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APPENDIX A: PROOF OF THEOREM 3.1
Let u = (up, u1)’ € %% and

n

Lu(u,7) =) [p(Yi— AiB(r) — Aju/v/n) — p(Yi — A;B(7))].

i=1

Then, by the change of variable, we have that
Va(B(r) — B(r)) = argmin L (u, 7).
u

Notice that L, (u, 7) is convex in u for each 7 and bounded in 7 for each u. In the follow-
ing, we aim to show that there exists

1
gn(u, 7) = —u'Wy(1) + Eu’Q(T)u
such that (1) for each u,

sup|Ly,(u, 7) — gn(u, 7)| 0.
TeY

(2) the maximum eigenvalue of Q(7) is bounded from above and the minimum eigen-
value of Q(r) is bounded away from 0, uniformly over 7 € Y; (3) W,,(1) ~ B(r) uniformly
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over 7 € Y, in which B(-) is some Gaussian process. Then by Kato (2009, Theorem 2), we
have

VA(B() = B(r)) = [Q(D)] Wiu(r) + ra(7),

where sup_.y [|74(7)|| = 0,(1). In addition, by (3), we have, uniformly over r € Y,

V(B - B(r) ~ [Q(m)] ' B(r) = B(»).

The second element of B(7) is Bsqr(7) stated in Theorem 3.1. In the following, we prove
requirements (1)—(3) in three steps.
Step 1. By Knight's identity (Knight (1998)), we have

Ln(”; T)

n

— % (= 1{Y; < A8

i=

n i

+Z/Oﬁ (Vi — AB(r) < v} — 1{¥; — A,B(r) <0}) dv
i=1

= _u/Wn(T) + Ql’l(u> T),

where
"1 . .
Wa(r) =Y —Ai(r— 1{Y; < A|B()})
i=1 \/ﬁ

and

U
n Ai“

O, 7) = Z/ﬁ(1{Yi—A§B(T)Sv}—1{E—A§B(7)50})dv
i=1
u0+u1

—ZA/ YD) — qi(n) < v} — 1Y) — g1(7) < 0}) dv

+Z(1—A)/f {Yi(0) — qo() <v} = 1{Y;i(0) — go(7) <0}) dv

i=1

= Qn,l(ua T)+ Qn,()(ua 7).

We first consider Q, i(u, 7). Following Bugni, Canay, and Shaikh (2018), we define
{(Y](1),Y}(0)) : 1 <i < n} as a sequence of i.i.d. random variables with marginal dis-
tributions equal to the distribution of (Y;(1), Y;(0))|S; = s. The distribution of Q,, 1(u, 7)
is the same as the counterpart with units ordered by strata and then ordered by 4; =1
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first and A4; = 0 second within each stratum, that is,

N(s)+ny(s) ,%t41

R E DY YR = qu(n) < v} = 1{Y3 (1) — qi(7) <0}) dv

€S i=N(s)+1 *0
= Y [TL(N () +ni(s), 7) = T3(N(s), 7)], A1)
seS

where N(s) =7 1{S; < s}, n1(s) =>_ i 1{S;i = s} A4;, and

k u0+M1

I3k, 7) = Z/ YD) - qi(n) < v} = 1{YP(1) — gi(7) <0}) dv.

i=1

In addition, note that

B( sup |Uy(Lne)7) ~EL(Int), 7)]| > o)
te(0,1),7€Y

:IP’( max sup|[%(k, 7) — E[%(k, 7)| > 8)

I<k=n; cy

<3 max P(sup|I’(k, 7) — EL} (k, )| > 2/3)

Isk=n ey

< 9P(su5|Ff'1(n, ™) = EL}(n,7)| > £/30)
TE

270Esup (I3, (n, ) — ELS(n, 7)|
< ey —o(1). A.2)

&

The first inequality holds due to Lemma E.1 with Sy =I'(k, 7) — EI'}(k, 7) and ||Sk| =
sup,.y II'5,(k, 7) — EI' (k, 7)|. The second inequality holds due to Montgomery-Smith
(1993, Theorem 1). To derive the last equality of (A.2), we consider the class of functions

ugtug

]-":{/ Vi (1{Yls(1)—611(7’)Sv}—l{YiS(l)—ql(T)50})dv:7€Y}
0

[uo+u|
n

with envelope and

2
uy + uq up + up _32
sup]EfzfsupE[ 1{ Y (1) —qi(7) S—H SnT
feF 7€YY \/ﬁ ‘ ' ’ ‘/ﬁ

Note that 7 is a VC-class with a fixed VC index. Therefore, by Chernozhukov, Chetverikov,
and Kato (2014, Corollary 5.1),

log(n) log(n)
Esup|T%(n, 7) —EL(n, )| = n||P, —P||;§n[ gs—/z + gB—/z] =o(1).
TeY n n
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Then, (A.2) implies that

sup
T€Y

On1(u,7) — ZIE[I‘;(Ln(N(s)/n +ni1(s)/n) ], 7) =T (|n(N(s)/n) |, 7)]| = 0p(1),
seS

where following the convention in the empirical process literature,

E[T3(|n(N(s)/n+ni(s)/n) |, 7) = T5(|n(N(s)/n) ]|, 7)]

is interpreted as

E[I‘Z(Lntzj, T) — F;(Lntlj , T)] =M,t2=N(S)+n1(S) .

%) m

In addition, N(s)/n LN F(s) =F(S; <s) and ni(s)/n LN p(s). Thus, uniformly over
TeY,

E[I5(|n(N(s)/n+ni(s)/n) |, 7) =T5(|n(N(s)/n) |, 7)]

ug+ug

= ni(s) /0 v (Fi(g1(7) +vls) — Fi(qi(7)ls)) dv

p, TP (q1(7)ls) (uo + up)*
2 b

where F;(-|s) and f(+|s) are the conditional CDF and PDF of Y; given S = s, respectively.
Then, uniformly over 7 € Y,

O (u, ) 2> ) mp(s) fi (Ch(TZ)Is)(uo + up)? _ i (ql(T))z(uo n u])z'
seS

Similarly, we can show that, uniformly over 7 € Y,

O ottt 2> (1—m) fo(qo(m))ud

5 :
and thus
Qn(u, 7) 5> %u’Q(T)u,
where
() = (Wfl (611(T>27}L1 ((;1;77)7))f0(q0(7)) ;{1 Eﬂ:;g) , (A.3)
Then

=o0,(1).

1
sup|Ly(u, 7) — gn(u, 7)| = sup|Qn(u, 7) — SUQ(Du
TeY TeY

This concludes the first step.
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Step 2. Note that det(Q(7)) = 7w(1 — 7)f1(q1(7)) fo(qo(7)), which is bounded and
bounded away from zero. In addition, it can be shown that the two eigenvalues of Q
are nonnegative. This leads to the desired result.

Step 3.Let ey = (1, 1)’ and ¢y = (1, 0)". Then we have

21
War)y=e1y > TS =s}(r — {Yi(1) < q1()})

se§ i=1

"1
+eo ) ﬁ(l — ADYS; = s)(1 — 1{Y:(0) < qo(1)}).

se§ i=1

Let mj(s,7) = E(7 — H{Y;(j) < qj(D)}S; =) and 7, (s, 7) = (7 — H{Y;(j) < gj(7)}) —
mj(s, 1), j=0,1. Then

S| =
Wa(T) = [elzz ﬁAil{Si =sinii(s, ) +e0y Y ﬁ(l — ADUSi = simio(s, T):|

se§ i=1 se§ i=1

1
+ [61 3N %(Ai — m)US; = stmi (s, 7)

se8$ i=1

SN
—e0y Y E(Ai — m)US; = s}m (s, T)}

seS i=1

=1 =1
+ |:el Z Z %wl{Si =stmq(s, ) + eg Z Z ﬁ(l — m)IS; = simy(s, ﬂr)j|

se§ i=1 se§ i=1

= n,l(T) + Wn,2(7) + Wn,3(7)- (A.4)
By Lemma E.2, uniformly over r € Y,
(W1 (1), Wy o (1), Wy 3(7)) ~ (Bi(7), Ba (1), B3(1)),

where (B1(7), By(71), B3(1)) are three independent two-dimensional Gaussian processes
with covariance kernels 3 (71, ), 22(71, 72), and 33(7q, 72), respectively. Therefore,
uniformly over r €Y,

Wa(7) ~ B(1),
where B(7) is a two-dimensional Gaussian process with covariance kernel
3 3
(71, 1) = sz(n, 7).
j=1
Consequently,

Va(B() - B(r) ~[0(M] ' B(r) = B(n),
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where B(7) is a two-dimensional Gaussian process with covariance kernel
(71, 72)

= [0 'Sy, m[Q(r)]

. 0 0
) [min(ry, 72) — 7172 — Emy (S, 71)mq (S, 12)] (0 1)

N mfi(q1(m)) fi(q1(72)

1
+
(1 =) fo(qo(m1)) fo(qo(T2)

my(s, 1)m(s, 72) 00
+ p(S)v(S)[
SEZS 7 fi(q1(mD)) fi(q1(72)) (0 1)

' 1 -1
) [min(71, 72) = 7172 = Emo(S, 7)mo(S, 72)] (—1 1 )

_ my(s, T1)mo(s, 72) 0 0
7(1— ) fi(q1(t1) fo(qo(m2)) \1 —1

_ mo(s, 71)mi (s, 72) 0 1
(1 —m) fo(qo(r1)) fi(q1(m2)) \O -1

N mo(s, T1)mo(s, 72) (1 —1>]
(1—m2fo(qo(mD) fo(qo(m)) \-1 1
Emy (S, 71)mi(S, 72) (0 o) Emy (S, 71)mo(S, ) (0 0)

filgi(r0) fi(qi(m2)) \0 1 Jrfl(q1(71))fo(610(72)) 1 -1

Emy(S, 1))mi(S, ) (0 1 Emy(S, 1)mp(S,m) [ 1 -1
folqo(mD) fi(q1(m2)) \O —=1) * fo(qo(mD)) fo(go(2)) \—-1 1

Focusing on the (2, 2)-element of 3(71, 75), we can conclude that
Vi(Bi() = q(1)) ~ Bsgr(7),
where the Gaussian process Bsqr(7) has a covariance kernel

qur(Tl, 72)
_ min(7y, ) — 1172 — Emy (S, 11)m (S, 72)
B 7fi(q1(11)) f1(q1(72))
min(7y, 72) — 1172 — Emo(S, 11)mo(S, 72)

A —m fo(qo(t1)) fo(qo(2))

mq (S, T)m(S, 12) mq (S, T1)my(S, 12)

+E (S)[ +
7 7 fi(q (D)) fi(qi(r) 7 =) fi(q1(1) fo(qo(72))
my(S, T1)m1(S, 72) . my(S, T1)mo(S, 72) ]
(1= m) fo(qo(m)) fi(q1(m2)) (1= m)*fo(qo() fo(q0(72))
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[ml(S, ) my(S,T) ][ml(S, ™)  my(S, 72)i|
filar(m))  folao(rD) ILA(q1(m2))  folqo(m2) I

APPENDIX B: PROOF OF THEOREM 3.2

By Knight'’s identity, we have

Vn(§i (1) — g1 (7)) =argmin L, (u, 7),

where
Ly(u, 1) = Xn: Ai |:P7<Yi —q1(7) — i) - PT(Yi - Q1(T))i|
’ P 7 (S;) vn
= _Ll,n(T)u + L2,n(u7 7)7
1 & 4
Lin(m=—= ; %(5,9(7‘ HY; < qi(n)})
and

<k

" A 0
Lanti ) =3 2 [V (Y= 10 +0] < 1{Ye s qu(n) o
i=1 !

We aim to show that there exists

1
gipw,n(ua T)=— ipw,n(T)u + EQipw(T)u2 (B.1)
such that (1) for each u,

sup|Ln(u, T) — gipw,n(u> 7)’ i) 0;
TeY

(2) Qipw(7) is bounded and bounded away from zero uniformly over 7 € Y. In addition,
as a corollary of claim (3) below, sup, .y [Wipw,1,,(7)| = Op(1). Therefore, by Kato (2009,
Theorem 2), we have

V(@1(m) = q1(7) = Qi 1 (D Wapw, 1,2(7) + Ripw, 1,2(7),
where sup_.y [Ripw,1,,(7)| = 0 (1). Similarly, we can show that

V1(G0(r) = qo(m) = Qi () Wipw,0,2(7) + Ripw,0,2(7),
where sup_ .y [Ripw,0,,(7)| = 0,(1). Then

Vn(g(r) — q(1))

= Qi1 (D Wapw, 1,0(7) = Qi (M Wipw,0,0(T) + Ripw, 1,n(T) = Ripw,0,2(7).-
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Last, we aim to show that, (3) uniformly over r € Y,
Oipnet (Wi, 1.0(T) = Ol () Wipue,0,0(7) ~ Bipw(7),

where Bipy (7) is a scalar Gaussian process with covariance kernel 3, (71, 72). We prove
claims (1)-(3) in three steps.
Step 1. For L ,(7), we have

Lin(r)=— ZZ —1{5 =s}(r— H{Yi(1) < qi(n)})

\/— i=1 seS
A S = s}(7(s) — )

- - 11Y;() <
les N (r = 1{Yi(1) < q1(m)})

= ZZ LS = s} (r — 1{Yi(D) < g1(D))

\/— i=1 seS

Ail{S; = s}Dy(s) Dy (s)my (s, 1)

- Ni1(8,7)— ) ———————Dy
les N r kP Drrw re

_ 3 Datoyms,7)
seS \/E’iT(S)

A;il{S; = D, Si,
:Z\/_Z { S}n”(s 7)+Z ()m1(s 7)+Zml( i
seS
Ail{S; = s}Dy(s) Dy (s)my(s, 1)

- i1(8,7)— ) —————Dy
ZIZS N P rw = Em
Z Dy (s)my(s, 1)
seS \/ﬁw(s)

= I/Vipw,l,n(T) + Ripw(T)a
where
A; 1{5 =} mi(S;, )
Wipw,1,() = Z Z 7105, )+Z (B.2)
seS \/— \/ﬁ
and
Ripw(T)
A 1{S; = 51D, (s) D, (symy(s, 7)
— . _ 7Dn
;SEZS n(s)y/nir(s)m 741(5,7) ; n(s)y/nir(s)m ®

ZD (S)ml(s T)( L)
m  a(s)

seS
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n

__ZZ Ail{S; = s}Dn(s) )
i—1 seS n(s)/n(s)m M;1(8, 7),

where we use the fact that 7(s) — 7 = %}S) By the same argument in Claim (1) of the

proof of Lemma E.2, we have, for every s € S,

N (s)+n(s)

1
o Z Mi1(s, 7)| = O0p(1), (B.3)
\/ﬁizN(s)-i-l

where 7; (s, 7) =7 — I{Y](j) < qj(7)} — m;(s, 1), for j =0, 1, where {Y(0), Y (1)};>1 are
the same as defined in Step 1 in the proof of Theorem 3.1.

Because of (B.3) and the fact that [:,'EE;) =0,(1), we have

d
=sup
TeY

1 n
sup|—= 3 A = )i 1 (5, 7)
TeY \/ﬁ ; ' ' l

sup|Ripw(7)| = 0p(1).
TeY

For L ,(u, 7), we have

1 N(s)+nqi(s) %
— s — S
Lon(u,7)= Z; ) i—z%m YD =@ v} - YD) s qi(n) + o)) dv

1
= Z =5 [T, (N(s) 4+ ni(s), ) = T3 (N(s), )],
seS

where
ST
r;(k,f)zzfo (LY (D) < qi(1) + v} = YD) < g1(7) +v}) do.
i=1

By the same argument in (A.2), we can show that

sup |5 (lnt], 7) — ELS(nt], 7)| = 0, (D).
te(0,1),7€Y

In addition,

p () f1(q1(7)ls)u?
e .

ET}, (N () + n1(s), 7) — ET,(N(s), 7)

2
Therefore,
filgr(m)u?
sup(Ly n(u, 7) — % =o,(D),
TeY
where we use the fact that 7(s) — 7 = [;l"(g) =0,(1) and

Y P filqr(Dls) = fi(q1(m).

seS
This establishes (B.1) with Qjpw, 1(7) = f1(q1(7)) and Wjpy, »(7) defined in (B.2).
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Step 2. Statement (2) holds by Assumption 2.
Step 3. By a similar argument in Step 1, we have

1- A)I{S_s} moy(S;, 7)
I/lew()n(T) Z[Z - 1:,0(8, )+Z vn

seS

and Qipw,0(7) = fo(qo(7)). Therefore,

JaG—q) [ZZ[A i{Si=simii(s, ) (A= ADUSi =s}nio(s, 7)]

ol mhilam) (1—m)fo(qo(m))
ml(Sla T) mO(Sia T))
+Ri W, 1
L/—Z<f1 (@1(M)  folqo(n)) ] pw.n(7)
n,l(T) +Wn,2(7) +Ripw,n(7), (B.4)

where sup_ .y [Ripw,»(7)| = 0,(1). Last, Lemma E.3 establishes that

(W, 1 (1), Wy 2(1)) ~+ (Bipw,1(7), Bipw,2(7)),
where (Bipw,1(7), Bipw,2(7)) are two mutually independent scalar Gaussian processes
with covariance kernels
min(7y, 72) — 7172 — Emy (S, 71)m(S, 12)
7fi(q1(m)) fi(q1(72))

min(7y, 72) — 7172 — Emg(S, 71)mo(S, 72)

(A —m) fo(qo(m1)) fo(qo(2))

Zipw,l(le ) =

and

S (T 7_2)_E<m1(5,71) mo(S,Tl))<m1(S,Tz) mo(S,Tz))
ipw, > =

filaD)  folaor)) ) \Filar(m)  folqo(m2)

respectively. In particular, the asymptotic variance for g is

&3 (m, 1) + L3 (m),

where ¢ %,(Tr, 7) and §§(7) are the same as those in the proof of Theorem 3.1.

APPENDIX C: PROOF OF THEOREM 4.1

First, we consider the weighted bootstrap for the SQR estimator. Note that
V(B (r) = B(m)) = argmin L} (u, 7),
u

where

Lyu,m) =Y &lp-(Yi = A}B(1) — Aju//n) — p-(Yi — AB(1))].

i=1
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Similar to the proof of Theorem 3.1, we can show that

sup|LZ’(u, 7) — g (u, 7)| — 0,

TeY
where

& (U, 7) = —u'W," (1) + lZ/Q(T)u,
WY (r) = Z A Y < A'B(m)}),

and Q(7) is defined in (A.3). Therefore, by Kato (2009, Theorem 2), we have

Va(BP () — B) =[0m] ' WP (r) +r(r),

where sup_.y [ (7)|| = 0,(1). By Theorem 3.1,

Ja(BY () - B(m) =[0n)]” Zg’f i(r—1Y; < AB(D)}) +0p(D),

where the 0,(1) term holds uniformly over 7 € Y. In addition, Lemma E.4 shows that,
conditionally on data, the second element of [O(M)]1 Yy 5«'/11 Ai(r—1Y; < A BT}
converges to Bsqr(T) uniformly over 7 € Y. This leads to the desired result for the
weighted bootstrap simple quantile regression estimator.

Next, we turn to the IPW estimator. Denote q Y(7), j =0, 1 the weighted bootstrap

counterpart of §;(7). We have

Vn(gy (1) — q1(7)) = argmin Ly (u, 7),

where
LY(u,7) = Z Aw(s)[ ( i—q1<r>—%)—pf(n—q1<r>)}
=LY, (Du+LY,u,1),
where
LY =7 . Z Aw(S) HYi <qu(n})
and
LY (r) = Z A [ 1y, < i) 40} = 1Y = (o)) do

A“’(S)
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Recall
D}/ (s) = 2”: §i(Ai —mUS; = s}, n"(s) = 2”: &il{Si = s},
i=1 i=1
and
Xn: £ A;1{S; = s} y
0= H =

Then, for LY, (), we have

LY (1) = 7 ZZ fl TS =s}(r - 1{Yi(D) < q1(1)})

i=1 seS

EANS; = s} (7(s) — 7
Y (

~ W
i=1 seS }’l7T (s)m

)(T_l{Y,-(l)SCh(T)})

_ IZZ iy 5 5)(r = 1{Yi(D) < qu (D)

i=1 seS

§iAil{Si = s}D;/ () DY(s)m(s,7) .,
- i ’ - Dn
;ZS AN O Br el

ZD (s)ymy(s, 1)
seS ﬁﬁ”%s)

illsi=s),
=Z Z :

seS seS
§imy(S;, )
+i§ 7
& AiUS; =s) Dy (s)my (s, 1)
_ Dw i , w
2.0 ()Z sy "D T L) e

B Z D (s)ymy(s, 1)
seS %TU(S)

= Wipw, 1,2 (T) + Ripy (1),

where

i Ai{S; = i Si,
Wi, 1.a(T) = Z[Zf Bz i, r)+2}§mi§ﬁ i (C.1)

seS
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and
R;‘E,W(T)
§iAil{S; = s} DY (s)my (s, T)
=" Dw i ’ - L D,lf
g ()Z w(S)\/E%u)() 77,1(5 T) gnw(S)\/E%w(S)’]T (s)
(S)ml(s T) 1
P e (F - fr“%s))
seS
EiAS; = s}
[— Dw ; , )
2.0 ()Z i sy T

In the following, we aim to show D}/ (s)/n" (s) = 0,(1) and

= 0y (/).

sup
TeY,seS

ZflA 1Si = simii (s, 7)

i=1

For the first claim, we note that n*(s)/n(s) %, 1 and D (s)/n(s) .0. Therefore, we
only need to show

Dy(s) = Da(s) _ Z (& —D(Ai—mUSi=s} »

— 0.
n(s) n(s)

i=1
As n(s) — oo a.s., given data,

n

Z(A LS =) = Z(A,-—77—27T(Ai—77)+77—772)1{5i=s}

i=1
_ Dy (s) —2mDy(s)
B n(s)

n(s)

71— ) L 71— ).

Then, by the Lindeberg CLT, conditionally on data,

Y (E = D(Ai = mSi = s}~ N(0, 7(1 — 7)) = Op(1),

1
vn(s) i3
and thus

D;/(s) = Dn(s)

_ —-1/2 _
s, =0p(n=7(s)) =0p(1).

This leads to the first claim. For the second claim, we note that

N($)+n1(s)

Yo EANSi=sinia(s, )= Y Efials 7.

i=1 i=N(s)+1
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We can show the RHS of the above display is O,(/n) for all s € S following the same
argument used in Claim (1) of the proof of Lemma E.2. Given these two claims and by
noticing that

s Dy
w7 (s) ﬂ-_—nw(s) =0,(1),

we have

sup| 1pw(7)| = Op(l)‘

Similar to the argument used to derive the limit of L, ,(7) in the proof of Theo-
rem 3.2, we can show that

2
sup|LY  (u, ) - fi(q1(m)u

=0,(1).
T€Y 2 d

Therefore,

w
I/Vipw,l,n(T)

AW _ — +Rw ,
where sup, .y [RY(7)| = 0,(1). Similarly,
W (1)
A Cipw,0,nt "/ 0,n w
- +R¥(7),
V(g (m) = qo(m)) = oo T (7)

where

51(1—A)1{S =5}  £imo(Si, 7)
Wit o.n(7 )_ZIZ R

seS i=1

and sup,. .y |[R{(7)| = 0,(1). Therefore,

ﬁ(é%) —§(m)

Ail{Si =sinia(s, ) (A — ADYSi = s}nio(s, 7)
= i—1 ,
SGZS ‘/_ Z(f ){ 7f1(q1(7)) (1 =) fo(qo(7))

|:m1(S,T) _ mo(s, 7)
fi(gi(D)  folqo(D)

where the 0,(1) term holds uniformly over 7 € Y. In order to show the conditional
weak convergence, we only need to show the conditionally stochastic equicontinuity
and finite-dimensional convergence. The former can be shown in the same manner as
Lemma E.4. For the latter, we note that

]1{Si=s}} T op(D),

Ail{Si =sinia(s, ) (1= ADHS; = s}nio(s, 7)
SGZSzX;{ 7fi(q1(7)) (1= fo(qo(7))
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mi(s,7)  my(s,T) ] }2
+ — 1{S; =
|:f1 (q1(m)  folgo(m)) 5 =)

v L (= ADS; = s)mio(s, r)} {Al{S i = simia (s, 7)}
an{ (1_7T)fO(CIO(7) Z Z 7f1 ql(T))

seS SES
1 < mi(s, 7). mo(s, 7):| }2
+ - - 1 Si =
2”2 [fl(qﬂﬂ) fo(qo(m) i =s)
2 [ AL = s}y (s, T)}[ mi(s,7)  mo(s, T) }
+y = _
seXJ; " ; 7f1(q1(7) filar(m)  folqo(m))
_Zgi (1= AD1{Si = s}mio (s, w}[ mi(s, 1) mo(s, T)]
ses 't ot (1= fo(q0(m)) filai(m)  folqo(m)

L B, )+ B

Note that the RHS of the above display is the same as the asymptotic variance of the
original estimator ¢(r). By the CLT conditional on data, we can establish the one-
dimensional weak convergence. Then, by the Cramér-Wold theorem, we can extend
such result to any finite dimension. This concludes the proof.

APPENDIX D: PROOF OF THEOREM 5.1

It suffices to prove the theorem with g() replaced by

nFEATPON & Ln(E$)+p($))] 711.0(8, 7)
~ l d d
T)=q(T) + :
ir) = q() [Eﬁ D DRy e R DR D —Tr)fo(qo(T))}
seS i=lnF(s))+1 568 i=n(F () +mp(s)+1 "

21 my(Si,T) mgy(S;, 7'))
+ o - 2
[;: " <f1 (q1(m)  folgo(m) }
as we have shown in Theorem 3.2 that

sup|g(t) — G(1)| = 0p(1//n).

T€Y

We first consider the SQR estimator. Note that

Vn(B* (1) — B()) = argmin L} (u, 7),

where Lj;(u, 7) = iy [pr (Y] — Af B(r) — A7 u/y/n) — p: (Y] — A} B(r)]. Then, B;(r),
the bootstrap counterpart of the SQR estimator, is just the second element of 8*(r). Sim-
ilar to the proof of Theorem 3.1,

L:(us T) = _u/I/I/n*(T) + Q;kz(ua T),
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where
Wi(r) = Z —A* (r—1{Y; < A7 B(n)})
and
Of(u, 1) = zn:/Af (1{y; — AYB(7) < v} —1{Y; — AYB(7) <0})dv

i=1 70
”0+”1

- ZA*/ "YW = qu(n) =0} = 1Y) — qi(7) <0)) dv

£30(1- f” {Y7(0) = go(r) < v} — 1{YF(©0) — go(r) <0}) v

i=1

EQn’l(u7T)+QZ’O(u7T)' (D.l)

Define ”flzj(S, ) = (7 — {Y(j) < qj(7)}) —mj(s,7) and 7;;(s,7) =7 — L{Y](j) <
qj(1)} —mj(s,7), j=0,1, where Y/(j) is defined in the proof of Theorem 3.1. Then we
have

Wi () =e; ZZ —A* {87 =s}(r— 1Y} (D) < qi(n)})
se§ i= 1

—1—6022[ )1{S; = s} (7 — 1{Y}(0) < qo(n)})

seS i=1

|:el ZZ —A* {8 = s}nzl(s, 7)

S€S i= 1

+EOZZ«/_ i S =S}”’7z0(s’7)j|

seS i=1

|:61sz (Af —m)1{SF =s}my(s, 7)

seS i=1

—eOZZ[ (Af — m)1{SF =s}my(s, 7):|

seS i=1

[6122—771 S =5 ml(s T)

seS§ i=1

+ e ZZ —(1 — m1{S; = s}mo(s, 7)}

S€S i= 1
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By Lemma E.5, there exists a sequence of independent Poisson(1) random variables
{f }l>1 seS such that {§S}l>1 seS uin {A* S* Y Ah Si}izl’

n N(s)+n1(s)
YoAnsi=siniiss = > ERiis, )+ R, 1),

i=1 i=N(s)+1

and

n N (s)+n(s)
Y -ANYSF=sinis = Y. &l )+ Ri(s, T,

i=1 i=N(s)+ny(s)+1

where sup, .y (IR (s, T)| + [R (s, T)]) = 0p(/n(s)) = op(+/n) for all s € S. Therefore,

(W1 (1), Wiia (1), W5 (7)) i( W (1) + R(7), W, 5 (1), Wi5(7)),

where sup_.y [|[R(7)| = 0,(1) and

N(s)+nq(s) N(s)+n(s) s

Win=e). Y, f}ml(s T +egy > %fn,o(s,f)

seS i=N(s)+1 €S i=N(s)+n1(s)+1

In addition, following the same argument in the proof of Lemma E.2, we can further
show that

Wi (1) = W5 (1) + Ry(7),

where sup_.y [|IR},(7)]l = 0, (1) and

[n(F($)+mp(s)] . [n(F(s)+p(s))] s

Wnﬁ(T):elZ Z 5—7]11(5 T)+eOZ Z %f]i,o(s, 7).

seS  i=|nF(s)]+1 seS i=|n(F(s)+mp(s))]+1

By construction, *"{(7) 1w 2(7) 3(7')) Also note that {S7}"_, are the nonpara-
metric bootstrap draws based on the emplrlcal CDF of {§;}7_,. Then, by van der Vaart
and Wellner (1996, Section 3.6), there exists a sequence of independent Poisson(1) ran-
dom variables {&;} i1 that is independent of data, {47} and {&}};>1 ses such that

sup [, 5(7) = W5 (0) | = 0,p(D),
TeY
where

(T)—elzZ—ﬂ'l{S = stmy (s, T)—l—e()ZZ—(l—ﬂ')l{S = s}mo(Ss, 7)

s€S i= 1 seS i= 1
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By Lemma E.6,

O (u, ) 2> %M’Q(T)u,

where Q(7) is defined in (A.3). Then, by the same argument in the proof of Theorem 3.1,
we have

x/ﬁ(ﬁA*(T) —B()) = Q_I(T)(W,fj(f) + W,ZZ(T) + I’V,z?(T)) + R*(7),
where sup_.y |[R*(7)|| = 0,(1). Focusing on the second element of ﬁ*(fr), we have

Va(Bi(r) — q())
|: P +Tp()] g~ Ln(F($)+p())] Enio(s, 7) }

_ Tlll(s T) i y ’
SEZS i_LnFX(;‘)Hl Vnmfi(qi(1)) SEZ;, Ln(F(s)g;Tp(s))JH Vn(1 — ) fo(qo(T))
DZ(S)< my(s, 7) mo(s, T) )i|
+ +
LEZS Vn \7fi(qi(1)  7fo(qo(m))
s <m1(Si,T) mo(&‘ﬂ)) «
+[3 =L - +Ri(7),
Lzlﬁ fil@ ™) folqo(™) } 1)

where sup_.y |[R}(7)| = 0,(1). In addition, by definition, we have

Vn(g(r) — q(1))

|: n(F(s)+mp(s))]

[n(F(s)+p(s))] ~
1,008, 7) ]

_ Z Z 1:,1(8, 7) _Z Z
s€S  i=|nF(s)]+1 Vamfi(qi(n) 5 i=n(F(s)+mp(s))]+1 V(1 =) fo(qo(m))

+ Xn: € <m1(5i’ ) mo(Si T)) ‘
— Vn\filq1(n)  fo(go(m)
By taking difference of the two displays above, we have

Va(Bi(m) —§(m)

[n(F(s)+mp(s))] (gf _ l)ﬁi,l(sa ) Z Ln(F(S)i-:P(S))J (ff . 1)’771',0(5’ )
Vnmfi(qi(m)) - Vn(1 — ) fo(qo(m))

seS i=|n(F(s)+mp(s))]+1

seS  i=|nF(s)|+1

D;’;(S)( mi(s, 7) my(s, 7) )i|
+ +
[Z vn \7wfi(qi(1)  mfo(qo(r))

seS

[Z 51—1(m1(s,,7) mo(Sl-,T))] LRI, (D.2)

fi(g1(™)  foqo(m)
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Note that, conditionally on data, the first and third brackets on the RHS of the above
display converge to Gaussian processes with covariance kernels

min(7y, 72) — 7172 — Emy (S, 7))my(S, 72)  min(7q, 72) — 7172 — Emo(S, T1)mo(S, m2)

7fi(q1(11) f1(q1(72)) (1 =) fo(qo(m1)) fo(qo(72))

and

|:m1(5, ) my(S,T) i||:m1(5, ™) my(S, ) i|
filar(r)  folgo(mD)) ILf1(q1(m2))  fo(qo(r2)) [
uniformly over 7 € Y, respectively. In addition, by Assumption 4(i), conditionally data
(and thus {S;}_,), the second bracket on the RHS of (D.2) converges to a Gaussian pro-
cess with a covariance kernel
Eo( )[ mi(S, 1))m(S, 72) my(S, 1)my(S, 72) ]
7 fi(q () fi(qi(r) 71— fi(q1(r1) foqo(r2)) I’

uniformly over = € Y. Furthermore, we notice that these three Gaussian processes are
independent. Therefore, we have, conditionally on data and uniformly over r € Y,

V(B3 (1) — G(7)) ~ Bsqr(7),

where Bsqr(7) is defined in Theorem 3.1. This leads to the desired result for the simple
quantile regression estimator.

Next, we briefly describe the derivation for the IPW estimator. Following the proof of
Theorem 3.2, we have

Vn(Gi(m) — qi(7)) = argmin L} (u, 1),

where
n(u77)= . ~ % S*) Pr i _ql(T)_ﬁ pT( _611(7'))
= LT,H(T)M-i-L;,n(u, T),
and 7*(s) = Z*g; Then, we have
(7) 1pw 1, n(T) +RTpW,1(T)7
where
1"A1S_sn(ST) ”mS*,T
Wi 1) =2 = { S 1(f‘
seS nz:l i=1 n
and

* S* = S}Dﬂ< (s)
Ripw,1(T) = ZZ . (s)ﬁ%*(s) 7 1(8, 7).

i=1 seS
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By Lemma E.5, sup,.y IR}, ,(7)| = 0,(1). In addition, same as above, we can show that

ipw,1

sup| 1pw1n(7) u{;:;vln(T” =o0,(1),

where

Ln(F(s)+mp(s))]

Wlf;v N (7) :Z Z fsf]\z/l_(s T) Z fzml(Sza 7')

s€S  i=|nF(s)]+1 =1

Similar to Lemma E.6, we can show that, uniformly over 7 € Y/,

o, fi(q(m)u? .

L2n( T — 2

Therefore,

ok
ipw,1,n

x/ﬁ(flT(T) - 41(7)) = m

lpw 1(7)7

where sup, .y [R5 (7)| = 0,(1). Similarly, we can show

ipw,

1pw0n( 7)

Vn(g(m) — qo(1)) = W Rigw,0(7),

where sup__y |Rlpw oM =0p(1) and
(F(s)+p(s)) ~ ~
(r) = Z g Sir:p g Enio(s, 1) Xn: &Eimy(S;, 1)
1pw0 n\T \/E’TT + T
seS i=|n(F(s)mp(s))]+1 i=1
Therefore,
Vn(g*(r) — q(1))

- [Z Ln(F(s)+mp(s))) (& —1)fi1(5, 7) ) Z Ln(F(5)+p(s))] (& = 1)fio(s,7) ]
seS  i=[nF(s)]+1 Vnmfi(qi(n) €8S i=|n(F(s)+mp(s)))+1 V(1 =) fo(qo(m))

- gi—1<m1(si>7') mo(&‘ﬂ)) N
+ ~ + R (1),
|:Z va \fi(g1(m)  fo(qo(m)) } ipw(7)

i=1

where sup_..y |R1pw(7)| = 0,(1). Last, we can show that, conditionally on data and uni-
formly over 7 € Y, the RHS of the above display weakly converges to the Gaussian pro-
cess Bipw(7), where Bipy(7) is defined in Theorem 3.2.
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APPENDIX E: TECHNICAL LEMMAS

LeMmwmaA E.1. Let Sy be the kth partial sum of Banach space valued independent identi-
cally distributed random variables, then

B(max 54112 &) <3 max P(IScl = &/3).

When S, takes values on )i, Lemma E.1 is Pefia, Lai, and Shao (2008, Exercise 2.3).

Prookr. First suppose maxy P(||S, — Skl > 2¢/3) < 2/3. In addition, define

A ={ISkl = &, I1Sjll <&, 1 < j <k}.

Then
n
P(max|ISill = £) <P(1Snll = £/3) + ) B(ISall < o/3, A1)
k=1
n
<P(ISull = &/3) + Y _P(ISn — Skl = 2&/3)P(Ay)
k=1
2
< B(ISul = #/3) + 5P(max|iSil = ¢).
This implies

P(max Si | = &) < 3B(IS:] = &/3).

On the other hand, if max; P(||S,, — Sk|l > 2&/3) > 2/3, then there exists k( such that
P(||Sy — Sk, | > 2&/3) > 2/3. Thus,

P(IISull = &/3) +P(IISk, Il = £/3) = 2/3.
This implies
3 max P(ISel = o/3) = 3max(B(IS:] = e/3), P(ISk, | = £/3)) 2 12 P max 5, = ¢).
This concludes the proof. O

LemmA E.2. Let W, (1), j =1,2,3 be defined as in (A.4). If Assumptions in Theorem 3.1
hold, then uniformly over r €Y,

(W1 (1), Wy 2(7), Wy 3(1)) ~ (Bi(7), Ba(7), B3(7)),

where (By(7), By(7), B3(7)) are three independent two-dimensional Gaussian processes
with covariance kernels 31(71, m3), 32(71, 72), and 35(71, 72), respectively. The expressions
for the three kernels are derived in the proof below.
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Proor. We follow the general argument in the proof of Bugni, Canay, and Shaikh (2018,
Lemma B.2). We divide the proof into two steps. In the first step, we show that

(W1 (1), W2 (1), Wy 3(7)) < (W1 (1) W2 (1), Wi 3(1)) + 0p(1),

where the 0, (1) term holds uniformly over 7 € Y, Wn’tl(f) 1L (Wpo(7), Wy 3(7)), and, uni-
formlyoverre Y,

Wy (1)~ Bi(7).
In the second step, we show that
(W2(7), Wy 3(1)) ~ (Ba(7), B3(7))

uniformly over 7 € Y and B;,(7) 1L B3(7).

Step 1. Let 7; (s, 7) = 7 — H{Y!(j) < qj()} — mj(s,7), for j = 0,1, where {Y?(0),
Y?(1)};>1 are the same as defined in Step 1 in the proof of Theorem 3.1. In addition,
denote

N(s)+nq(s) 1 N(s)+n(s) 1

Waim=e1d, Y —=fiils,m+e)y, > ﬁﬁi,o(s, 7).

seS i=N(s)+1 V' €8 i=N(s)+n1(s)+1

Then we have
(Wt (DAL S} £ W1 (D1 Az SV )

Because both W, »(7) and W,, 5(7) are only functions of {4;, S;}__,, we have

(Wit (7), W2 (1), W 3(1)) £ Wy 1 (7), W 2(7), Wi 3(7)).

Let

Ln(F(s)+mp(s))] Ln(F(s)+p(s))]

Wam=ay Y miaenta), Y %mo(s, .

seS  i=|nF(s)|+1 seS i=|n(F(s)+mp(s))]+1

Note that Wrzl(T) is a function of (Y;(1), Y7(0));>1 only, which is independent of
{A4i, S}, by construction. Therefore, W*, (1) 1L (W, 2(7), W, 3(7)).
Furthermore, note that
N(s) ni(s) p n(s)
n

Ly F(s), —>p(s) and —= 25 p(s).

Denote T, (s, ¢, 7) = ZWJ 1 1i,j(s, 7). In order to show sup,_y |Wn71(7) - Wri(nl =

i=1l /n
op(1) and W;Zl(’f) ~ B (7), it suffices to show that, (1) for j =0, 1 and s € S, the stochas-
tic processes
{Thj(s,t,7):1€(0,1), 7€ Y}

in stochastically equicontinuous; and (2) W, (1) converges to B (7) in finite dimension.
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Claim (1). We want to bound

Sup|rn,j(5, I, 72) - Fn,j(s, I, Tl)|5
where supremum is taken over 0 <t <, <4 + ¢ <1 and 7 < 75 < 71 + & such that
71, 71 + € € Y. Note that,
sup|Tp, (s, t2, 72) — Ly j(s, 11, 71)|

S Sup |Fn,j(sa tz; T) - Fﬂ,j(sv tl: T)|
O<ti<th<ti+e<l,7eY

+ sup T, (s, £, 72) — T j(s, £, 1) (E.1)

te(0,1),71,meY,ri<my<Ti+e&

Let m = |ntp| — |nt;] < |ne] + 1. Then, for an arbitrary & > 0, by taking £ = 6%, we have

P( 0 sup [T, = Tujs, 0,1 2 8)
O<ti<ty<ti+e<l,7€Y
i=|nt]

=P sup Z 1i,j(s, 7)| = /nd

O<ti<th<ti+e<l,7€Y i=|nt; |+1

[nt]

=P| sup |> Fij(s, )| =/nd

O<t<e,7€Y i=1
=

P, sl = V7o)

Lne]

> s, )

i=1

V/nd

n
<8’

Jné "~

where in the first inequality, S (7) = Zf-‘zl 7:,j(s, 7) and the second inequality holds due
to the same argument in (A.2). For the third inequality, denote

270E sup
TeY

3

<

.FZ{‘IN”,]'(S,T):TE Y}

with an envelope function F = 2. In addition, because F is a VC-class with a fixed VC-
index, we have

J(1,F) < o0,

where

8
15, F)=sup [ *[1+10g N (elIFloa. 7. La(Q))
0
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N(elFllg,2,F,L2(Q)) is the covering number, and the supremum is taken over all dis-
crete probability measures Q. Therefore, by van der Vaart and Wellner (1996, Theo-
rem 2.14.1)

Lne]

Z i, (8, T)
i1 v nel[Ey/1ne] IPins) — Pllr] _ /InelJ (1, F)

V/nd V/nd ~ V/nd

For the second term on the RHS of (E.1), by taking & = 5% we have

270E sup
TeY

<

B( sup [T 1, 72) = T (s, 1,71 2 8)

te(0,1),71,meY,Ti<my<Ti+e
= P( max sup Sk (1, 72)| = ﬁﬁ)
I<k=n 71,T€Y,T1<T)<Ti+e&

n

Z(ﬁi,j(S, ) — 7;,j (8, T1))

=l <610<£)

where in the first equality, S (71, 72) = Zf‘:l (M,j(s, 2) — M;,j (s, 71)) and the first inequal-
ity follows the same argument as in (A.2). For the last inequality, denote

270E sup

71,€Y,T1<T)<T1t+&

=

F= {ﬁi,j(s, 72)—*F)i,j(s, ) :T,meEY, TI<T<T +8}

with a constant envelope function F = C and

o = sup Ef2 €lce, el

feF

for some constant 0 < ¢; < ¢ < oco. Last, F is nested by some VC class with a fixed VC
index. Therefore, by Chernozhukov, Chetverikov, and Kato (2014, Corollary 5.1),

n

Z(ﬁi,j(S, ™) — 7, (8, T1))

i=1

V/nd

C C

2

1 — Cl —

JAEIB, —PlF _ | °g<o) Og(a) C

S S + Sé [logl = ),
S 52 NGE 52

where the last inequality holds by letting n be sufficiently large. Note that 6, /log( %) -0
as 8 — 0. This concludes the proof of Claim (1).
Claim (2). For a single 7, by the triangular CLT,

270E sup

71,1€Y,T1<T)<Tit+&

Wi (1)~ N(0,31()),
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where 3(7) = w[r(1 — 7) — Em3(S, 1)]ere} + (1 — m)[7(1 — 7) — Em3(S, 7)]egej,. The con-
vergence in finite dimension can be proved by using the Cramér—Wold device. In partic-
ular, we can show that the covariance kernel is

3i(r1, 72) = w[min(ry, 72) — 7172 — Emy (S, 1)my (S, m2)]er €}
+ (1 = m)[min(7y, 72) — 7172 — Emg(S, 71)mo(S, m2) |epey.

This concludes the proof of Claim (2), and thus leads to the desired results in Step 1.

Step 2. We first consider the marginal distributions for W, >(7) and W, 3(7). For
W, 2(7), by Assumption 1 and the fact that m;(s, 7) is continuous in 7 € Y j =0, 1, we
have, conditionally on {S;}_;,

Dy
Waoa(1) = Z \/(—s) [ermi (s, T) — egmg(s, T)] ~ Ba(7), (E.2)
seS n

where B;(7) is a two-dimensional Gaussian process with covariance kernel

35(71,72)

=" p(&)y(®)[ereimi(s, 1)my(s, 72) — ereymy(s, T1)mo(s, 2)
seS

/ /
— egeymo(s, T1)my (s, T2) + egegmo(s, T1)mo(s, T2)].

For W, 3(7), by the fact that m;(s, 7) is continuous in 7 € Y j =0, 1, we have that,
uniformly over r € Y,

n

1
Was(n) == > [ermmi(Si, ) + eo(1 = m)mo(Si, 7)] ~ B3(7), (E.3)
i=1

where B3(7) a two-dimensional Gaussian process with covariance kernel
33(11, 1) = ey Emy (S, 11)my(S, m2) + ereym(1 — mEmy (S, T1)mo(S, 2)
+ egeym(1 — mMEmy(S, T1)m1 (S, 72) + ege (1 — m)*Emg(S, 71)m(S, 72).
In addition, we note that, for any fixed ,
P(Wp2(1) <wy, Wy 3(1) < wp) = EP(W,2(1) < wi [{Si}) ) 1{Wp,3(7) < wo}
=EP(N(0, 35(7, 7)) <wi) W, 3(1) w2} + o(1)
=P(N(0, 33(7, 7)) <wz)P(N(0, 22(7, 7)) <wy) + o(1).
This implies B, (7) 1L Bs(7). By the Cramér—Wold device, we can show that
(W2(7), Wy 3(1)) ~ (Ba(7), B3(7))

jointly in finite dimension, where by an abuse of notation, B,(7) and B3(7) have the
same marginal distributions of those in (E.2) and (E.3), respectively, and B,(7) L B3(7).
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Last, because both W), »(7) and W, 3(7) are tight marginally, so be the joint process
(Wp.2(1), Wy 3(7)). This concludes the proof of Step 2, and thus the whole lemma. O

Lemma E3. Let W, (1), j = 1,2 be defined as in (B.4). If Assumptions in Theorem 3.2
hold, then uniformly over r €Y,

(Wi, 1(7), Wy 2(7)) ~+ (Bipw,1(7), Bipw,2(7)),

where (Bipw,1(7), Bipw,2(7)) are two independent two-dimensional Gaussian processes
with covariance kernels iy 1(71, 72) and iy 2(71, 72), respectively. The expressions for
Sipw,1(71, 72) and Zipw 2(71, T2) are derived in the proof below.

Proor. The proofs of weak convergence and the independence between (Bipw,1(7),
Bipw,2(7)) are similar to that in Lemma E.2, and thus, are omitted. Next, we focus on
deriving the covariance kernels.

First, similar to the argument in the proof of LemmaE.2,

J ZN(SHZM(S) 1 Z N(S)Z-i-n(s) 1
Wi1(7) = Th 1(s, 7) — = Mi,0(5, 7).
s€S i=N(s)+1 ffl(q (7 ) s€8 i=N(s)+n1(s)+1 \/ﬁfo(QO(T))

Because (7;,1(s, 7), n;,0(s, 7)) are independent across i, ni(s)/n LN 7p(s), and (n(s) —

ni(s))/n -2 (1 — ) p(s), we have

min(7y, 72) — 1172 — Emy (S, 71)m (S, 12)
7f1(q1(m1)) f1(q1(72))

min(7y, 72) — 7172 — Emq(S, 71)mo(S, 72)

(1 —m) fo(qo(m1)) fo(qo(72))

Sipw,1(71, T2) =

Obviously,

St (T Tz)—E<m1(S’Tl) mo(S,Tl))<m1(S,72) mo(S,Tz))
1pw, ’ -

fAla)  folao)  \fila1(m) — folqo(r2) O

Lemwma E.4. IfAssumptions 1 and 2 hold, then conditionally on data, the second element
of [Q(1)]~ Zl | §’_lA (r—1Yi< A B(7)}) weakly converges to Bsqr(r), where Bsqr(r) is

a Gaussian process wn‘h covariance kernel Esqr( ,-) defined in Theorem 4.1.

Proor. We denote the second element of [Q(7)] ™! >y g’71A (r—1HY; < A B(T)}) as

1 n
N ;@i — 1D)Ji(s, 7),
where

Ji(s, 1) = Ti1(s, 1) + Tio(s, 7) + Ji3(s, 1),
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Ail{Si = simia(s,7) (1= ADUSi = s}nio(s, 7)

\7[- 5 =
(8 7) 7f] (Q] (T)) (1— 7T)fO(‘]O(T))
Ji2(s, 1) = Fi(s, )(A; — m)1{S; = s},
ml(S, T) mO(S, T)
F 5 == B
D= @) T = m folgo()
and
mi(s,7)  my(s, 7)
Toas. ) = ( _ )1 S; = s).
3057 filqi(m)  folqo(m)) =

In order to show the weak convergence, we only need to show (1) conditionally
stochastic equicontinuity and (2) conditional convergence in finite dimension. We di-
vide the proof into two steps accordingly.

Step 1. In order to show the conditionally stochastic equicontinuity, it suffices to
show that, for any ¢ > 0, as n — oo followed by 6 — 0,

1 & P
]P)f su (é:_l) j‘(s’ 72)_L7'(S7 71) 28 _>0)
(Tl,rzeY,Tl<72<Tl+5,s€S \/ﬁ ; l ( ' ! )
where P¢(-) means that the probability operator is with respect to &y, ..., £, and condi-

tional on data. Note

=)
)
> s/3>

> 3/3)

> 8/3) .
N(s)+nq(s) N (s)+n(s)

- d (& —Dnia(s, 1) (& —Dmjio(s, 7)
(& —DJTia(s, 1) = ’ - ’
; BT i=NX(s:)+1 7f1(q1(7)) i=n(s)§z:1(s)+1 (1= m fo(qo(m)

EPg < sup

71,7€Y,T1<Tp<T1+0,5€S

1 n
N ;j(a- — D(Ji(s, 1) = Tils, 1))

1 n
N i:Zl@i — D(Ji(s, 12) — Tils, 1))

P sup
71,7€Y, 71 <12 <71 +8,5€S

IA

1 n
N ;@i — (s, m2) = Tia(s, 7))

P su
T1,72€Y, 71 <7y <71 +8,5€S

+ P( sup

71,72€Y,T1 <12 <T1+0,5€S

1 n
N ga = D(Tias, m2) = Tia(s. 1)

+ IP’( sup

71,72€Y, 71 <Ty <71 +8,5€S

1 n
N i;(ff = D(Ji3(s,m2) = Ti3(s. 1)

Further note that
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> 8/3)

Z(fl )(Jii (s, m2) — Ji,l(s,n))‘

By the same argument in Claim (1) in the proof of Lemma E.2, we have

IZ@‘ )(Ti1 (s, 72) = Tis, 71))

P sup
71,7€Y,T1 <12 <T1+6,5€S

3E sup

71,7€Y,T1<T)<T1+0, seS

&
C
] _
o <£>+M
3 2 gc16 NG

== >

&

where C, ¢; < ¢, are some positive constants that are independent of (n, &, §). By letting
n — oo followed by 6 — 0, the RHS vanishes.
For J; 2, we note that F; (s, 7) is Lipschitz in 7. Therefore,
>g/ 3)

IZ@, )(Ji2(s,72) = Tials, 1))

28/3> -0

Z(gl D(A; — mUS; =s}| =

P sup
71,7€Y,T1 <73 <71+6,5€S

521}»(&3

seS

1 &
— i— D(A; — m)1{S; =
— i§=]j(§ )(Ai = m)LS; =)

as n — oo followed by 6 — 0, where we use the fact that

sup|—
seS

v 0, ().

To see this claim, we note that, conditionally on data,

1 & 1 &
- ;:(A,» — ) S =5} = - ;(Ai — 7 = 2m(A; — ) + 7 — 7)US; = 5}

:Dn(s)—Zaan(S)+7T(1_ )@ L (1= m)p(s).

Then, by the Lindeberg CLT, conditionally on data,
1 n
N D (&= D(Ai = mUSi = s}~ N(0, (1 — ) p(s)) = Op(1).
i=1

Last, by the standard maximal inequality (e.g., van der Vaart and Wellner (1996, Theo-
rem 2.14.1)) and the fact that

<m1(S,T) B mo(&T))
filgi(m)  fo(go(m))
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ZS/?)) -0

This concludes the proof of the conditionally stochastic equicontinuity.
Step 2. We focus on the one-dimension case and aim to show that, conditionally on
data, for fixed r € Y,

is Lipschitz in 7, we have, as n — oo followed by 6 — 0,

IP’( sup \/_Z(fx WTi3(s,m2) — Ti3(s, 1))

71,7€Y,T1 <73 <T1+6,5€S

IZZ<§Z 1)Ji(s, 7) ~ N (0, Zeqr(7, 7).

seS i=1

The finite-dimensional convergence can be established similarly by the Cramér-Wold
device. In view of Lindeberg-Feller central limit theorem, we only need to show that (1)

—Z[ZJ,(S 7)] L G )+ Ey(m, 1) + E (1)

i=1"seS

and (2)

Y (& =D Ti(s, )

seS

—Z[ij(s r)} Eg(¢—1) 1{

i=1"seS

. M}

(2) is obvious as | J;(s, 7)| is bounded and max; |¢; — 1| < log(n) as &; is sub-exponential.
Next, we focus on (1). We have

—Z[Zm n]

i=1"seS

_ZZ{[A iUSi=sinii(s, 1) (A= ADUSi =s}miols, 7)}
i=1 seS 7fi ql(T)) (1—7T)f0(610(7))

my(s, )  mo(s,T) ) ] }2
+ Fi(s, A; — 1S; =s}+ — 1{S; =
15 A = mS: =) [(ﬁ(m(f)) fo(qo(1)) 5 =)

= 0'12 + 0'22 + 0'32 + 2012 + 2013 + 20723,

where

ZZ[A Si=sinii(s,7) (1= ADUS; = s)miols, T)T
S 7fi(q1(7)) (1—m) fo(qo()) ’

ZFl(s T)Z(A — )2 1S =5},

seS i=1

[(musl-,r) B mo<si,r>)]2
filar(™)  folgo(m) /1~

S

|
S| =
ITM:
LN
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o1 = 1 anz [ Ail{Si=s}mii(s,7) (1= ADUSi = s}mio(s, 7) ]
n==l  #fi(q(n) (I=mfo(q(m)

x Fi(s, 7)(A; — m)1{S; = s},

n= afi(qi(n) A -mfolq(m) |

" [(}?(Z(fé;)) - ;:(Oq(om)))]

o3 = 1 XH:Z [ A S =s)ni1(s, ) (1= ADUS;i =sInio(s, )]

and

mi(s, 7) mo(s, ) )]
_ _ F A — m)1{S; = - ’
03 =012= ZZ 18, (A =mH S}[( fil@r(™)  folgo(m)

i=1 seS

For o7, we have

)3

[A ASi=sinii(s.1) (1= ADUS; = sinjy (s, 7)}

N ies iz m fE(q1 (7)) (1—m2f3(q0(m))
al ZN(SH-ZVH(S) ‘7712’] (s, 1) 1 Z N(s)i?(s) 'FIZ()(S, T)
563 i=N(s)+1 szlz(QI(T) seSt N(s)+n1(s)+1 - 71-)zf()z(qo(q-))
r, T(l—T)Z—Emi(S, T) ’T(l—T)—iEmO(S,T) =§%;(7T, 5,
7fi (q1(7)) (1—m)fy(q0(m))

where the second equality holds due to the rearrangement argument in Lemma E.2 and
the convergence in probability holds due to uniform convergence of the partial sum
process.

For 02, by Assumption 1,

ZFl(s 7)(Dn(s) = 27Du(s) + (1 — m)1{S; = s})
seS

Ls w1 — MEFX(S;, 7) = &, (m, 7).

For 0-3 , by the law of large number,

2
2 P E[(’m(SiJ)_mo(Si,T))] _ (7).
5 filg1(m)  fo(qo(m)) &s(m ™)

For o5, we have

Ail{Si = s}mia(s, 1)
= 1-mF
o2 = SEZS( m)F1(s, T)Z (@)
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1 " (1= ANS; = sIn; (s,
_EZWFl(S’ T)Z( )1{ sinio(s, 1)

=~ (1= mfo(g0(m)
N(s)+ni(s) ~
d 1 Mi,1 (S’ T)
S A-mFs,n) Y, ————
" Ses o (@)
N(s)+n(s) ~
1 i 0(S,
- — Z wF (s, T) Z Mi.0(5.7) BN 0,
n seS i=N(s)+n(s)+1 - 71-)fO(QO(T))
where the last convergence holds because by Lemma E.2,
1 N(s)+n1(s) N(s)+n(s)
- > s, 0 and - > des 0.
i=N(s)+1 i=N(s)+n1(s)+1

By the same argument, we can show that
g13 i> 0.

Last, for o3, by Assumption 1,

[( mi(s,7)  mp(s,7) ﬂDn(s) 2.
filg1(m)  fo(qo(m)) n '

o3=y Fi(s,7)
seS

Therefore, conditionally on data,

n 2
%Z[Zﬂs, T>] L Gm 1)+ (1) + G, 7).

i=1"seS o

LemMma E.5. If Assumptions 1(i) and 1(ii) hold, sup, g [?5'*(_53))' = 0p(1), sup,cg 'DZ—\/%;' =

Op(1), and n(s) — oo forall s € S, a.s., then there exists a sequence of Poisson(1) random
variables {£}}i>1,ses independent of { A}, S}, Yi, Ai, Si}i=1 such that

n N(s)+n1(s)
YoAnsi=siniis, = > ERiis, )+ RS, 1),
i=1 i=N(s)+1

where SUP, ey ses IR (s, T)//n(s)| = 0p(1). In addition,

sup |y AFL{SF =s)n} (s, 7)|/V/n(s) = Op(1). (E.4)

seS,reY|i

Proor. Recall {Y;(0), Y;'(1)}_, as defined in the proof of Theorem 3.1 and
nij(s, ) =7 =YY} (j) <q;j(D)} —mj(s, ),

j =0, 1. In addition, let ¥, = {n; 1 (s, T)}_;,

Ny = {n(s)/n, n1(s)/n, n*(s)/n, nj(s)/n} g
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and given Ny, {M,,;}7_, be a sequence of random variables such that the n;(s) x 1 vector

MY($) = (MyN(s)s1s---» My, N(s)+ni(s))

and the (n(s) — n1(s)) x 1 vector

MS(S) = (Mn,N(s)+n1(s)+l, cee Mn,N(s)+n(s))

satisfy:
nj(s) n*(s)—nj(s) nj(s) n*(s)—nj(s)
L Mys)=31 " mjand M{(s) =Y ,_, ' ml, where {m;},!" and {m},_;"
are nj(s) i.i.d. multinomial(l, nIl(s), e, nfl(s)) random vectors and n*(s) — nj(s) i.i.d.
multinomial (1, (n(s) — n1(s))"L, ..., (n(s) — ni(s))~!) random vectors, respectively;

2. MY(s) 1L M} (s)|N,; and

3. M g(s), M% (8)}ses are independent across s given N,, and are independent of ¥,,.

Recall that, by Bugni, Canay, and Shaikh (2018), the original observations can be re-
arranged according to s € S and then within strata, treatment group first and then the
control group. Then, given N, Step 3 in Section 5 implies that the bootstrap observa-
tions {Y;*}? , can be generated by drawing with replacement from the empirical distri-
bution of the outcomes in each (s, a) cell for (s, a) € S x {0, 1}, n}(s) times, a =0, 1, where
ni(s) = n*(s) — nj(s). Therefore,

n N(s)+ni(s)
DAS; =sinf (.= D Muiia(s, 7). (E.5)
i=1 i=N(s)+1

Following the standard approach in dealing with the nonparametric bootstrap, we
want to approximate

Myi,i=N(@s)+1,...,N(s) +ni(s)

by a sequence of i.i.d. Poisson(1) random variables. We construct this sequence as fol-
lows. Let M1(s) = Zﬁ\i(lnl(s)) m;, where N (k) is a Poisson number with mean k and is

independent of N,,. The n;(s) elements of vector 1\7[,1(5) are denoted as {]\7[,1,-}?; (,f,);;;?r(ls),
which is a sequence of i.i.d. Poisson(1) random variables, given N,,. Therefore,

[Myuii=N()+1,...,N@) +ni()IN, ) = {€,i=N(s) +1,...,N(s) +n1(s) Ny}

where {£}}"_,, s € S are i.i.d. sequences of Poisson(1) random variables such that {£}}"_;
are independent across s € S and against N,,.

Following the argument in van der Vaart and Wellner (1996, Section 3.6), given n;(s),
nj(s), and ﬁ(nl(s)) =k, |} — My;| is binomially (|k — n}(s)], ny(s)~H-distributed. In ad-
dition, there exists a sequence ¢, = O(/n(s)) such that

B(|N (n1(5)) = i (5)| = t)
<P(|N(n1(5)) — n1(5)| = €x/3) + P(|n}(s) — n1(s)| = 2€,/3)
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< EP(|N(n1(5)) — n1(5)| = €a/3In1(9)) +P(|nj (s) — n1(s)] = 2¢4/3)
< &/3+P(|nf(s) —ni(s)| = 2€,/3)

< &/3+P(|D;(5)| + |Du(s)| + 7|n*(s) — n(s)| = 2¢,/3)
<2&/3+P(m|n*(s) — n(s)| = £,/3)

<e&

>

where the first inequality holds due to the union bound inequality, the second inequal-
ity holds by the law of iterated expectation, the third inequality holds because (1) condi-
tionally on data, N (n(s)) — n1(s) = O, (v/n1(s)) and (2) ny(s)/n(s) = m + [Z’ES) —>a7>0
as n(s) — oo, the fourth inequality holds by the fact that

n;(s) — ny(s) = Dj(s) — Dp(s) + 7 (n*(s) — n(s)),

the fifth inequality holds because by Assumptions 1 and 4, |[D}(s)| + |Du(s)| =
Op(J/n(s)), and the sixth inequality holds because {S7}!_, is generated from (S;} , by
the standard bootstrap procedure, and thus, by van der Vaart and Wellner (1996, Theo-
rem 3.6.1),

n

n*(s) —n(s) =Y (M5 —1)(1{Si =5} — p(s)) = O, (v/n(s)),

i=1
where (M}, ..., My)) is independent of {S;}?_, and multinomially distributed with pa-
rameters »n and (probabilities) 1/#, ..., 1/n. Therefore, by direct calculation, as n — oo,
p( max & — M| > 2)
N (s)+1<i<N(s)+ny(s)
=P( o omax &= M| > 2,m(5) 2 n(s)e) +P(m () < n(s)e)
N($)+1<i<N(s)+nq(s)
N(s)+ny(s)
<e+E Y P& - Mu|>2,|N(n1(9) = nf($)| < tn,
i=N(s)+1

ni(s) = n(s)elni(s), nj(s), n(s)) + €
<2&+ Eny(s)P(bin(¢,, nl_l(s)) > 2|n1(s), 1 (s), n())1{ni(s) = n(s)e} — 2e,
where we use the fact that

n1()P(bin(C,, n(5)) > 2[n1(s), n§(s), n(s))1{n1(s) = n(s)e}

b\ ()Y’ 1
s (5) () Hme =z nwel s o5 ~0

Because ¢ is arbitrary, we have

( max & = My > 2) 0. (E.6)
N(s)+1<i<N(s)+n(s)
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Note that &} — My;| = Z;’il H{|& — Myil > j}. Let I{;(s) be the set of indexes i
{N(s) +1,...,N(s) + ni(s)} such that |&] — My;| > j. Then, & — M,; = sign(ﬁ(m(s)) —
nj(s)) 32, i € I(5)}. Thus,

N(s)+nq(s)

1
Z (& — Mpi) i1 (s, 7)
VI(S) NG+

Cr#LGs) 1
= sign (s)) — ni(s) [
ign(N (n1(s)) — n (s ; Jnto) 71l

In the following, we aim to show that the RHS of (E.7) converges to zero in probability
uniformly over s € S, 7 € Y. First, note that, by (E.6), maxy (s)+1<i<N(s)4+n,(s) 1§} — Mnil <2
occurs with probability approaching one. In the event set that maxy (s)4 1<i<N(s)+n,(s) 1§} —
M| <2, only the first two terms of the first summation on the RHS of (E.7) can be
nonzero. In addition, for any j, we have j(#1I}(s)) < IN (n1(5)) — ny(s)| = O »(3/n(s)), and

Y Al r)] (E.7)

iel}(s)

#I #lp(s) _
thus, Ty = O,(1) for j =1, 2. Therefore, it suffices to show that, for j =1, 2,
sup Mi,1(s, T)| = 0p(1).
seS,7eY #IJ(S) ; b
i€y (s)
Note that
N(s)+n1(s)
5 D odils = Y oufliils, ), (E.8)
#1 n( I/(s) i=N(s)+1
where w, = Mlé;—ljily?;\zj}’ i =N(s) +1,...,N(s) + ni(s) and by construction,
n(s
{wni}ﬁ(]i,)(t;’i(f) is independent of {n; (s, 7)}"_,. In addition, because Wni}ﬂzi}&ﬁ&” is
exchangeable conditional on N,, so be it unconditionally. Third, Zf\i (ji,):;i(f) =1

and max;—n(s)+1,..., N(s)+ny(s) | @nil < 1/#I£(s) L0, Then, by the same argument in the
proof of van der Vaart and Wellner (1996, Lemma 3.6.16), for some r € (0, 1) and any
ng=N(s)+1,...,N(s) +ni(s), we have

N($)+ny(s) r
E( sup | Y @il (s,7) |11fn,Nn)
7eY,seS i=N(s)+1
1 N(s)+ny(s)
< (ng— 1)]E[ max "IN ] sup |75, (s, 7)
Nesytno=isN a0 ny(s) . ]% +1 Tey?es} ol |

+ (11 ()E(wpiINp))
N(s)+k

- Z NR;(N(s),m(5)),1(8, T)

X max ]E|: sup
J=N(s)+ng

no<k=ny(s) reY,seS

|Nl’la ni|, (E9)
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where (Ry,+1(k1,k2), ..., Rk, 4+k,(k1, k2)) is uniformly distributed on the set of all per-
mutations of ki + 1,...,k; + k; and independent of N, and V¥,. First, note that
SUPscs. ey |Mi,1(s, T)| is bounded and

max ol < 1/(#I5(s)) 2> 0.

N()+1<i<N(s)+n;(s)

Therefore, the first term on the RHS of (E.9) converges to zero in probability for every
fixed ng. For the second term, because w,;|N, is exchangeable,

N($)+ni(s)
mOE(0nilN) = Y E(wnilNy) =1.
i=N(s)+1

In addition, let S,(k1, k») be the o-field generated by all functions of {%; 1(s, 7)}i>1
that are symmetric in their k1 + 1 to £ + k, arguments. Then

N(s)+k r
max [E| sup |- Z NR;(N(5),m1()),1(8, T)| [Nu, ¥
no<k=ni(s) | rev,seS J=N(s)+ny
1 N(s)+k r
= max E| sup % Z 77,18, T)| Ny, Su(N(s), n1(s))
no<k=ni(s) | rev,seS J=N($)+no

r 1 N(s)+k
<2E{max| sup z Z Nj,1(8, 7)
no=k| rev,seS J=N(s)+1

} IN, Sp(N(s), ”1(5))}

:||Nn’ Sn(O, ni (S))}a

B k
1
=2E{max sup EE Nj,1(8, 7)
j=1

no<k | 7€Y,seS
where the inequality holds by the Jansen’s inequality and the triangle inequality and the

last equality holds because {7 1 (s, 7)};>1 is an i.i.d. sequence. Apply expectation on both
sides, we obtain that

N(s)+k r

Z MR;(N(s),m1()),1(8, )

J=N(s)+ngy

1 & '

EZF;;J(S, 7) ] (E.10)
j=1

E max E|: sup

no<k=ni(s) | rev,seS

|Nn, lI’n:|

x| =

<2E max |: sup

no<k=n| ;cv,seS

By the usual maximal inequality, as k — oo,

a.s.
sup — 0,
7€Y,5eS

|k
EZﬁj,](sa T)

j=1
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which implies that as ny — oo

k
> Ajals, )
j=1

1 k
E Zﬁj,l(s’ T)

j=1

r r
a.s.
<max| sup —=0.
n=k| reY,seS

In addition, sup, ¢y s | 1 Z;‘zl 1j,1(s, 7)| isbounded. Then, by the bounded convergence
theorem, we have, as ny — oo,

x| =

max [ sup

ng<k=n| rey,seS

k r

1

E max sup |- nj1(s, 7| [ =0,

no<k=n |:~reY,seS k JZ;
which implies that
1 N(s)+k r
- P
E max E[ sup | > AR ).1(8 T N, ‘I’n] — 0.

no<k<ni(s) 7€Y,seS j=N(s)+n0

Therefore, the second term on the RHS of (E.9) converges to zero in probability as ny —
00. Then, as n — oo followed by ny — oo,

E{ sup
TeY,seS

Hence, by the Markov inequality and (E.8), we have

N(s)+n1(s)

D @uiia(s, T

.
|wn,Nn> 2.
i=N(s)+1

1 -
sup ; Z ni1(8, T) 2.
seS,reY | #1,(s)
iely(s)
Consequently, following (E.7)
N(s)+ni(s)
sup | Y (& = Mu)iia(s, )| = 0,(Vn(s)). (E.11)

seS,teY =N (5)+1

This concludes the first part of this lemma. For the second part, we note

N()+n(s) 4 N(s)+ni(s) J ni(s)
Yo Mywia(s,m = Y ERuls =Y ERials, 1),
i=N(s)+1 i=N(s)+1 i=1

where the second equality holds because {&7, 1;,1(s, 7)}i>1 L {N(s), n1(s), n(s)}. Then,
conditionally on {N (s), n1(s), n(s)} and uniformly over s € S, the usual maximal inequal-
ity (van der Vaart and Wellner (1996, Theorem 2.14.1)) implies

N($)+nq(s) - 4 ny(s)
sup Z Mpini1(s, )| =sup foﬁi,l(& )| =0,(Vn(s)). (E.12)
Y| (=N (5)+1 TeY| i

Combining (E.5), (E.11), and (E.12), we establish (E.4). This concludes the proof. O
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Lemma E.6. If Assumptions 1(i) and 1(ii) hold, sup g '5% = 0p(1), sup,.g lngl =

O,(1), andn(s) — oo forall s € S, a.s., then, uniformly overr € Y,

1
O (u, 1) BN Eu’Qu.

Proor. Recall Q7 | (u, 7) and Q} (u, 7) defined in (D.1). We focus on Q7 , (u, 7). Recall
the definition of M,,; in the proof of Lemma E.5. We have

N(s)+nq(s) uptuy

Qi ju,m=Y" Mm-/ YR = i) < v} = 1Y) - qu(7) <0}) dv
seS i=N(s)+1 0
N(s)+ni(s)

=Y Y Mu[di(u,7,5) —Edi(u,7,5)]
seS i=N(s)+1
N(s$)+n(s)

+> Y MuEdi(u,,s), (E.13)

seS i=N(s)+1

u0+ul
where ¢;(u, 7,5) = fO o (H{Y? (1) — gq1(7) < v} = H{Y? (1) — q1(7) < 0}) dv.
Similar to (E.11), we have

N(s)+n;(s)
YooY Mul¢iu, 7, s) —Edi(u, 7, 5)]
s€S i=N(s)+1
N(s)+ni(s)
=Y > &) —Edi(u, 7, 9]+ D ralu,7,9), (E.14)
s€S i=N(s)+1 seS

where {&7}!_, is a sequence of i.i.d. Poisson(1) random variables and is independent of
everything else, and

(U, 7,5)
= sign(ﬁ(m (S)) - nT(S)) i #I}{l(S) 1 Z \/m[d)l(ua 7, S) - E(;’),-(u, 7, S)].
P Vn(s) #1I(s) el
We aim to show
sup |ra(u, 7,8)| =0p(1), (E.15)

7€Y,5eS

Recall that the proof of Lemma E.5 relies on (E.10) and the fact that

— 0.

E sup sup
n(s)>k>ng reY,seS

1 k
£ 208,

j=1
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Using the same argument and replacing 7, 1(s, 7) by «/n(s)[¢;(u, 7,s) — E¢;(u, 7, )], in
order to show (E.15), we only need to verify that, as n — oo followed by ng — oo,

— 0.

E sup sup

n(s)>k>ng reY,seS

k

1

Z E Vn(S)[¢i(M, T,S)—]E(i)i(u, T, S)]
=1

i=

Note sup, cy ses |% Zf-‘zl V() [oi(u, 7, 8) — Edi(u, 7, s)]| is bounded by |ug| + |uq]. It suf-
fices to show that, for any ¢ > 0, as n(s) — oo followed by ny — oo,

k

1
2 2 Vi, 7,5) —EiCu, 7, 5)]

i=1

Pl sup sup
n(s)>k>ng reY,seS

> s) — 0. (E.16)

Define the class of functions F, as

Fo={vn®)[di(u,7,5) —Edi(u,7,9)]: 7€ Y,5€S}.

Then F, is nested by a VC-class with fixed VC-index. In addition, for fixed u, F, has
a bounded (and independent of n) envelope function F = |ug| + |uq|. Last, define Z; =
21,2 +1,...,2*1 —1}. Then

> 8|n(3)>

> 8|n(8)>

Z n(s)[¢i(u779 s, e)_E¢i(u7T’ S, e)]

i=1

IP’( sup sup

n(s)>k>ngreY,seS

k

Y Vns)[¢iu, 7, 5) —Edi(u, 7, 5)]

Llog, (n(s))]+1
< Z P (sup sup
i=1

I=|log, (n9)) keI, reY,seS

| =

Llog, (n(s))]+1 k

< Y ]P’( sup sup | Y /n(s)[¢i(u, 7, 5) —Edi(u, 7,5)] zszlm(s))
I=llogy(ng)] ~ \k=2H TEY,s€S] iy
Llog, (n(s))]+1 2l+1

< > 91@( sup |y Vn(s)[dbi(u,7,5) —Edi(u, 7, 5)] 2821/30|n(s)>
I=log, (n9)] TeY.seS]ioy

up > Vns)[bi(u, 7, 5) —Edi(u, 7, 5)]

= Z = 82[

I=log,(np)]

In(s)>

2l+1
Llogy(n(s))J+1 27OE( sup

Llog, (n(s))]+1
C
= X o5
821/2
I=|log,(np)]
2Cy
<

T en

— 0,

where the first inequality holds by the union bound, the second inequality holds be-
cause on 7, 2*1 > k > 2!, the third inequality follows the same argument in the proof of
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Theorem 3.1, the fourth inequality is due to the Markov inequality, the fifth inequality
follows the standard maximal inequality such as van der Vaart and Wellner (1996, Theo-
rem 2.14.1) and the constant C; is independent of (/, &, n), and the last inequality holds
by letting n — oco. Because ¢ is arbitrary, we have established (E.16), and thus, (E.15),
which further implies that

sup |ra(u, 7,5)|=o0p(1).
T€Y,seS

In addition, for the leading term of (E.14), we have

N($)+nq(s)
Yo > Eleiu, 1) —Edi(u,7,5)]
s€S i=N(s)+1
= Z[FZ*(N(S) + ni(s), 7) - (N(s), T)],
seS

where

ug+uq

k
Mten e =306 [ 701V =am+ o) -1V < g o
i=1

uptuq

B k]E[fO " (LY (D) < qi(m) + v} = Y (D) <q1(n)}) dv]_

By the same argument in (A.1), we can show that

sup |Fﬁ,*(k, T, e)} =0,(1),

0<t<l,7€Y

where we need to use the fact that the Poisson(1) random variable has an exponential
tail, and thus

E  sup & =0(log(n)).

ief{l,...,n},seS

Therefore,

N($)+ni(s)

sup|> Z Myi[i(u, 7,8) — E¢i(u, 7, 5)]| = 0,(1). (E.17)

T€Y|5eS i=N(s)+1

For the second term on the RHS of (E.13), we have

N(s)+nq(s)
Yo Y MuB¢i(u, 7, 5)= )Y nj(s)Edi(u,7,s)
seS i=N(s)+1 seS

= Z 77-p(s)7f1 (q12(7)|s) (ug + u1)2 +o(1)
seS
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. 7f1(q1(7)) (uo + up)?
- 2

+0(1), (E.18)

where the o(1) term holds uniformly over r € Y, the first equality holds because

Zf\;(]f,):; )"jr(ls) M,,; = nj(s) and the second equality holds by the same calculation in (A.1)

and the facts that n*(s)/n LN p(s) and

ni(s)  Dy(s)+mn*(s) p
= — 7Tp(S).

n n

Combining (E.13)—(E.15), (E.17), and (E.18), we have

p fi(q(T) (ug + up)?
—_—> 2 .

;kl, 1 (Ll ’ T)
uniformly over 7 € Y. By the same argument, we can show that, uniformly over r € Y,

_ 2
Q:’O(u,T)i)(l 7T)foz(élo(T))MO.

This concludes the proof. O
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