′

r�Π(M1 −M2)= 0. It follows that

2(k− r)=φ′′
r�Π(M1)+φ′′

r�Π(M2) �= φ′′
r�Π(M1 +M2)+φ′′

r�Π(M1 −M2)

2
= 2(k− r)− 2�

which contradicts the result (D.17). Thus, the second result of the lemma follows.

Lemma D.6. Suppose Assumption 3.1 holds. Let φ̂′′
r�n be the analytic estimator given by

(17). If r̂n
p−→ r0 ≡ rank(Π0) and r0 ≤ r < k, then condition (15) holds.
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Proof. For notational simplicity, let d ≡ k− r and d̂n ≡ k− r̂n. Fix a sequence {Mn} such
thatMn →M as n→ ∞. By Lemma 3.1, we have∣∣φ̂′′

r�n(Mn)− φ̂′′
r�n(M)

∣∣
=

∣∣∣ min
U∈Sd̂n×d

∥∥P̂ᵀ
2�nMnQ̂2�nU

∥∥ − min
U∈Sd̂n×d

∥∥P̂ᵀ
2�nMQ̂2�nU

∥∥∣∣∣
×

(
min

U∈Sd̂n×d

∥∥P̂ᵀ
2�nMnQ̂2�nU

∥∥ + min
U∈Sd̂n×d

∥∥P̂ᵀ
2�nMQ̂2�nU

∥∥)
� (D.19)

where the inequality follows by the formula (a2 − b2)= (a+ b)(a− b). For the first term
on the right-hand side of (D.19), we have∣∣∣ min

U∈Sd̂n×d

∥∥P̂ᵀ
2�nMnQ̂2�nU

∥∥ − min
U∈Sd̂n×d

∥∥P̂ᵀ
2�nMQ̂2�nU

∥∥∣∣∣
≤ min
U∈Sd̂n×d

∥∥P̂ᵀ
2�n(Mn −M)Q̂2�nU

∥∥ ≤ √
kmd‖Mn −M‖ = op(1)� (D.20)

where the first inequality follows by the Lipschitz continuity of the min operator and the
triangle inequality, the second inequality holds by the submultiplicativity of Frobenius

norm, ‖P̂2�n‖ ≤ √
m, ‖Q̂2�n‖ ≤ √

k� and ‖U‖ = √
r for allU ∈ Sd̂n×d , and the equality is be-

causeMn →M . For the second term on the right-hand side of (D.19), once again exploit-
ing the submultiplicability of the Frobenius norm, ‖P̂2�n‖ ≤ √

m, ‖Q̂2�n‖ ≤ √
k, ‖U‖ = √

r

for all U ∈ Sd̂n×d andMn →M , we have that

min
U∈Sd̂n×d

∥∥P̂ᵀ
2�nMnQ̂2�nU

∥∥ + min
U∈Sd̂n×d

∥∥P̂ᵀ
2�nMQ̂2�nU

∥∥
≤ √

kmd‖Mn‖ + √
kmd‖M‖ =O(1)� (D.21)

Combining results (D.19)–(D.21), then we obtain∣∣φ̂′′
r�n(Mn)− φ̂′′

r�n(M)
∣∣ = op(1)� (D.22)

In view of (D.22), it thus suffices to show that∣∣φ̂′′
r�n(M)−φ′′

r�Π0
(M)

∣∣
≡

∣∣∣∣∣
k−r̂n∑

j=r−r̂n+1

σ2
j

(
P̂ᵀ

2�nMQ̂2�n
) −

k−r0∑
j=r−r0+1

σ2
j

(
Pᵀ

0�2MQ0�2
)∣∣∣∣∣ = op(1)� (D.23)

Let q̂j be the jth column of Q̂2�n. SinceQ0 ∈ Sk×k, we may write q̂j =Q0ûj for some (ran-
dom) ûj ∈ Sk×1. Noting that q̂j is an eigenvector of Π̂ᵀ

nΠ̂n associated with the eigenvalue
σ2
r0+j(Π̂n) when r̂n = r0 and that P(r̂n = r0)→ 1 as given, we have

[
Π̂ᵀ
nΠ̂n −Πᵀ

0Π0 − (
σ2
r0+j(Π̂n)− σ2

r0+j(Π0)
)
Ik +Πᵀ

0Π0 − σ2
r0+j(Π0)Ik

]
Q0ûj

= [
Π̂ᵀ
nΠ̂n − σ2

r0+j(Π̂n)Ik
]
q̂j = op(1)� (D.24)
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Observe that ‖Π̂ᵀ
nΠ̂n −Πᵀ

0Π0‖ = op(1) and |σ2
r0+j(Π̂n)− σ2

r0+j(Π0)| = op(1) by the con-
tinuous mapping theorem, the Weyl inequality (Tao (2012, Exercise 1.3.22(iv))) and As-
sumption 3.1, we then conclude from (D.24) that

op(1)= [
Πᵀ

0Π0 − σ2
r0+j(Π0)Ik

]
Q0ûj =Q0Σ

ᵀ
0Σ0ûj� (D.25)

where we exploited the singular value decomposition Π0 = P0Σ0Q
ᵀ
0, and the fact that

σ2
r0+j(Π0)= 0. Since the first r0 diagonal elements of Σᵀ

0Σ0 are positive andQ0 is nonsin-
gular, we may conclude from result (D.25) that the first r0 elements of ûj are op(1) and
moreover by the definition of q̂j that for some random U2 ∈ S(k−r0)×(k−r0),

Q̂2�n =Q0�2U2 + op(1)� (D.26)

By an analogous argument, we have that for some random V2 ∈ S(m−r0)×(m−r0),

P̂2�n = P0�2V2 + op(1)� (D.27)

Combining results (D.26) and (D.27) and the continuous mapping theorem yields

∥∥P̂ᵀ
2�nMQ̂2�n − V ᵀ

2 P
ᵀ
0�2MQ0�2U2

∥∥ = op(1)� (D.28)

Thus, (D.23) follows from (D.28), the continuous mapping theorem and the fact that the
singular values of V ᵀ

2 P
ᵀ
0�2MQ0�2U2 are equal to those of Pᵀ

0�2MQ0�2.

Lemma D.7. Suppose Assumption 3.1 holds. Let r̂n be the maximal j ∈ {1� � � � �k} such that
σj(Π̂n)≥ κn if such a j exists and r̂n = 0 otherwise. If κn ↓ 0 and τnκn → ∞, then it follows
that

lim
n→∞P(r̂n = r0)= 1�

Proof. On the one hand, note that if r̂n > r0, then we must have r0 ≤ k− 1, σr0+1(Π̂n)≥
κn and σr0+1(Π0)= 0. In turn, it follows that

lim sup
n→∞

P(r̂n > r0)≤ lim sup
n→∞

P
(∣∣σr0+1(Π̂n)− σr0+1(Π0)

∣∣ ≥ κn
)

≤ lim sup
n→∞

P
(∥∥τn{Π̂n −Π0}

∥∥ ≥ τnκn
) = 0� (D.29)

where the second inequality is by the Weyl inequality (Tao (2012, Exercise 1.3.22(iv))),
and the equality follows from ‖τn{Π̂n −Π0}‖ =Op(1) by Assumption 3.1 and τnκn → ∞
as given. On the other hand, if r̂n < r0, then r0 > 0 and σr0(Π̂n) < κn. Hence,

lim sup
n→∞

P(r̂n < r0) ≤ lim sup
n→∞

P
(∣∣σr0(Π̂n)− σr0(Π0)

∣∣>−κn + σr0(Π0)
)

≤ lim sup
n→∞

P(
∥∥τn{Π̂n −Π0}

∥∥ ≥ τnσr0(Π0)
(
1 − κn/σr0(Π0)

)
= 0� (D.30)
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where the first inequality exploited κn < σr0(Π0) for all n sufficiently large by κn ↓ 0, the
second inequality again follows by the Weyl inequality (Tao (2012, Exercise 1.3.22(iv)))
and also σr0(Π0) > 0, and the equality is because ‖τn{Π̂n − Π0}‖ = Op(1) by Assump-
tion 3.1, τn → ∞ and κn ↓ 0. Combining (D.29) and (D.30) yields

lim sup
n→∞

P(r̂n �= r0)≤ lim sup
n→∞

P(r̂n < r0)+ lim sup
n→∞

P(r̂n > r0)= 0�

This completes the proof of the lemma.

Lemma D.8. Let G ∈ Rk followN(μ�Ω0) and g : Rk → R be a Lipschitz map with Lipschitz
constant L. Then, forM the median of g(G) and any x > 0

P
(
g(G)−M >x

) ≤ 1
2

exp
{
−1

2
x2

C2

}
(D.31)

for some C > 0 depending on L and ‖Ω0‖.

Proof. This is a mild extension of Lemma A.2.2 in van der Vaart and Wellner (1996),
and we include a proof here only for completeness. Since G ∼ N(μ�Ω0), we may write

G d=Ω
1/2
0 Z + μ for some Z ∼N(0� Ik). Define a map h : Rk → R by h(z)= g(Ω

1/2
0 z + μ)

for any z ∈ Rk. Then by Lipschitz continuity of g we have: for any z1� z2 ∈ Rk,∣∣h(z1)− h(z2)
∣∣ = ∣∣g(Ω1/2

0 z1 +μ) − g(Ω1/2
0 z2 +μ)∣∣ ≤L∥∥Ω1/2

0 z1 −Ω1/2
0 z2

∥∥
≤L∥∥Ω1/2

0

∥∥‖z1 − z2‖ ≤L‖Ω0‖1/2‖z1 − z2‖� (D.32)

where the fact ‖Ω1/2
0 ‖ ≤ ‖Ω0‖1/2 follows from Theorem X.1.1 in Bhatia (1997). By replac-

ingL‖Ω0‖1/2 with (L‖Ω0‖1/2)∨1 if necessary, we may assume C ≡L‖Ω0‖1/2 > 0 without
loss of generality. Since M is the median of g(G) and hence also of h(Z), we conclude
that M/C is the median of h(Z)/C. It follows from Lemma A.2.2 in van der Vaart and
Wellner (1996) that: for any x > 0,

P
(
g(G)−M >x

) = P
(
h(Z)

C
− M

C
>
x

C

)
≤ 1

2
exp

{
−1

2
x2

C2

}
� (D.33)

This completes the proof of the lemma.

For the next two lemmas, we let BL1(R) be the set of real-valued Lipschitz functions
on R with levels and Lipschitz constants both bounded by one.

Lemma D.9. Let T ∗
n : {Xi�Wni}ni=1 → R be a bootstrap estimator for the distribution of

g(G) such that G ∈ Rk is Gaussian, g : Rk → R is a Lipschitz map, and

sup
f∈BL1(R)

∣∣EW [
f
(
T ∗
n

)] −E[
f
(
g(G)

)]∣∣ = op(1)� (D.34)

Suppose Assumption C.1 holds. Let ĉn�1−αn be (1 − αn) conditional quantiles of T ∗
n given

the data. If the cdf of g(G) is continuous and strictly increasing on [r0�∞) for some r0 ∈ R,

then ĉn�1−αn/τn
p−→ 0.
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Proof. Let F̂n be the conditional cdf of T ∗
n given {Xi}ni=1, and F be the cdf of g(G). By

Lemma 10.11 in Kosorok (2008), we have

sup
t∈[r0�∞)

∣∣F̂n(t)− F(t)∣∣ = op(1)� (D.35)

By the definition of quantiles, we thus obtain from (D.35) that, for any r ∈ [r0�∞),

lim sup
n→∞

P(ĉn�1−αn ≤ r)≤ lim sup
n→∞

P
(
F̂n(r)≥ 1 − αn

)
= lim sup

n→∞
P

(
op(1)+ F(r)≥ 1 − αn

) = 0� (D.36)

where we exploited the facts that F(r) < 1 by strict monotonicity of F on [r0�∞) and that
αn ↓ 0. Next, fix ε > 0. Combination of (D.36) and Lemma D.8 yields

αn < 1 − F̂n(ĉn�1−αn − ε)= P(
g(G) > ĉn�1−αn − ε) + op(1)

≤ 1
2

exp
{
−1

2
(ĉn�1−αn − ε− c0�5)

2

C2

}
+ op(1)� (D.37)

for some C > 0 and c0�5 the 0�5-quantile of g(G). It follows from (D.37) that

(
ĉn�1−αn
τn

− ε

τn
− c0�5

τn

)2
≤ 2C2

(
− logαn

τ2
n

+ logop(1)

τ2
n

− log 2

τ2
n

)
� (D.38)

By Assumption C.1(ii), τn ↑ ∞ and logop(1)
p−→ −∞ as n→ ∞, we may then conclude

the proof of the lemma from result (D.38).

Lemma D.10. Suppose Assumptions 3.1, 3.2, and C.1 hold. Let ĉn�1−α be defined by (18)
for α ∈ (0�1) where κn → 0 and τnκn → ∞ if φ̂′′

r�n is defined by (16) but no restrictions on

r̂n if φ̂′′
r�n is defined by (17). If M is Gaussian but not constant, then ĉn�1−αn/τ2

n

p−→ 0.

Proof. Consider first the case when ĉn�1−α is defined by the analytic derivative estima-
tor. By Lemma 3.1 and simple manipulations, we have

φ̂′′
r�n

(
M̂∗

n

)1/2 ≤ ∥∥P̂ᵀ
2�nM̂

∗
nQ̂2�n

∥∥ ≤ (mk)1/2∥∥M̂∗
n

∥∥� (D.39)

Let c̃n�1−α be the (1 − α)th conditional quantile of ‖M̂∗
n‖ for each α ∈ (0�1). Since M

is Gaussian and the variance of vec(M) is nonzero, ‖M‖2 is equal in law to a weighted
sum of independent χ2(1) random variables. It follows that the cdf ‖M‖ is continuous
and strictly increasing on R+. In turn, by Proposition 10.7 in Kosorok (2008), Assump-

tions 3.2 and C.1, we obtain from Lemma D.9 that c̃n�1−α/τn
p−→ 0. By result (D.39) and

equivariance of quantiles to monotone transformations, we may then conclude that

ĉn�1−αn
τ2
n

≤ ĉ2
n�1−αn
τ2
n

= op(1)� (D.40)
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Next, turn to the case when ĉn�1−α is defined by the numerical derivative estimator.
For each α ∈ (0�1), let c̄n�1−α be the conditional quantile (given the data) of

κnφ̂
′′
r�n

(
M̂∗

n

) = φr
(
Π̂n + κnM̂∗

n

) −φr(Π̂n)
κn

� (D.41)

By Assumptions 3.1, 3.2, and the rates conditions on κn as given, we may employ Propo-
sition 3.1 and Theorem 3.3 in Chen and Fang (2019) to conclude that

sup
f∈BL1(R)

∣∣EW [
f
(
κnφ̂

′′
r�n

(
M̂∗

n

))] −E[
f
(
φ′
r�Π0

(M)
)]∣∣ = op(1)� (D.42)

By simple algebra, we may obtain that: for anyM1�M2 ∈ Mm×k,

∣∣φ′
r�Π0

(M1)−φ′
r�Π0

(M2)
∣∣ =

∣∣∣ min
U∈Ψ(Π)

2 tr
(
UᵀΠᵀM1U

) − min
U∈Ψ(Π)

2 tr
(
UᵀΠᵀM2U

)∣∣∣
≤ max
U∈Ψ(Π0)

2‖Π0U‖∥∥(M1 −M2)U
∥∥ ≤ 2

√
k‖Π0‖‖M1 −M2‖�

(D.43)

By result (D.36) and Lemma D.9, we thus have c̄n�1−αn/τn = op(1), and hence

ĉn�1−αn
τ2
n

≤ c̄n�1−αn
τn

1
τnκn

= op(1)� (D.44)

since τnκn → ∞. This completes the proof of the lemma.

We next present lemmas that are relevant to Section 5 and proceed by imposing the
following.

Assumption D.1. (i) The supports of X and Y are finite; (ii) the Jacobian matrix of
vec(Eπ(A�p�q)[XY ᵀ])with respect to vec(A) atA0 is nonsingular.

Assumption D.1(i) formalizes the setup that the matching attributes are finitely val-
ued. Assumption D.1(ii) is a technical condition, as implicitly imposed in Galichon and
Salanié (2010) and Dupuy and Galichon (2014) who showed that the Jacobian coincides
with the Fisher information matrix forA0.

Next, let the supports X = {x1� � � � � xI} and Y = {y1� � � � � yJ}. Then we may identify p0
and q0 as vectors in (0�1)I and (0�1)J , respectively.

Lemma D.11. If Assumption D.1 holds, then the implicit map A : (0�1)I × (0�1)J ×
Mm×k → Mm×k defined by (26), that is, A(p0� q0�E[XY ᵀ]) =A0, is Hadamard differen-
tiable on some open neighborhood of the truth (p0� q0�E[XY ᵀ]).

Proof. First, note that A is uniquely defined by Lemma 3 in Dupuy and Galichon
(2014). Next, define a map Ψ : Mm×k × (0�1)I × (0�1)J × Mm×k → Rmk by

Ψ(A�p�q�Σ)≡ vec
(
Eπ(A�p�q)

[
XᵀY

] −Σ)
� (D.45)
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By Assumption D.1 and Lemma D.12, Ψ is continuously differentiable on some open
neighborhood of the truth (A0�p0� q0�E[XY ᵀ])—note in particular that X and Y are
finitely supported. In turn, Assumption D.1(ii) allows us to invoke the implicit function
theorem; see, for example, Theorem 9.28 in Rudin (1976), to conclude the proof.

Lemma D.12. If Assumption D.1(i) holds, then the map (A0�p0� q0) �→ π(A0�p0� q0)(x� y)

defined by (24) where � is specified as in (25) uniquely exists and is continuously differ-
entiable on some open neighborhood of the truth (A0�p0� q0), for each (x� y) ∈ X ×Y .

Proof. First, we may rewrite the maximization problem (24) as

max
π

I∑
i=1

J∑
j=1

πijx
ᵀ
iA0yj −

I∑
i=1

J∑
j=1

πij logπij� (D.46)

subject to: for all i= 1� � � � � I and all j = 1� � � � � J,

J∑
j=1

πij = p0�i�

I∑
i=1

πij = q0�j� (D.47)

where p0�i = P(X = xi) and q0�j = P(Y = yj) for all i = 1� � � � � I and all j = 1� � � � � J. By
defining x logx = 0 if x = 0, it is simple to see that the objective function in (D.46)
is continuous. Since the constraints define a compact domain for π, it follows that
an optimal matching distribution π0 always exists. The uniqueness of π0 follows from
strict concavity of the objective function since x �→ x logx is strictly convex. Moreover,
the right derivative of the objective function at 0 is infinite (see equation (D.50) be-
low or Galichon and Salanié (2010, p. 5)) implying that the optimal π0 must satisfy
0 < π0�ij < 1 for all i and j. Exploiting the constraints in (D.47), together with the facts
that p0� q0 and π are pmfs, the constrained optimization can be converted into an
unconstrained one in which the objective function in (D.46) is a function of {p0�i}I−1

i=1 ,

{q0�j}J−1
j=1 and {π0�ij}I−1�J−1

i=1�j=1 only, with π0�iJ = p0�i − ∑J−1
j=1 π0�ij , π0�Ij = q0�j − ∑I−1

i=1 π0�ij for
all i= 1� � � � � I − 1 and j = 1� � � � � J − 1, and

π0�IJ = 1 −
I−1∑
i=1

J−1∑
j=1

π0�ij −
I−1∑
i=1

π0�iJ −
J−1∑
j=1

π0�Ij

= 1 +
I−1∑
i=1

J−1∑
j=1

π0�ij −
I−1∑
i=1

p0�i −
J−1∑
j=1

q0�j� (D.48)

It follows that the unique maximizer π0 must satisfy the first-order condition:

xᵀ
iA0yj − xᵀ

IA0yj − xᵀ
iA0yJ + xᵀ

IA0yJ − 1 − logπ0�ij

+ 1 + logπ0�Ij + 1 + logπ0�iJ − 1 − logπ0�IJ = 0� (D.49)
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or equivalently

xᵀ
iA0yj − xᵀ

IA0yj − xᵀ
iA0yJ + xᵀ

IA0yJ

− logπ0�ij + logπ0�Ij + logπ0�iJ − logπ0�IJ = 0� (D.50)

for all i = 1� � � � � I − 1 and j = 1� � � � � J − 1, where π0�iJ , π0�Ij and π0�IJ are functions of

{p0�i}I−1
i=1 , {q0�j}J−1

j=1 and {π0�ij}I−1�J−1
i=1�j=1 as defined previously.

Let us stack the equations in (D.50) along i = 1� � � � �m sequentially for fixed j =
1� � � � �k, and let d∗ ≡ (I−1)(J−1). The left side of (D.50) is then a Rd

∗
-valued function of

A0, {p0�i}I−1
i=1 , {q0�j}J−1

j=1 and {π0�ij}I−1�J−1
i=1�j=1 , which is obviously continuously differentiable.

Moreover, the derivative of the left side in (D.50) with respect to vec({π0�ij}I−1�J−1
i=1�j=1 ) is then

a matrix of size d∗ × d∗ which is given by: for Jd a generic d× d matrix of ones,

−π0 −π0�J ⊗ JI−1 − JJ−1 ⊗π0�I −π−1
0�IJJd∗2� (D.51)

with π0�I ≡ diag({π−1
0�iJ}I−1

i=1 ), π0�J ≡ diag({π−1
0�Ij}J−1

j=1 ) and π0 ≡ diag(vec({π−1
0�ij}I−1�J−1

i=1�j=1 )).

Note thatπ0 is positive definite while π0�J ⊗JI−1, JJ−1 ⊗π0�I and π−1
0�IJ ⊗Jd∗2 are positive

semidefinite, so the matrix in (D.51) is invertible. The conclusion now follows from the
implicit function theorem; see, for example, Theorem 9.28 in Rudin (1976).
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