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A nondegenerate Vuong test and post selection confidence
intervals for semi/nonparametric models
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This paper proposes a new model selection test for the statistical comparison
of semi/non-parametric models based on a general quasi-likelihood ratio crite-
rion. An important feature of the new test is its uniformly exact asymptotic size
in the overlapping nonnested case, as well as in the easier nested and strictly
nonnested cases. The uniform size control is achieved without using pretesting,
sample-splitting, or simulated critical values. We also show that the test has non-
trivial power against all

√
n-local alternatives and against some local alternatives

that converge to the null faster than
√
n. Finally, we provide a framework for con-

ducting uniformly valid post model selection inference for model parameters. The
finite sample performance of the nondegenerate test and that of the post model
selection inference procedure are illustrated in a mean-regression example by
Monte Carlo.
Keywords. Asymptotic size, model selection/comparison test, post model selec-
tion inference, semi/nonparametric models.
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1. Introduction

Model selection is an important issue in many empirical work. For example, in economic
studies, there are often competing theories for one phenomenon. Even when there is
only one theory, it can rarely pin down an empirical model to take to the data. Model
selection tests are tools to determine the best model out of multiple competing models
with a prespecified statistical confidence level. One such test was proposed in Vuong
(1989) to select from two parametric likelihood models according to their Kullback–
Leibler information criterion (KLIC). The test determines the statistical significance of
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KLIC difference and, when the difference is significant, draws the directional conclu-
sion that one model is closer to the truth than the other. This test has been widely used
in empirical work due to its straightforward interpretation and implementation,1 and it
has been extended to many settings besides the likelihood one.

The studentized quasi-likelihood ratio (QLR) test statistic used in Vuong (1989)
may have different asymptotic distributions under the null hypothesis, depending on
whether the asymptotic variance of the QLR is degenerate. The degeneracy is unknown
when the models compared are overlapping nonnested. In this case, a test based on
such a test statistic and a standard critical value may not be uniformly valid and adding
a pretest of the degeneracy does not provide a satisfactory solution, as shown in Shi
(2015b). What is especially troubling is that the QLR-based test has a bias term that fa-
vors complex models. As a result, a user could manipulate the model selection result
by unnecessarily increasing or decreasing the complexity of certain models. Shi (2015b)
developed a solution in the context of parametric models, but Shi’s test does not apply
to semi/nonparametric models where the problem is in fact exacerbated.

The first contribution of this paper is to extend the conceptual idea of Shi (2015b) to
semi/non-parametric models. Like Shi’s test, our test corrects for bias caused by dif-
ference in model complexity and achieves uniform asymptotic validity regardless of
model relationship. Unlike Shi’s test, our revised QLR statistic is uniformly asymptoti-
cally normal, leading to a very simple testing procedure. The nonparametric component
in one or both of the models, while making the asymptotic theory much more compli-
cated, remarkably simplifies the testing procedure relative to Shi (2015b). We use linear
sieve approximation for the nonparametric components (e.g., Chen (2007)). As such,
the asymptotic theory also provides a good approximation for parametric models with
a large number of parameters.

The second contribution of this paper is a valid inference for the model parameters
after the model selection test. Post model selection inference on one hand is unavoid-
able in most applications, and on the other hand is difficult to do correctly. For example,
if post-model selection confidence intervals are constructed as if no model selection
had been conducted, Leeb and Pötscher (2005) showed that the resulting confidence
intervals may have coverage probabilities very different from the nominal level. In this
paper, we provide two types of uniformly asymptotically valid confidence intervals for
parameters post model selection.

The rest of the Introduction is devoted to the discussion of related literature.

The literature on the QLR model selection test

Although the QLR test proposed in Vuong (1989) has been widely used in the empirical
studies and extended to many nonlikelihood settings,2 its property on the size control

1See, for example, Cameron and Heckman (1998), Coate and Conlin (2004), Paulson, Townsend, and
Karaivanov (2006), Gowrisankaran and Rysman (2012), Moines and Pouget (2013), Barseghyan, Molinari,
O’Donoghue, and Teitelbaum (2013), Karaivanov and Townsend (2014), Kendall, Nannicini, and Trebbi
(2015), Gandhi and Serrano-Padial (2015), to name only a few.

2Extensions include Lavergne and Vuong (1996), Rivers and Vuong (2002), Kitamura (2000), among oth-
ers.
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draws researchers’ attention only recently. As mentioned above, the model selection part
of this paper extends the conceptual idea of Shi (2015b) to semi/nonparametric mod-
els and propose a test with uniform size control for semi/nonparametric models. A few
other papers in the literature of the Vuong test also achieve uniform asymptotic size con-
trol. These include Li (2009), Schennach and Wilhelm (2017), Hsu and Shi (2017), and Shi
(2015a). These papers do not deal with semi/nonparametric models and each achieves
uniform size control by a different technique. Li (2009) achieved uniformity thanks to
the simulation noise brought about by numerical integration. Schennach and Wilhelm
(2017) employed a sophisticated split-sample technique. Hsu and Shi (2017) introduced
artificial noise to their test statistic. Shi (2015a) used a pretest with a diverging threshold.

The consistent model specification testing literature

Although the main advantage of our revised QLR test is in the overlapping nonnested
cases, it can be applied to and has uniform asymptotic similarity in the nested cases as
well. In such cases, our test is a model specification test of the nested model against the
alternative of the nesting model. As such, it is related to Hong and White (1995), Fan
and Li (1996), Lavergne and Vuong (2000), and Aït-Sahalia, Bickel, and Stoker (2001),
among others (see, e.g., Aït-Sahalia, Bickel, and Stoker (2001) for a comprehensive lit-
erature review). Our test reduces to the heteroskedasticity-robust version of Hong and
White (1995) based on series regression when a parametric conditional mean model is
compared to a nonparametric one, and reduces to a series regression-based version of
Aït-Sahalia, Bickel, and Stoker’s (2001) test when two nested nonparametric regressions
are compared based on a weighted mean-squared error criterion. Our test applies to the
testing problems in Fan and Li (1996) and Lavergne and Vuong (2000) but differs from
the tests therein.

Post model selection inference

Our post model selection (PMS) inference has two parts. The first part regards condi-
tional inference on model-specific parameters. This part is inspired by Tibshirani, Tay-
lor, Lockhart, and Tibshirani (2016), who provide valid p-values and confidence inter-
vals for post Lasso inference in a linear regression context with Gaussian noise. Their re-
sult is extended in Tibshirani, Rinaldo, Tibshirani, and Wasserman (2018) and Tian and
Taylor (2017) to other linear regressions settings. We generalize Tibshirani et al. (2016)
to post model selection test inference for general semi-nonparametric models, and pro-
vide asymptotically exact confidence intervals without imposing special structures on
the models or requiring knowledge of a variance-covariance matrix. The second part of
our PMS inference analysis regards inference on common parameters of the two models.
This part shares the objective of the methods surveyed in Belloni, Chernozhukov, and
Hansen (2014). However, this type of post selection inference is highly context specific,
and the surveyed methods do not apply to post selection inference in general models.



986 Liao and Shi Quantitative Economics 11 (2020)

The nonnested hypotheses literature

Since Vuong’s (1989) test is most commonly used to select between nonnested models,
it is often linked to the literature of nonnested hypotheses featuring Cox (1961, 1962),
Atkinson (1970), Pesaran (1974), Pesaran and Deaton (1978), Mizon and Richard (1986),
Gourieroux and Monfort (1995), Ramalho and Smith (2002), and Bontemps, Florens, and
Richard (2008), among others. This literature does not share the objective of Vuong’s test.
Rather than focusing on the relative fit of the models, the earlier part of this literature fo-
cuses on testing the correct specification of one model with power directed toward the
other model. Later, part of this literature focuses on the ability of one model to encom-
pass empirical features of the other model. To our knowledge, the uniform validity of
these tests when the models under consideration are overlapping nonnested has not
been studied, and may be an interesting topic for future research.3

The rest of the paper is organized as follows. Section 2 sets up our testing framework
and gives three examples. Section 3 describes our test in detail. Section 4 establishes the
asymptotic size and the local power of our test. Section 5 illustrates the construction
of our test in the mean-regression context. Section 6 provides the uniformly valid post
model selection inference procedures. Section 7 shows Monte Carlo results of a mean-
regression example. Section 8 applies the proposed nondegenerate test and conditional
confidence interval to a schooling choice example, and Section 9 concludes. Proofs and
other supplemental materials are included in the Online Supplemental Appendix lo-
cated in the replication file (Liao and Shi (2020)).

Notation

Let C, C1, and C2 be generic positive constants whose values do not change with the
sample size. For any column vector a, let a′ denote its transpose and ‖a‖ its �2-norm. For
any square matrixA,A(i� j) denotes the element in the ith row and jth column ofA, ‖A‖
denotes the operator norm. Let ρmin(A) and ρmax(A) be the smallest and largest eigen-
values of A in terms of absolute value, respectively. Let tr(A) denote the trace of matrix
A. For any square matrices A1 and A2, diag(A1�A2) denotes the block diagonal ma-
trix withA1 being the leading submatrix. LetN(μ�Σ) stand for a normal random vector
with mean μ and variance-covariance matrix Σ. For any (possibly random) positive se-
quences {an}∞n=1 and {bn}∞n=1, an =OP(bn) means that limc→∞ lim supn Pr(an/bn > c)= 0;
and an = oP(bn)means that for all ε > 0, limn→∞ Pr(an/bn > ε)= 0. For any p ∈ (0�1), let
zp denote the 100p% quantile of the standard normal distribution.

2. General setup

2.1 Setup

Let Z ∈ Z ⊆ Rdz be an observable random vector with distribution F0. Let M1 and M2
be two models about F0; that is, M1 and M2 are two sets of probability distributions on

3The lack of uniform size control of the Cox test when the DGP space is not restricted is illustrated in Loh
(1985). However, uniform size control under reasonable restrictions on the DGP space for the Cox test and
other nonnested hypotheses tests is still an interesting problem yet to be explored.
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Rdz defined by modeling assumptions. We are interested in testing the null hypothesis
of equal fit:

H0 : f (M1�F0)= f (M2�F0)� (2.1)

where f (·� ·) is a generic measure of fit. The alternative hypothesis can be either

H2-sided
1 : f (M1�F0) 	= f (M2�F0) or H1-sided

1 : f (M1�F0) > f(M2�F0)� (2.2)

The two-sided test indicates that the two models have (statistically) significantly differ-
ent fit for the observed data when it rejects H0, and the one-sided test indicates that
model M1 fits the observed data significantly better when it rejects H0. It is the goal of
this paper to develop a simple test of equal fitting with uniform asymptotic validity and
good power properties.

The fit measure f (·� ·) is context-specific and should be chosen to best suit the em-
pirical model comparison need. We focus on a given fit measure of the following form:

f (Mj�F0)= max
αj∈Aj

EF0

[
mj(Z;αj)

] =EF0

[
mj

(
Z;α∗

F0�j

)]
� for j = 1�2� (2.3)

where EF0[·] denotes the expectation taken under F0,mj(·; ·) is a user-chosen link func-
tion that is the central component of the fit measure, αj is the parameter in model Mj ,
Aj is the possibly infinite-dimensional parameter space, and α∗

F0�j
is the pseudo-true

parameter value of model j defined as α∗
F0�j

= arg maxαj∈Aj
EF0[mj(Z;αj)].4

To fix ideas, consider the most common examples of Mj and f (Mj�F0), j = 1�2.

Example 1 (Likelihood Ratio). Consider Z = (W ′�X ′)′. Many structural models used in
empirical economics can be written as a conditional likelihood model ofZ givenX , that
is, (ignoring the model index j)

M = {
F : dFZ|X(z|x)/dμz =φ(z|x;α)�∀z� for some α ∈ A

}
� (2.4)

where FZ|X is the conditional distribution of Z givenX implied by F , dFZ|X(z|x)/dμz is
the Radon–Nykodym density of FZ|X with respect to a basic measure (μz) on the space
of Z, φ is a known function, α is a possibly infinite-dimensional unknown parameter,
and A is its parameter space. For such a model, a natural fit measure is the population
conditional log-likelihood, which is the f (M�F0) defined in equation (2.3) with

m(Z;α)= logφ(Z|X;α)� (2.5)

4Following the literature (see, e.g., Stone (1985) and Ai and Chen (2007)), we assume that the pseudo-true
parameter α∗

F0�j
exists, is unique, and lies in the interior of Aj for j = 1�2 throughout the paper. The suffi-

cient conditions to ensure the existence of the pseudo-true parameter α∗
F0

in general semi/nonparametric
models are: (i) the population function QF0(α) = EF0 [m(Z�α)] is continuous at any α ∈ A under certain
metric d (e.g., the L2-metric or the uniform metric) and (ii) the parameter space A is compact with respect
to d. Low level sufficient conditions for the existence and uniqueness of α∗

F0�j
in specific models can be

found in Stone (1985) and Ai and Chen (2007). See Section 5 for more discussion in the regression models.
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Note that with f (M�F0) defined this way, {f (M�F0) − f ({F0}�F0)} is the Kullback–
Leibler pseudo-distance from model M to the true distribution F0. Vuong’s (1989) orig-
inal test is designed for such a likelihood context with α for both models being finite-
dimensional, although Shi (2015b) showed that it may have size distortion. Shi (2015b)
proposed a uniformly valid procedure for the parametric likelihood case.

Example 2 (Squared Error). Consider Z = (Y�X ′)′, where Y is a dependent variable,X
is a vector of regressors. A mean-regression model may be written as

M = {
F :EF [Y |X = x] = g(x;α)�∀x� for some α ∈ A

}
� (2.6)

where g(·; ·) is a known regression function, α is a possibly infinite-dimensional un-
known parameter and A is its parameter space.5 For such a model, a commonly used
fit measure is the population regression mean-squared error, which is f (M�F0) defined
in equation (2.3) with

m(Z;α)= −∣∣Y − g(X;α)∣∣2
/2� (2.7)

Example 3 (Check Function). Consider Z = (Y�X ′)′, where Y is a dependent variable,
X is a vector of regressors. A quantile-regression model may be written as

M = {
P :Qτ�F(Y |X = x)= g(x;α)�∀x� for some α ∈ A

}
� (2.8)

where Qτ�F(Y |X) is the conditional τth quantile of Y given X under F with τ ∈ (0�1),
g(·; ·) is a known regression function, α is a possibly infinite-dimensional unknown pa-
rameter, and A is its parameter space. Similar to the example above, a reasonable fit
measure is the expected check function ofY from the best conditional τth quantile func-
tion in the model, which is f (M�F0) defined in equation (2.3) with

m(Z;α)= (
I
{
Y ≤ g(X;α)} − τ)[Y − g(X;α)]� (2.9)

where I{·} denotes the indicator function.

2.2 Model relationships

The following terms for model relationships are mentioned in the Introduction, and will
be used in later sections when we discuss the uniform validity of our test in detail.

Definition 1. Models M1 and M2 are strictly nonnested if there does not exist a pair
(α1�α2) ∈ A1 ×A2 such thatm1(z;α1)=m2(z;α2) ∀z ∈ Z .

Definition 2. Models M1 and M2 are overlapping if they are not strictly nonnested.

5Sometimes, regression models are used without explicitly or implicitly assuming the best fitting regres-
sion function to beE(Y |X = x). Nonetheless, the regression mean-squared error criterion often still is used
to compare the models. In those cases, the test developed in this paper still applies.
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Definition 3. Model M1 nests model M2 if, for each α2 ∈ A2, there exists an α1 ∈ A1
such thatm1(z;α1)=m2(z;α2) for any z ∈ Z .

Clearly, the overlapping case include the nested case. If the models are overlapping
but not nested, we say that the models are overlapping nonnested. If the models are
mutually nested (i.e., M1 nests M2, and M2 nests M1), then the models are observa-
tionally equivalent.6 We exclude the case where the models are observationally equiv-
alent from our discussion, since in this trivial case, H0 always holds regardless of the
true data distribution and no statistical method can distinguish the two. The model rela-
tionship determines whether the random variablem1(Z;α∗

F0�1
)−m2(Z;α∗

F0�2
) is always,

never, or sometimes degenerate (i.e., almost surely zero) under H0.7 8 Since whether
m1(Z;α∗

F0�1
) − m2(Z;α∗

F0�2
) is degenerate or not affects the asymptotic distribution of

standard quasi-likelihood ratio statistic, uniformity issue arises when its status is un-
known.

As we will see, the test statistic that we construct is asymptotically standard normal
under H0 regardless of whether m1(Z;α∗

F0�1
)−m2(Z;α∗

F0�2
) is degenerate. This leads to

a test that is uniformly asymptotically valid across all cases and all types of model re-
lationship. Such uniformity is of practical importance for a number of reasons. First, in
many nonnested model selection scenarios, the competing models are not completely
incompatible to each other, in which case they are overlapping. Second, establishing
strict nonnestedness is difficult for structural models used in empirical analysis. Us-
ing our test obviates the need for doing this. Third, even when the models are strictly
nonnested, tests ignoring the uniformity issue may still have severe size distortion (over-
rejection) in finite samples when both models can closely describe the data distribution,
while our test does not suffer from this kind of distortion.

2.3 Illustration of the uniformity issue

To further illustrate the uniformity issue, we presents a simple simulation study in Fig-
ure 1 to compare two parametric linear regression models based on their mean-squared
error. We show both the distribution of the standardized QLR statistic (as used in Vuong
(1989), TVn ) and our test statistic (Tn) in the figure. Here, model 1 has two regressors and
model 2 has 17 regressors.

The red dashed line represents the finite sample density of TVn defined in (3.5) below.
In the pointwise asymptotic framework, under H0, TVn has asymptotic standard normal
distribution when the latent parameters (a�b) 	= 0 and asymptotic weighted chi-square
distribution when (a�b)= 0. Suppose that one conducts model selection test using the

6This definition of model equivalence is consistent with that in Pesaran and Ulloa (2008).
7This variable is clearly not almost surely zero underH1, because its mean is different from zero.
8Some readers may confuse the degeneracy of m1(Z;α∗

1)−m2(Z;α∗
2) under H0 with the observational

equivalence of the models M1 and M2. The former does not imply the latter, as one can easily see in the
following simplistic example. Let M1 be a mean-regression model E[Y |X] = α1(X)with the space A1 of α1
including the zero function, and let M2 be another mean-regression model E[Y |X] = 0. Then ourH0 is the
same as the hypothesis that E[Y |X] = 0 a.s. Under H0, the difference in squared residuals is degenerate to
zero. But the models M1 and M2 are clearly not observationally equivalent.
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Figure 1. Finite Sample Densities of TVn and Tn under the Null Hypothesis. Notes: (i) The sim-
ulated data is generated from the equation Yi = 0�5X1�i + aX2�i + b

∑16
k=1X2+k�i + ui, where

(a�b) is set to different values in the four subgraphs and the values guarantee equal fitting of
the candidate models, and (X1�i� � � � �X18�i� ui)

′ is a standard normal random vector; (ii) model 1:
Yi =X1�iθ1�1 +X2�iθ1�2 + u1�i is compared with model 2: Yi =X1�iθ2�1 + ∑16

k=1X2+k�iθ2�2+k + u2�i

in their expected squared errors; (iii) the finite sample densities of the existing QLR statistic TVn
and our statistic Tn are approximated using 1,000,000 simulated samples.

critical value from the standard normal distribution. Although such a test is justified by

the asymptotic distribution of TVn when (a�b) are not zero, we see that it overrejects

under the null even in this case, as illustrated in the first three scenarios considered in

Figure 1. When the latent parameters (a�b) are close to zero, this test is severely over-

sized and strongly in favor of the large model, that is, model 2. As the figure also shows,

the standard normal distribution is a poor approximation to the finite sample density of

TVn when (a�b) are not far enough away from zero; this also suggests that it is tricky to

use pretesting of the latent model structure to construct a valid model selection test.

The green dash-dotted line represents the finite sample density of our revised QLR

statistic Tn defined in (3.16) below. It is clear that the distribution of Tn is robust against

small values of (a�b), and its finite sample density is very close to the standard normal.

Thus, the test using Tn and critical value from the standard normal has better size con-

trol than the test based on TVn and it is also not biased by the relative complexities of the

two models.
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3. Description of our model selection test

Suppose that there is an i.i.d. sample {Zi}ni=1 ofZ. In this section, we describe our test for
(2.1) based on this sample. The construction of the test is grounded on the asymptotic
expansion established in the next section. We focus on the steps of the construction in
this section for easy reference for potential users of the test.

We use linear sieve approximation for the unknown functions, and use sieve M-
estimator for estimation.9 The specific procedure is explained now. For j = 1�2, let Aj�kj
denote a finite dimensional approximation of the parameter space Aj , which satisfies

Aj�kj = {
αj�kj (·) : αj�kj (·)= αj(βj�kj )≡ Pj�kj (·)′βj�kj : βj�kj ∈ Bj�kj ⊆Rkj}� (3.1)

where Pj�kj (·)= [pj�1(·)� � � � �pj�kj (·)]′ is a kj-dimensional vector of user-chosen approx-
imating functions such as polynomials and splines, kj is a positive integer which may
diverge with the sample size n. In the rest of the paper, we write αkj (·)= αj�kj (·), Pkj (·)=
Pj�kj (·) and βkj = βj�kj for j = 1�2 for ease of notation.

To construct the test, we first estimate the fit of each model with the sample analogue
estimator. For j = 1�2, define

f̂ (Mj�F0)= n−1
n∑
i=1

mj(Zi; α̂kj )� (3.2)

where α̂kj = αj(β̂kj ) is an M-estimator defined with

β̂kj = arg max
βkj∈Bj�kj

n−1
n∑
i=1

mj
[
Zi;αj(βkj )

]
� (3.3)

For notation simplicity, we define the pseudo-density ratio:

�(Z;α)=m1(Z;α1)−m2(Z;α2)� (3.4)

where α = (α1�α2) ∈ A1 × A2. We also define α∗
F0

= (α∗
F0�1

�α∗
F0�2

), A = A1 × A2, k =
(k1�k2), βk = (β′

k1
�β′

k2
)′, Ak = A1�k1 ×A2�k2 , αk = α(βk)= (α1(βk1)�α2(βk2)), and α̂k =

(̂αk1� α̂k2).
Since the null hypothesisH0 is equivalent to EF0[�(Z;α∗

F0
)] = 0, one may be tempted

to suggest treating EF0[�(Z;α∗
F0
)] as a parameter and constructing a Student t-like test

for this hypothesis. In other words, the suggestion would be to construct the test statistic

TVn ≡ �̄n(̂αk)
(
n−1/2ω̂n(̂αk)

)−1
� (3.5)

where �̄n(̂αk) is the sample analogue estimator of EF0[�(Z;α∗
F0
)] and n−1/2ω̂n(̂αk) is the

sample analogue of its standard deviation:

�̄n(̂αk)= n−1
n∑
i=1

�(Zi; α̂k) and ω̂2
n(̂αk)= n−1

n∑
i=1

[
�(Zi; α̂k)− �̄n(̂αk)

]2
� (3.6)

9Many properties of the sieve M-estimator, including consistency, rate of convergence, and asymptotic
normality are established in the literature. See, for example, Chen (2007) for a recent survey on this topic.
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Then one would construct tests of the form: ϕV �2-sided
n (p) = 1{|TVn | > z1−p/2} or

ϕ
V �1-sided
n (p) = 1{TVn > z1−p}. In fact, such tests are analogous extensions of Vuong’s

(1989) (one-step) test to the semi/nonparametric context. Thus, we refer to them as
the “naive extension”tests hereafter.

The rationale behind the naive extension test is that n1/2�̄n(̂αk) = n1/2�̄n(α
∗
F0
) +

op(1)→d N(0�ω2
F0�∗) and ω̂2

n =ω2
F0�∗ + op(1), where ω2

F0�∗ = VarF0(�(Z;α∗
F0
)). However,

this asymptotic approximation can be very poor when ω2
F0�∗ is close to or equal to zero.

When the models are overlapping nonnested, both small positive values and the zero
value are possible for ω2

F0�∗ under H0, depending on the unknown data distribution F0.

Thus, the naive extension test often fails to have the correct level in a finite sample.10

The intuition of the failure of the naive extension test can be seen from the following
heuristic second-order expansion of the QLR statistic.11 Let

β∗
kj

= arg max
βkj∈Bj�kj

EF0

[
mj

(
Z;αj(βkj )

)]
� (3.7)

where we suppress the dependence of β∗
kj

on F0 for notational convenience. We as-

sume that the sieve coefficients β∗
kj

are in the interior of their spaces Bj�kj for any kj .

Let α∗
kj
(·) = Pkj (·)′β∗

kj
. Then α∗

kj
is the sieve approximator of the pseudo-true parame-

ter α∗
F0�j

on the finite dimensional space Aj�kj . Let �α�k(Z;α) be the “score” function of
�(Z;α) evaluated at α ∈Ak. When �(Z;α(βk)) is differentiable in βk, we can let

�α�k(Z;αk)= ∂�(Z;αk)/∂βk and �̄α�k�n
(
α∗

k

) = n−1
n∑
i=1

�α�k
(
Zi;α∗

k

)
� (3.8)

where α∗
k = (α∗

k1
�α∗

k2
). Then a second-order Taylor expansion of �̄n(α∗

k) around α̂k gives

�̄n(̂αk)−EF0

[
�
(
Z;α∗

F0

)] ≈ �̄n
(
α∗

k

) −EF0

[
�
(
Z;α∗

F0

)] − 2−1�̄α�k�n
(
α∗

k

)′
H−1
F0�k

�̄α�k�n
(
α∗

k

)
� (3.9)

where

HF0�k = diag
(
∂2EF0

[
m1(Z;αk1)

]
∂βk1∂β

′
k1

�−∂
2EF0

[
m2(Z;αk2)

]
∂βk2∂β

′
k2

)
= diag(HF0�k1�−HF0�k2)� (3.10)

Appropriate conditions and the central limit theorem imply that n1/2{�̄n(α∗
k) −

EF0[�(Z;α∗
F0
)]} →d N(0�ω2

F0�∗) and n1/2�̄α�k�n(α
∗
F0
)→d N(0�DF0�k), where

DF0�k =EF0

[
�α�k

(
Z;α∗

k

)
�α�k

(
Z;α∗

k

)′]
� (3.11)

10A pretest for whether �(·;α∗
F0
)= 0 could be performed. But the two-step procedure may (a) not be uni-

formly asymptotically valid if the pretest does not use a conservative critical value, and (b) not be powerful
because the pretest makes rejection difficult.

11The use of higher order expansion to develop more robust asymptotic theory is not new. It has been
used in many contexts including, for example, Jun and Pinkse (2012).



Quantitative Economics 11 (2020) Nondegenerate Vuong test 993

The latter implies that n�̄α�n(α∗
k)

′H−1
F0�k

�̄α�n(α
∗
k) is approximately

∑|k|
j=1 λjχ

2
j (1), where

|k| = k1 + k2, {χ2
j (1)}|k|

j=1 are independent chi-squares with one degree of freedom and

{λj}|k|
j=1 are the eigenvalues ofDF0�kH

−1
F0�k

. Thus,

n
{
�̄n(̂αk)−EF0

[
�
(
Z;α∗

F0

)]} ≈ n1/2N
(
0�ω2

F0�∗
) − 2−1

|k|∑
j=1

λjχ
2
j (1)� (3.12)

Note that since E[χ2
j (1)] = 1, we have E[∑|k|

j=1 λjχ
2
j (1)] = ∑|k|

j=1 λj , which is typically

nonzero and can be of comparable scale as n1/2ωF0�∗, the standard deviation of n�̄n(α∗
F0
).

This means that, even when the null hypothesis H0 holds (EF0[�(Z;α∗
F0
)] = 0), the nu-

merator of the statistic TVn may not be centered around zero, causing the naive extension
test to be biased. A similar expansion of the denominator unveils that nω̂n(̂αk)

2 is a bi-
ased estimator of ω2

F0�∗ as well, and the dominating term of the bias is coincidentally

2−1 ∑|k|
j=1 λ

2
j . Thus, the naive extension test not only has a numerator bias that leads it

to favor one model over the other when both have equal fit, but also has a denominator
bias that tends to make it conservative. The two biases could cancel each other in certain
context, but in general do not, and can exacerbate each other when the power against
one-sided alternatives is considered.

Our nondegenerate test corrects the two biases by estimating and removing them.
Specifically, we construct estimators λ̂j : j = 1� � � � � |k| and propose the bias removed
statistics:

�̃n = �̄n(̂αk)+ (2n)−1
|k|∑
j=1

λ̂j and ω̃2
n = ω̂2

n(̂αk)− (2n)−1
|k|∑
j=1

λ̂2
j � (3.13)

Then the approximation in (3.12) implies that underH0,

n�̃n ≈ n1/2N
(
0�ω2

F0�∗
) − 2−1

|k|∑
j=1

λj
(
χ2
j − 1

)
� (3.14)

Recall that |k| → ∞ as n → ∞ in semi/nonparametric models, and apply the central
limit theorem on the sum of independent mean-zero variables χ2

j − 1 : j = 1� � � � � |k| to
find that the second term is approximately normal as well. We also show that the two
terms are asymptotically independent, suggesting that n�̃n is asymptotically mean-zero
normal under H0. Moreover, nω̃2

n also consistently estimate the variance of this mean-
zero normal limit. As a result, we have

T 0
n = n�̃n

n1/2ω̃n
→d N(0�1)� as n→ ∞� (3.15)

There is a minor issue with using T 0
n as our test statistic because ω̃2

n is defined as the
difference of two nonnegative terms. In finite sample, this difference can be zero or neg-
ative even though the probability of that happening approaches zero as n→ ∞. To avoid
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this finite sample irregularity, we recommend a slightly regularized version:

Tn = n�̃n

n1/2σ̂n
� where σ̂2

n = max
{
ω̃2
n� (2n)

−1
|k|∑
i=1

λ̂2
j

}
� (3.16)

The regularization has no effect on the asymptotic distribution as we show that
(2n)−1 ∑|k|

i=1 λ̂
2
j is less than or equal to ω̃2

n asymptotically. Thus, we still have Tn →d

N(0�1) as n→ ∞.
Estimating λj : j = 1� � � � � |k| is straightforward as they are eigenvalues of DF0�kH

−1
F0�k

.
It is in fact unnecessary to estimate these eigenvalues individually since it is clear from
the discussion above that all we need are the two sums:

∑k
j=1 λj and

∑k
j=1 λ

2
j , which are

equal to tr(DF0�kH
−1
F0�k

) and tr((DF0�kH
−1
F0�k

)2), respectively, by matrix algebra identities.

These can be constructed in a plug-in manner once we have estimates D̂n and Ĥn for
DF0�k andHF0�k. When �(Z; ·) is differentiable, we let

D̂n = n−1
n∑
i=1

�α�k(Zi; α̂k)�α�k(Zi; α̂k)
′ and Ĥn = n−1

n∑
i=1

∂2�(Zi; α̂k)

∂βk∂β
′
k
� (3.17)

The score functions �α�k(Zi; α̂k) and estimators of the Hessian matrix are available case
by case in the literature when differentiability does not hold. For example, suitable
choices for the nonparametric quantile regression example are given in Belloni, Cher-
nozhukov, Chetverikov, and Fernández-Val (2019).

The two-sided test and the one-sided test of H0 in (2.1) of nominal size p (∈ (0�1))
are therefore

ϕ2-sided
n (p)= 1

{|Tn|> z1−p/2
}

and ϕ1-sided
n (p)= 1{Tn > z1−p}� (3.18)

respectively. The test does not select a better fitting model when it does not reject the
null hypothesis. Such indeterminacy reflects the data fact that the fit of the two mod-
els are not statistically significantly different. In practice, if a model must be selected,
one needs to analyze other, perhaps nonstatistical, features of the models. Often times
the researcher has a preferred model based on features such as dimensionality and in-
terpretability, and can set that one as the benchmark model. The benchmark model is
selected when the null of equal fit is not rejected.

We show the uniform asymptotic validity of the above tests in the next section.
Specifically, we show that

lim
n→∞ inf

F0∈F0
EF0

[
ϕn(p)

] = lim
n→∞ sup

F0∈F0

EF0

[
ϕn(p)

] = p� (3.19)

whereϕn = ϕ2-sided
n orϕn = ϕ1-sided

n , and F0 is the set of data generating processes (DGPs)
that the null hypothesis and the assumptions (given below) allow, which shows that the
tests that we propose are asymptotically size-exact and similar.
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4. Uniform asymptotic validity

In this section, we establish the uniform asymptotic validity and the local power of our
test under high-level assumptions. These assumptions are verified in a nonparametric
mean-regression example and in a quantile-regression example in Supplemental Ap-
pendices C and D, respectively.

We begin by stating the regularity conditions on the DGP space F and null DGP
space F0. In the assumptions below, {ξk}k is an array of nondecreasing positive numbers
which may diverge with |k| = k1 + k2, and may not depend on F0.

Assumption 4.1. The set F is the set of F0’s such that:

(a) {Zi}i≥1 are i.i.d. draws from F0;

(b) for every k, EF0[�(Z;α(βk))] is twice-differentiable in βk;

(c) the sieve approximator α∗
k satisfies EF0[�α�k(Z;α∗

k)] = 0|k| for every k;

(d) EF0[�(Z;α∗
F0
)2]<C, and for every k, EF0[‖�α�k(Z;α∗

k)‖4] ≤ Cξk|k|;
(e) EF0[|(�(Z;α∗

F0
)−EF0(�(Z;α∗

F0
)))/ωF0�∗|4]<C wheneverω2

F0�∗ ≡ VarF0[�(Z;α∗
F0
)]>

0;

(f ) for j = 1�2, −C ≤ ρmin(HF0�kj ) ≤ ρmax(HF0�kj ) ≤ −C−1 and ρmax(DF0�k) ≤ C for
all k.

Assumption 4.2. F0 = {F0 ∈ F :EF0[�(Z;α∗
F0
)] = 0}.

Assumption 4.1(b) ensures that the matrix HF0�k in (3.10) is well-defined. As-
sumption 4.1(c) generally follows from the first order optimality condition of α∗

k. Let

λF0�1� � � � � λF0�|k| denote the |k| eigenvalues ofD1/2
F0�k

H−1
F0�k

D
1/2
F0�k

, and let

σ2
F0�n

≡ω2
F0�∗ + (

2n2)−1
(n− 1)ω2

F0�U�k
� (4.1)

where ω2
F0�U�k

≡ ∑|k|
j=1 λ

2
F0�j

≡ tr((DF0�kH
−1
F0�k

)2). Assumptions 4.1(d) and (f) together en-

sure that ω2
F0�∗, DF0�k, ω2

F0�U�k
, and σ2

F0�n
are well-defined. The array ξk depends on the

approximating function used. For example, it is the order of k2
j on the jth direction if

power series is used for model j, and it is the order of kj if Fourier or spline series is
used. Assumption 4.1(e) implies the Linderberg condition on the pseudo-density ratio.

The definition of the supremum (infimum) operator implies that, to show the uni-
formity results (3.19), it is sufficient to consider all sequences of DGPs {Fn}n≥1 in F0.
Moreover, to study the local power properties, we need to consider sequences of DGPs
{Fn}n≥1 in F \F0. In general, we consider sequences {Fn}n≥1 in F . For any Fn ∈ F , we let
α∗
j�n abbreviate α∗

Fn�j
, and let α∗

n abbreviate (α∗
1�n�α

∗
2�n). Let �α�n(α)= n−1 ∑n

i=1 �α�k(Zi;α)
for any α ∈A.

Assumption 4.3. Under any sequence of DGPs {Fn}n≥1 such that Fn ∈ F for all n, we
have:
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(a) �̄n(̂αk)= �̄n(α∗
n)− 2−1�α�n(α

∗
k)

′H−1
Fn�k

�α�n(α
∗
k)+ op(n−1/2σFn�n);

(b) (nσ2
Fn�n

)−1 = o(1) and |k|ξk(n
2σ2
Fn�n

)−1 = o(1).

Assumption 4.3(a) is a second-order expansion of �̄n(̂αk) around α∗
n. We verify this

assumption in the nonparametric mean regression example (Supplemental Appendix C)

and the nonparametric quantile regression example (Supplemental Appendix D). With

the formula of this expansion, we can add more details to the heuristic discussion in Sec-

tion 3. The variance of the leading term, n−1ω2
Fn�∗, in the expansion comes from estimat-

ing the expectation, and the variance of the second term, approximately 2−1n−2ω2
Fn�U�k

,

comes from estimating α∗
n. The quantity ω2

Fn�∗ can be either zero or positive in the over-

lapping nonnested case. Indeed, it can converge to zero at any rate in that case. On the

other hand, the quantity ω2
Fn�U�k

typically is nonzero.12 The relative magnitude of the

two terms is proportional to
nω2

Fn�∗
ω2
Fn�U�k

, which can be zero or positive. It is such ambiguity

of the relative asymptotic order of the two expansion terms that makes a uniformly valid

test difficult to construct.13

Assumption 4.3(b) is an important condition for the uniform asymptotic validity

of our test. The first part of it ensures that the approximation residual in Assump-

tion 4.3 (a) diminishes at a fast enough rate as the sample size grows. The second

part of the assumption allows us to apply a U-statistic central limit theorem to the

quadratic term 2−1�α�n(α
∗
k)

′H−1
Fn�k

�α�n(α
∗
k). To understand this assumption, note that

σ2
Fn�n

= ω2
Fn�∗ + (2n2)−1(n− 1)ω2

Fn�U�k
. If ω2

Fn�∗ is bounded below by a positive constant

(as is typical for strictly nonnested models), Assumption 4.3(b) is satisfied as long as

|k|ξkn
−2 = o(1) as n→ ∞, which simply requires that the number of sieve terms not to

grow too fast. Otherwise, Assumption 4.3(b) imposes restriction on the U-statistic vari-

ance ω2
Fn�U�k

≡ tr((H−1
Fn�k

DFn�k)
2). Specifically, it requires, as n→ ∞, that

ω2
Fn�U�k

→ ∞ and |k|ξk
(
nω2

Fn�U�k

)−1 = o(1)� (4.2)

This is satisfied if |k| grows with n and there are not too many near zero eigenvalues for

the matrix H−1
Fn�k

DFn�k. Both can be assessed in practice because k is user-chosen and

H−1
Fn�k

DFn�k can be consistently estimated. Moreover, the requirement that |k| grows with

12For example, consider M1: Y =X ′
1β1 +X ′

2β2 + u and M2: Y =X ′
1β1 + u. Suppose that X = (X ′

1�X
′
2)

′
is uncorrelated with u and EF0 [XX ′] = I|k| for simplicity. The null hypothesisH0 is equivalent to β2 = 0 and
there is �(Z;α∗

n) = 0 under H0 as a result. Yet, 2−1�α�n(α
∗
n)

′H−1
Fn�k

�α�n(α
∗
n) = 2−1n−2 ∑n

i=1
∑n
j=1 uiujX

′
2�iX2�j

which is clearly not degenerate. See Hong and White (1995) for more sophisticated examples.
13Ambiguity of this type also arises in the analysis of weak instruments and weak identification, where

the common techniques include pretesting with conservative critical value, Anderson–Rubin type robust
procedures, and conditional likelihood inference. The first two in general do not yield asymptotically sim-
ilar tests, indicating power loss under some data generating processes, while the last one is not a general
technique that can be applied here.
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n is natural and necessary in the literature of series estimation of semi/nonparametric
models.14

Under the above assumptions, the following intermediate result holds.

Theorem 4.1. Suppose that Assumptions 4.1 and 4.3 hold. Then under any sequence
{Fn}n≥1 such that Fn ∈ F for all n, we have

n
(
�̄n(̂αk)−EFn

[
�
(
Z;α∗

n

)]) + (1/2) tr
(
D̂n

(
α∗

k

)
H−1
Fn�k

)
n1/2σFn�n

→d N(0�1)� (4.3)

where D̂n(α∗
k)= n−1 ∑n

i=1 �α�k(Zi;α∗
k)�α�k(Zi;α∗

k)
′.

Remark 1. Note that Theorem 4.1 applies whether or not Fn ∈ F0. In the case that
Fn ∈ F0 for all n, it again covers two special sub-cases: (i) The statistic n1/2�̄n(̂αk) is non-
degenerate (Fn = F for some F and for all n, and ω2

F�∗ > 0); (ii) the statistic n1/2�̄n(̂αk) is

degenerate (Fn = F for some F and for all n, and ω2
F�∗ = 0). More importantly, it allows

ω2
Fn�∗ to converge to zero at all rates, and thus covers all types of DGP sequences in the

overlapping nonnested case.
When ω2

Fn�∗ converges to zero at an equal or faster rate than n−1 or is exactly zero,
the asymptotic normality in (4.3) is achieved by the central limit theorem of U-statistic
which requires that |k| grows with n. The normal approximation of the U-statistic is
widely used in the literature of model specification test. See, for example, Hall (1984),
Hong and White (1995), Horowitz and Härdle (1994), Fan and Li (1996), Aït-Sahalia,
Bickel, and Stoker (2001), and Donald, Imbens, and Newey (2003). Theorem 4.1 shares
similar features with the results in these papers, in that they also require the number of
approximating functions to diverge with n or the bandwidth of kernel functions to go to
zero with n.

In order to use the intermediate result in Theorem 4.1, we need to construct con-
sistent estimators of D̂n(α∗

k), HFn�k, and σ2
Fn�n

. The estimators that we consider are re-

spectively the D̂n, the Ĥn, and the σ̂2
n defined in the previous section. Assumption 4.4

below ensures their consistency. In this assumption, δn = min{n1/2σFn�n|k|−1�1}, and
�F(α)=EF [�(Z;α)] for all F ∈F and α ∈ A.

Assumption 4.4. Under any sequence of DGP’s {Fn}n≥1 with Fn ∈ F for all n, we have:

(a) ‖Ĥn −HFn�k‖ = op(δn), ‖D̂n − D̂n(α∗
k)‖ = op(δn) and ‖D̂n(α∗

k)−DFn�k‖ = op(δn);
(b) n−1 ∑n

i=1 |�(Zi� α̂k)−�(Zi�α∗
n)|2 = �α�n(α∗

k)
′(H−1

Fn�k
DFn�kH

−1
Fn�k

)�α�n(α
∗
k)+op(σ2

Fn�n
);

(c) n−1 ∑n
i=1(�(Zi�α

∗
n)− �Fn(α∗

n))[�(Zi� α̂k)− �(Zi�α∗
n)] = op(σ2

Fn�n
);

(d) |k|n−1 = o(1).
14The asymptotic theory established in this paper also provides a good approximation for the compari-

son of parametric models with fixed but large |k|. Simulation results in Supplemental Appendix F show that
our test works well even when |k| is only 7.
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Conditions in Assumption 4.4 are verified in the nonparametric mean-regression
example in Supplemental Appendix C. Under this assumption, we can easily show that
the large sample bias of n�̄n(̂αk�n) can be estimated up to the appropriate rate.

Lemma 4.1. Suppose that Assumptions 4.1(c) and (e)–(g), and 4.4(a) hold. Then under
any sequence {Fn}n≥1 such that Fn ∈ F for all n, we have

tr
(
D̂nĤ

−1
n

) − tr
(
D̂n

(
α∗

k

)
H−1
Fn�k

) = op
(
n1/2σFn�n

)
�

Next, we derive the convergence of σ̂2
n . First, we show the convergence of ω̂2

n(̂αk) in
the following lemma.

Lemma 4.2. Suppose that Assumptions 4.1, 4.3, and 4.4 hold. Then under any sequence
{Fn}n≥1 such that Fn ∈ F for all n, we have∣∣ω̂2

n(̂αk)− (
ω2
Fn�∗ + n−1ω2

Fn�U�k

)∣∣ = op
(
σ2
Fn�n

)
�

Remark 2. Note that ω̂2
n(̂αk) may be viewed as a sample-analogue estimator of ω2

Fn�∗.

Lemma 4.2 shows that, in general, ω̂2
n(̂αk) over-estimates ω2

Fn�∗. In fact, it even overesti-
mates the overall asymptotic variance of the size-corrected quasi-likelihood ratio statis-
tic: σ2

Fn�n
, by (2n2)−1(n+ 1)ω2

Fn�U�k
. The upward bias is due to the estimation error in α̂k.

Lemma 4.2 suggests that σ2
Fn�n

can be consistently estimated by estimating and then

removing the large-sample bias (2n2)−1(n+ 1)ω2
Fn�U�k

from ω̂2
n(̂αk). This motivates the

estimator σ̂2
n defined in the previous section. In the definition of σ̂2

n , tr((D̂nĤ−1
n )2) is

used to estimate ω2
Fn�U�k

. The lemma below shows that this estimator of ω2
Fn�U�k

is con-

sistent in an appropriate sense, and so is the resulting bias-removed estimator of σ2
Fn�n

.

Lemma 4.3. Suppose that Assumptions 4.1, 4.3, and 4.4 hold. Then under any sequence
{Fn}n≥1 such that Fn ∈ F for all n, we have:

(a) tr((D̂nĤ−1
n )2)−ω2

Fn�U�k
= op(nσ2

Fn�n
), and

(b) ω̃2
n − σ2

Fn�n
= op(σ

2
Fn�n

), where ω̃2
n = ω̂2

n(̂αk) − (2n)−1 tr((D̂nĤ−1
n )2) as defined in

(3.13).

Lemma 4.3 is used to show the consistency of σ̂2
n : σ̂2

n − σ2
Fn�n

= op(σ2
Fn�n

). This along
with Theorem 4.1 and Lemmas 4.1–4.2 immediately leads to the uniform asymptotic size
control and the asymptotic similarity results in (3.19). These results also immediately
lead to a local power formula because the assumptions used for them do not require
Fn ∈ F0. These are summarized in the theorem below.

Theorem 4.2. Suppose that Assumptions 4.1–4.4 hold. Then:

(a) Equation (3.19) holds for ϕn = ϕ2-sided
n and ϕn = ϕ1-sided

n .
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(b) Under any sequence Fn ∈ F such that Fn → F0 for some F0 ∈ F0 in the Kolmogorov–
Smirnov distance, and that n1/2EFn[�(Z;α∗

n)]/σFn�n → c for some constant c ∈R, we have

lim
n→∞EFn

[
ϕ2-sided
n (p)

] = 2 −�(z1−p/2 − c)−�(z1−p/2 + c) and

lim
n→∞EFn

[
ϕ1-sided
n (p)

] = 1 −�(z1−p − c)�

where �(·) is the CDF of the standard normal distribution.

Remark 3. Note that σFn�n =O(1), and it can be o(1) when ω2
Fn�∗ → 0. Thus, part (b) of

the theorem implies that the test has nontrivial power against all local alternatives with
EFn[�(Z;α∗

n)] converging to 0 at the rate n1/2, and against alternatives with EFn[�(Z;α∗
n)]

converging to 0 at a rate faster than n1/2 if ω2
Fn�∗ → 0. Such power property is not shared

by a pretest based model selection test like that in Shi (2015a), or a model selection test
that uses added noise to augment the variance either through sample splitting or other
means.

Remark 4. As we have discussed, Shi (2015b) proposed a nondegenerate test for the
parametric case. Her test statistic, if directly applied to the sieve approximation of the
semi/nonparametric models, takes the following form:

T
para
n (c)= n�̄n(̂αk)+ 2−1 tr

(
D̂nĤ

−1
n

)
n1/2(ω̂2

n(̂αk)+ cn−1 tr
((
D̂nĤ

−1
n

)2))1/2 � (4.4)

where c ≥ 0 is a tuning parameter. Compared with T
para
n (c), our test statistic Tn

has the same numerator but a different denominator. By Lemma 4.3(b), ω̂2
n(̂αk)

σ2
Fn�n

−
(2n)−1 tr((D̂nĤ−1

n )2)

σ2
Fn�n

→p 1, which implies that ω̂2
n(̂αk) > (2n)−1 tr((D̂nĤ−1

n )2) with probabil-

ity approaching one. This and the definition of σ̂2
n together imply that ω̂2

n(̂αk)≥ σ̂2
n with

probability approaching one, which in turn implies that |Tpara
n (c)| ≤ |Tn| with proba-

bility approaching one for any c ≥ 0. On the other hand, the critical value of the test
proposed in Shi (2015b) by construction is not smaller than the critical value of our test.
Therefore, the asymptotic theory established in this section automatically justifies the
test proposed in Shi (2015b) in terms of asymptotic size control when applied to the
semi/nonparametric models. However, when |k| is large, there are a large number of
nuisance parameters (which are not consistently estimable) for Shi’s (2015b) approach
to consider, which makes it difficult to use. In contrast, our test is much easier to use,
also has asymptotic size control, and has better power in the semi/nonparametric set-
ting, where the better power is implied by its bigger test statistic and smaller critical
value. Moreover, the asymptotic standard normal distribution of our test statistic Tn also
makes the post model selection inference easy in practice as we discuss in later sections.

5. Example: Nonparametric mean-regression

In this section, we illustrate the construction of our test using the nonparametric mean-
regression example. We verify the high-level assumptions in this example in Supplemen-
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tal Appendix C. Another illustrating example—quantile-regression—is given in Supple-
mental Appendix D, where we also verify the high level assumptions.

For j = 1�2, model j is to maximize EF0[−2−1|Y −αj(Xj)|2] over αj ∈ Aj , where αj(x)
is a possibly infinite dimensional parameter, Aj is its parameter space, and F0 denotes
the joint distribution of Z ≡ (Y�X1�X2). The regressors X1 and X2 of the two models
may be nested, overlapping, or strictly nonnested sets of variables. Even when the re-
gressors are strictly nonnested sets of variables (i.e., there are no common regressors
across the two regressions), the two regression models are still overlapping according to
the definitions in Section 2.2 because it is possible that α1(X1)= α2(X2)= Constant.

The model studied in this section covers a richer class of models than it looks.
Depending on what one sets Aj to be, it can represent a fully nonparametric mean-
regression model, a partial linear model, a separable model, or a parametric linear
model. See below for an example. We do not require that there exists an αj ∈ Aj such
that αj(Xj)=EF0[Y |Xj] a.s.

The sieve approximating functions for this case have to do with the structure of Aj .
For example, suppose that we have a partial linear model αj(Xj) = β1Xj�1 + g(Xj�2).
Then we should let Pkj (Xj)= [pj�1(Xj)� � � � �pj�kj (Xj)]′ such that pj�1(Xj)=Xj�1 and the
rest of the sequence of pj��(Xj)’s be an appropriate sieve approximation of g(Xj�2), such
as splines or polynomials onXj�2.

The sieve M-estimator is simply the sieve least squares estimator:

α̂kj (·)= Pkj (·)′β̂kj with β̂kj = (
P′
kj�n

Pkj�n
)−1P′

kj�n
Yn� (5.1)

where Pkj�n = [Pkj (Xj�1)� � � � �Pkj (Xj�n)]′ for j = 1�2, and Yn = (Y1� � � � �Yn)
′. The link

function is

�(Z;α)= 2−1∣∣Y − α2(X2)
∣∣2 − 2−1∣∣Y − α1(X1)

∣∣2
� (5.2)

Using the above two displays, the pseudo-likelihood ratio and the standard error statis-
tics can be constructed easily following (3.6).

The pseudo-true parameter α∗
j (·) is defined as α∗

j = arg maxαj∈Aj
EF0[−2−1|Y −

αj(Xj)|2], which depends on the functional form restrictions imposed on the param-
eter space Aj . If there is no functional form restriction, then α∗

j (Xj) = EF0[Y |Xj]. If
an additive form is imposed, that is, αj(Xj) = g(Xj�1) + · · · + g(Xj�q) for some finite
q, the pseudo-true parameter exists and is unique under general conditions (see Con-
dition 1 and Lemma 1 in Stone (1985)). When a partially linear form is imposed, that is,
αj(Xj) =X ′

j�1β1 + g(Xj�2), then the pseudo-true parameter α∗
j (Xj) =X ′

j�1β
∗
1 + g∗(Xj�2)

where

β∗
1 = (

EF0

[
X∗
j�1X

∗′
j�1

])−1
EF0

[
X∗
j�1Y

∗] and g∗(Xj�2)=EF0

[
Y −X ′

j�1β
∗
1|Xj�2

]
� (5.3)

whereX∗
j�1 =Xj�1 −EF0[Xj�1|Xj�2] and Y ∗ = Y −EF0[Y |Xj�2].

Let ukj = Y − α∗
kj
(Xj), where α∗

kj
(·)= Pkj (·)′β∗

kj�F0
and

β∗
kj�F0

= arg min
βkj∈R

kj

EF0

[∣∣Y − Pkj (Xj)′βkj
∣∣2]
� (5.4)
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By the first-order optimality condition for ukj = Y − Pkj (Xj)
′β∗
kj�F0

, we have

EF0[ukjPkj (Xj)] = 0kj×1. With the sieve approximation in (3.1), �(Z;α(βk)) is differen-
tiable in βk. Thus, the score function can be obtained by the chain rule:

�α�k(Z;α)= ((
Y − α1(X1)

)
Pk1(X1)

′�−(
Y − α2(X2)

)
Pk2(X2)

′)′
� (5.5)

Then the expectation of the outer product of the score function evaluated at α∗
k is

DF0�k =
(

EF0

[
u2
k1
Pk1(X1)Pk1(X1)

′] −EF0

[
uk1uk2Pk1(X1)Pk2(X2)

′]
−EF0

[
uk1uk2Pk2(X2)Pk1(X1)

′] EF0

[
u2
k2
Pk2(X2)Pk2(X2)

′]
)
� (5.6)

and the population Hessian matrix is

HF0�k = diag
(−EF0

[
Pk1(X1)Pk1(X1)

′]�EF0

[
Pk2(X2)Pk2(X2)

′])� (5.7)

It is natural to use the plug-in estimators ofDF0�k andHF0�k:

D̂n�k =

⎛⎜⎜⎜⎜⎜⎝
n−1

n∑
i=1

û2
1�iPk1(X1�i)Pk1(X1�i)

′ −n−1
n∑
i=1

û1�iû2�iPk1(X1�i)Pk2(X2�i)
′

−n−1
n∑
i=1

û1�iû2�iPk2(X2�i)Pk1(X1�i)
′ n−1

n∑
i=1

û2
2�iPk2(X2�i)Pk2(X2�i)

′

⎞⎟⎟⎟⎟⎟⎠ �
(5.8)

where the residual ûj�i = Yi − α̂kj (Xj�i) and

Ĥn�k = diag

(
−n−1

n∑
i=1

Pk1(X1�i)Pk1(X1�i)
′� n−1

n∑
i=1

Pk2(X2�i)Pk2(X2�i)
′
)
� (5.9)

Finally, the test statistic may be constructed easily using the above quantities following
(3.16).

6. Uniformly valid post selection test inference

Up to this point, we have focused on how to properly conduct model selection that
takes into account sample noise. Sometimes, model selection is the sole purpose of a
research project (e.g., Coate and Conlin (2004) and Gandhi and Serrano-Padial (2015)).
But, sometimes, one is also interested in the model parameters that are estimated using
the same data set on which the model selection test is conducted. Leeb and Pötscher
(2005) showed the size-distortion of naive post-model-selection (PMS) inference that
does not account for the randomness of model selection. Uniformly valid post model se-
lection test inference procedures for possibly misspecified semi/nonparametric models
have not been developed in the literature.

The QLR model selection test framework treats the parameters in the two models as
separate parameters in the sense that there is no across-model restrictions. In practice,
while some parameters of a model may only have meaningful interpretation in its own
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model environment, it is also possible that a parameter from one model and a param-
eter from the other model represent the same economic parameter of interest. Thus,
we treat these two different scenarios separately when considering post model selection
test inference.

In the first scenario, the parameter of interest is only well-defined in model Mj (j = 1
or 2), and the researcher is interested in it only when Mj is selected by the model selec-
tion test. In this scenario, we would like to make the inference conditional on the event
that M1 is selected. Leeb and Pötscher (2006) pointed out that in general it is impos-
sible to approximate the conditional distribution of the parameter estimator given that
the model is selected. Instead of studying the conditional distribution, we take a dif-
ferent route, and construct confidence interval for the parameter using a conditionally
asymptotically pivotal statistic. We devote Section 6.2 to this approach.

In the second scenario, the parameter of interest, θ, is well-defined in both models:
it equalsψ1(α1) in model M1 and equalsψ2(α2) in model M2 for two known functionals
ψ1 : A1 →R and ψ2 : A2 →R. Its (pseudo)-true value is determined by the better fitting
model:

θ∗ =ψ1
(
α∗

1
)
1
(
f (M1�F0)≥ f (M2�F0)

) +ψ2
(
α∗

2
)
1
(
f (M1�F0) < f(M2�F0)

)
� (6.1)

For example, if the competing models are two regression models, θ∗ could be the ex-
pected point prediction from the better fitting model. We devote Section 6.3 below to
this problem.

To prepare for Sections 6.2 and 6.3, we let ψ1(α
∗
1) and ψ2(α

∗
2) be estimated by the

plug-in estimators ψ1(̂αk1) and ψ2(̂αk2), respectively. Both Subsections 6.2 and 6.3 rely
on the joint normal limiting distribution of (ψ1(̂αk1)�ψ2(̂αk2)� �̄n(̂αk))

′ (after proper re-
centering and rescaling), which we derive in the next subsection.

6.1 Preliminaries

We first introduce some notation. Let �α�k1(Z;α1) denote the subvector of the first k1
coordinates of �α�k(Z;α), and let �α�k2(Z;α2) denote minus the subvector of the last k2
coordinates of �α�k(Z;α). LetDF0�kj =EF0[�α�kj (Z;α∗

F0�j
)�α�kj (Z;α∗

F0�j
)′] for j = 1�2. Also

define

ψα�kj (αj)= ∂ψj
(
αj(βkj )

)
∂βkj

and

v∗
ψ�kj

= (
ψα�kj

(
α∗
kj

)′
H−1
F0�kj

DF0�kjH
−1
F0�kj

ψα�kj
(
α∗
kj

))1/2
�

(6.2)

where v∗
ψ�kj

is the well-established formula for the asymptotic standard deviation of

functionals of sieve-M estimator.
Let v̂∗

ψ�kj
denote the estimator of v∗

ψ�kj
which is defined as

v̂∗2
ψ�kj

=ψα�kj (̂αkj )′Ĥ−1
kj�n

D̂kj�nĤ
−1
kj�n

ψα�kj (̂αkj )

where Ĥkj�n and D̂kj�n are the leading kj ×kj submatrices of Ĥn and D̂n, respectively, for

j = 1, and the last kj × kj submatrices of −Ĥn and D̂n, respectively, for j = 2.
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We shall derive the asymptotic distribution of

Ĝn�Fn ≡

⎛⎜⎜⎜⎜⎝
n
[
�̄n(̂αk)−EFn

(
�
(
Z;α∗

n

))] + (1/2) tr
(
D̂nĤ

−1
n

)
n1/2σ̂n

n1/2[ψ1(̂αk1)−ψ1
(
α∗

1�n
)](̂
v∗
ψ�k1

)−1

n1/2[ψ2(̂αk2)−ψ2
(
α∗

2�n
)](̂
v∗
ψ�k2

)−1

⎞⎟⎟⎟⎟⎠ � (6.3)

For this purpose, define the correlation coefficients

ρ0j�F0 =ψα�kj
(
α∗
kj

)′
H−1
F0�kj

EF0

[
�α�kj

(
Z;α∗

kj

)
�
(
Z;α∗

n

)](
v∗
ψ�kj

σF0�n

)−1
for j = 1�2�

ρ12�F0 =ψα�k1

(
α∗
k1

)′
H−1
F0�k1

DF0�k1�k2H
−1
Fn�k2

ψα�k2

(
α∗
k2

)(
v∗
ψ�k1

v∗
ψ�k2

)−1
� (6.4)

whereDF0�k1�k2 =EF0[�α�k1(Z;α∗
k1
)�α�k2(Z;α∗

k2
)′].

For any sequence {Fn}n≥1, we write ρ0j�n = ρ0j�Fn and ρ12�n = ρ12�Fn for ease of no-
tation. The following lemma gives the limiting distribution of Ĝn�Fn under an arbitrary
sequence Fn ∈ F , which extends the asymptotic distribution result in Section 4 to joint
convergence.

Lemma 6.1. Suppose that Assumptions 4.1, 4.3, and B.1–B.2 in Supplemental Appendix
B hold. Then under any sequence {Fn}n≥1 and any subsequence {un} of {n} such that with
Fn ∈ F for all n, ρ0j�un → ρ0j and ρ12�un → ρ12 for some ρ0j and ρ12 ∈ [−1�1], we have

Ĝn�Fn →d N(03�ΣG)�

where ΣG =
( 1 ρ01 ρ02
ρ01 1 ρ12
ρ02 ρ12 1

)
.

Lemma 6.1 follows immediately from Lemmas 4.2 and 4.3 in Section 4, and Lemmas
B.1–B.2 in Supplemental Appendix B, and hence is omitted.

6.2 Conditional inference for model-specific parameters

In this subsection, we consider the conditional inference of a functional—denoted
ψ1(α

∗
1)—of the parameter in model M1 given that M1 is selected.15 Specifically, we con-

struct a level 1 −p conditional confidence interval, CIψ1(1 −p) such that

lim inf
n→∞ inf

F0∈Fn
Pr F0

(
ψ1

(
α∗

1
) ∈ CIψ1(1 −p)|Tn ≥ t) = 1 −p� (6.5)

where Fn is a sequence of subsets of F defined below. Note that we allow t to be an
arbitrary number, which the user can choose according to her interpretation of the event
that M1 is selected.

15Conditional inference for a functional of the parameter in model M2 given that M2 is selected is anal-
ogous, and thus omitted.
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To describe our conditional confidence interval, first define a function Ψ : R ×
(−∞�∞] × [−1�1] →R:

Ψ(c�h�ρ)=

⎧⎪⎪⎨⎪⎪⎩
[
�(c)−�(c− h/ρ)]/[1 −�(c− h/ρ)] if ρ > 0 and h ∈R�
�(c) if ρ= 0 or h= ∞�

�(c)/�(c − h/ρ) if ρ < 0 and h ∈R�
(6.6)

For any t ∈R and p ∈ (0�1), let c1�p be the solution to the equation:

Ψ(c1�p�Tn − t� ρ̂01�n)= p� (6.7)

where ρ̂0j�n = ψα�kj (̂αkj )
′Ĥ−1
kj�n

(̂v∗
ψ�kj

σ̂n)
−1n−1 ∑n

i=1 �α�kj (Zi; α̂kj )�(Zi; α̂k), for j = 1�2.

This equation only needs to be solved when Tn ≥ t because the confidence interval
is only needed then. The equation always has a unique solution when Tn ≥ t because
Ψ(c�h�ρ) is a strictly increasing function in θ with range (0�1), for any h ≥ 0 and any
ρ ∈ [−1�1]. Our conditional confidence interval is of the form

CIψ1(1 −p)= [
ψ1(̂αk1)− n−1/2c1�1−p/2v̂∗

ψ�k1
�ψ1(̂αk1)− n−1/2c1�p/2v̂

∗
ψ�k1

]
� (6.8)

These critical values depend on Tn, and hence are not approximations of the con-
ditional quantiles of

√
n(ψ1(̂αk1)−ψ1(α

∗
1))/̂v

∗
ψ�k1

given Tn > t. Therefore, the validity of
our construction is not contradictory to the impossibility results in Leeb and Pötscher
(2006). The construction of the critical values is inspired by the construction in Tibshi-
rani et al. (2016) of valid p-values and confidence intervals for post Lasso inference in
a linear regression context with known Gaussian noise.16 We generalize Tibshirani et al.
(2016) to post model selection test inference for general semi-nonparametric models,
and provide asymptotically exact confidence intervals without imposing special struc-
ture on the models compared or requiring knowledge about the variance-covariance ΣG
of the statistics Ĝn�Fn .

The formal justification of the above construction requires us to rule out the case
where n1/2EFn[�(Z;α∗

n)]/σ̂n → −∞ because in that case the conditioning event occurs
with diminishing probability, and the conditional distribution of our test statistic be-
comes difficult to characterize. We rule out this troublesome case by considering

Fn = {
F0 ∈ F : n1/2EF0

[
�
(
Z;α∗

n

)]
σ−1
n − t ≥ −C}

(6.9)

for some large C > 0. The formal validity result is stated as Theorem 6.1 below. The proof
of this theorem is given in Supplemental Appendix B.

Theorem 6.1. Suppose that Assumptions 4.1, 4.3, and B.1–B.2 in Supplemental Ap-
pendix B hold. Then equation (6.5) holds with Fn defined in (6.9).

16Asymptotically, conservative one-sided inference is also available in Tibshirani et al. (2016) when the
variance of the noise is unknown.
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6.3 Inference for common parameters

In this subsection, we consider the inference for the parameter θ that equals ψ1(α1) in
model M1 and ψ2(α2) in model M2. Let �0 = f (M1�F0)− f (M2�F0). Then the pseudo-
true value of θ is

θ∗ =ψ1
(
α∗

1
)
1(�0 ≥ 0)+ψ2

(
α∗

2
)
1(�0 < 0)� (6.10)

Note that θ∗ is a function of (ψ1(α
∗
1)�ψ2(α

∗
2)� �0). Because this function is discontinuous,

we cannot obtain uniformly asymptotically valid inference via the Delta method even
though the vector (ψ1(α

∗
1)�ψ2(α

∗
2)� �0) has an asymptotically jointly normal estimator

by Lemma 6.1. Instead, we construct a confidence interval for θ∗ by projecting a joint
confidence set for (ψ1(α

∗
1)�ψ2(α

∗
2)� �

∗
0).

We let the joint confidence set of (ψ1(α
∗
1)�ψ2(α

∗
2)� �0) of confidence level 1 −p to be

all (x1�x2�x0) such that

Ĝn(x1�x2�x0)
′Σ̂−1
G Ĝn(x1�x2�x0)≤ χ2

1−p(3)� (6.11)

where χ2
1−p(3) is the 1 −p quantile of the chi-squared distribution with three degrees of

freedom,

Σ̂G =
⎛⎜⎝ 1 ρ̂01�n ρ̂02�n

ρ̂01�n 1 ρ̂12�n

ρ̂02�n ρ̂12�n 1

⎞⎟⎠ and Ĝn(x1�x2�x0)=
⎛⎜⎝ Tn − n1/2x0/σ̂n
n1/2(ψ1(̂α1�n)− x1

)
/̂v∗
ψ�k1

n1/2(ψ2(̂α2�n)− x2
)
/̂v∗
ψ�k2

⎞⎟⎠ �
where ρ̂0j�n is defined in the previous subsection for j = 1�2 and

ρ̂12�n =ψα�k1 (̂αk1)
′Ĥ−1
k1�n

D̂k1�k2�nĤ
−1
k2�n

ψα�k2 (̂αk2)
(̂
v∗
ψ�k1

v̂∗
ψ�k2

)−1
�

where D̂k1�k2�n = n−1 ∑n
i=1 �α�k1(Zi; α̂k1)�α�k2(Zi; α̂k2)

′. Then the projected confidence
set of confidence level 1 −p for θ∗ is

CIθ(1 −p)={
θ= x11(x0 ≥ 0)+ x21(x0 < 0) :
Ĝn(x1�x2�x0)

′Σ̂−1
G Ĝn(x1�x2�x0)≤ χ2

1−p(3)
}
� (6.12)

Theorem 6.2 below shows the uniform asymptotic validity of this confidence interval.
The proof of this theorem is given in Supplemental Appendix B.

Theorem 6.2. Suppose that Assumptions 4.1, 4.3, and B.1–B.2 in Supplemental Ap-
pendix B hold. In addition, suppose that there is a constant C > 0 such that under all
F0 ∈ F , we have ρmin(ΣG) > C

−1. Then lim inf
n→∞ infF0∈F Pr F0(θ

∗ ∈ CIθ(1 −p))≥ 1 −p.

7. Simulation studies

In this section, we report Monte Carlo simulation results on the finite sample perfor-
mance of the nondegenerate test and the conditional confidence interval CIψ(1 −p).
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Consider the following two models:

M1 :E[Y |X1] = β10 +X1β11 and M2 :E[Y |X2�X3] =X2β21 + g(X3)� (7.1)

where (β10�β11)
′ ∈ R2, β21 ∈ R and g(·) ∈ C∞([0�1]). This example readily fits into the

framework of regression model studied in Section 5 with α1(x1)= β10 +β11x1, A1 = {b0 +
x1b1 : (b0� b1)

′ ∈ R2}, α2(x2�x3) = x2β21 + g(x3), and A2 = {x2b2 + g(x3) : b2 ∈ R�g(·) ∈
C∞([0�1])}.

To generate the data, letX1,X2 be independent standard normal random variables,
and let X3 be a uniform random variable independent of X1 and X2. Let ε be standard
normal and independent ofX1,X2, andX3. Let

Y = 1 +X1a+X2b+ c√2 sin(10πX3)+ ε� (7.2)

7.1 Uniform model selection test

Independence between the regressors and the additive structure in the generation pro-
cess of Y are not important for the performance of our test, but they allow us to de-
rive an analytical form of the fit measures, and hence to conveniently characterize the
null hypothesis. By exploiting them, we see that u1 = X2b + c

√
2 sin(10πX3) + ε, and

u2 =X1a+ ε. Thus,

−2f (M1�F0)=EF0

[
u2

1
] = b2 + 1 + c2 and −2f (M2�F0)=EF0

[
u2

2
] = a2 + 1� (7.3)

Therefore, the null hypothesis holds if and only if a2 = b2 + c2, and when a2 > b2 + c2,
f (M1�F0) > f(M2�F0). When a2 = b2 + c2 = 0, u1 = u2, in which case, ω2

F0�∗ = 0. Other-

wise, ω2
F0�∗ > 0.

To evaluate the performance of the nondegenerate test, we consider two collections
of DGPs. One collection sets a2 = b2 + c2, b = c, and b (and c) to grid points in [0�0�4]
with the spacing of 0�02 between adjacent points. This is the null collection in which,
as b runs from 0 to 0�4, ω2

F0�∗ grows from zero up. The other collection sets b = c = 0�2,

a2 = b2 + c2 +η, and η to grid points in [0�0�2] with the spacing of 0�01 between adjacent
points. This is the alternative collection in which, as η runs from 0 to 0�2, model M2
gets worse and worse relative to model M1. We implement the nondegenerate test as
well as the naive extension test as they are defined in Section 3. We use cubic spline to
approximate g(·) in model 2.17

Selection of the number of series terms on approximating g(·) is important for the
implementation of our nondegenerate test and conditional confidence intervals. For re-
gression examples like the one considered in this section, we recommend using cross-
validation with a slowly diverging lower bound imposed on the number of sieve terms.
Cross-validation is a commonly used method in the semi/nonparametric regression lit-
erature for selecting smoothing parameters and has been shown to yield optimal rate of
convergence in nonparametric series regression (Li (1987) and Andrews (1991)) as well
as in nonparametric series quantile regression (Chetverikov and Liao (2019)). The slowly

17Fourier series yields similar results.
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Figure 2. Null rejection rates of the tests.

diverging lower bound—we use 2 log(log(n))—ensures that the dimension of at least one
model to diverge to infinity which is needed for our Assumption 4.3(b).18,19

The finite sample rejection rates of the tests are calculated using 50,000 simulated
samples. Figure 2 presents the rejection rates of the two-sided and one-sided tests un-
der the first collection of DGPs—the collection of null DGPs. Graphs (a) and (b) show the
tests for H0 against H1 : f (M1�F0) 	= f (M2�F0) with sample size n = 500 and n = 1000,
respectively. In graph (a), the naive extension test (ϕVn , dotted line) over-rejects notice-

18In our simulations, we also impose an upper bound of 15 on the cross-validation search range.
19Strictly speaking, the theory presented in earlier sections applies only to nondata-dependent choices

of series terms. However, in practice, cross-validation is often employed, which is why we suggest it for
empirical implementation of our tests and why we use it in this simulation example. The performance of
our test with the cross-validated series terms is encouraging.
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ably when ω2
F0�∗ is zero or close to zero. On the other hand, the rejection rate of the

nondegenerate test (ϕn, solid line) never exceeds the nominal level by much, although
there is some underrejection at very small b’s and slight over-rejection at bigger b’s.
When the sample size is increased from 500 to 1000, the rejection rate of the nonde-
generate test gets closer to the nominal level while the naive extension test maintains
overall overrejection and underrejection, respectively. Graphs (c) and (d) show the one-
sided tests for H0 against H1 : f (M1�F0) > f(M2�F0) with sample sizes n = 500 and
n = 1000, respectively, and graphs (e) and (f) show the one-sided tests for H0 against
H1 : f (M1�F0) < f(M2�F0) with sample size n = 500 and n = 1000, respectively. Recall
that model M1 is the more parsimonious one. As we can see, our robust test has a rejec-
tion rate of approximately 5% against both one-sided alternative hypotheses. The naive
extension test has severe underrejection when M1 is better under the alternative (graphs
(c) and (d)) and severe overrejection when M2 is better under the alternative (graphs (e)
and (f)). This behavior is in line with our theoretical derivation.

The rejection rates of the two-sided and one-sided tests under the second collection
of DGPs—the collection of null and alternative DGPs are included in Figure 3. In this
set of DGPs, the null hypothesis H0 holds when η = 0 and the alternative hypothesis
H1 : f (M1�F0) > f(M2�F0) holds when η 	= 0. The model M2 becomes worse when the
magnitude of η becomes large. Moreover, in this set of DGPs, ω2

F0�∗ > 0 since b= c = 0�2
for all different values of η. In Figure 3, we see that the nondegenerate test has rejec-
tion rates close to the nominal level 5% under the null H0 (when η= 0), while the naive

Figure 3. Null and alternative rejection rates of the tests.
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extension test overrejects for the two-sided alternative (graphs (a) and (b)) and under-
rejects for the one-sided alternative (graphs (c) and (d)). This is again in line with our
theoretical results that the naive extension test favors large models. For the power prop-
erties, the nondegenerate test has the best power across most of the range of η in the
two-sided test. It also has better power than the naive extension test in the one-sided
test.

7.2 Conditional confidence interval

In this subsection, we evaluate the performance of the conditional confidence interval
CIψ1(1 −p)with p= 0�1. Consider the parameters of interest β11 and β21. Let model M1
be selected if Tn > z0�95 and model M2 be selected otherwise. Consider the DGPs with
b = 0, c = 0 and a running from 0 to 0�32. We report the probability of the model being
selected, as well as the coverage probability, the median length, and other quantiles of
the length of the conditional confidence interval. For comparison, we also report the
performance of the naive confidence interval that ignores the model selection step, that
is, for j = 1�2,

CInaive
j (1 −p)= [

ψj(̂αkj )− n−1/2z1−p/2v̂∗
ψ�kj

�ψj(̂αkj )− n−1/2zp/2v̂
∗
ψ�kj

]
� (7.4)

where zp stands for the p quantile of the standard normal distribution. Note that the
conditional CI is only different from the naive CI in that it uses the critical value cj�p
instead of zp.

Figure 4 shows the results for β11, and Figure 5 shows those for β21. In graphs (b) and
(c) of both figures, the blue dotted lines are for the naive CIs and the red solid lines are
for our conditional CIs; in graph (d), the five lines are respectively the 25%, 40%, 50%,
60%, and 75% quantile of the length of the conditional CI. As we can see, the naive CI
may severely under-cover when the probability that the model is selected is small. On
the other hand, the coverage probability of our conditional CI is always very close to the
nominal level. In terms of length, our conditional CI is longer than the naive CI when
the naive CI undercovers, and is about the same as the naive CI when the latter has good
coverage properties.

By definition, the critical values of the conditional CI depends on Tn, and thus is
random. As a result, the length of the conditional CI is also random. Part (d) of Figure 4
shows the variability of the length of the conditional CI. As we can see, the variability
is small when the probability that the model under consideration is selected is large,
and can be big otherwise. In light of the difficulties of post model selection inference
pointed out by Leeb and Pötscher (2005), we view the variability and the extra length
of the conditional CI as an inevitable price to pay for its good coverage property. It is
encouraging to see that the conditional CI has similar length as the naive CI when the
latter does not undercover.

8. An empirical example

In this section, we illustrate the use of our robust model selection test and the condi-
tional confidence interval in the study of life-cycle schooling choices. We compare two
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Figure 4. Performance of conditional confidence interval for β11.

models considered in Cameron and Heckman (1998) using our model selection test, and
also report the conditional confidence intervals of some of the model specific parame-
ters. The two models considered are parametric likelihood models. We consider our the-
ory presented for the semi/nonparametric environment as reasonable approximation to
this context since the number of parameters in each model is large.

8.1 Model description

We apply our test on the comparison of two life cycle schooling models taken from
Cameron and Heckman (1998). The paper is a classic piece of structural modeling,
which is why we use it to illustrate our model selection and post model selection in-
ference tools.

Consider an individual deciding how much schooling (S, number of years of school-
ing) to complete, and consider a vector of individual characteristics X that may be rel-
evant for this decision. The first model (Model M1) is the logit transition model that
Cameron and Heckman (1998) set up to formalize the statistical model prevalent in the
political science literature at the time. To describe this model, define the binary variable
Ds = 1{S ≥ s}. This variable indicates whether or not the individual completed grade s
or not. The model imposes a logit form on the transition probability from completing
grade s to completing grade s+ 1:

Pr(Ds+1 = 1|Ds = 1�X)= exp
(
X ′βs

)
1 + exp

(
X ′βs

) �
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Figure 5. Performance of conditional confidence interval for β21.

where βs is the grade-specific effect ofX on the transition probability. This implies that
the probability of s being the highest grade completed is given by

P1(s|X�θ1)= 1
1 + exp

(
X ′βs

) × exp
(
X ′βs−1

)
1 + exp

(
X ′βs−1

) × · · · × exp
(
X ′β1

)
1 + exp

(
X ′β1

) � (8.1)

where θ1 = (β′
1�β

′
2� � � � �β

′̄
s)

′ with s̄ being the highest grade available. Note that this
model contains many parameters since βs is allowed to be different across s. However,
it allows no individual heterogeneity other than the logit error, and thus effectively as-
sumes that the population making the transition decision at different grade levels are
the same. In technical terms, it rules out dynamic selection as the population move up
grades. This is an important drawback of the model as discussed in Cameron and Heck-
man (1998).

The second model (Model M2) is an ordered logit model. Cameron and Heckman
(1998) set up this model as an economically well-grounded yet parsimonious contestant
to the first model. In this model, the probability of s being the highest grade completed
is given by

P2(s|X�θ2)=
∫
Ω
F

(
αs−1 + y +X ′β

) − F(
αs + y +X ′β

)
dFω(y)� (8.2)
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where θ2 = (α1� � � � �αs̄�β
′)′, F(t) = exp(t)(1 + exp(t))−1, α0 = +∞ for the highest pos-

sible grade s̄, and ω is an unobservable individual type that has support Ω and distri-
bution Fω(·). From the statistical point of view, the ordered logit aspect is not funda-
mentally different from the logit transition model since an ordered logit model can be
written as a transition model with some (albeit non-logit) shocks in the transition deci-
sions. However, this model adds the unobservable typeω, which makes sure that the dy-
namic selection effect is accounted for. The model further specifies thatΩ= {0�ω2}, and
Fω(y)= p11(y ≥ 0)+ (1 − p1)1(y ≥ω2) for unknown parameters ω2 > 0 and p1 ∈ (0�1).
The model uses a parsimonious specification for the effect of X on the ordered logit
cutoffs—the β is not indexed by s.

8.2 Implementation details

We compare the models in terms of their population log-likelihood. We implement the
two-sided version of both our robust test and the Vuong (1989) test. The detailed imple-
mentation steps are as follows:

1. Given the data set (Si�Xi)ni=1, define the log-density functions for the two models
respectively asmj(Si�Xi�θj)= logPj(Si|Xi�θj) for j = 1�2.

2. Define the log-likelihoods of the two models as f̂ (Mj� θj)= n−1 ∑n
i=1mj(Si�Xi�θj)

for j = 1�2.

3. Respectively for j = 1�2, compute θ̂n�j = arg maxθj f̂ (Mj� θj) using a suitable maxi-
mization algorithm, like the fminunc function in Matlab, or the ml package in Stata.

4. Compute �̄n(θ̂n) = f̂ (M1� θ̂n�1) − f̂ (M2� θ̂n�2) and ω̂2
n(θ̂n) = 1

n

∑n
i=1(�i(θ̂n) −

�̄n(θ̂n))
2, where �i(θ)=m1(Si�Xi�θ1)−m2(Si�Xi�θ2) and θ̂n = (θ̂′

n�1� θ̂
′
n�2)

′.

5. Compute the score ∂mj(Si�Xi� θ̂n�j)/∂θj for each i and j = 1�2 either by deriving
and using the analytical formula for the first derivative function, or by numerical differ-

entiation of the log-density function. Let �̂θ�i =
(
∂m1(Si�Xi�θ̂n�1)/∂θ1

−∂m2(Si�Xi�θ̂n�2)/∂θ2

)
.

6. Compute D̂n = n−1 ∑n
i=1 �̂θ�i�̂

′
θ�i.

7. Compute Ĥn�j = ∂2f (Mj� θ̂n�j)/∂θj∂θ
′
j for j = 1�2 either numerically or using ana-

lytical formula of the second derivative. Let Ĥn = diag(Ĥn�1�−Ĥn�2).
8. Let TVn = n1/2�̄n(θ̂n)(ω̂

2
n(θ̂n))

−1/2 and let

Tn = n�̄n(θ̂n)+ 2−1 tr
(
D̂nĤ

−1
n

)√
max

{
nω̂2

n(θ̂n)− 1
2

tr
((
D̂nĤ

−1
n

)2)
�2−1 tr

((
D̂nĤ

−1
n

)2)} �

9. Compute the p-value of our robust test as p-value = 2(1 −�(Tn)) and of the Vuong
(1989) test as p-valueV = 2(1 −�(TVn )).
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8.3 Data and results

We compare these models using data from the 1997 wave of the National Longitudinal
Survey (NLSY 97). This is a newer wave of the NLSY 79 used in Cameron and Heckman
(1998) that covers a sample of young men and women born between 1980 and 1984.
Following Cameron and Heckman (1998), we use the male sample only and drop ob-
servations with missing values on the relevant variables. Our final sample contains 1938
individuals.20

The X variables for model M1 contain a constant and 15 nonconstant variables in-
cluding the number of siblings, highest grade completed by father, that by mother, bro-
ken family dummy, log family income, urban/rural residence dummy, etc. and interac-
tion terms. The X variables for model M2 contain all those 15 nonconstant variables,
but do not contain a constant term. We aggregate the grades (S) into four, following
Cameron and Heckman (1998): completed high school (s = 1), attended college (s = 2),
graduated college (s = 3), and attended 17 or more years of school (s = 4). As a result,
Model M1 contains 4 × 16 = 64 parameters and Model M2 contains 4 + 15 + 2 = 21 pa-
rameters. Clearly, Model M2 is much more parsimonious than Model M1.21

Table 1 shows the value of the test statistics as well as p-values of both tests. The
Vuong (1989) test strongly rejects the null in favor of the less parsimonious models M1.
However, we believe that the strong rejection is partly due to the bias in favor of large
models. Indeed, the robust test that corrects the bias presents much weaker evidence
against the parsimonious Model M2. In particular, according to the robust test, we can-
not reject the null that M2 is as good as M1 at significance level 5%. Cameron and Heck-
man (1998) advocate for M2 for its simplicity and interpretability. Our robust test shows
that it achieves the simplicity without sacrificing too much of its fit to the data. In con-
trast, the Vuong (1989) test tells a different story and can be misleading.22

To illustrate our conditional confidence interval, we computed these intervals for
the parameters in Model M2 conditional on the event that Tn < z0�975 ≈ 1�96. It turns

Table 1. Model selection tests based on NLSY 97.

Test Statistic p-Value

Robust test 1�856 0�063
Vuong (1989) test 3�924 0�000

20Results using reconstructed sample from the NLSY 79 are reported in Supplemental Appendix G.
21Parameter estimates are irrelevant for our analysis, and thus are omitted. They are available upon re-

quest.
22Cameron and Heckman (1998) implemented the Vuong (1989) test with the Bayesian information cri-

terion (BIC) penalty, and thus were effectively testing the null hypothesis that

H0 : f (M1�F0)− k1 log(n)
2n

−
tr

(
DF0�k1H

−1
F0�k1

)
2n

= f (M2�F0)− k2 log(n)
2n

−
tr

(
DF0�k2H

−1
F0�k2

)
2n

�

where f (Mj�F0) ≡ maxθj EF0 logPj(S|X;θj) is the Kullback–Leibler distance from model Mj to the data.
Their test result strongly rejects the null in favor of the ordered logit model. The penalty would not matter
asymptotically in the asymptotic framework assuming strict nonnestedness, as argued in Vuong (1989). Yet
it clearly leads to a different testing conclusion here.



1014 Liao and Shi Quantitative Economics 11 (2020)

out that the conditional confidence intervals are the same as the naive CI’s computed
using the sandwich standard error formula. Upon further inspection, we find that the
correlation coefficients of Tn and the parameter estimates of Model M2 are nearly zero,
which causes c2�p to be the same as zp up to at least the sixth digit. We believe that this
is a special feature of this application and does not have general implication.

9. Conclusion

This paper studies the statistical comparison of semi/nonparametric models when the
competing models are overlapping nonnested, strictly nonnested, or nested. We pro-
vide a new model selection test that achieves uniform asymptotic size control in all test-
ing scenarios. The new test uses a critical value from standard normal distribution and
employs a bias-corrected quasi-likelihood ratio statistic that is easy to compute in prac-
tice. This makes our test convenient for empirical implementation. Moreover, uniformly
valid post model selection test inference procedures of model parameters are also pro-
vided. Simulation results show that our test and our post model selection test confidence
interval perform well in finite samples.

At least two future research directions arise from the findings of this paper. First, the
theory of this paper is established under the i.i.d. assumption of the data. It is impor-
tant to extend it for the comparison of time series models with dependent data. Sec-
ond, when there are many competing models to be compared, it can be interesting to
construct a model confidence set that covers the best model with valid asymptotic size.
These directions of research form part of our ongoing work, during the course of which
some preliminary results have been obtained.
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