
Supplementary Material

Supplement to “A narrative approach to a fiscal DSGE model”
(Quantitative Economics, Vol. 11, No. 2, May 2020, 801–837)

Thorsten Drautzburg
Federal Reserve Bank of Philadelphia

This appendix provides proofs and additional details on the model in part A. Part B
describes the data and additional empirical results.

Appendix A: Narrative VAR and DSGE-VAR

A.1 Narrative shock identification

Here, I derive how the observables, � and Σ, identify the impulse responses of interest
up to an extra mz(mz−1)

2 restrictions, where mz is the number of instruments and shocks
to identify.

Define

κ= (�−1
1 �2

)′
� (A.1)

so that A21 = κA11. Then

Σ=
[

A11A′
11 + A12A′

12 A11A′
11κ

′ + A12A′
22

κA11A′
11 + A22A′

12 κA11A′
11κ

′ + A22A′
22

]
� (A.2)

The covariance restriction identifies the impulse response (or component of the forecast
error) up to anmz ×mz square scale matrix A11:

ut = Aεt =
[

A[1] A[2]
]
εt = A[1]ε[1]

t + A[2]ε[2]
t =

[
Imz
κ

]
A11ε

[1]
t +

[
A12

A22

]
ε[2]
t �

Given that ε[1] ⊥⊥ ε[2], it follows that

Var
[
ut |ε[1]

t

]= A[2](A[2])′ = [A12A′
12 A12A′

22
A22A′

12 A22A′
22

]
�

Var
[
ut |ε[2]

t

]= A[1](A[1])′ = [ A11A′
11 A11A11κ

κA11A′
11 κA11A′

11κ

]
�

Σ= Var[ut] = Var
[
ut |ε[2]

t

]+ Var
[
ut |ε[1]

t

]= [Σ12Σ
′
12 Σ12Σ

′
22

Σ22Σ
′
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′
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�
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Note that

urest ≡ ut −E
[
ut |ε[1]

t

]⊥ E
[
ut |ε[1]

t

]= [Imz
κ

]
A11ε

[1]
t �

Any vector in the nullspace of [Imz κ′] satisfies the orthogonality condition.

Note that
{[ Imz

κ

]
�
[ κ′

−Im−mz
]}

is an orthogonal basis for Rm.
Define

Z ≡
[

Z[1] Z[2]
]

≡
[

Imz κ′
κ −Im−mz

]
� (A.3)

Note that Z[2] spans the nullspace of A[1]′. Hence, (Z[2])′vt projects vt onto the nullspace
of the instrument-identified shocks ε[1]

t .(
Z[2])′vt = (Z[2])′Aεt = (Z[2])′ [A[1] A[2]

]
εt =

(
Z[2])′ [Z[1]‖Z̃‖A11 A[2]

]
εt

=
[

0
(
Z[2])′A[2]

]
εt = 0 × ε[1]

t + (Z[2])′A[2]ε[2]
t ⊥⊥ ε[1]�

Note that (Z[2])′A[2] is of full rank, and I can therefore equivalently consider ε[2]
t or

(Z[2])′vt . Thus, the expectation of vt given ε[2]
t is given by

E
[
vt |ε[2]

t

]= Cov
[
vt �
(
Z[2])′vt]Var

[(
Z[2])′vt]−1(Z[2])′vt �

vt −E
[
vt |ε[2]

t

]= (I − Cov
[
vt �
(
Z[2])′vt]Var

[(
Z[2])′vt]−1(Z[2])′)vt �

Cov
[
vt �
(
Z[2])′vt]=ΣZ[2] =Σ

[
κ′

−Im−mz

]
�

Var
[
vt |ε[2]

t

]= E
[(

I − Cov
[
vt �
(
Z[2])′vt]Var

[(
Z[2])′vt]−1(Z[2])′)vtv′

t

]
= E

[
vtv′

t

]− Cov
[
vt �
(
Z[2])′vt]Var

[(
Z[2])′vt]−1

E
[(

Z[2])′)vtv′
t

]
=Σ− Cov

[
vt �
(
Z[2])′vt]Var

[(
Z[2])′vt]−1 Cov

[
vt �
(
Z[2])′vt]

=Σ−Σ
[

κ′
−Im−mz

]([
κ −Im−mz

]
Σ

[
κ′

−Im−mz

])−1 [
κ −Im−mz

]
Σ

=
[

A11A′
11 A11A11κ

κA11A′
11 κA11A′

11κ

]
� (A.4)

This gives a solution for A11A′
11 in terms of observables: Σ and κ= �−1

1 × � 2. For future
reference, note that this also implies that

Var
[
vt |ε[1]

t

]=Σ− Var
[
vt |ε[2]

t

]
=Σ

[
κ′

−Im−mz

]([
κ −Im−mz

]
Σ

[
κ′

−Im−mz

])−1 [
κ′

−Im−mz

]′
Σ� (A.5)
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In general, A11 itself is unidentified: Additional (mz−1)mz
2 restrictions are needed to

pin down its mz2 elements from the (mz+1)mz
2 independent elements in A11A′

11. Given
A11, the impact response to a unit shock is given by[

Imz
κ

]
A11�

A.2 Narrative policy rule identification

To show that the lower Cholesky factorization proposed in Mertens and Ravn (2013)
identifies Taylor-type policy rules when ordered first, I start by deriving the represen-
tation of the identification problem as the simultaneous equation system (3.4). Recall
the definition of forecast errors vt in terms of structural shocks εt :

vt = Aεt ≡
[

A11 A12

A21 A22

][
ε1�t

ε2�t

]
⇔
[

A11 A12

A21 A22

]−1

� vt =
[
ε1�t

ε2�t

]
� (A.6)

Note that[
A11 A12

A21 A22

]−1

=
[ (

A11 − A12A−1
22 A21

)−1 −A−1
11 A12

(
A22 − A21A−1

11 A12
)−1

−A−1
22 A21

(
A11 − A12A−1

22 A21
)−1 (

A22 − A21A−1
11 A12

)−1

]

=
[ (

A11 − A12A−1
22 A21

)−1 −(A11 − A12A−1
22 A21

)−1A12A−1
22

−(A22 − A21A−1
11 A12

)−1A21A−1
11

(
A22 − A21A−1

11 A12
)−1

]
�

Note that(
A11 − A12A−1

22 A21
)−1 = A−1

11

((
A11 − A12A−1

22 A21
)
A−1

11

)−1 = A−1
11

(
I − A12A−1

22 A21A−1
11

)−1

and define

S1 ≡ (I − A12A−1
22 A21A−1

11

)
A11� S2 ≡ (I − A21A−1

11 A12A−1
22

)
A22 (A.7)

so that (
A11 − A12A−1

22 A21
)−1 = S−1

1 �
(
A22 − A21A−1

11 A12
)−1 = S−1

2 �

Using these equalities gives the first equality in what follows, whereas the second
equality is straightforward algebra:[

A11 A12

A21 A22

]−1

vt =
[

S−1
1 −S−1

1 A−1
11 A12

−S−1
2 A−1

22 A21 S−1
2

]
vt

=
[

S−1
1 0
0 S−1

2

][
I −A12A−1

22
−A21A−1

11 I

]
vt =

[
ε1�t

ε2�t

]
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and equivalently [
I −η

−κ I

]
vt =

[
S1 0
0 S2

][
ε1�t

ε2�t

]
(A.8)

defining η≡ A12A−1
22 and κ≡ A21A−1

11 . Equation (3.4) follows immediately.

Lemma 1 (Mertens and Ravn (2013)). LetΣ= AA′ and � = [G 0]A′, where G is anmz×mz
invertible matrix and A is of full rank. Then A[1] is identified up to a factorization of S1S′

1
with S1 defined in (A.7).

Proof. Since A is of full rank, it is invertible and (A.8) holds for any such A. Given η, κ,
(A.8) implies (3.5), which I reproduce here for convenience:

A[1] =
[

A11

A21

]
=
[
(I −ηκ)−1

(I −κη)−1κ

]
chol

(
S1S′

1
)
� (3.5)

If Σ and � pin down η, κ uniquely, A[1] is uniquely identified except for a factorization
of S1S′

1.
To show that Σ and � pin down η, κ uniquely, consider κ first. Since � = [G 0]A and

G is anmz×mz invertible matrix, it follows that Assumption 1 holds. It then follows from
(3.2) that κ= A21A−1

11 = � 2�−1
1 .

To compute η, more algebra is needed. PartitionΣ= [Σ11 Σ12
Σ′

12 Σ22

]
, whereΣ11 ismz×mz ,

Σ12 ismz × (m−mz) and Σ22 is (m−mz)× (m−mz). Define

A22A′
22 =Σ22 −κA11A′

11κ
′ =Σ22 −κ(Σ11 − A12A′

12
)
κ′�

using (A.2) twice. Using the upper left element of (A.5), it follows that

A12A′
12 = (Σ′

12 −κΣ11
)′(ZZ′)−1(

Σ′
12 −κΣ11

)
with

ZZ′ = κΣ11κ
′ − (Σ′

12κ
′ +κΣ12

)+Σ22 =
[
κ −Im−mz

]
Σ

[
κ′

−Im−mz

]
�

The coefficient matrix of interest, η, is then defined as

η≡ A12A−1
22 = A12A′

22
(
A22A′

22
)−1 = (Σ12 −κA11A′

11
)′(A22A′

22
)−1

= (Σ12 −κΣ′
11 +κA12A′

12
)′(A22A′

22
)−1
�

Thus, η and κ are uniquely identified given Σ, � .

The above derivations link S1 to A−1. I now compute S1 for a class of models.
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Proposition 1. Let Σ = AA′ and order the policy variables such that the mp = mz or

mp =mz − 1 observable Taylor rules are ordered first and � = [G�0]A. Then A[1] defined in

(3.5) satisfies A[1] = A[Imz�0(m−mz)×(m−mz)]′ up to a normalization of signs on the diago-

nal if

(a) mz instruments jointly identify shocks to mp =mz observable Taylor rules w.r.t. the

economy (2.2), or

(b) mz instruments jointly identify shocks tomp =mz − 1 observable Taylor rules w.r.t.

the economy (2.2) and ηp�mz = 0, p= 1� � � � �mp.

Proof. Given Lemma 1, A[1] is identified uniquely if S1 is identified uniquely. In what

follows, I establish that under the ordering in the proposition, S1, as defined in (A.7) for

arbitrary full rank A, is unique up to a normalization. It then follows that A[1] is identified

uniquely, and hence, equal to A∗[Imz�0(m−mz)×(m−mz)]′.
To proceed, stack themp policy rules:

ypt =
m∑

i=mp+1

⎡⎢⎢⎢⎢⎣
η1�i 0 � � � 0

0 η2�i � � � 0
��� � � �

� � �
���

0 0 � � � ηmp�i

⎤⎥⎥⎥⎥⎦ yi�t +
⎡⎢⎢⎢⎢⎣
λ1

λ2
���

λnp

⎤⎥⎥⎥⎥⎦xt−1 +

⎡⎢⎢⎢⎢⎣
Σ11 0 � � � 0
Σ21 Σ22 � � � 0
���

���
� � �

���

np�1 σnp�2 � � � σnp�np

⎤⎥⎥⎥⎥⎦εpt

≡
m∑

i=mp+1

Diyi�t +Λxt−1 +
[

D0 0
]
εt �

=
([

D0 0
]
εt +

m∑
i=mp+1

Di1A′
i

)
εt +

(
m∑

i=mp+1

Di1B′
ixt−1 +Λ

)
xt−1�

where m−mp ≤ n̄≡ maxp np. Define ei as the selection vector of zeros except for a one

at its ith position and denote the ith row of matrix A by Ai = (e′
iA)

′ and similarly for Bi.
Without loss of generality, order the policy instruments first, before the m−mp = n̄

nonpolicy variables. Then A∗ in the observation equation (2.2a) can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[D0�0] +

m∑
i=mp

Di1
(
A∗
i

)′
(
A∗
mp+1

)′
���(

A∗
m

)′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

where 0
¯

is a full-rank lower diagonal matrix and the Dj matrices aremp ×mp matrices.

To find (A∗)−1, proceed by Gauss–Jordan elimination to rewrite the system A∗X =
Im, with solution X = (A∗)−1, as [A∗|Im]. Define E as a conformable matrix such that
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[A∗|Im] E→ [B|C] = [EA∗|EIm]. Then

[(
A∗)|Im]=

⎡⎢⎢⎢⎢⎢⎣

[
D0 0

]
+∑m

i=mp+1 Di1
(
A∗
i

)′ Imp 0 0 � � � 0(
A∗
mp+1

)′ 0′ 1 0 � � � 0
���

���
���

���
� � �

���(
A∗
m

)′ 0′ 0 0 � � � 1

⎤⎥⎥⎥⎥⎥⎦

E1→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
D0 0

]
+∑m

i=mp+2 Di1
(
A∗
i

)′ Imp −Dmp+11 0 � � � 0(
A∗
mp+1

)′ 0′ 1 0 � � � 0(
A∗
mp+2

)′ 0′ 0 1 � � � 0
���

���
���

���
� � �

���(
A∗
m

)′ 0′ 0 0 � � � 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

E2→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
D0 0

]
+∑m

i=mp+3 Di1
(
A∗
i

)′ Imp −Dmp+11 −Dmp+21 � � � 0(
A∗
mp+1

)′ 0′ 1 0 � � � 0(
A∗
mp+2

)′ 0′ 0 1 � � � 0
���

���
���

���
� � �

���

(Am∗)′ 0′ 0 0 � � � 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
E3→ ·· ·

Em−mp→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
D0 0

]
Imp −Dmp+11 −Dmp+21 � � � −Dm1(

A∗
mp+1

)′ 0′ 1 0 � � � 0(
A∗
mp+2

)′ 0′ 0 1 � � � 0
���

���
���

���
� � �

���

(Am∗)′ 0′ 0 0 � � � 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

ED→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

[
Imp 0

]
D−1

0 −D−1
0 Dmp+11 −D−1

0 Dmp+21 � � � −D−1
0 Dm1(

A∗
mp+1

)′ 0′ 1 0 � � � 0(
A∗
mp+2

)′ 0′ 0 1 � � � 0
���

���
���

���
� � �

���

(Am∗)′ 0′ 0 0 � � � 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

Thus, ((A∗)−1)1:mp�1:mp = (ED Em−mp � � � E1 Im)1:mp�1:mp .

Now consider cases (a) and (b):

(a) mz =mp. From (A.7), S1 is the upper left corner of (A∗)−1:

S1 ≡ ((A∗)−1)
1:mp�1:mp = D−1

0

and S1 is a (lower) diagonal matrix because D0 is (lower) diagonal.
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(b) mz = mp + 1, ηp�mp+1 = 0, p = 1� � � � �mp. The second condition implies that
Dmp+1 = 0mp×mp . It follows that S1 defined in (A.7) is given by

S1 ≡ ((A∗)−1)
1:mp+1�1:mp+1 =

[
D−1

0 Dmp+11
smp+1�1:mp smp+1�mp+1

]
=
[

D−1
0 0

smp+1�1:mp smp+1�mp+1

]
�

Thus, S1 is lower triangular.

In both cases, S1 is lower triangular. Since the lower Cholesky decomposition is unique,
a Cholesky decomposition of S1S′

1 recovers S1 if we normalize signs of the diagonal of S1

to be positive. Given identification of S1, the identification of A[1] follows from Lemma 1.

A.3 VAR priors and posteriors

Let ut
i.i.d.∼ N (0�V) and let U = [u1� � � � �uT ]′, where ut isma× 1 and U is T ×ma. Then the

likelihood can be written as

L= (2π)−mT/2|V|−T/2 exp

(
−1

2

T∑
t=1

u′
tV

−1ut

)

= (2π)−mT/2|V|−T/2 exp

(
−1

2

T∑
t=1

tr
(
u′
tV

−1ut
))

= (2π)−mT/2|V|−T/2 exp

(
−1

2
tr

(
V−1

T∑
t=1

utu′
t

))

= (2π)−mT/2|V|−T/2 exp
(

−1
2

tr
(
V−1U′U

))
(A.9)

= (2π)−mT/2|V|−T/2 exp
(

−1
2

vec(U)′
(
V−1 ⊗ IT

)
vec(U)

)
�

using that tr(ABC)= vec(B′)′(A′ ⊗ I) vec(C) and that V = V′.
For the SUR model, [Y�Z] = [Xy�Xz]

[By
Bz

] + U. Consequently, YSUR ≡ vec([Y�Z]) =
XSUR vec

([By
Bz

])+ vec(U), where

XSUR ≡
[

Im ⊗ Xy 0
0 Imz ⊗ Xz

]
�

The likelihood can then also be written as

L= (2π)−mT/2|V|−T/2 exp
(

−1
2
(YSUR − XSURβ)

′(V−1 ⊗ IT
)
(YSUR − XSURβ)

)
= (2π)−mT/2|V|−T/2 exp

(
−1

2
(ỸSUR − X̃SURβ)

′(ỸSUR − X̃SURβ)

)
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= (2π)−mT/2|V|−T/2 exp
(

−1
2
(ỸSUR − X̃SURβ)

′(ỸSUR − X̃SURβ)

)
= (2π)−mT/2|V|−T/2 exp

(
−1

2
(
X̃SUR(β− β̃SUR)

)′(X̃SUR(β− β̃SUR)
))

= (2π)−mT/2|V|−T/2 exp
(

−1
2
(β− β̃SUR)

′(X̃′
SURX̃SUR

)
(β− β̃SUR)

)
� (A.10)

where β̃SUR ≡ (X̃′
SURX̃SUR)

−1X̃′
SURỸSUR and the second to last equality follows from the

normal equations.
Note that expression (A.10) for the likelihood is proportional to a conditional Wishart

distribution for β: β|V−1 ∼ N (β̃SUR� (X̃
′
SURX̃SUR)

−1)≡ N (β̃SUR� (X
′
SUR(V

−1 ⊗ I)XSUR)
−1).

Alternatively, expression (A.9) for the likelihood is proportional to a conditional Wishart
distribution for V−1: V−1|β ∼ Wma((U(β)

′U(β))−1�T + ma + 1). Premultiplying with a
Jeffrey’s prior over V, transformed to V−1, is equivalent to premultiplying by π(V−1) ≡
|V−1|−ma+1

2 and yields

π
(
V−1)× = ∣∣V−1∣∣−ma+1

2 × (2π)−mT/2|V|−T/2 exp
(

−1
2

tr
(
V−1U′U

))
= (2π)−mT/2∣∣V−1∣∣(T−ma−1)/2 exp

(
−1

2
tr
(
V−1U′U

))
� (A.11)

which is V−1|β∼ Wma((SSR(β))−1�T ), with

SSR(β)≡ U(β)′U(β)= [Y − XyBy(β)�Z − XzBz(β)
]′[Y − XyBy(β)�Z − XzBz(β)

]
=

T∑
t=1

[
yt − xy�tBy(β)�zt − xz�tBz(β)

]′[yt − xy�tBy(β)�zt − xz�tBz(β)
]
�

A.4 Invertibility

A necessary condition for the VAR and DSGE models to agree on the structural shocks
is that both models span the same economic shocks. Fernandez-Villaverde, Rubio-
Ramirez, Sargent, and Watson (2007) provide succinct sufficient conditions to guarantee
that the economic shocks in the state space system (2.2) matches those from the VAR
(2.1).

Assumption 1. A∗ is nonsingular, and the matrix C∗ − D∗(A∗)−1B∗ is stable.

Under this condition, the forecast errors of a VAR with sufficiently many lags and the
DSGE model coincide, as summarized in the following lemma.1

1Intuitively, xt can be expressed as a square-summable linear combination in terms of yt . Hence,
Var[xt |yt ] = 0 and the Wold representation of yt is given by yt = B∗∑∞

j=0(C
∗ − D∗(A∗)−1B∗)j ×

D∗(A∗)−1yt−1−j + A∗εt . The one-step-ahead prediction error is, therefore, yt − E[yt |yt−1] = A∗εt with vari-
ance (A∗)(A∗)′.
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Lemma 2 (Fernandez-Villaverde et al. (2007, p. 1022)). Let yt be generated by the DSGE
economy (2.2). Under Assumption 1, the variance-covariance matrix of the one-step-
ahead prediction error in the Wold representation of yt is given byΣ∗ = (A∗)(A∗)′.

In my application, I assume throughout that Assumption 1 holds so that a VAR(p)
can approximate the DSGE model dynamics arbitrarily well. Thus, AA′ ≈ A∗(A∗)′. This
assumption is not necessarily satisfied and, in general, depends on the observables yt .2

With an equal number of AR(1) shock processes as observables, I found two intuitive
cases in my exploratory analysis that violate Assumption 1 for most of the parame-
ter space: First, a model with capital that exclude investment and capital as observ-
ables. This is similar to Chari, Kehoe, and McGrattan (2005) who point to the challenge
of recovering impulse responses in VAR models in economies with capital. Second, a
model with news shocks and without observed expectations. For the estimated models,
however, I show in Appendix B.2 that a VAR(4) approximation captures the underlying
DSGE model dynamics well.

A.5 DSGE-SVAR prior

Note that the dummy variables prior is no longer conjugate. Hence, my prior can
be generated from two different distributions: The coefficients are generated from a
N (β0� V̄−1

0 ) distribution, whereas the observations that generate the prior for the co-
variance matrix are generated from a N (0�V−1) distribution.

Specify

β∼ N
(
β̄0� N̄−1

0

)
� N̄0 ≡ X′

SUR�0
(
V̄−1

0 ⊗ I)XSUR�0�

Note that this is not equal to

β|V−1 ∼ N
(
β̄0� N̄0

(
V−1))� N̄0

(
V−1)≡ X′

SUR�0
(
V−1 ⊗ I

)
XSUR�0�

unless V−1 is known and equal to V̄0.
The prior for V−1 is Wishart independent of β.

V−1 ∼ Wm+mz(V̄0T0�T0)�

Note that because the prior for β is independent of V−1, the prior is conditionally con-
jugate with the likelihood function. Otherwise, the presence of |N0(V−1)| terms would
undo the conjugacy.

The prior is therefore

π
(
β�V−1|θ)= (2π)−n/2∣∣N̄0(θ)

∣∣+1/2
e−

1
2 (β−β̄0(θ))

′N̄0(θ)(β−β̄0(θ))2−T0(m+mz)/2

× ∣∣V̄0(θ)T0
∣∣−T0/2�m(T0/2)−1∣∣V−1∣∣(T0−m−mz−1)/2

e−
1
2 tr(V−1V̄0(θ)T0)

= (2π)−n/2∣∣N̄0(θ)
∣∣+1/2

e−
1
2 (β−β̄0(θ))

′N̄0(θ)(β−β̄0(θ))2−T0(m+mz)/2

× ∣∣S0(θ)
∣∣−T0/2�m(T0/2)−1∣∣V−1∣∣(T0−m−mz−1)/2

e−
1
2 tr(V−1S0(θ))�

2I also verify this condition for each draw of the DSGE model parameters in my empirical application.
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The joint density is given by

p
(
Y�Z�β�V−1�θ

) = p
(
Y�Z|β�V−1)p(β�V−1|θ)p(θ)

= p
(
Y�Z|β�V−1)p(β|θ)p(V−1|θ)p(θ)� (A.12a)

p
(
Y�Z|β�V−1) = (2π)−T/2

∣∣V−1∣∣T/2e− 1
2 (vec([Y�Z])−XSURβ)

′(V−1⊗IT )(vec([Y�Z])−XSURβ)�(A.12b)

p(β|θ) = (2π)−nβ/2
∣∣λBX′

0�SUR(θ)
(
V̄0(θ)

−1 ⊗ Im(mp+k)
)
X0�SUR

∣∣1/2
× e− λB

2 (X0�SUR(β̄0(θ)−β))′(V̄−1
0 ⊗Im(mp+k))(X0�SUR(β̄0(θ)−β))�

where λB ≡ TB0
m(mp+ k)

= (2π)−nβ/2
∣∣N̄0(θ)

∣∣1/2e− 1
2 (β̄0(θ)−β)′N̄0(θ)(β̄0(θ)−β)� (A.12c)

p
(
V−1|θ) = e−

1
2 tr(V−1TV0 V̄0(θ))

2T
V
0 (m+mz)/2�m+mz

(
TV0
2

) ∣∣TV0 V̄0(θ)
∣∣TV0 /2

|V|(TV0 −m−mz−1)/2
� (A.12d)

p(θ) = 1{DSGE model has a unique & stable solution|θ}

×
nθ∏
n=1

pn
(
θ(n)

)
� (A.12e)

where θ(n) denotes the nth component of the vector θ and pn(θ(n)) is a univariate den-
sity.

Implementing the DSGE-SVAR prior The following dummy observations and likeli-
hood implement the prior that β∼ N (β̄0�NXX(V̄0)) and V−1 ∼ W(V̄0T

V
0 �T

V
0 ):

vec
([

YB0 �ZB0
])= X̄0�SUR(θ)β̄0(θ)+ 0� (A.13a)

vec
([

YB0 �ZB0
])∼ N

(
X̄0�SUR(θ)β̄0(θ)� V̄0(θ)⊗ ITB0

)
� (A.13b)[

YV0 �ZV0
]= 0 ×β+ V̄0(θ)⊗ ITV0

� (A.13c)

vec
([

YV0 �ZV0
])∼ N (0�V ⊗ ITV0

)� (A.13d)

where X0�SUR is the Cholesky factor of the following matrix:

X̄0�SUR(θ)
′X̄0�SUR(θ)= E

DSGE[X′
SUR

(
V̄(θ)−1 ⊗ Ip(m+mz)

)
XSUR|θ]�

The prior and data density are given by

θ∼ π(θ)� (A.14a)

π
(
B�V−1|θ)∝ ∣∣V−1∣∣−ny/2
(B�V−1|Y0(θ)�Z0(θ)

)
= ∣∣V−1∣∣−ny/2f (Y0(θ)�Z0(θ)|B�V−1)� (A.14b)

f̃
(
Y�Z|B�V−1�θ

)= f (Y�Z|B�V−1)� (A.14c)



Supplementary Material Narrative approach to a fiscal DSGE model 11

Computations To implement Algorithm 3, I use a random-blocking Metropolis–
Hastings step with random walk proposal density with t-distributed increments, with
15 degrees of freedom as in Chib and Ramamurthy (2010). To calibrate the covariance
matrix of the proposal density, I use a first burn-in phase with a diagonal covariance
matrix for the proposal density. The observed covariance matrix of the first stage is then
used in subsequent stages up to scale. I use a second burn-in phase to calibrate the scale
to yield an average acceptance rate across parameters and draws of 30%. To initialize the
Markov chain, I then use a third burn-in phase whose draws are discarded. The order of
the parameters is uniformly randomly permuted, and a new block is started with proba-
bility 0�15 after each parameter. This Metropolis–Hastings step is essentially a simplified
version of the algorithm proposed by Chib and Ramamurthy (2010). Similar to their ap-
plication to the Smets and Wouters (2007) model, I otherwise obtain a small effective
sample size because of the high autocorrelation of draws when using a plain random-
walk Metropolis–Hastings step.

A.6 Results on the marginal data density in TV0
A.6.1 Analytic results Del Negro, Schorfheide, Smets, and Wouters (2007) show that,
in an AR(1) model with known variance, the marginal likelihood is strictly increasing,
decreasing, or has an interior maximum in TV0 = TB0 in their DSGE-VAR framework with
a conjugate prior. I am interested in the case of TV0 �= TB0 and when the prior is not con-
jugate. Thus, I analyze the case of increasing the degrees of freedom only of the Wishart
prior, abstracting from unknown model dynamics (i.e., β= 0) so that TB0 becomes irrel-
evant.

The marginal likelihood of an i.i.d. sample of length T with yt ∈R
m is given by

p
(
y|TV0

)≡ ∫ ∞
0

(
T∏
s=1

f (ys|V )
)
π
(
V |TV0

)
dV −1

=
∫ ∞

0
(2π)−mT/2|V|−T/2e− T

2 tr(V −1V̂ )− TV0
2 tr(V −1V0)2−mTV0 /2

× ∣∣V0T
V
0
∣∣TV0 /2�m(TV0 /2)−1|V|−(T0−m−1)/2 dV −1

= π−mT/2
∣∣V0T

V
0
∣∣TV0 /2�m((T + TV0

)
/2
)

∣∣V0T
V
0 + T V̂ ∣∣(T+TV0 )/2�m

(
TV0 /2

)×
×
∫ ∞

0
e−

1
2 tr(V −1(T V̂+TV0 V0))2−m(T+TV0 )/2

× ∣∣V0T
V
0 + T V̂ ∣∣(T+TV0 )/2�m

((
T + TV0

)
/2
)−1|V|−(T+T0−2)/2 dV −1

= π−mT/2
∣∣V0T

V
0
∣∣TV0 /2�m((T + TV0

)
/2
)

∣∣V0T
V
0 + T V̂ ∣∣(T+TV0 )/2�m

(
TV0 /2

)
= π−mT/2|V̂ |−T/2

∣∣V̂ −1V0
∣∣TV0 /2∣∣∣∣V̂ −1V0 + Im T

TV0

∣∣∣∣(T+TV0 )/2

(
TV0
)−mT/2

�m
((
T + TV0

)
/2
)

�m
(
TV0 /2

) (A.15)
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defining V̂ ≡ 1
T

∑T
s=1 ysy

′
s and using �m(T/2) = πm(m−1)/2∏m

j=1 �(
1
2(T + 1 − j)). It is

straightforward to show via the first-order condition that the (log) data density is maxi-
mized by a DSGE model prior centered at V0 = V̂ : the data rewards model fit.

To gain intuition, consider the scalar casem= 1. Abstracting from terms constant in
TV0 , the density can then be simplified to

lnp
(
y|TV0

)= κ(V �T)− T

2
ln
(
TV0
)+ TV0

2
ln
(
V0

V̂

)
− T + TV0

2
ln
(
TV0

V0

V̂

)
+ ln

�

(
T + TV0

2

)
ln�
(
TV0
2

) �

The slope of the log data density in TV0 is given by

d lnp
(
y|TV0

)
dTV0

= 1
2

ln
( TV0

V0

V̂

T V0
V0

V̂
+ T

)
+ 1

2

(
1 − V0

V̂

)
T

TV0
V0

V̂
+ T

+ 1
2
ψ

(
T + TV0

2

)
− 1

2
ψ

(
TV0
2

)
� (A.16)

where ψ is the digamma function, the derivative of the log Gamma function. Part (a)
of the following lemma establishes that for V0

V̂
in an open neighborhood around unity,

the slope of the log data density is strictly positive (at T that are multiples of 2). Hence,
when the DSGE model V0 fits the data well, an infinite prior weight on the DSGE model
maximizes the fit. Parts (b) and (c) establish the counterpart that for a sufficiently bad
fit so that V0

V̂
is far enough from unity, the slope of the log data density is negative in TV0 .

Thus, the optimal prior weight diverges.

Lemma 3. Let T = 2n, n ∈N+ and TV0 > 0.

(a) For V0
V in an open neighborhood around unity, d

dTV0
lnp(y|TV0 ) > 0.

(b) There exists a number v ∈ (0�1) such that for V0
V < v

d
dTV0

lnp(y|TV0 ) < 0.

(c) For T > 2, there exists a number v̄ > 1 such that for V0
V > v̄

d
dTV0

lnp(y|TV0 ) < 0.

Proof. Consider the three cases in the lemma separately:

(a) Let V0 = V̂ . Note that under the assumption on T , the recurrence relation of the
digamma function implies that

ψ

(
T + TV0

2

)
=ψ

(
TV0
2

)
+

T
2 −1∑
s=0

1

TV0
2

+ s
�
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The slope (A.16) can therefore be written as

1
2

ln
(

TV0

TV0 + T
)

+ 1
2

T
2 −1∑
s=0

1

TV0
2

+ s
�

Note that for x > 0,

1
2

ln
(

x

2 + x
)

+ 1
x
> 0�

This inequality follows from a basic logarithm inequality: − log( x
2+x) = log(1 + 2

x) <
2
x .

Thus, 1
2 ln( x

2+x)+ 1
x > 0.

The result on d
dTV0

lnp(y|TV0 ) follows by induction for V0 = V̂ . Let T = 2 ⇔ n= 1. Then

the above inequality for x= TV0 implies the condition for n= 1 ⇔ T = 2.
Now assume that the condition holds for arbitrary n ∈ N+. Notice that

d

dTV0
lnp

(
y|TV0

)∣∣∣∣
T=2(n+1)

− d

dTV0
lnp

(
y|TV0

)∣∣∣∣
T=2n

= 1
2

ln
(

2n+ T0

2(n+ 1)+ TV0

)
+ 1

2
2

2n+ TV0
�

which is larger than zero by the above inequality. In addition, by assumption,
d lnp(y|TV0 )

dTV0
|T=2n > 0. It follows that d

dTV0
lnp(y|TV0 )|T=2(n+1) > 0.

Since the assumption is true for n= 1, the desired result for d
dTV0

lnp(y|TV0 ) follows for

V0 = V̂ and any n ∈N+ by induction.
Last, because p(y|TV0 ) and its derivatives are continuous in V0, the inequality holds

for V0 sufficiently close to V̂ .

(b) Fix T , TV0 . Note that limV0/V̂↘0
d
dTV0

lnp(y|TV0 )= −∞. Since the limit is −∞, there

exists a number v such that for V0
V̂
< v d

dTV0
lnp(y|TV0 ) < 0 holds. Since, by (a), the in-

equality is not satisfied at V0 = V̂ , it follows that v < 1.

(c) Note that limV0/V̂→∞
d
dTV0

lnp(y|TV0 )= − T
2TV0

+ 1
2ψ(

T+TV0
2 )− 1

2ψ(
TV0
2 ). Note also that

ψ(
T+TV0

2 ) − ψ(
TV0
2 ) ≤ T

2
2
T0

given the recurrence relation used in (a) and given that the

sum in the recurrence relation has at most T2 increments. These increments are smaller
or equal to 2

T0
. When T > 2, the equality is strict. Thus, limV0/V̂→∞

d
dTV0

lnp(y|TV0 ) < 0 for

T > 2. By the definition of the limit, there exists some v̄ such that the inequality holds
for all V0 > v̄V̂ and T > 2. By (a), v̄ > 1.

A.6.2 Numerical example The logic behind the previous analytic results for the scalar
case applies more widely: If the prior is sufficiently close to the data, increasing the prior
precision increases the model fit. Here, I provide a numerical benchmark for the bench-
mark VAR specification.

Specifically, I abstract from uncertain DSGE (hyper-)parameters and fix the prior B̄y0,
B̄z0 and V̄0 matrices so that the prior fit is perfect: I choose the prior to equal the posterior
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Figure A.1. Narrative DSGE-VAR marginal likelihood with fixed hyperparameters when prior
is set to equal the posterior. In this numerical example, the prior is chosen to equal the posterior
for the baseline narrative DSGE-VAR. Thus the prior fits the data as well as possible. The figures
show that increasing the weights TB0 , TV0 strictly increases the model fit, which is measured via
the marginal likelihood. To give some context, the number of prior observations is expressed
as T0 = λ0 × T (i.e., relative to the empirical sample size). The marginal likelihood is strictly in-
creasing in both the dimension of “dynamics” via the number of dummy observations on the
coefficient matrix and the dimension of “identification” via the number of dummy observations
on the covariance matrix.

given the actual data. I then vary the prior precision TB0 and TV0 on a grid. Figure A.1
shows the results. As expected, the marginal likelihood is strictly increasing in both TV0
and TB0 and peaks at the limit point of TB0 = TV0 → ∞.

A.7 Likelihood computation

I compute the marginal data density by applying the Chib (1995) method to the inner
integral over the SUR-VAR parameters and then applying the Geweke (1999) estimator
to integrate over the DSGE model hyperparameters.

Likelihood given DSGE parameters The basic insight from Chib (1995) is that

π(y�z|θ)= p
(
y�z|V−1�B

)
π
(
V−1�B|θ)

π
(
ẑ�V−1�B|y�z� θ

) = p
(
y�z|V−1�B

)
π
(
V−1�B|θ)

π(B∗|y�z�θ)π
(
V−1∗ |B∗�y�Z�θ

) (A.17)

for any V−1, B. For numerical purposes, however, it is advisable to evaluate (A.17) at a
high density point. In what follows, I denote this point by (ẑ∗�B∗�V−1∗ ). I choose B∗ as
the posterior mean. I first compute

π(B∗|y�z�θ)=M−1
M∑
m=1

π
(
B∗|y�z�

(
V−1)(m)� ẑ(m)�θ

)
�
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using draws {(V−1)(m)� ẑ(m)} from the original Gibbs sampler. The second component is
computed as

π
(
V−1∗ |y�z�θ

)=M−1
M∑
m=1

π
(
V−1∗ |y�z�B∗� ẑ(m)�θ

)
�

where (V−1)(m), ẑ(m) are draws from a simpler new run of the Gibbs sampler that condi-
tions on B∗.

To compute the likelihood p(y�z|B∗�V−1∗ ), I draw a third sequence of ẑ(m) condi-
tional on both B∗, V−1∗ and I compute p(y�z|B∗�V−1∗ )=M−1∑M

m=1p(y�z� ẑ(m)|B∗�V−1∗ ).

Likelihood over DSGE parameters Geweke (1999) shows that to find the integrating
constant of a Kernel k(ψ) we may use that p(ỹ) is the integrating constant of the poste-
rior kernel k(ψ)= p(ψ|ỹ)p(ỹ). Let g(ψ)≡ f (ψ)

k(ψ) . Then

E
[
g(ψ)

]= ∫
Ψ

f(ψ)

k(ψ)
p(ψ|ỹ)dψ= p(ỹ)−1

∫
Ψ

f(ψ)

k(ψ)
k(ψ)dψ= p(ỹ)−1

∫
Ψ
f(ψ)dψ= p(ỹ)−1

for any density f (ψ). Geweke (1999) proposes to use a truncated normal density func-
tion with the posterior mean and covariance of ψ. Denote this truncated density by
f (ψ) and its estimate based on the sample posterior distribution with sample size M
by fα�M(ψ). Then

p(ỹ)−1 = E
[
gα(ψ)

]≈ E
[
gα�M(ψ)

]≈M−1
M∑
m=1

fα�M(ψm)

k(ψm)
�

where ψm are draws from the posterior.
Here, ψ= (θ�B�V−1)—or strictly (θ�B�vech(V−1)). This vector is high dimensional,

especially because of the presence of B. It would therefore be helpful to reduce the di-
mensionality of the parameter vector, which I do using the Chib (1995) algorithm previ-
ously described:

k
(
θ�B�V−1)= p(y�z|B�V−1)p(B�V−1|θ)π(θ)
⇒ k(θ)≡

∫ ∫
k
(
θ�B�V−1)dV−1 dB

= π(θ)
∫ ∫

p
(
y�z|B�V−1)p(B�V−1|θ)dV−1 dB

≡ π(θ)
∫ ∫

k
(
B�V−1|y�z� θ

)
dV−1 dB

= π(θ)p(y�z�θ)
∫ ∫

p
(
B�V−1|y�z�θ

)
dV−1 dB

⇔ k(θ)= p(y�z�θ)π(θ)�
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Now proceed with this reduced parameter vector as before

E
[
g(θ)

]= ∫
Θ

f(θ)

π(θ)p(y�z�θ)
p(θ|y�z)dθ=

∫
Θ

f(θ)

π(θ)p(y�z�θ)
p(θ|y�z)dθ

= p(y�z)−1
∫
Θ

f(θ)

π(θ)p(y�z�θ)
π(θ)p(y�z�θ)dθ

= p(y�z)−1
∫
Θ
f(θ)dθ= p(y�z)−1�

In practice, I approximate p(y�z|θ) with the Chib (1995) estimator:

Ê
[
ĝ(θ)

]= 1
M

M∑
m=1

fα(θ(m))

π(θ(m))p̂(y�z�θ(m))
≈ p̂(y�z)−1�

where p̂(y�z�θ(m)) is the Chib estimator of the (conditional) marginal likelihood. The
approximation relies on

∫
Θ f(θ)

p(y�z�θ)
p̂(y�z�θ) dθ being small. In the case without instruments

and with a fully conjugate prior, I verify this numerically by comparing the estimated
marginal data density with its analytical counterpart. For the SUR case, I verify that with
a modest number of posterior draws the numerical error lies within ±0�1 of the truth
computed by a very large number of draws.

A.8 DSGE model equations

A.8.1 Households The law of motion for capital:

k̂
p
t =

(
1 − x̄

k̄p

)
k̂
p
t−1 + x̄

k̄p
(x̂t + q̂t+s)� (A.18)

Household wage setting:

ŵt = ŵt−1

1 + β̄γ + β̄γEt[ŵt+1]
1 + β̄γ

+ (1 − β̄ζwγ)(1 − ζw)
(1 + β̄γ)ζw

Āw

(
ĉt − (h/γ)ĉt−1

1 − h/γ + νn̂t − ŵt + dτnt
1 − τ̄n + dτct

1 + τ̄c
)

− 1 + β̄μιw
1 + β̄γ π̂t + ιw

1 + β̄γ π̂t−1
β̄γ

1 + β̄γEt[π̂t+1] + ε̂λ�wt
1 + β̄γ � (A.19)

Household consumption Euler equation:

Et[ξ̂t+1 − ξ̂t] +Et
[
dτct+1 − dτct

]
= 1

1 − h/γEt
(
(σ − 1)

1
1 + λ̄w

1 − τ̄n
1 + τc

w̄n̄

c̄
[n̂t+1 − n̂t]

− σ
[
ĉt+1 −

(
1 + h

γ

)
ct + h

γ
ĉt+1

])
� (A.20)
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Other FOC (before rescaling of q̂bt ):

Et[ξ̂t+1 − ξ̂t] = −q̂bt − R̂t +Et[π̂t+1]� (A.21)

Q̂t = −q̂bt − (R̂t −Et[πt+1]
)+ 1

r̄k
(
1 − τk)+ δτk + 1 − δ

× [(r̄k(1 − τk)+ δτk)q̂kt − (r̄k − δ)dτkt+1 (A.22)

+ r̄k(1 − τk)Et(r̂kt+1
)+ (1 − δ)Et (Q̂t+1)

]
� (A.23)

x̂t = 1
1 + β̄γ

[
x̂t−1 + β̄γEt (x̂t+1)+ 1

γ2S′′(γ)
[
Q̂t + q̂xt

]]
� (A.24)

ût = a′(1)
a′′(1)

r̂kt ≡ 1 −ψu
ψu

r̂kt � (A.25)

A.8.2 Production side and price setting The linearized aggregate production function
is

ŷt = ȳ +�
ȳ

(
ε̂at + ζk̂gt−1 + α(1 − ζ)k̂t + (1 − α)(1 − ζ)n̂t

)
� (A.26)

where � are fixed costs. Fixed costs, in steady state, equal the profits made by interme-
diate producers.

The capital-labor ratio:

k̂t = n̂t + ŵt − r̂kt � (A.27)

Price setting:

π̂t = ιp

1 + ιpβ̄γ
π̂t−1 + 1 − ζpβ̄γ

1 + ιpβ̄γ
1 − ζp
ζp

Āp
(
m̂ct + ε̂λ�pt

)+ β̄γ

1 + ιpβ̄γ
Et π̂t+1� (A.28)

Marginal costs with a cost-channel:

m̂ct = αr̂kt + (1 − α)(ŵt + R̂t)� (A.29)

A.8.3 Market clearing Goods market clearing requires

ŷt = c̄

ȳ
ĉt + x̄

ȳ
x̂t + x̄g

ȳ
x̂
g
t + ĝt + r̄kk̄

ȳ
ût � (A.30)

A.8.4 Observation equations For the estimation under full information, I need to spec-
ify observation equations. The observation equations are given by (3.1c) as well as the
following seven observation equations from Smets and Wouters (2007) and three addi-
tional equations (A.32) on fiscal variables:

� lngobs
t = gt − gt+1 + (γg − 1)� (A.31a)

� lnxobs
t = xt − xt+1 + (γx − 1)� (A.31b)

� lnwobs
t =wt −wt+1 + (γw − 1)� (A.31c)
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� ln cobs
t = ct − ct+1 + (γ− 1)� (A.31d)

π̂obs
t = π̂t + π̄� (A.31e)

n̂obs
t = n̂t + n̄� (A.31f)

R̂obs
t = R̂t +

(
β−1 − 1

)
� (A.31g)

By allowing for different trends in the nonstationary observables, I treat the data sym-
metrically in the VAR and the DSGE model.

I use the deviation of debt to GDP and revenue to GDP, detrended prior to the esti-
mation, as observables:

bobs
t = b̄

ȳ
(b̂− ŷ)+ b̄obs� (A.32a)

revn�obs
t = τ̄n

w̄n̄

c̄

c̄

ȳ

(
dτnt
τ̄n

+ ŵt + n̂t − ŷt
)

+ ¯revn�obs� (A.32b)

revk�obs
t = τ̄k

k̄

ȳ

(
r̄k − δ)(dτk

τ̄k
+ r̄k

r̄k − δ r̂
k
t + k̂pt−1 − ŷt

)
+ ¯revk�obs� (A.32c)

Appendix B: Data and additional results

B.1 Data construction

NIPA and flow of funds variables I follow Smets and Wouters (2007) in constructing
the variables of the baseline model, except for allocating durable consumption goods to
investment rather than consumption expenditure. Specifically,

yt = (nominal GDP: NIPA Table 1.1.5Q, Line 1)t
(Population above 16: FRED CNP16OV)t × (GDP deflator: NIPA Table 1.1.9Q, Line 1)t

�

ct = (nominal PCE on nondurables and services: NIPA Table 1.1.5Q, Lines 5 + 6)t
(Population above 16: FRED CNP16OV)t × (GDP deflator: NIPA Table 1.1.9Q, Line 1)t

�

it = (Durables PCE and fixed investment: NIPA Table 1.1.5Q, Lines 4 + 8)t
(Population above 16: FRED CNP16OV)t × (GDP deflator: NIPA Table 1.1.9Q, Line 1)t

�

πt = � ln(GDP deflator: NIPA Table 1.1.9Q, Line 1)t�

rt =

⎧⎪⎨⎪⎩
1
4
(Effective Federal Funds Rate: FRED FEDFUNDS)t� t ≥ 1954:Q3,

1
4
(3-Month Treasury Bill: FRED TB3MS)t� else,

nt = (Nonfarm business hours worked: BLS PRS85006033)t
(Population above 16: FRED CNP16OV)t

�

wt = (Nonfarm business hourly compensation: BLS PRS85006103)t
(GDP deflator: NIPA Table 1.1.9Q, Line 1)t

�

kt = (1 − 0�015)kt−1 + ieff
t

(Population above 16: FRED CNP16OV)t
�
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ieff
t =ω (nominal fixed investment: NIPA Table 1.1.5Q, Line 8)t

(Implicit price deflator fixed investment: NIPA Table 1.1.9Q, Line 8)t

+ (1 −ω) (nominal durable goods: NIPA Table 1.1.5Q, Line 4)t
(Implicit price deflator durable goods: NIPA Table 1.1.9Q, Line 4)t

�

where ω is the average nominal share of fixed investment relative in the sum with
durables.

When using an alternative definition of hours worked from Francis and Ramey
(2009), I compute

nFRt = (Total hours worked: Francis and Ramey (2009))t
(Population above 16: FRED CNP16OV)t

�

Fiscal data is computed following Leeper, Plante, and Traum (2010), except for adding
state and local governments (superscript “s&l”) to the federal government account (su-
perscript “f”), similar to Fernandez-Villaverde, Guerron-Quintana, Kuester, and Rubio-
Ramirez (2015). Since in the real world

τct = (production & imports taxes: Table 3.2, Line 4)f
t + (Sales taxes)s&l

t(
(Durables PCE)t + ct

)× (GDP deflator)t − (production & imports taxes)f
t − (Sales taxes)s&l

t

�

τ
p
t = (Personal current taxes)t

1
2
(
Proprietors’ income

)
t
+ (wage income)t + (wage supplements)t + (capital income)t

�

τnt =
τ
p
t

(
1
2
(
Proprietors’ income

)
t
+ (wage income)t + (wage supplements)t

)
+ (wage taxes)f

t

(wage income)t + (wage supplements)t + (wage taxes)f
t +

1
2
(
Proprietors’ income

)
t

�

τkt = τ
p
t (capital income)t + (corporate taxes)f

t + (corporate taxes)s&l
t

(Capital income)t + (Property taxes)s&l
t

�

where the following NIPA sources were used:

• (Federal) production & imports taxes: Table 3.2Q, Line 4.

• (State and local) sales taxes: Table 3.3Q, Line 7.

• (Federal) personal current taxes: Table 3.2Q, Line 3.

• (State and local) personal current taxes: Table 3.3Q, Line 3.

• (Federal) taxes on corporate income minus profits of Federal Reserve banks: Ta-
ble 3.2Q, Line 7–Line 8.

• (State and local) taxes on corporate income: Table 3.3Q, Line 10.

• (Federal) wage tax (employer contributions for government social insurance): Ta-
ble 1.12Q, Line 8.

• Proprietors’ income: Table 1.12Q, Line 9.

• Wage income (wages and salaries): Table 1.12Q, Line 3.

• Wage supplements (employer contributions for employee pension and insurance):
Table 1.12Q, Line 7.
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Figure B.1. Comparing shock proxies in the literature with their updated counterparts.

• Capital income = sum of rental income of persons with CCAdj (Line 12), corporate
profits (Line 13), net interest and miscellaneous payments (Line 18, all Table 1.12Q).

Note that the tax base for consumption taxes includes consumer durables, but to be
consistent with the tax base in the model, the tax revenue is computed with the narrower
tax base excluding consumer durables.

(rev)ct = τct × (ct − (Taxes on production and imports)f
t − (Sales taxes)s&l

t

((Population above 16)t × (GDP deflator)t)
�

(rev)nt = τnt ×
(
(wage income)t + (wage supplements)t + (wage taxes)f

t

+ 1
2
(
Proprietors’ income

)
t

)
�

(rev)kt = τkt × ((Capital income)t + (Property taxes)s&l
t

)
�
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Figure B.2. Responses of output, investment and inflation: Quality of VAR approximation to
DSGE model (TV0 = TB0 ↗ ∞). Note: Shown are the pointwise median and 68% and 90% posterior
credible sets. Results based on lower Cholesky factorization of S1S

′
1.
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Figure B.3. Responses in expectations-augmented DSGE-VAR: Quality of VAR approximation.

I construct government debt as the cumulative net borrowing of the consolidated
NIPA government sector and adjust the level of debt to match the value of consolidated
government FoF debt at par value in 1950:Q1. A minor complication arises as federal net
purchases of nonproduced assets (NIPA Table 3.2Q, Line 43) is missing prior to 1959Q3.
Since these purchases typically amount to less than 1% of federal government expen-
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Figure B.4. Gibbs sampler of baseline model: Autocorrelation functions of univariate summary
statistics by DSGE prior weight. Note: Autocorrelations are reported based on both the Pearson
and the Spearman correlation measure. Asymptotic classical 90% credible sets for the Pearson
coefficient, computed under the assumption of zero correlation, are included around the hori-
zontal axis. The autocorrelations are based on the thinned out sample after keeping every 20th
draw with the informative prior and every 10th draw with the flat prior. The resulting sample is
reasonably efficient also with a larger prior weight on the DSGE model.

ditures with a minimum of −1�1%, a maximum of 0�76%, and a median of 0�4% from
1959:Q3 to 1969:Q3, two alternative treatments of the missing data lead to virtually un-
changed implications for government debt. First, I impute the data by imposing that the
ratio of net purchases of nonproduced assets to the remaining federal expenditure is the
same for all quarters from 1959:Q3 to 1969:Q4. Second, I treat the missing data as zero.

In 2012, the FoF data on long term municipal debt was revised up. The revision cov-
ers all quarters since 2004 but not before, implying a jump in the debt time series.3

I splice together a new smooth series from the data before and after 2004 by imposing
that the growth of municipal debt from 2003:Q4 to 2004:Q1 was the same before and af-
ter the revision. This shifts up the municipal and consolidated debt levels prior to 2004.
The revision in 2004 amounts to $840bn, or 6�8% of GDP.

Measured expectations and shock proxies To control for fiscal foresight, I compile two
series on the four quarter ahead federal purchases of goods and services and revenue
growth from the Greenbook. To match the Greenbook data to quarters, I use the Green-
book before but closest to the middle of the second month of each quarter. This broadly

3www.bondbuyer.com/issues/121_84/holders-municipal-debt-1039214-1.html “Data Show Changes in
Muni Buying Patterns” by Robert Slavin, 05/01/2012 (retrieved 01/24/2014).

http://www.bondbuyer.com/issues/121_84/holders-municipal-debt-1039214-1.html
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Figure B.5. Brooks and Gelman (1998) type convergence diagnostic for the flat-prior narra-
tive VAR. Shown are the (within-chain) means of the parameter estimates as the Markov chain
grows. To standardize the plots, the parameter estimates are displayed minus their mean and
standard deviation in the first half of the chain: For example, for element i of θ, the plot shows

t−1∑t
s=1 θs(i)−�T/2�−1∑�T/2�

s=1 θs(i)

(�T/2�−1∑�T/2�
s=1 (θs(i)−�T/2�−1∑�T/2�

u=1 θu(i))2)1/2
as a function of t. Brooks and Gelman (1998) argue that

these means should have converged for a satisfying posterior simulation. The results above indi-
cate that the convergence is very good for both the elements of the VAR coefficient matrix B and
the covariance matrix V.

matches the timing of the SPF that underlies the short-run data in Ramey (2011). It also
allows me to use already digitized data on price deflators from the Real Time Data Center
website at the Federal Reserve Bank of Philadelphia. Missing data is unproblematic for
the defense spending forecast errors, but would be more challenging to handle in a VAR.
From 1966:Q1 to 1973:Q2, some observations on three and four quarter ahead forecasts
government purchases and revenue are missing. In these case, I impute them based on
current and up to two quarter ahead revenue and government spending. For revenue
forecasts, I additionally use Greenbook real GDP growth forecasts. I treat the imputed
data as the actual data.

The above data are combined with data from Mertens and Ravn (2013) on narra-
tive tax shock measures and new data on defense spending and monetary policy shocks
constructed in the spirit of the data provided by Ramey (2011) on short-term defense
spending shocks and the monetary policy shock proxy in Romer and Romer (2004).

For updating the instruments, I also use Greenbook data to update the shock se-
ries from Romer and Romer (2004). After their sample ends in 1996, I use the change in
the Federal Funds Target Rate (DFEDTAR in the FRED database) to compute the desired
change in the FFR rate. As in Romer and Romer (2004), I then construct the shock mea-
sure as the residual from a regression of the change in the target at an FOMC meeting on
the prevailing level of the funds rate, unemployment, plus levels and changes of current
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Figure B.6. Brooks and Gelman (1998) type convergence diagnostic for DSGE-VAR with best–
fitting model (TB0 = 4T , TV0 = 1

5T ). Shown are the (within-chain) means of the parameter esti-
mates as the Markov chain grows. To standardize the plots, the parameter estimates are displayed
minus their mean and standard deviation in the first half of the chain: For example, for element i

of θ, the plot shows
t−1∑t

s=1 θs(i)−�T/2�−1∑�T/2�
s=1 θs(i)

(�T/2�−1∑�T/2�
s=1 (θs(i)−�T/2�−1∑�T/2�

u=1 θu(i))2)1/2
as a function of t. Brooks and Gelman

(1998) argued that these means should have converged for a satisfying posterior simulation. The
results above indicate that the convergence is best for the elements of the VAR coefficients B and
almost as good for the elements of the covariance matrix V. Some structural parameter draws
seem to only settle down after about 4000 draws.

and future real GDP growth and inflation. I construct inflation as the difference between
the forecast for nominal and real GDP in the Greenbook. The right panels in Figure B.1
compare my updated series with the Romer and Romer (2004) series. The correlation is
0�93 over the entire sample period with observed shocks.

Ramey (2011) provides one quarter ahead forecast errors from the Survey of Pro-
fessional Forecasters (SPF) for defense spending. This series runs from 1967 to 1982.
The Greenbook, in contrast, provides forecasts for defense spending on a quarterly ba-
sis since 1967. I construct the defense spending forecast error as the forecast error in the
implied real defense spending growth: EGB

t [gnDef�t+1 −πt+1]−(gnDef�t−πt). The left panels
in Figure B.1 compare my updated series with the SPF series. The correlation is 0�84 over
the entire sample period with observed shocks.

B.2 Approximation quality of VAR representation of DSGE model

B.3 Gibbs sampler

To calibrate the Gibbs sampler, I examine the autocorrelation functions and Brooks
and Gelman (1998)-type convergence statistics of all model parameters within Markov



26 Thorsten Drautzburg Supplementary Material

chains. See Figures B.5 and B.6 for the flat prior VAR and the DSGE-VAR, respectively.
If the distributions differ visibly for different parts of the sample, I increase the num-
ber of draws. Similarly, I compute the autocorrelation of the maximum eigenvalue of
the stacked VAR(1) representation of (2.1) as well as of the Frobenius norm of V and
the log-likelihood. Figure B.4 shows the corresponding plots. With a flat prior, I discard
the first 50,000 draws and keep every 20th draw with a total accept sample of 5000 for the
DSGE-VAR and 2000 for the flat prior VAR. This produces results consistent with conver-
gence of the sampler (see Figures B.5 and B.6). The resulting samples are also reasonably
efficient: the autocorrelation of the subsamples in Figure B.4 are reasonably small, par-
ticular with low prior weights on the DSGE model.
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