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We provide a comprehensive treatment for the problem of testing jointly for struc-
tural changes in both the regression coefficients and the variance of the errors in
a single equation system involving stationary regressors. Our framework is quite
general in that we allow for general mixing-type regressors and the assumptions
on the errors are quite mild. Their distribution can be nonnormal and condi-
tional heteroskedasticity is permitted. Extensions to the case with serially corre-
lated errors are also treated. We provide the required tools to address the follow-
ing testing problems, among others: (a) testing for given numbers of changes in
regression coefficients and variance of the errors; (b) testing for some unknown
number of changes within some prespecified maximum; (c) testing for changes
in variance (regression coefficients) allowing for a given number of changes in
the regression coefficients (variance); (d) a sequential procedure to estimate the
number of changes present. These testing problems are important for practical
applications as witnessed by interests in macroeconomics and finance where doc-
umenting structural changes in the variability of shocks to simple autoregressions
or vector autoregressive models have been a concern.

Keywords. Change-point, variance shift, conditional heteroskedasticity, likeli-
hood ratio tests.
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1. Introduction

Both the statistics and econometrics literature contain a vast amount of work on issues
related to structural changes with unknown break dates, most of it designed for a single
change (for an extensive review, see Perron (2006) and Casini and Perron (2019b)). The
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problem of multiple structural changes has received attention mostly in the context of
a single regression. Bai and Perron (1998, 2003a) provided a comprehensive treatment:
consistency of estimates of the break dates, tests for structural changes, confidence in-
tervals for the break dates, methods to select the number of breaks, and efficient algo-
rithms to compute the estimates; see also Hawkins (1976). Perron and Qu (2006) ex-
tended this analysis to the case where arbitrary linear restrictions are imposed on the
coefficients of the model. Also, Kurozumi and Tuvaandorj (2011) proposed an informa-
tion criterion for the selection of the number of changes; see also Liu, Wu, and Zidek
(1997). Bai, Lumsdaine, and Stock (1998) considered asymptotically valid inference for
the estimate of a single break date in multivariate time series allowing stationary or inte-
grated regressors as well as trends with estimation carried using a quasi maximum like-
lihood (QML) procedure. Also, Bai (2000) considered a segmented stationary VAR model
estimated again by QML when the break can occur in the parameters of the conditional
mean, the variance of the error term or both. Kejriwal and Perron (2008, 2010) dealt with
multiple structural changes in a single equation cointegrated model. Perron and Ya-
mamoto (2014) derived the limit distribution of the estimates of the break dates in mod-
els with endogenous regressors estimated via an instrumental variable method, while
they argue in Perron and Yamamoto (2015) that using standard least-squares methods
is preferable both for estimation and testing. Casini and Perron (2019a) provided a limit
distribution of the least-squares estimate of the break date in a linear model based on a
continuous-time asymptotic framework, which delivers substantial improvements with
respect to inference using the concept of highest density regions.

With respect to testing for changes in the variance of the regression error, the re-
sults are quite sparse. Horváth (1993) considered a change in the mean and variance
(occurring at the same time) of a sequence of i.i.d. random variables with moments cor-
responding to those of a normal distribution. Davis, Huang, and Yao (1995) extended the
analysis to an autoregressive process under similar conditions. Aue, Hormann, Horváth,
and Reimherr (2009) proposed nonparametric tests for changes in the variances or au-
tocovariances of multivariate linear or nonlinear time series models. Deng and Perron
(2008) extended the CUSUM of squares (or CUSQ) test of Brown, Durbin, and Evans
(1975) allowing general conditions on the regressors and the errors (as suggested by In-
clán and Tiao (1994) for normally distributed time series). Xu (2013) provided a further
extension with a robust estimate of the long-run variance of the squared errors of closer
relevance to our objectives. Andrews (1993) considered a one-time structural change
under a Generalized Method of Moment (GMM) setting, thereby allowing for changes
in both coefficients and variance though occurring at the same date; see McConnell
and Pérez-Quirós (2000) for a related application. Qu and Perron (2007a) considered a
multivariate system estimated by quasi maximum likelihood, which provides methods
to estimate models with structural changes in both the regression coefficients and the
covariance matrix of the errors. They provide a limit distribution theory for inference
about the break dates and also consider testing for multiple structural changes, though
restricted to normally distributed errors and breaks in coefficients and variance occur-
ring at different dates.
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We build on Qu and Perron (2007a) to provide a comprehensive treatment of test-
ing jointly for structural changes in both the regression coefficients and the variance of
the errors in a single equation involving stationary regressors, allowing the break dates
to be different or overlap. Our framework is general and allows for general mixing-type
regressors. The assumptions on the errors are mild; their distribution can be nonnor-
mal and conditional heteroskedasticity is permitted. Extensions to the case with serially
correlated errors are also treated. We provide the required tools to address the follow-
ing testing problems, among others: (a) testing for given numbers of changes in regres-
sion coefficients and variance of the errors; (b) testing for some unknown number of
changes within some prespecified maximum; (c) testing for changes in variance (regres-
sion coefficients) allowing for a given number of changes in the regression coefficients
(variance); (d) sequential procedures to estimate the number of changes present. Note
that we adopt a QML approach instead of one based on GMM. Either could be used in
principle. The main advantage of using the QML approach based on normal errors is
first that it allows a natural extension of Bai and Perron (1998) widely used in practice.
Second, and more importantly perhaps, we can use the efficient algorithm developed
in Qu and Perron (2007a). This is especially important in the current context since even
only two breaks in coefficients and variance implies four possible break dates. Hence a
computationally efficient method to estimate the break dates is needed.

These testing problems are important for practical applications; for example, doc-
umenting structural changes in the variability of shocks in autoregressive models; see
Blanchard and Simon (2001), Herrera and Pesavento (2005), Kim and Nelson (1999),
McConnell and Pérez-Quirós (2000), Sensier and van Dijk (2004), and Stock and Wat-
son (2002). Given the lack of proper testing procedures, a common approach is to apply
a sup-Wald type tests (e.g., Andrews (1993), Bai and Perron (1998)) for changes in the
mean of the absolute value of the estimated residuals, a rather ad hoc procedure. To test
for a change in variance only (imposing no change in the regression coefficients), one
can apply a CUSUM of squares test to the estimated residuals, which is adequate only
if no change in coefficient is present. Often, changes in both coefficients and variance
occur at possibly different dates. A common method is to first test for changes in the re-
gression coefficients and conditioning on the break dates found, then test for changes in
variance. This is clearly inappropriate as in the first step the tests suffers for severe size
distortions. Also, neglecting changes in regression coefficients when testing for changes
in variance induces both size distortions and a loss of power; for example, Perron and
Yamamoto (2019a) and Pitarakis (2004). Hence, what is needed is a joint approach. To
do so, our testing procedures are based on quasi likelihood ratio tests using a likelihood
function for identically and independently distributed normal errors. We then apply cor-
rections to have limit distributions free of nuisance parameters with nonnormal distri-
bution and conditional heteroskedasticity. We also consider extensions that allow for
serial correlation.

The empirical usefulness of our proposed procedure is perhaps best explained via
applications related to changes in the variance of many macroeconomic variables (i.e.,
the great moderation); see Gadea, Gómez-Loscos, and Pérez-Quirós (2018) and Perron
and Yamamoto (2019b). The testing issues of interest are, among others: (a) testing for a
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change in variance in 1984 (the commonly accepted date for the start of the great moder-
ation); (b) testing for an additional change in variance, say following the great recession
of 2007; (c) estimating the total number of changes; (d) testing whether any changes are
present; (e) performing all these tests allowing for changes in the parameters of a con-
ditional regression model (e.g., a change in slope in 1973 for GDP as argued in Perron
(1989)); (f) performing all the corresponding tests when testing for changes in the re-
gression parameters allowing for changes in the variance of the errors. For instance, an
issue of interest in macroeconomics is whether the great moderation was due to changes
in the persistence parameters (the sum of the autoregressive coefficients) as suggested
by the “improved policy” hypothesis or in the error variance as suggested by the “good
luck” hypothesis or in both. Our tests allow to disentangle these effects, including cases
with multiple breaks. Section 7 provides empirical examples related to inflation and real
interest rate series. To reach the right conclusion about the number and nature of the
changes, we use all tests proposed in this paper in a careful way. Obviously, the num-
ber of potential other applications abound. One could argue that it is sufficient to have
tests for changes in parameters that are robust to unknown patterns of changes in vari-
ance. An example is the work of Górecki, Horváth, and Kokoszka (2018). However, their
tests are based on a two-step approach; first estimating the error process assuming no
coefficient breaks and subsequently testing for changes in the coefficients using this es-
timate. Accordingly, the tests can suffer from severe power losses as the estimated error
process can be contaminated when structural changes are actually present in the coef-
ficients. Indeed, unreported simulations show their tests to have nonmonotonic power,
that is, power that decreases as the magnitude of the change in the regression parame-
ters increases. This testing problem is easily covered via our sup LR3�T and UD max LR3�T

tests, which maintain good power properties. Similarly, one could be content with only
testing for a change in variance allowing for unspecified changes in the regression pa-
rameters. The only tests we know that tackle this issue are based on the sup LR2�T and
UD max LR2�T tests that we propose.

The paper is structured as follows. Section 2 presents the models and testing prob-
lems, with the quasi-likelihood tests stated in Section 3. Section 4 discusses the assump-
tions needed on the regressors and errors, derives the relevant limit distributions under
the various null hypotheses and proposes corrected versions of the tests that have limit
distributions-free of nuisance parameters. Section 4.1 deals with the case of martingale
difference errors, Section 4.2 extends the analysis to serially correlated errors, Section 4.3
covers the case with an unknown number of breaks. Section 4.4 discusses tests for an
additional break in either the regression coefficients or the variance. Section 5 provides
simulation results to assess the adequacy of the suggested procedures in terms of their
finite sample size and power and provides some practical guidelines. Section 6 discusses
methods to estimate the number of breaks in the regression coefficients and the vari-
ance. Section 7 provides empirical applications and Section 8 brief concluding remarks.
An Appendix contains some technical derivations. Additional material can be found in
the Online Supplemental Material in the replication file (Perron, Yamamoto, and Zhou
(2020)).
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2. Model and testing problems

We start with a description of the most general specification of the model considered
where multiple breaks occur in both the coefficients of the conditional mean and the
variance of the errors, at possibly different times. This will allow us to set up the notation
used throughout the paper. The main framework of analysis can be described by the
following multiple linear regression with m breaks (or m+ 1 regimes) in the conditional
mean equation:

yt = x′
tβ+ z′

tδj + ut� t = Tcj−1 + 1� � � � �T cj � (1)

for j = 1� � � � �m+ 1. In this model, yt is the observed dependent variable at time t; both
xt (p × 1) and zt (q × 1) are vectors of covariates and β and δj (j = 1� � � � �m + 1) are
the corresponding vectors of coefficients; ut is the disturbance at time t. The break
dates (T c1 � � � � �T

c
m) are explicitly treated as unknown (with the convention Tc0 = 0 and

Tcm+1 = T used). This is a partial structural change model since the parameter vector
β is not subject to shifts and is estimated using the entire sample. When p = 0, we
obtain a pure structural change model with all coefficients subject to change. We also
allow for n breaks (or n + 1 regimes) for the variance of the errors occurring at un-
known dates (T v1 � � � � �T

v
n ). Accordingly, E(ut) = 0 and E(u2

t ) = σ2
i for Tvi−1 + 1 ≤ t ≤ Tvi

(i = 1� � � � � n + 1), where again we use the convention that Tv0 = 0 and Tvn+1 = T . We
allow the breaks in the variance and in the regression coefficients to happen at dif-
ferent times, hence the m-vector (T c1 � � � � �T

c
m) and the n-vector (T v1 � � � � �T

v
n ) can have

all distinct elements or they can overlap partly or completely. We let K denote the
total number of break dates and max[m�n] ≤ K ≤ m + n. When the the breaks over-
lap completely, m = n = K. The multiple linear regression system (1) may be ex-
pressed in matrix form as Y =Xβ+ Z̄δ+U , where Y = (y1� � � � � yT )

′, X = (x1� � � � � xT )
′,

U = (u1� � � � � uT )
′, δ = (δ′

1� � � � � δ
′
m+1)

′, and Z̄ diagonally partitions Z at (T c1 � � � � �T
c
m),

that is, Z̄ = diag(Z1� � � � �Zm+1) with Zj = (zTcj−1+1� � � � � zT cj )
′. The true value of the pa-

rameters are δ0 = (δ0′
1 � � � � � δ

0′
m+1)

′ and (T c01 � � � � �T
c0
m ) and Z̄0 diagonally partitions Z

at (T c01 � � � � �T
c0
m ). Hence, the data-generating process (DGP) is Y = Xβ0 + Z̄0δ0 + U

with E(UU ′) = Ω0, where the diagonal elements of Ω0 are σ2
i0 for Tv0

i−1 + 1 ≤ t ≤ Tv0
i

(i = 1� � � � � n + 1). We also consider cases with serial correlation in the errors for which
the off-diagonal elements ofΩ0 need not be 0. This is a special case of the class of mod-
els considered by Qu and Perron (2007a). Their method of estimation is quasi maximum
likelihood (QML) assuming serially uncorrelated Gaussian errors. They prove consis-
tency of the estimates of the break fractions (λ0

1� � � � � λ
0
K) ≡ (T 0

1 /T� � � � �T
0
K/T), where

T 0
i (i= 1� � � � �K) denotes the union of the elements of (T c01 � � � � �T

c0
m ) and (T v0

1 � � � � �T
v0
n ).

This is done under general conditions on the regressors and the errors; see Section 4. Im-
portantly, from a practical perspective, they provide an efficient estimation algorithm,
which we build upon.

The testing problems are the following: TP-1: H0 : {m = n = 0} versus H1 : {m = 0�
n= na}; TP-2:H0 : {m=ma�n= 0} versusH1 : {m=ma�n= na}; TP-3:H0 : {m= 0� n= na}
versus H1 : {m =ma�n = na}; TP-4: H0 : {m = n= 0} versus H1 : {m =ma�n = na}, where
ma and na are some positive numbers selected a priori. We shall also consider test-
ing problems where the alternatives specify some unknown numbers of breaks, up to
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some maximum. These are: TP-5: H0 : {m = n = 0} versus H1 : {m = 0�1 ≤ n ≤N}; TP-6:
H0 : {m = ma�n = 0} versus H1 : {m = ma�1 ≤ n ≤ N}; TP-7: H0 : {m = 0� n = na} versus
H1 : {1 ≤ m ≤ M�n = na}; TP-8: H0 : {m = n = 0} versus H1 : {1 ≤ m ≤ M�1 ≤ n ≤ N}.
We shall deal with: TP-9: {m = ma�n = na} versus H1 : {m = ma + 1� n = na}; TP-10:
{m=ma�n= na} versusH1 : {m=ma�n= na+1}, wherema and na nonnegative integers.
These are useful to verify the adequacy of a model with some number of breaks assess-
ing whether including one more is warranted. In Section 6, we also consider sequential
testing procedures that allow estimating the number of breaks in both δ and σ2.

3. The quasi-likelihood ratio tests

We consider the likelihood ratio (LR) tests obtained assuming normally distributed and
serially uncorrelated errors, for TP-1 to TP-4. We estimate the model using the quasi-
maximum likelihood estimation method (QMLE). Consider TP-1 with no change in δ
(m= q= 0) and testing for na changes in σ2. UnderH0, the log-likelihood function is

log L̃T = −(T/2)(log 2π + 1)− (T/2) log σ̃2� (2)

where σ̃2 = T−1 ∑T
t=1(yt−x′

t β̃)
2 and β̃= (∑T

t=1 xtx
′
t )

−1(
∑T
t=1 xtyt). UnderH1, for a given

partition {Tv1 � � � � �T vn }, the log-likelihood value is given by

log L̂T
(
Tv1 � � � � �T

v
n

) = −(T/2)(log 2π + 1)−
na+1∑
i=1

[(
Tvi − Tvi−1

)
/2

]
log σ̂2

i � (3)

where the QMLE jointly solves β̂ = (
∑na+1
i=1

∑Tvi
t=Tvi−1+1 xtx

′
t/σ̂

2
i )

−1(
∑na+1
i=1

∑Tvi
t=Tvi−1+1 xtyt/

σ̂2
i ) and σ̂2

i = (T vi −Tvi−1)
−1 ∑Tvi

t=Tvi−1+1(yt − x′
t β̂)

2, for i= 1� � � � � na + 1. Hence, the Sup-LR

test is

sup LR1�T (na�ε|m= n= 0) = sup
(λv1�����λ

v
na )∈Λv�ε

2
[
log L̂T

(
Tv1 � � � � �T

v
na

) − log L̃T
]

= 2
[
log L̂T

(
T̂ v1 � � � � � T̂

v
na

) − log L̃T
]

where (T̂ v1 � � � � � T̂
v
na
) are the QMLE obtained imposing the restriction of no change in

the coefficients and Λv�ε = {(λv1� � � � � λvna); |λvi+1 − λvi | ≥ ε (i= 1� � � � � na − 1)�λv1 ≥ ε�λvna ≤
1 − ε}, with ε a truncation imposing a minimal length for each segment. For TP-2,
there are ma breaks in δ under both H0 and H1, so the test pertains to assess whether
there are 0 or na breaks in variance. For a given partition {Tc1 � � � � �T cma}, the likelihood
function under H0 is log L̃T (T c1 � � � � �T

c
ma
) = −(T/2)(log 2π + 1) − (T/2) log σ̃2, where

σ̃2 = T−1 ∑T
t=1(yt − x′

t β̃− z′
t δ̃t�j)

2, β̃ = (X ′MZ̄X)
−1X ′MZ̄Y and δ̃t�j = (Z′

jZj)
−1Zj(Yj −

Xjβ̃) for Tcj−1 < t ≤ Tcj , with MZ̄ = I − Z̄(Z̄′Z̄)−1Z̄′, Z̄ = diag(Z1� � � � �Zma+1), and Zj =
(zTcj−1+1� � � � � zT cj )

′, Yj = (yTcj−1+1� � � � � yT cj )
′, Xj = (xTcj−1+1� � � � � xTcj )

′ for Tcj−1 < t ≤ Tcj (j =
1� � � � �ma + 1). The log-likelihood value under H1 is, for given partitions {Tc1 � � � � �T cma}
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and {Tv1 � � � � �T vna},

log L̂T
(
Tc1 � � � � �T

c
ma

;Tv1 � � � � �T vna
) = −(T/2)(log 2π + 1)−

na+1∑
i=1

[(
Tvi − Tvi−1

)
/2

]
log σ̂2

i � (4)

where the QMLE solves the following equations: σ̂2
i = (T vi − Tvi−1)

−1 ∑Tvi
t=Tvi−1+1(yt −

x′
t β̂ − z′

t δ̂t�j)
2 (i = 1� � � � � na + 1) and β̂ = (Xσ ′MZ̄σ

Xσ)−1Xσ ′MZ̄σ
Yσ , where MZ̄σ

=
I − Z̄σ(Z̄

′
σZ̄σ)

−1Z̄′
σ with Z̄σ = diag(Zσ1 � � � � �Z

σ
ma+1), Z

σ
j = (zσ

Tcj−1+1� � � � � z
σ
Tcj
)′, and zσt =

(zt/σ̂i), for Tvi−1 < t ≤ Tvi (i = 1� � � � � na + 1). Also, δ̂t�j = (Zσ ′
j Z

σ
j )

−1Zσ ′
j (Y

σ
j − Xσ

j β̂) for
Tcj−1 < t ≤ Tcj , where Yσj = (yσ

Tcj−1+1� � � � � y
σ
Tcj
)′, Xσ

j = (xσ
Tcj−1+1� � � � � x

σ
Tcj
)′ with xσt = (xt/σ̂i)

and yσt = (yt/σ̂i). Hence,

sup LR2�T (ma�na�ε|n= 0�ma)

= 2
[

sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λε

log L̂T
(
Tc1 � � � � �T

c
ma

;Tv1 � � � � �T vna
)

− sup
(λc1�����λ

c
ma)∈Λc�ε

log L̃T
(
Tc1 � � � � �T

c
ma

)]
= 2

[
log L̂T

(
T̃ c1 � � � � � T̃

c
ma

; T̃ v1 � � � � � T̃ vna
) − log L̃T

(
T̂ c1 � � � � � T̂

c
ma

)]
�

where Λc�ε = {(λc1� � � � � λcm); |λcj+1 − λcj | ≥ ε (j = 1� � � � �ma − 1)�λc1 ≥ ε�λcma ≤ 1 − ε} and

Λε = {(
λc1� � � � � λ

c
m�λ

v
1� � � � � λ

v
n

); for (λ1� � � � � λK)= (
λc1� � � � � λ

c
m

) ∪ (
λv1� � � � � λ

v
n

)
�

|λj+1 − λj| ≥ ε (j = 1� � � � �K − 1)�λ1 ≥ ε�λK ≤ 1 − ε}� (5)

Note that we denote the estimates of the break dates in coefficients and variance by a
“∼” when these are obtained jointly, and by a “^” when obtained separately.

The set Λε which defines the possible values of the break fractions in δ (λc1� � � � � λ
c
m)

and in σ2 (λv1� � � � � λ
v
m) allows them to have some (or all) common elements or be com-

pletely different. What is important is that each break fraction be separated by some
ε > 0. This does complicate inference since many cases need to be considered. To illus-
trate, consider ma = na = 1. We can have K = 1, a one break model with both δ and σ2

changing at the same date. On the other hand, if K = 2, the break date for the change in
δ is different from that for the change in σ2. This leads to two additional possible cases:
(a) λc1 ≤ λv1 − ε (the break in δ is before that in σ2), (b) λc1 ≥ λv1 + ε (the break in δ is af-
ter that in σ2). The maximized likelihood function for these two cases can be evaluated
using the algorithm of Qu and Perron (2007a) since it permits imposing restrictions. For
example, if λc1 ≤ λv1 −ε, we have a two break model and the restrictions are that the error
variances in the first and second regimes are identical, and the coefficients are the same
in the second and third regimes. Hence, for the case ma = na = 1, there are three maxi-
mized likelihood values to construct and the test corresponds to the maximal value over
these three cases. Whenma or na are greater than one, more cases need to be considered,
but the principle is the same.



1026 Perron, Yamamoto, and Zhou Quantitative Economics 11 (2020)

For TP-3, H0 specifies na breaks in σ2 and none in δ. For a partition {Tv1 � � � � �T vna},

the likelihood function is log L̃T (T v1 � � � � �T
v
na
) = −(T/2)(log 2π + 1) − ∑na+1

i=1 [(T vi −
Tvi−1)/2] log σ̃2

i , where σ̃2
i = (T vi − Tvi−1)

−1 ∑Tvi
t=Tvi−1+1(yt − x′

t β̃− z′
t δ̃)

2 for i= 1� � � � � na + 1,

with (β̃′� δ̃′)′ = (W σ ′W σ)−1W σ ′Yσ , W σ = (wσ1 � � � � �w
σ
T )

′ and wσt = (xσ ′
t � z

σ ′
t )

′. Under H1,
there are ma breaks in δ and na breaks in σ2 and the likelihood function is (4). The sup-
LR test is

sup LR3�T (ma�na�ε|m= 0� na)

= 2
[

sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λε

log L̂T
(
Tc1 � � � � �T

c
ma

;Tv1 � � � � �T vna
)

− sup
(λv1�����λ

v
na )∈Λv�ε

log L̃T
(
Tv1 � � � � �T

v
na

)]
= 2

[
log L̂T

(
T̃ c1 � � � � � T̃

c
ma

; T̃ v1 � � � � � T̃ vna
) − log L̃T

(
T̂ v1 � � � � � T̂

v
na

)]
�

For TP-4, under H0 we have no break and the log-likelihood function is (2).H1 specifies
ma breaks in δ and na breaks in σ2 and the log likelihood is (4). Hence, the Sup-LR test is

sup LR4�T (ma�na�ε|n=m= 0)

= 2
[

sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λε

log L̂T
(
Tc1 � � � � �T

c
ma

;Tv1 � � � � �T vna
) − log L̃T

]
= 2

[
log L̂T

(
T̃ c1 � � � � � T̃

c
ma

; T̃ v1 � � � � � T̃ vna
) − log L̃T

]
� (6)

4. The limiting distributions of the tests

The limit distribution of the tests for martingale difference errors is presented in Sec-
tion 4.1 with extensions to serially correlated errors in Section 4.2. Section 4.3 deals with
double maximum tests and Section 4.4 with tests for an additional break; “→p” denotes
convergence in probability, “⇒” weak convergence under the Skorohod topology and
‖ · ‖ is the Euclidean norm.

4.1 The case with martingale difference errors

When σ2 is constant underH0 but allowed to change underH1 (TP-1, 2, 4), we specify:

• Assumption A1. The errors {ut} form an array of martingale differences relative to
Ft = σ-field{� � � � zt−1� zt� � � � � xt−1�xt� � � � � ut−2�ut−1}, E(u2

t ) = σ2
0 for all t and T−1/2 ×∑[Ts]

t=1 (u
2
t /σ

2
0 − 1)⇒ψW (s), whereW (s) is a Wiener process and ψ= limT→∞ var(T−1/2 ×∑T

t=1(u
2
t /σ

2
0 − 1)).

Assumption A1 rules out instability in the error process and states that a basic func-
tional central limit theorem holds for the partial sums of the squared errors. When
changes in the coefficients are tested (TP-3 and TP-4), we assume, with wt = (x′

t � z
′
t )

′:
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• Assumption A2. The errors {ut} form an array of martingale differences relative to Ft =
σ-field{� � � � zt−1� zt� � � � � xt−1�xt� � � � � ut−2�ut−1}, T−1 ∑[Ts]

t=1 wtw
′
t →p sQ,uniformly in s ∈

[0�1], with Q some positive definite matrix and T−1/2 ∑[Ts]
t=1 ztut ⇒ σ0Q

1/2Wq(s), where
Wq(s) is a q-vector of independent Wiener processes independent ofW (s).

The first part of Assumption A2 rules out trending regressors and requires the limit
moment matrix of the regressors be homogeneous throughout the sample. Hence, we
avoid changes in the marginal distribution of the regressors when the coefficients do
not change (e.g., Hansen (2000), Cavaliere and Georgiev (2019)). This follows from our
basic premise that regimes are defined by changes in some coefficients. The second part
of Assumption A2 assumes no serial correlation in the errors ut but this will be relaxed
later. Since some testing problems imply a nonzero number of breaks under H0, that
is, in TP-2 and TP-3, we need the following conditions to ensure that the estimates of
the break fractions are consistent at a fast enough rate so that they do not affect the
distributions of the parameters asymptotically. This problem was analyzed in Qu and
Perron (2007a) and we simply use the same set of assumptions:

• Assumption A3. The conditions stated in Assumptions A1–A9 of Qu and Perron
(2007a) are assumed to hold with the segments defined for T 0

i (i = 1� � � � �K). However,
A6 is replaced by (for j = 1� � � � �m and i = 1� � � � � n): δ0

j+1 − δ0
j = vδT δ

∗
j and σi+1�0 − σi�0 =

vTσ
∗
i�0, where (δ∗

j �σ
∗
i�0) �= 0 and are independent of T . Moreover, vδT is either a positive

number independent of T or a sequence of positive numbers satisfying vδT → 0 and
T 1/2vδT /(logT)2 → ∞, while vT is a sequence of positive numbers satisfying vT → 0 and
T 1/2vT /(logT)2 → ∞.

The main difference is that we require the changes in the variance of the errors to
decrease to 0 at a slow enough rate as T increases, while the changes in the coefficients
can be fixed or decreasing. Both cases ensure that the estimates of the break fractions
are consistent and that the limit distributions of the parameter estimates are the same
as when the true break dates are known. The requirement that the change in variance
must decrease as T increases is to ensure that Assumption A2 holds when changes in
variance are permitted under the null hypothesis, in particular if lagged dependent vari-
ables are present. Otherwise, the limit distribution of the test for TP-3 is not invariant to
nuisance parameters. This is not constraining in practice since the rate of decrease can
be as slow as desired. We will show via simulations that the exact size of the test is close
to the nominal level whether the changes in variance are small or large. To see why this
is needed to ensure that Assumption A2 is satisfied, let ztuσt = ztut/σi0. Then

T−1/2
[Ts]∑
t=1

ztut = T−1/2σ0

[Ts]∑
t=1

ztu
σ
t +

na+1∑
i=1

(
σi0 − σ0

σi0

)(
T−1/2

Tv0
i∑

t=Tv0
i−1+1

ztut

)
⇒ σ0Q

1/2Wq(s)�

where σ0 = σ10 without loss of generality. The result follows since [(σi0 − σ0)/σi0] =
Op(υT ), υT → 0 and T−1/2 ∑Tv0

i

t=Tv0
i−1+1

ztut =Op(1). The same applies to the requirement

that T−1 ∑[Ts]
t=1 wtw

′
t →p sQ uniformly in s. To see that this holds when lagged dependent



1028 Perron, Yamamoto, and Zhou Quantitative Economics 11 (2020)

variables are present, consider a simple AR(1) model yt = βyt−1 + ut in which σ2 has n
breaks and |β|< 1. Using the variance adjusted series yσt = βyσt−1 +uσt where uσt = ut/σi0,
we have

T−1
[Ts]∑
t=1

ztz
′
t = T−1

[Ts]∑
t=1

y2
t−1 = T−1σ2

0

[Ts]∑
t=1

yσ2
t−1 +Op(υT ) p→ sQ� (7)

whereQ= σ2
0/(1 −β2) (see Supplement A). Why vδT can remain fixed when δ changes is

because such breaks do not affect the moments of the errors, and when lagged depen-
dent variables are present changes in δ imply changes in the marginal distribution of
the regressors (e.g., the lagged dependent variables) occurring at the same times, which
is allowed. The limiting distributions of the LR tests underH0, are stated in the following
theorem.

Theorem 1. Under the relevant null H0, we have, as T → ∞: (a) For TP-1, under As-
sumption A1:

sup LR1�T (na�ε|m= n= 0)⇒ sup
(λv1�����λ

v
na )∈Λv�ε

ψ

2

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) �

(b) For TP-2, under Assumptions A1 and A3,

sup LR2�T (ma�na�ε|n= 0�ma)⇒ sup
(λv1�����λ

v
na )∈Λcv�ε

ψ

2

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

)
≤ sup

(λv1�����λ
v
na )∈Λv�ε

ψ

2

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) �

where Λcv�ε = {(λv1� � � � � λvn); for (λ1� � � � � λK) = (λc01 � � � � � λ
c0
m) ∪ (λv1� � � � � λvn)� |λj+1 − λj| ≥

ε (j = 1� � � � �K − 1)�λ1 ≥ ε�λK ≤ 1 − ε}. (c) For TP-3, under Assumptions A2 and A3:

sup LR3�T (ma�na�ε|m= 0� na)⇒ sup
(λc1�����λ

c
ma)∈Λvc�ε

ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
≤ sup

(λc1�����λ
c
ma)∈Λc�ε

ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

) �

where Λvc�ε = {(λc1� � � � � λcm); for (λ1� � � � � λK) = (λc1� � � � � λ
c
m) ∪ (λv0

1 � � � � � λ
v0
n )� |λj+1 − λj| ≥

ε (j = 1� � � � �K − 1)�λ1 ≥ ε�λK ≤ 1 − ε}. (d) For TP-4, under Assumptions A1 and A2:

sup LR4�T (ma�na�ε|n=m= 0)⇒ sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λε

[
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
+ ψ

2

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) ]
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≤ sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λcv�ε

[
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
+ ψ

2

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) ]
�

where Λcv�ε = {(λc1� � � � � λcm;λv1� � � � � λvna); |λcj+1 − λcj | ≥ ε (j = 1� � � � �ma − 1)�λc1 ≥ ε�λcma ≤
1 − ε� |λvi+1 − λvi | ≥ ε (i= 1� � � � � na − 1)�λv1 ≥ ε�λvna ≤ 1 − ε}.

Except for TP-1, the limit distributions depend on the interval between the break
fractions for δ and σ2 when they do not coincide. This imposes restrictions on the pa-
rameter space of the break fractions. Hence, the critical values are smaller than what
is obtained from the standard limit distribution in Bai and Perron (1998). Although the
computation of such limit distributions might be feasible, it is beyond the scope of this
study. The results, however, show that these distributions are bounded by limit random
variables which can easily be simulated. This follows since Λcv�ε ⊆Λv�ε, Λvc�ε ⊆Λc�ε, and
Λε ⊆Λcv�ε. Hence, a conservative testing procedure is possible. As we shall see, the test
is barely conservative if the trimming parameter ε is small, though as ε gets large (e.g.,
0�20) the test will be somewhat undersized. The proof of this theorem is given in the
Appendix. For TP-3, the bound is the same as the limit distribution in Bai and Perron
(1998, 2003b) and the critical values they provided can be used. For TP-1 and TP-2, the
same limit distribution (for a one parameter change) applies except for the scaling factor
(ψ/2). This quantity can nevertheless still be consistently estimated. Consider the class
of estimates:

ψ̂= T−1
T−1∑

j=−(T−1)

ω(j�bT )

T∑
t=|j|+1

η̂t η̂t−j� (8)

where η̂t = (û2
t /σ̂

2) − 1 and σ̂2 = T−1 ∑T
t=1 û

2
t with ût the estimated residuals. Here,

ω(j�bT ) is a weight function and bT some selected bandwidth. The estimate ψ̂ will be
consistent under some conditions on the choice of ω(j�bT ) and the rate of increase of
bT as a function of T . Following Kejriwal (2009) (see also Kejriwal and Perron (2010)),
we use the residuals under H0 to construct the sample autocovariances of ηt but the
residuals under H1 to select the bandwidth parameter bT ; see Supplement B for details.
In our simulations and empirical applications, we use the quadratic spectral kernel and
to select bT we use the method of Andrews (1991) with an AR(1) approximation. If the
errors are i.i.d.,ψ= μ4/σ

4 −1, which can be consistently estimated using ψ̂= μ̂4/σ̂
4 −1,

where σ̂2 = T−1 ∑T
t=1 û

2
t and μ̂4 = T−1 ∑T

t=1 û
4
t with ût the residuals under the null or

alternative hypotheses. Also, if the errors are normal as in Qu and Perron (2007a), ψ= 2
so that no adjustment is necessary. We shall only consider a correction involving ψ̂ as
defined by (8) for all cases; Supplement C shows that there is no loss in power in do-
ing so and that the size remains adequate. The following corrected statistics then have



1030 Perron, Yamamoto, and Zhou Quantitative Economics 11 (2020)

nuisance parameter-free limit distributions:

sup LR∗
1�T = (2/ψ̂) sup LR1�T ⇒ sup

(λv1�����λ
v
na )∈Λv�ε

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) �

sup LR∗
2�T = (2/ψ̂) sup LR2�T ⇒ sup

(λv1�����λ
v
na )∈Λcv�ε

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

)
≤ sup
(λv1�����λ

v
na )∈Λv�ε

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) �

(9)

For TP-4, it is possible to obtain a transformation with a limit distribution-free of nui-
sance parameters but the procedure is more involved. It is given by

sup LR∗
4�T = sup LR4�T −[

(ψ̂− 2)/ψ̂
]

LRv� (10)

where LRv is the LR test for 0 versus na breaks in variance evaluated at {T̃ v1 � � � � � T̃ vna}
obtained by maximizing the likelihood function jointly allowing for ma breaks in δ, that
is,

LRv = 2
[
log L̂T

(
T̃ v1 � � � � � T̃

v
na

) − log L̃T
]
� (11)

where log L̂T (·) and log L̃T are defined by (3) and (2), respectively. Note that LRv is not
equivalent to LR1�T (na�ε|m= n= 0) which is based on the estimates of the break dates
for the changes in variance assuming no break in coefficients. Since {T̃ v1 /T� � � � � T̃ vna/T }
are consistent estimates of the break fractions whetherma = 0 or not, we have

LRv ⇒ (ψ/2) sup
(λv1�����λ

v
na )∈Λε

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

)
and hence,

sup LR∗
4�T ⇒ sup

(λc1�����λ
c
ma ;λv1�����λvna )∈Λε

[
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
+

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) ]

≤ sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λcv�ε

[
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
+

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) ]
� (12)

The limit distribution (12) is new and we obtain the asymptotic critical values via simu-
lations. The Wiener processes Wq(λ) and W (λ) are approximated by the partial sums
T−1/2 ∑[Tλ]

t=1 et and T−1/2 ∑[Tλ]
t=1 εt with et ∼ i.i.d.N(0� Iq) and εt ∼ i.i.d.N(0�1) which
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Table 1. Asympotic critical values of the upper bound of the sup LR∗
4�T test.

q α

ε= 0�10 ε= 0�15 ε= 0�20 ε= 0�25 UD maxLR∗
4

na = 1 na = 2 na = 1 na = 2 na = 1 na = 2 na = 1 M =N = 2

ma = 1 ma = 2 ma = 1 ma = 2 ma = 1 ma = 2 ma = 1 ma = 2 ma = 1 ma = 2 ma = 1 ma = 1 ε= 0�10 ε= 0�15 ε= 0�20

1 0�90 6�59 6�34 6�32 6�20 6�21 5�75 5�72 5�46 5�83 5�19 5�18 5�48 7�18 6�61 6�15
0�95 7�63 7�12 7�10 6�83 7�18 6�49 6�46 6�13 6�79 5�93 5�89 6�43 8�03 7�51 7�05
0�975 8�54 7�78 7�75 7�44 8�12 7�17 7�23 6�71 7�70 6�56 6�70 7�42 8�81 8�32 7�87
0�99 9�79 8�73 8�70 8�17 9�24 7�98 8�00 7�45 8�83 7�42 7�52 8�56 10�00 9�42 8�95

2 0�90 7�88 7�96 7�18 7�41 7�45 7�31 6�54 6�66 7�10 6�72 6�01 6�70 8�47 7�93 7�39
0�95 8�87 8�78 7�94 8�03 8�45 8�12 7�36 7�33 8�12 7�52 6�77 7�72 9�37 8�88 8�42
0�975 9�85 9�52 8�69 8�69 9�45 8�91 8�02 7�88 9�08 8�34 7�50 8�69 10�32 9�77 9�40
0�99 11�12 10�55 9�52 9�52 10�73 9�90 8�93 8�73 10�27 9�31 8�33 9�94 11�47 10�96 10�54

3 0�90 8�98 9�34 7�93 8�44 8�53 8�63 7�30 7�63 8�09 7�94 6�70 7�67 9�73 9�09 8�55
0�95 10�06 10�23 8�72 9�11 9�52 9�51 8�07 8�31 9�11 8�77 7�50 8�75 10�66 10�08 9�48
0�975 11�08 10�98 9�43 9�75 10�61 10�30 8�80 8�98 10�18 9�59 8�25 9�73 11�48 10�93 10�41
0�99 12�43 12�01 10�33 10�53 11�87 11�30 9�67 9�80 11�50 10�50 9�09 10�89 12�66 12�19 11�64

4 0�90 9�96 10�60 8�54 9�32 9�51 9�90 7�87 8�56 9�09 9�17 7�31 8�66 10�88 10�24 9�64
0�95 11�10 11�51 9�38 10�05 10�54 10�83 8�73 9�30 10�14 10�01 8�14 9�73 11�85 11�19 10�66
0�975 12�17 12�30 10�13 10�72 11�61 11�62 9�47 9�98 11�17 10�89 8�91 10�87 12�81 12�20 11�53
0�99 13�50 13�36 11�07 11�59 13�08 12�62 10�42 10�73 12�67 11�90 9�76 12�33 13�99 13�39 12�84

5 0�90 10�94 11�81 9�19 10�21 10�45 11�03 8�53 9�41 9�99 10�36 7�94 9�56 12�07 11�33 10�70
0�95 12�14 12�76 10�00 10�99 11�66 12�01 9�33 10�13 11�20 11�33 8�75 10�73 13�06 12�38 11�84
0�975 13�22 13�68 10�74 11�63 12�72 12�89 10�09 10�82 12�28 12�22 9�54 11�93 13�99 13�38 12�86
0�99 14�47 14�66 11�77 12�50 14�06 14�13 11�15 11�67 13�56 13�29 10�52 13�23 15�16 14�50 13�95

Note: The entries are quantiles x such that P((na +ma)−1 sup LR∗
4 ≤ x)≥ α.

are mutually independent. The number of replications is 10,000 and T = 1000. For
each replication, a sum of the supremum of

∑ma
j=1(‖λcjWq(λcj+1)−λcj+1Wq(λ

c
j )‖2)/(λcj+1 ×

λcj (λ
c
j+1 −λcj ))with respect to (λc1� � � � � λ

c
ma
) and that of

∑na
i=1((λ

v
i W (λ

v
i+1)−λvi+1W (λ

v
i ))

2)/

(λvi+1λ
v
i (λ

v
i+1 −λvi ))with respect to (λv1� � � � � λ

v
na
) is obtained via a dynamic programming

algorithm. The critical values for tests of size 1%, 2�5%, 5%, and 10% are presented
in Table 1 for q between 1 and 5 and ε = 0�1�0�15�0�20�and 0�25. For ε = 0�1�0�15�0�2,
ma = 1�2, and na = 1�2. For ε = 0�25, ma = 1, and na = 1 given that ε = 0�25 imposes a
maximal number of 2 breaks.

4.2 Extensions to serially correlated errors

We now consider the case with serially correlated errors. For TP-1 and TP-2, the results
are the same and the sup LR∗

1�T and sup LR∗
2�T statistics are asymptotically invariant to

nonnormal errors, serial correlation and conditional heteroskedasticity so that the limit
distribution (9) still applies. For TP-3 and TP-4, things are more complex. For TP-3, the
LR type test for changes in δ depends on nuisance parameters. We suggest the following
robust Wald-type statistic: sup(λc1�����λcma)∈Λε W3�T (ma�na�ε|m= 0� na), where

W3�T (ma�na�ε|m= 0� na)= T δ̂′R′(RV̂ (δ̂)R′)−1
Rδ̂ (13)

with δ̂ = (δ̂′
1� � � � � δ̂

′
ma+1)

′ the QMLE of δ under a given partition of the sample, R is the

conventional matrix such that (Rδ)′ = (δ′
1 − δ′

2� � � � � δ
′
ma

− δ′
ma+1) and V̂ (δ̂) is an es-
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timate of the covariance matrix of δ̂ robust to serial correlation and heteroskedastic-
ity, that is, a consistent estimate of V (δ̂) = plimT→∞ T(Z̄∗′

σ Z̄
∗
σ)

−1ΩZ̄∗
σ
(Z̄∗′

σ Z̄
∗
σ)

−1, where

Z̄∗
σ =MXσ Z̄σ , ΩZ̄∗

σ
= E(Z̄∗′

σ U
∗
bU

∗′
b Z̄

∗
σ), U

∗
b =MXσUσ , MXσ = IT −Xσ(X ′

σXσ)
−1X ′

σ , with

Z̄σ = diag(Zσ1 � � � � �Z
σ
ma+1), Z

σ
j = (zσ

Tcj−1+1� � � � � z
σ
Tcj
)′, Uσ = (uσ1 � � � � � u

σ
T )

′, zσt = (zt/σ̂i) and

uσt = (ut/σ̂i), for Tv0
i−1 < t ≤ Tv0

i (i = 1� � � � � na + 1). In practice, the computation of this
test can be very involved. Following Bai and Perron (1998), we suggest first to use the
dynamic programming algorithm to get the break points corresponding to the global
maximizers of the likelihood function defined by (4), then plug the estimates into (13) to
construct the test. This will not affect the consistency of the test since the break fractions
are consistently estimated.

For TP-4, potential serial correlations in both ut and ηt must be accounted for.
This can easily be achieved since sup LR4�T is asymptotically equivalent to sup LR∗

4�T =
sup LR3�T +LRv. Because of the block diagonality of the information matrix, corrections
can be applied to each component separately. The first term is constructed as discussed
above, namely W3�T defined by (13), except that one can use zt instead of zσt since H0
specifies no break in variance. The second term LRv is as defined by (11) with ψ̂ con-
structed by (8).

4.3 Double maximum tests

The tests discussed above need prior information aboutH1, that is, the number of breaks
in δ and in σ2, which may be unknown. Hence the need for TP-5 to TP-8. Bai and Perron
(1998) proposed double maximum tests to solve this problem with only breaks in δ. They
are tests of no break against an unknown number of breaks given some upper bound.
We shall only consider their UD max test. The double maximum tests can play a signifi-
cant role in testing for structural changes and it is arguably the most useful test to apply
when trying to determine if structural changes are present. While tests for one break
are consistent against multiple changes, their power in finite samples can sometimes be
poor. There are types of multiple structural changes that are difficult to detect with a test
for a single change (e.g., two breaks with the first and third regimes the same). Also, tests
for a particular number of changes may have nonmonotonic power when the number of
changes is greater than specified. Furthermore, the simulations of Bai and Perron (2006)
show, in the context of testing for changes in the regression coefficients, that the power
of the double maximum tests is almost as high as the best power achievable using the
test specified with the correct number of breaks. All these elements strongly point to
their usefulness. For each testing problem, the tests and their limit distributions are pre-
sented in the following theorem.

Theorem 2. Under the relevant H0, we have, as T → ∞: (a) For TP-5, under Assump-
tion A1:

UD max LR1�T = max
1≤na≤N

n−1
a sup LR∗

1�T (na�ε|m= n= 0)

⇒ max
1≤na≤N

n−1
a sup

(λv1�����λ
v
na )∈Λv�ε

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) �
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(b) For TP-6, under Assumptions A1 and A3:

UD max LR2�T = max
1≤na≤N

n−1
a sup LR∗

2�T (ma�na�ε|n= 0�ma)

⇒ max
1≤na≤N

n−1
a sup

(λv1�����λ
v
na )∈Λcv�ε

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

)
≤ max

1≤na≤N
n−1
a sup

(λv1�����λ
v
na )∈Λv�ε

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) �

(c) For TP-7, under Assumptions A2 and A3:

UD max LR3�T = max
1≤ma≤M

m−1
a sup LR3�T (ma�na�ε|m= 0� na)

⇒ max
1≤ma≤M

m−1
a sup

(λc1�����λ
c
ma)∈Λvc�ε

ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
≤ max

1≤ma≤M
m−1
a sup

(λc1�����λ
c
ma)∈Λc�ε

ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

) �

(d) For TP-8, under Assumptions A1 and A2:

UD max LR4�T = max
1≤na≤N

max
1≤ma≤M

(na +ma)−1 sup LR∗
4�T (ma�na�ε|n=m= 0)

⇒ max
1≤na≤N

max
1≤ma≤M

(na +ma)−1

× sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λε

[
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
+

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) ]

≤ max
1≤na≤N

max
1≤ma≤M

(na +ma)−1

× sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λcv�ε

[
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
+

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) ]
�

For TP-5 to TP-7, the critical values of the limit distributions are available in Bai and
Perron (1998, 2003b) for N or M equal to 5. For TP-5 and TP-6, the results are valid for
martingale differences or serially correlated errors. This is not the case for TP-7 and TP-8
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for reasons discussed above. We then consider the maximum of the Wald-type tests dis-
cussed Section 4.2. The limit distribution applicable to TP-8 is new. Table 1 presents crit-
ical values obtained using simulations as discussed above for the case of a fixed number
of breaks underH1, for ε= 0�1�0�15�and 0�20, and values ofM andN up to 2; see Perron
and Yamamoto (2019b) for additional critical values withM�N = 2�3�4.

4.4 Testing for an additional break

We now consider TP-9 and TP-10, which assess whether including an additional break
is warranted. Let (T̃ c1 � � � � � T̃

c
m; T̃ v1 � � � � � T̃ vn ) be the estimates of the break dates in δ and

σ2 obtained jointly by maximizing the quasi-likelihood function assuming m breaks in
δ and n breaks in σ2. For TP-9, the issue is whether an additional break in δ is present.
The test is

sup Seq9�T (m+ 1� n|m�n) = max
1≤j≤m+1

sup
τ∈Λcj�ε

log L̂T
(
T̃ c1 � � � � � T̃

c
j−1� τ� T̃

c
j � � � � � T̃

c
m; T̃ v1 � � � � � T̃ vn

)
− log L̂T

(
T̃ c1 � � � � � T̃

c
m; T̃ v1 � � � � � T̃ vn

)
�

whereΛcj�ε = {τ; T̃ cj−1 + (T̃ cj − T̃ cj−1)ε≤ τ ≤ T̃ cj − (T̃ cj − T̃ cj−1)ε}. This amounts to perform-
ing m+ 1 tests for a single break in δ for each of the m+ 1 regimes defined by the par-
tition {T̃ c1 � � � � � T̃ cm}. Note that there are different scenarios when allowing breaks in δ

and in σ2 to happen at different dates, since (T̃ c1 � � � � � T̃
c
m) and (T̃ v1 � � � � � T̃

v
n ) can partly

or completely overlap or be altogether different. This implies two possible cases: (1) if
the n break dates in σ2 are a subset of the m break dates in δ, there is no variance
break between T̃ cj−1 and T̃ cj ; (2) otherwise, there is one or more variance breaks be-

tween T̃ cj−1 and T̃ cj . In either cases, one can appeal to the results of Theorem 1(c) with
ma = 1 since any value of na is allowed, including 0. It is then easy to deduce that, in
the case of martingale errors, the limit distribution of the test is, under Assumptions
A2 and A3, limT→∞ P(sup Seq9�T (m+ 1� n|m�n) ≤ x)=Gq�ε(x)

m+1, where Gq�ε(x) is the
cumulative distribution function of the random variable supλ∈Λ1�ε

‖(Wq(λ)−λWq(1))2‖/
(λ(1−λ)), whereΛ1�ε = {λ;ε < λ< 1−ε}. The critical values of the distribution function
Gq�ε(x)

m+1 can be found in Bai and Perron (1998, 2003b). With serial correlation in the
errors, the principle is the same except that the statistic is based on the robust Wald test
supF3�T as defined by (13) applied for a one break test to each segment. For TP-10, sim-
ilar considerations apply. Here, the issue is whether an additional break in the variance
is present. The test statistic is

sup Seq10�T (m�n+ 1|m�n)
= (2/ψ̂) max

1≤i≤n+1
sup
τ∈Λvi�ε

log L̂T
(
T̃ c1 � � � � � T̃

c
m; T̃ v1 � � � � � T̃ vi−1� τ� T̃

v
i � � � � � T̃

v
m

)
− log L̂T

(
T̃ c1 � � � � � T̃

c
m; T̃ v1 � � � � � T̃ vn

)
�

whereΛvi�ε = {τ; T̃ vi−1 + (T̃ vi − T̃ vi−1)ε≤ τ ≤ T̃ vi − (T̃ vi − T̃ vi−1)ε}. The correction factor (2/ψ̂)
is needed to ensure that the limit distribution of the test is free of nuisance parameters
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when the errors are allowed to be nonnormal, serially correlated and conditionally het-
eroskedastic. One can then use part (b) of Theorem 1 to deduce that, under Assumptions
A1 and A3 applied to each segments under H0: limT→∞ P(sup Seq10�T (m�n + 1|m�n) ≤
x)=G1�ε(x)

n+1.

4.5 Local asymptotic power

Supplement D contains details about the local asymptotic power function of selected
tests. We briefly summarize the relevant results. We consider model (1) focusing on the
case of n=m= 1 with the following assumptions.

• Assumption L1. Assumptions A1 and A3 hold with σ20 − σ10 = σ∗/
√
T . We also

have T−1/2 ∑[Ts]
t=1 [(uσt )2 − 1] ⇒ ψW (s) with ψ = limT→∞ var(T−1/2 ∑T

t=1[(uσt )2 − 1]) and

T−1 ∑[Ts]
t=1 (u

σ
t )

2 p→ s uniformly in s.

• Assumption L2. Assumptions A2 and A3 hold with δ0
2 − δ0

1 = δ∗/
√
T .

We derive the local asymptotic power of the tests sup LR2�T (n = 1�m = 1� ε|n = 0�
m = 1) and sup LR3�T (m = 1� n = 1� ε|m = 0� n = 1) and the corresponding tests with
no nuisance breaks accounted for, that is, sup LR1�T and the standard sup LRT test.
Lemma S.1 shows that the local asymptotic power of the sup LR2�T test coincides with
that of sup LR1�T except that the set of permissible break dates Λcv�ε is smaller than
Λv�ε, which has no practical effect. Lemma S.2 shows that the local asymptotic power
of sup LR3�T is the same as that of sup LRT derived in Andrews (1993, Theorem 4),
again except that the set of permissible break dates is Λvc�ε instead of Λc�ε. Hence, when
testing for changes in variance (resp., coefficients) allowing for changes in coefficients
(resp., variance), we have the same local asymptotic power function as when testing for
changes in variance (resp., coefficients) when no change in coefficient (resp., variance)
is present. Hence, there is no loss in local asymptotic power adopting our more general
approach.

We also derived the local asymptotic power function of the CUSQ test (see (14) below
for its definition) and compared it to that of the sup LR1�T and sup LR2�T tests. Figure S.1
shows the asymptotic local power functions of the sup LR1�T and CUSQ tests when a
break in variance occurs at λv0 = 0�3�0�5�and 0�7 and no break occurs in the coeffi-
cients. They show the local asymptotic power functions to be almost identical. Figure S.2
presents the local asymptotic power functions of the sup LR2�T test when it accounts for
a coefficient break at λc0 = 0�3�0�5�or 0�7. It also shows that the local asymptotic power
functions of the CUSQ test under the assumption of no break in the coefficients. This
simulation design gives an advantage to the CUSQ. Indeed, the power of the sup LR2�T
test is slightly lower when the variance and the coefficient break dates coincide. This
is because the permissible break dates around the true break date are not considered
due to the concurrent nuisance break. However, the power loss of the sup LR2�T test is
very minor. The power of both tests are almost identical even though the sup LR2�T test
considers a single nuisance break when the two breaks are far apart. that is, the case of
(λv0�λc0)= (0�3�0�7) and (0�7�0�3).
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5. Monte Carlo experiments

We provide simulation results to assess the size and power properties of some tests
proposed; Section 5.1 for variance breaks, Section 5.2 for conditional tests, Section 5.3
for the sup LR∗

4�T and UD max tests. Supplement E provides additional results for the
sup LR1�T and sup LR2�T tests with nonnormal errors. Following Bai and Ng (2005), we
use: (a) the t distribution with 5 degrees of freedom, (b) a mixture of two normal distri-
butions: v1I(z ≤ 0�5) + v2I(z > 0�5), where z ∼ U[0�1], v1 ∼ N(−1�1) and v2 ∼ N(1�1),
(c) the χ2 distribution with 5 degrees of freedom and (d) an exponential distribution
− ln(v), v ∼ U[0�1]. The results show that the exact size of the tests is similarly close to
the nominal size. As expected, power is lower for all distributions, though the extent of
the power loss is minor and the tests remain informative. Our tests for changes in vari-
ance retain their power advantage over the CUSQ test.

5.1 Testing for variance breaks only

We now consider the case of testing only for variance breaks assuming no change in δ.
We investigate the properties of the following tests: the sup LR∗

1�T (na�ε|m = n = 0), ab-
breviated sup LR∗

1�T (na�ε) and the UD max LR1�T for an unknown number of breaks up
to N = 5. We also consider a corrected version of the CUSUM of squares test of Brown,
Durbin, and Evans (1975), as extended by Deng and Perron (2008), given by

CUSQ = sup
λ∈[0�1]

∣∣∣∣∣T−1/2

[[Tλ]∑
t=1

ṽ2
t − ([Tλ]/T ) T∑

t=1

ṽ2
t

]∣∣∣∣∣/ϕ̂1/2
a (14)

with ϕ̂a = T−1 ∑(T−1)
j=−(T−1) ω(j�bT )

∑T
t=|j|+1 η̂t η̂t−j , where η̂t = ṽ2

t − σ̂ , σ̂2 = T−1 ∑T
t=1 ṽ

2
t

and ṽt denotes the recursive residuals. Also ω(j�bT ) is the quadratic spectral kernel
and the bandwidth bT is selected using Andrews’ (1991) method with an AR(1) ap-
proximation. The aim of the design is to address the following issues: (a) the size of
the sup LR∗

1�T (na�ε) and UD max LR1�T tests; (b) the relative power of the three tests;
(c) the power losses obtained when underspecifying the number of breaks; (d) the rel-
ative power of UD max LR1�T compared to sup LR∗

1�T (na�ε) with na specified to be the
true number of breaks. We consider a dynamic model with GARCH errors, for which
the DGP is given by yt = c + αyt−1 + et , et = ut

√
ht , ut ∼ i.i.d.N(0�1), ht = τ1 + τ21(t >

[0�5T ])+ γe2
t−1 + ρht−1, where we set h0 = τ1/(1 − γ − ρ), c = 0�5, τ1 = 0�1, and ε= 0�15.

We consider α= 0�2�0�7 and the GARCH(1�1) coefficients are set to γ = 0�1�0�3�0�5, and
ρ = 0�2. The size and power of 5% nominal size tests are evaluated at T = 100�200. The
magnitude of the change τ2 varies between 0 (size) and 0�3. The results are presented in
Table 2. The sup LR∗

1�T (1� ε) and UD max LR1�T tests show size distortions when γ = 0�5
with T = 100 but the size is close to 5% when T = 200. The CUSQ test is slightly under-
sized. The UD max LR1�T test has power close to that of sup LR∗

1�T (1� ε), despite having a
broader range of alternatives. The power of the latter two tests dominates that of CUSQ
especially when T = 100. Supplement F shows the results to be robust for a static mean
model with normal errors.
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Table 2. Size and power of the sup LR∗
1�T (na = 1� ε), UD max LR1�T and CUSQ tests in a dynamic

model with GARCH(1�1) errors.

T = 100

α= 0�2 α= 0�7

γ = 0�1 γ = 0�3 γ = 0�5 γ = 0�1 γ = 0�3 γ = 0�5

τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0�059 0�059 0�029 0�083 0�086 0�039 0�098 0�099 0�042 0�066 0�061 0�029 0�078 0�084 0�038 0�097 0�092 0�039
0�05 0�171 0�167 0�158 0�165 0�171 0�103 0�151 0�155 0�082 0�164 0�158 0�149 0�147 0�149 0�100 0�137 0�140 0�080
0�1 0�396 0�373 0�354 0�307 0�307 0�232 0�224 0�228 0�136 0�383 0�367 0�356 0�300 0�297 0�232 0�218 0�224 0�138
0�15 0�593 0�575 0�574 0�432 0�409 0�349 0�312 0�312 0�199 0�591 0�573 0�564 0�425 0�414 0�330 0�307 0�308 0�201
0�2 0�744 0�725 0�693 0�542 0�542 0�446 0�415 0�408 0�270 0�741 0�723 0�684 0�534 0�534 0�441 0�384 0�385 0�259
0�3 0�902 0�888 0�851 0�741 0�738 0�626 0�535 0�540 0�370 0�897 0�887 0�856 0�724 0�724 0�624 0�534 0�534 0�376

T = 200

α= 0�2 α= 0�7

γ = 0�1 γ = 0�3 γ = 0�5 γ = 0�1 γ = 0�3 γ = 0�5

τ2 LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ LR UDmax CUSQ

0 0�049 0�044 0�034 0�058 0�060 0�035 0�064 0�063 0�045 0�055 0�056 0�036 0�061 0�064 0�034 0�060 0�061 0�040
0�05 0�315 0�311 0�335 0�217 0�202 0�203 0�129 0�123 0�110 0�311 0�303 0�332 0�208 0�202 0�205 0�122 0�115 0�100
0�1 0�709 0�692 0�751 0�446 0�431 0�455 0�263 0�249 0�225 0�702 0�682 0�734 0�442 0�428 0�448 0�257 0�241 0�222
0�15 0�918 0�910 0�928 0�672 0�648 0�649 0�404 0�384 0�345 0�918 0�912 0�923 0�648 0�641 0�643 0�386 0�370 0�335
0�2 0�980 0�977 0�979 0�780 0�764 0�764 0�510 0�497 0�456 0�981 0�980 0�981 0�777 0�766 0�763 0�496 0�489 0�441
0�3 0�997 0�996 0�997 0�910 0�903 0�878 0�682 0�662 0�601 0�997 0�997 0�998 0�903 0�898 0�877 0�676 0�654 0�606

Note: DGP: yt = c + αyt−1 + et , et = ut
√
ht , with ut ∼ i.i.d.N(0�1), ht = τ1 + τ21(t > [0�5T ])+ γe2

t−1 + ρht−1 , h0 = τ1/(1 −
γ− ρ), c = 0�5, τ1 = 0�1, ρ= 0�2; ε= 0�15.

We now turn to a case with two breaks in variance. The DGP is yt = et ; et ∼
i.i.d.N(0�1 + θ1(T v1 < t ≤ Tv2 )), that is, the variance increases at Tv1 and returns to its
original level at Tv2 . We consider two scenarios: {Tv1 = [0�3T ]�T v2 = [0�6T ]} and {Tv1 =
[0�2T ]�T v2 = [0�8T ]}. We set T = 200 and ε = 0�10�0�15. The magnitude of the break in
σ2 varies between θ= 0 (size) and θ = 3. We again consider the UD max LR1�T test with
N = 5 but include both the sup LR∗

1�T (1� ε) test for a single break and the sup LR∗
1�T (2� ε)

test for two breaks to assess the extent of power gains when specifying the correct num-
ber of breaks. The results are presented in Table 3. Consider first the size of the tests. The
sup LR∗

1�T (1� ε), sup LR∗
1�T (2� ε) and UD max LR1�T tests are slightly conservative and the

CUSQ even more so with an exact size of 0�025. As expected, power increases as ε in-
creases since the range of alternatives is smaller. When comparing the sup LR∗

1�T (1� ε)
and sup LR∗

1�T (2� ε) tests, the latter is more powerful, indicating that allowing for the
correct number of breaks improves power. The UD max LR1�T test has power between
those of the sup LR∗

1�T (1� ε) and sup LR∗
1�T (2� ε) tests. These tests are considerably more

powerful than the CUSQ, which has little power.

5.2 Conditional tests

We now consider the properties of the tests that condition on either breaks in coeffi-
cients (resp., variance) when testing for changes in variance (resp., coefficients). Con-
sider first the size and power of sup LR∗

2�T (ma�na�ε|n= 0�ma)which tests for na changes

in σ2 conditional onma changes in δwith ε= 0�1�0�2. We setma = na = 1 and the DGP is



1038 Perron, Yamamoto, and Zhou Quantitative Economics 11 (2020)

Table 3. Size and power of the sup LR∗
1�T (na�ε), UD max LR1�T and CUSQ tests with normal

errors and two variance breaks.

Tv1 = [0�3T ], Tv2 = [0�6T ] Tv1 = [0�2T ], Tv2 = [0�8T ]
ε= 0�10 ε= 0�15 ε= 0�10 ε= 0�15

θ na = 1 na = 2 UDmax na = 1 na = 2 UDmax CUSQ na = 1 na = 2 UDmax na = 1 na = 2 UDmax CUSQ

0 0�035 0�034 0�036 0�033 0�025 0�030 0�025 0�035 0�034 0�036 0�033 0�025 0�030 0�025
0�25 0�049 0�040 0�045 0�066 0�054 0�064 0�031 0�067 0�043 0�062 0�063 0�052 0�064 0�035
0�5 0�111 0�120 0�103 0�117 0�159 0�121 0�059 0�158 0�138 0�139 0�166 0�170 0�165 0�036
0�75 0�164 0�260 0�195 0�171 0�294 0�209 0�085 0�263 0�283 0�265 0�276 0�360 0�287 0�044
1 0�213 0�418 0�289 0�239 0�493 0�340 0�124 0�390 0�472 0�390 0�428 0�520 0�442 0�061
1�25 0�291 0�575 0�404 0�328 0�674 0�495 0�147 0�538 0�647 0�558 0�563 0�707 0�606 0�053
1�5 0�356 0�703 0�513 0�405 0�778 0�613 0�197 0�647 0�780 0�676 0�706 0�837 0�731 0�065
2 0�456 0�835 0�701 0�530 0�893 0�761 0�276 0�798 0�915 0�841 0�828 0�946 0�868 0�083
2�5 0�621 0�935 0�848 0�686 0�959 0�882 0�375 0�907 0�971 0�931 0�930 0�986 0�950 0�133
3 0�693 0�959 0�895 0�728 0�983 0�919 0�430 0�943 0�987 0�961 0�963 0�993 0�977 0�120

Note: DGP: yt = et ; et ∼ i.i.d.N(0�1 + θ1(Tv1 < t ≤ Tv2 )), T = 200.

a simple mean shift model with a change of magnitude μ2 at mid-sample with i.i.d. nor-
mal errors having a change in variance of magnitude θ (underH1) that occurs at [0�25T ].
The results for size are presented in Table 4. The test is slightly conservative and more
so as the trimming is larger. This is due to the fact that the limit distribution used is an
upper bound. The results for power are presented in Table 5. It increases rapidly with
the magnitude of the variance break θ and with T . It also marginally increases with the
value of the trimming ε.

We next investigate the size and power of sup LR∗
3�T (ma�na�ε|m= 0� na) which tests

for ma changes in δ conditional on na changes in σ2 with ε = 0�1�0�2. We again set
ma = na = 1 and consider the mean model in which σ2 changes at mid-sample. We also
consider an AR(1)model yt = c+αyt−1 +et with c = 0�5,α= 0�5 and et being i.i.d. normal

Table 4. Size of the sup LR∗
2�T (ma = 1� na = 1� ε|n = 0�ma = 1) test with different trimming pa-

rameter ε in the case of normal errors.

T = 100 T = 200

μ2 \ ε 0�1 0�15 0�2 0�25 0�1 0�15 0�2 0�25

0 0�045 0�042 0�030 0�023 0�039 0�032 0�030 0�031
0�1 0�038 0�028 0�033 0�030 0�045 0�046 0�036 0�037
0�25 0�037 0�039 0�034 0�030 0�034 0�034 0�035 0�030
0�5 0�037 0�035 0�036 0�033 0�031 0�025 0�029 0�027
0�75 0�043 0�047 0�046 0�041 0�044 0�033 0�035 0�031
1 0�034 0�031 0�031 0�031 0�034 0�027 0�020 0�017
2 0�030 0�023 0�028 0�028 0�041 0�029 0�028 0�029
4 0�034 0�032 0�031 0�027 0�034 0�026 0�024 0�026

10 0�038 0�033 0�032 0�031 0�038 0�033 0�025 0�022
20 0�031 0�030 0�035 0�027 0�040 0�034 0�023 0�021

Note: DGP: yt =μ1 +μ21(t > [0�5T ])+ et , et ∼ i.i.d.N(0�1), μ1 = 0.
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Table 5. Power of the sup LR∗
2�T (ma = 1� na = 1� ε|n = 0�ma = 1) test with different trimming

parameter ε in the case of normal errors.

T = 100

ε= 0�1 ε= 0�2

θ \ μ2 0 0�1 0�5 2 4 10 20 0 0�1 0�5 2 4 10 20

0�25 0�063 0�046 0�047 0�056 0�065 0�063 0�053 0�056 0�040 0�043 0�049 0�045 0�044 0�047
0�5 0�101 0�094 0�089 0�090 0�099 0�096 0�101 0�091 0�092 0�097 0�077 0�096 0�091 0�101
0�75 0�150 0�162 0�133 0�168 0�177 0�181 0�178 0�168 0�174 0�160 0�176 0�177 0�176 0�171
1 0�237 0�233 0�218 0�212 0�222 0�244 0�242 0�270 0�285 0�226 0�225 0�231 0�236 0�235
1�25 0�270 0�300 0�319 0�293 0�353 0�362 0�327 0�318 0�323 0�335 0�316 0�375 0�383 0�321
1�5 0�388 0�379 0�378 0�419 0�417 0�448 0�398 0�443 0�431 0�435 0�425 0�448 0�462 0�445
2 0�533 0�519 0�496 0�557 0�556 0�598 0�559 0�592 0�586 0�558 0�588 0�602 0�620 0�594
3 0�760 0�771 0�771 0�779 0�830 0�843 0�802 0�827 0�823 0�825 0�822 0�857 0�863 0�838
4 0�887 0�876 0�865 0�892 0�908 0�909 0�916 0�921 0�910 0�920 0�924 0�927 0�943 0�940

T = 200

ε= 0�1 ε= 0�2

θ \ μ2 0 0�1 0�5 2 4 10 20 0 0�1 0�5 2 4 10 20

0�25 0�052 0�066 0�066 0�077 0�084 0�092 0�090 0�063 0�067 0�059 0�073 0�074 0�067 0�071
0�5 0�175 0�177 0�153 0�204 0�178 0�207 0�219 0�205 0�188 0�165 0�216 0�185 0�199 0�212
0�75 0�311 0�352 0�340 0�361 0�382 0�369 0�365 0�383 0�385 0�364 0�376 0�384 0�385 0�381
1 0�485 0�506 0�469 0�518 0�553 0�529 0�567 0�551 0�566 0�529 0�542 0�585 0�574 0�599
1�25 0�648 0�643 0�660 0�716 0�716 0�717 0�741 0�695 0�685 0�694 0�729 0�745 0�760 0�770
1�5 0�771 0�771 0�773 0�821 0�827 0�842 0�821 0�834 0�813 0�824 0�852 0�851 0�871 0�851
2 0�918 0�907 0�928 0�933 0�962 0�942 0�955 0�943 0�943 0�953 0�950 0�972 0�961 0�973
3 0�990 0�996 0�992 0�996 0�999 0�998 0�996 0�997 0�998 0�996 0�996 0�999 0�999 0�998
4 0�998 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000

Note: DGP: yt = μ1 +μ21(t > [0�5T ])+ et , et ∼ i.i.d.N(0�1 + θ1(t > [0�25T ])).

errors having a change in variance at [0�5T ] with magnitude θ. This is done to investi-
gate potential size distortions due to large variance changes. As discussed in Section 4.1,
a change in variance induces a change in the marginal distribution of the regressors
when lagged dependent variables are included. The results for the size of the tests are
presented in Table 6. The size under the mean model is close to the nominal level but
the test becomes conservative as ε increases since the limiting distribution used is a
bound. The size under the AR(1) model is very similar with the distortions being even
smaller. This indicates that the shrinking variance assumption is not binding. The re-
sults for power are presented in Table 7 for the mean model with a coefficient change
at [0�25T ]. The power quickly increases as the break magnitude θ and T increase. The
power again marginally increases with ε.

5.3 Size and power of the sup LR∗
4�T and UD max LR4�T tests

We now consider the sup LR∗
4�T and UD max LR4�T (simply labeled UD max) tests. To this

end, we use a model with GARCH(1�1) errors so that the DGP is yt = et with et = ut
√
ht ,

where ut ∼ i.i.d.N(0�1), ht = τ1 +γe2
t−1 +ρht−1, h0 = τ1/(1−γ−ρ), τ1 = 1, ρ= 0�2 and γ
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Table 6. Size of the sup LR∗
3�T (ma = 1� na = 1� ε|m = 0� na = 1) test with different trimming pa-

rameter ε in the case of normal errors.

T = 100 T = 200

θ \ ε 0�1 0�15 0�2 0�25 0�1 0�15 0�2 0�25

Panel (a)
0 0.043 0.053 0.051 0.031 0.042 0.041 0.039 0.036
0�1 0.050 0.053 0.033 0.037 0.027 0.035 0.033 0.026
0�25 0.042 0.042 0.042 0.023 0.034 0.044 0.039 0.040
0�5 0.044 0.024 0.038 0.038 0.036 0.035 0.035 0.028
0�75 0.039 0.039 0.037 0.033 0.043 0.038 0.040 0.034
1 0.033 0.043 0.045 0.027 0.029 0.044 0.042 0.029
2 0.046 0.045 0.039 0.022 0.038 0.032 0.029 0.013
4 0.030 0.054 0.035 0.020 0.038 0.032 0.030 0.014

10 0.034 0.043 0.030 0.027 0.037 0.035 0.031 0.015
20 0.046 0.039 0.027 0.027 0.032 0.039 0.030 0.012

Panel (b)
0 0.069 0.066 0.066 0.055 0.049 0.043 0.050 0.042
0�1 0.057 0.060 0.062 0.056 0.044 0.047 0.048 0.039
0�25 0.057 0.055 0.055 0.049 0.039 0.044 0.053 0.035
0�5 0.050 0.058 0.048 0.043 0.051 0.044 0.050 0.035
0�75 0.055 0.055 0.057 0.046 0.043 0.036 0.036 0.034
1 0.065 0.055 0.051 0.042 0.044 0.053 0.045 0.028
2 0.047 0.066 0.062 0.045 0.043 0.040 0.040 0.027
4 0.052 0.053 0.039 0.025 0.030 0.051 0.031 0.017

10 0.050 0.063 0.050 0.026 0.043 0.038 0.034 0.018
20 0.040 0.065 0.059 0.024 0.048 0.038 0.034 0.025

Note: Panel (a): DGP: yt = μ1 + et , et ∼ i.i.d.N(0�1 + θ1(t > [0�5T ])), μ1 = 0; panel (b): DGP: yt = c + αyt−1 + et , et ∼
i.i.d.N(0�1 + θ1(t > [0�5T ])), c = 0, α= 0�5.

takes values 0�1�0�3�0�5. Also, ε = 0�1�0�2. For the UD max test, M = N = 2 and for the
sup LR∗

4�T test, we consider the following combinations: (a) ma = na = 1, (b) ma = 1,
na = 2, (c) ma = 2, na = 1. We set T = 100�200. The results, presented in Table 8, show
that the size is close to or slightly lower than the nominal 5% level (some cases have
slight liberal size distortions when T = 100, which, however, decrease when T = 200).
Supplement G shows that the tests have good sizes with i.i.d. normal errors.

We now consider the power of these tests. Since some partial results for the one break
case are available in Tables S.6–S.7 for the sup LR∗

4�T test, we concentrate on the case with
a different number of breaks in coefficients and in variance. We also only consider i.i.d.
normal errors though the hybrid-type correction is still applied. Table 9 presents the re-
sults for the case with one break in coefficient and two breaks in variance, in which case
the DGP is yt = μ1 + μ21(t > Tc) + et , et ∼ i.i.d.N(0�1 + θ1(T v1 < t ≤ Tv2 )) with μ1 = 0,
μ2 = θ and ε= 0�1. Five different configurations of break dates are considered. We ana-
lyze two forms of the sup LR∗

4�T test: (a) one testing for a single break in both mean and
variance, (b) one correctly testing for two changes in variance and one change in mean.
This is done to investigate the extent of the power differences when underspecifying the
number of breaks. As expected, the power increases rapidly with θ and with T . With the
DGP used, the power is similar whether accounting for one or (correctly) two breaks in
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Table 7. Power of the sup LR∗
3�T (ma = 1� na = 1� ε|m = 0� na = 1) test with different trimming

parameter ε in the case of normal errors.

T = 100

ε= 0�1 ε= 0�2

μ2 \ θ 0 0�1 0�5 2 4 10 20 0 0�1 0�5 2 4 10 20

0�1 0�050 0�050 0�055 0�058 0�059 0�057 0�059 0�050 0�049 0�043 0�034 0�031 0�037 0�030
0�25 0�096 0�092 0�092 0�082 0�078 0�074 0�080 0�117 0�115 0�110 0�088 0�077 0�077 0�077
0�5 0�349 0�351 0�340 0�300 0�263 0�255 0�245 0�353 0�350 0�334 0�305 0�283 0�283 0�243
0�75 0�670 0�663 0�651 0�580 0�538 0�503 0�485 0�702 0�696 0�692 0�625 0�586 0�586 0�544
1 0�901 0�899 0�892 0�853 0�821 0�799 0�785 0�930 0�929 0�929 0�901 0�866 0�866 0�811
4 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000

T = 200

ε= 0�1 ε= 0�2

μ2 \ θ 0 0�1 0�5 2 4 10 20 0 0�1 0�5 2 4 10 20

0�1 0�059 0�062 0�054 0�046 0�043 0�045 0�049 0�059 0�056 0�044 0�058 0�055 0�053 0�042
0�25 0�175 0�170 0�178 0�140 0�136 0�136 0�138 0�192 0�179 0�183 0�158 0�142 0�132 0�135
0�5 0�650 0�609 0�585 0�556 0�518 0�494 0�466 0�681 0�655 0�673 0�583 0�542 0�506 0�482
0�75 0�939 0�959 0�934 0�913 0�901 0�882 0�847 0�963 0�965 0�963 0�913 0�909 0�878 0�883
1 1�000 0�999 0�997 0�995 0�989 0�988 0�987 1�000 0�998 0�999 0�998 0�998 0�996 0�995
4 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000 1�000

Note: DGP: yt = μ1 +μ21(t > [0�25T ])+ et , et ∼ i.i.d.N(0�1 + θ1(t > [0�5T ])), μ1 = 0.

variance and the power of the UD max test is also similar to the power of both versions
of the sup LR∗

4�T test. This may, however, be DGP specific. Table 10 presents the results
for the case with two breaks in coefficient and one break in variance, with the DGP given
by yt = μ1 +μ21(T c1 < t ≤ Tc2 )+ et , et ∼ i.i.d.N(0�1 + θ1(t > Tv))with μ1 = 0 and μ2 = θ.

Table 8. Size of the sup LR∗
4�T (ma�na) and UD max LR4�T tests in the case of GARCH(1�1) er-

rors.

T = 100

ε= 0�1 ε= 0�2

γ ma = na = 1 ma = 1, na = 2 ma = 2, na = 1 UDmax ma = na = 1 ma = 1, na = 2 ma = 2, na = 1 UDmax

0�1 0�044 0�046 0�047 0�050 0�037 0�040 0�035 0�046
0�3 0�048 0�065 0�051 0�073 0�041 0�052 0�042 0�055
0�5 0�072 0�083 0�075 0�085 0�065 0�069 0�059 0�061

T = 200

ε= 0�1 ε= 0�2

γ ma = na = 1 ma = 1, na = 2 ma = 2, na = 1 UDmax ma = na = 1 ma = 1, na = 2 ma = 2, na = 1 UDmax

0�1 0�034 0�035 0�034 0�041 0�036 0�034 0�037 0�037
0�3 0�032 0�041 0�035 0�043 0�036 0�037 0�031 0�040
0�5 0�039 0�044 0�041 0�051 0�040 0�040 0�024 0�040

Note: DGP: yt = et , et = ut
√
ht , with ut ∼ i.i.d.N(0�1), ht = τ1 + γe2

t−1 + ρht−1 , τ1 = 1, ρ= 0�2, h0 = τ1/(1 − γ− ρ).
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Again, we consider two forms of the sup LR∗
4�T test: one testing for a single break in both

mean and variance, one correctly testing for two changes in mean and one change in
variance. Table 10 shows that for given values of θ and T , the power is lower than with
one break in coefficient and two breaks in variance. Also, the UD max test now has power
between that of the test correctly specifying the type and number of breaks and that un-
derspecifying the number of changes in mean. The difference can be substantial and, as
in Bai and Perron (2006), the power of the UD max test is close to that attainable when
the type and number of breaks is correctly specified.

6. Estimating the numbers of breaks in coefficients and in variance

To select the number of breaks in regression coefficients or error variance, we suggest
a specific to general procedure that uses the sequential tests proposed in Section 4.4.
We determine the number of coefficients and variance breaks allowing for a given num-
ber of breaks in the other component. When selecting the number of breaks in δ, we
consider TP-9 and the test sup Seq9�T (m+ 1�N|m�N) is applied, starting withH0 :m= 0
and H1 :m= 1, where N is some prespecified maximum number of breaks in variance.
Upon a rejection, we proceed to H0 : m = 1 versus H1 : m = 2, and so on until the test
stops rejecting. Since the number of breaks n in σ2 is unknown, contamination of the
test statistics by unaccounted breaks in σ2 must be avoided. This can be achieved im-
posing a maximum number N throughout. Similarly, to select the number of breaks in
σ2, TP-10 is considered and the test sup Seq10�T (M�n + 1|M�n) is used for n = 0�1� � � � ,
until a nonrejection occurs. Again, some maximum number of breaks in the coefficients
M is imposed. We performed a simple simulation experiment with T = 200, ε= 0�15 and
the DGP given by

yt = μ1 +μ21
(
t > Tc

) + et� et ∼ i.i.d.N
(
0�1 + θ1

(
t > Tv

))
with μ1 = 0 so that at most one break in either mean or variance occurs. We consider the
following scenarios: (a) no change in mean or variance, (b) a change in mean only occur-
ring at mid-sample, (c) a change in variance only occurring at mid-sample, (d) a change
in both mean and variance occurring at a common date (mid-sample); (e) a change in
both mean and variance occurring at different but close dates (Tc = [0�5T ], Tv = [0�7T ])
or (f) at different and distant dates (Tc = [0�25T ], Tv = [0�75T ]). Different magnitudes of
breaks are considered. The procedure is applied setting the maximum number of breaks
toM = 2 andN = 2 (i.e., four breaks overall). We also considered a split-sample method
discussed in Supplement H. The results are presented in Tables 11 and S.4. The proce-
dures work quite well in selecting the correct number and type of breaks. There are cases,
however, where the probability of correct selection is quite low with the split-sample
method, for example, when both changes in mean and variance are not large and occur
at different dates, especially far apart. The specific to general approach tests for breaks
in coefficients and variance separately allowing the other component to have unknown
breaks, which can avoid segmentations and lead to power gains. The probabilities of se-
lecting the correct number of each type of breaks are high with this approach (higher
than with the split-sample method, see Table S.10) when the changes are not large and
the break dates are different. Hence, we recommend this procedure in practice.
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Table 11. Finite sample performance of the specific to general sequential procedure to select
the number of breaks in coefficients and variance.

m= n= 0 m= n= 1 m= n= 1
Tc = [0�5T ], Tv = [0�7T ] Tc = [0�25T ], Tv = [0�75T ]

μ2 = θ= 1 μ2 = 1, θ= 3 μ2 = 1, θ= 5 μ2 = θ= 2 μ2 = θ= 1 μ2 = θ= 2 μ2 = 1, θ= 3

prob(m= 0� n= 0) 0�906 0�000 0�000 0�000 0�000 0�000 0�000 0�000
prob(m= 0� n= 1) 0�042 0�000 0�002 0�003 0�000 0�000 0�000 0�000
prob(m= 0� n= 2) 0�000 0�000 0�000 0�000 0�000 0�000 0�000 0�000
prob(m= 1� n= 0) 0�043 0�286 0�001 0�000 0�023 0�343 0�028 0�004
prob(m= 1� n= 1) 0�007 0�680 0�954 0�956 0�936 0�628 0�937 0�963
prob(m= 1� n= 2) 0�000 0�009 0�002 0�016 0�019 0�007 0�011 0�010
prob(m= 2� n= 0) 0�002 0�008 0�000 0�000 0�000 0�010 0�001 0�000
prob(m= 2� n= 1) 0�000 0�016 0�023 0�025 0�022 0�011 0�020 0�021
prob(m= 2� n= 2) 0�000 0�001 0�000 0�000 0�000 0�001 0�003 0�002

m= n= 1 m= 1, n= 0 m= 0, n= 1
Tc = Tv = [0�5T ] Tc = [0�5T ] Tv = [0�5T ]

μ2 = θ= 1 μ2 = 1, θ= 3 μ2 = 1 μ2 = 2 μ2 = 3 θ= 1 θ= 2 θ= 3

prob(m= 0� n= 0) 0�000 0�000 0�000 0�000 0�000 0�234 0�005 0�000
prob(m= 0� n= 1) 0�003 0�029 0�000 0�000 0�000 0�706 0�924 0�924
prob(m= 0� n= 2) 0�000 0�002 0�000 0�000 0�000 0�013 0�027 0�031
prob(m= 1� n= 0) 0�240 0�000 0�931 0�935 0�934 0�009 0�000 0�000
prob(m= 1� n= 1) 0�729 0�917 0�039 0�038 0�038 0�035 0�040 0�041
prob(m= 1� n= 2) 0�008 0�034 0�000 0�000 0�000 0�002 0�003 0�003
prob(m= 2� n= 0) 0�005 0�000 0�028 0�023 0�024 0�001 0�000 0�000
prob(m= 2� n= 1) 0�014 0�017 0�002 0�004 0�004 0�000 0�001 0�001
prob(m= 2� n= 2) 0�001 0�001 0�000 0�000 0�000 0�000 0�000 0�000

Note: DGP: yt = μ1 + μ21(t > Tc) + et , et ∼ i.i.d.N(0�1 + θ1(t > Tv)), ε = 0�15, T = 200. prob(m = j� n = i) represents the
probability of choosing j breaks in mean and i breaks in variance. The upper bounds for the coefficients and the variance
breaks are set to M = 2 and N = 2.

7. Empirical examples

We investigate structural changes in the conditional mean and in the error variance
of US inflation, quarterly from 1959:1 to 2018:4. For comparison purposes, we use
Stock and Watson’s (2002) transformation to achieve stationarity, that is, we trans-
form the GDP deflator (Xt ) into annual changes of the quarterly inflation rate as Yt =
100[ln(Xt/Xt−1)− ln(Xt−4/Xt−5)]. The resulting series is presented in Figure 1. We use
a simple AR(4) model of the form Yt = μ + ∑4

j=1φjYt−j + et . Using the sample from
1959:1 to 2002:3 and a two-step procedure, Stock and Watson (2002) found strong evi-
dence of a structural change in the conditional mean but no or weak evidence of changes
in the error variance. Table 12(a) reports the sup LR4�T and the UD max LR4�T tests.
They suggest at least one change in either or both the coefficients and the variance.
Table 12(b) presents the results when testing for changes in the coefficients, allowing
for changes in the variance. As in Stock and Watson (2002), we obtain strong evidence
of a change in the conditional mean coefficients if we assume no change in the error
variance (sup LR3�T withma = 1 and UD max LR3�T tests, both with na = 0). The sequen-
tial procedure using the sup Seq9�T test confirms that a one break specification is pre-
ferred with the break date estimated at 1982:1. However, any evidence of changes in the
conditional mean disappears once we jointly consider structural changes in the error
variance. To assess whether changes in variance are indeed present when accounting
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Figure 1. Annual change of the quarterly US inflation rate: 1959:1–2018:4.

Table 12. Empirical results for the inflation rate.

(a) Tests for structural changes in mean and/or variance

sup LR4�T UD max LR4�T

ma = 1 ma = 2 ma = 3 M = 3,N = 3

na = 1 12�182 10�78 9�58 15�913

na = 2 15�273 13�333 11�812

na = 3 15�913 15�063 14�033

(b) Tests for structural changes in mean

sup LR3�T UD max LR3�T sup Seq9�T

ma = 1 ma = 2 ma = 3 M = 3 ma = 1 ma = 2 ma = 3 Break Dates

na = 0 22�502 19�423 15�932 22�502 10�17 9�38 4�59 1982:1
na = 1 8�54 7�57 7�04 8�54 6�19 6�99 4�59
na = 2 5�72 6�62 7�37 7�37 2�79 4�96 3�10
na = 3 9�90 9�72 10�03 10�03 2�74 4�80 4�74

(c) Tests for structural changes in variance

sup LR2�T UD max LR2�T sup Seq10�T

na = 1 na = 2 na = 3 N = 2 na = 1 na = 2 na = 3 Break Dates

ma = 0 16�003 21�303 16�493 21�303 18�693 13�052 5�21 1971:3 1983:2 2006:3
ma = 1 9�372 13�773 14�003 14�003 18�973 16�213 5�54 1971:3 1982:1 2006:3
ma = 2 3�33 8�262 11�223 11�222 18�973 16�793 6�73
ma = 3 1�69 9�142 11�903 11�902 19�933 16�793 7�18

Note: Superscripts 1, 2 and 3 indicate significance at the 10%, 5% and 1% levels, respectively.
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Figure 2. US ex post real interest rate: 1961:1–1986:3.

for potential changes in the regression coefficients, Table 12(c) presents the results of
the sup LR2�T and the UD max LR2�T tests. These suggest the presence of breaks in the
variance. The sequential test sup Seq10�T suggests 3 breaks at 1971:2, 1983:2, and 2006:3
when ma = 0. Hence, contrary to Stock and Watson (2002), we conclude for 3 structural
changes in the error variance and no change in the conditional mean. The changes are
such that the variance went from 1�00 to 3�29 in 1971:2, then to 0�49 in 1983:1 and to 1�42
in 2006:3.

We now consider the US ex-post real interest rate and use the same quarterly series
from 1961:1–1986:3 (see Figure 2), as in Garcia and Perron (1996) and Bai and Perron
(2003a) since it is a widely used example involving important mean shifts, though vari-
ance shifts have not been investigated. We use a model with only a constant as regressor
(i.e., zt = {1}) and account for serial correlations in the errors term via a HAC variance
estimator using the hybrid method. The estimate of the scaling factor ψ (see (8)) also
uses the hybrid method. Bai and Perron (2003a) found two large mean shifts in 1972:3
and 1980:3 and a small change in 1966:4 using the sequential procedure proposed in Bai
and Perron (1998, 2003a), which allows for variance breaks occurring at the same time as
the mean breaks, though not at different times. Here, the focus is on assessing whether
changes in variance are present and if so whether and how the changes in mean present
affect the results. Because they found three breaks in the mean, we use our tests with
ma up to 3 and na up to 2. The trimming parameter ε= 0�15 is used. The critical values
of both tests when M = 3 are provided in Perron and Yamamoto (2019b). Table 13(a)
presents the results for the sup LR4�T and the UD max LR4�T tests, which suggest clear
rejections of the null hypothesis of no breaks. Table 13(b) presents the results when test-
ing for mean breaks accounting for possible variance breaks using the sup LR3�T and the
UD max LR3�T tests and also the sup Seq9�T test to determine the number of breaks. We
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Table 13. Empirical results for the real interest rate.

(a) Tests for structural changes in mean and/or variance

sup LR4�T UD max LR4�T

ma = 1 ma = 2 ma = 3 M = 3,N = 2

na = 1 8�342 4�66 7�502 11�443

na = 2 8�933 11�443 6�542

(b) Tests for structural changes in mean

sup LR3�T UD max LR3�T sup Seq9�T

ma = 1 ma = 2 ma = 3 M = 3 ma = 1 ma = 2 ma = 3 Break Dates

na = 0 14�663 25�753 20�603 25�753 27�863 7�63 3�33 1972:3 1980:3
na = 1 8�421 25�753 24�083 25�753 25�823 6�20 2�99 1972:3 1980:3
na = 2 8�171 25�713 21�573 25�713 25�483 6�87 3�33 1972:3 1980:3

(c) Tests for structural changes in variance

sup LR2�T UD max LR2�T sup Seq10�T

na = 1 na = 2 N = 2 na = 1 na = 2 Break Dates

ma = 0 30�033 15�963 30�033 17�053 5�89 1972:3 1981:2
ma = 1 21�703 12�023 21�703 4�25 6�36 1972:3
ma = 2 16�203 10�723 16�203 15�293 6�45 1964:3 1972:3
ma = 3 16�423 11�623 16�423 10�882 6�45 1966:4 1969:3

Note: Superscripts 1, 2, and 3 indicate significance at the 10%, 5%, and 1% levels, respectively.

obtain evidence for two mean breaks in 1972:3 and 1980:3, irrespective of how many
variance breaks are accounted for. However, we do not find evidence for a mean break
in 1966:4. To investigate the presence of variance changes, Table 13(c) presents the re-
sults of the tests for variance breaks accounting for mean breaks. If we account for no
mean breaks (ma = 0), two variance breaks are found in 1972:3 and 1981:2; the former
is the same and the latter is close to the dates of the two large mean breaks. However, if
one mean break is allowed (ma = 1), only one variance break is found in 1972:3, which
suggests that the variance break in 1981:2 was a false rejection due to the ignored mean
break. The next issue is whether the 1972:3 variance break is spurious. To see this, we
account for two breaks in the mean (ma = 2) and find again two breaks in the vari-
ance; one in 1972:3 and the other is in 1964:3. The variance break in 1964:3 is relatively
small and was thereby masked when the two mean breaks were not accounted for. More
importantly, we again obtain no evidence for a break around 1980:3 but rather one in
1972:3. Therefore, we conclude that both the mean and the variance changed in 1972:3
but only the mean changed in 1980:3, while only the variance changed in 1964:3. This
latter change may be responsible for Bai and Perron’s (2003a) finding of an additional
mean break in 1966:4 using tests that allow for variance changes, though at the same
dates as the mean changes. The change are such that the mean went from 1�36 to −1�80
in 1972:3 and to 5�64 in 1980:3, while the variance changed from 1�09 to 1�87 in 1964:3
and then to 6�91 in 1972:3.
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8. Conclusion

This paper provided tools for testing for multiple structural breaks in the error variance
of a linear regression model with or without the presence of breaks in the regression co-
efficients. An innovation is that we do not impose any restrictions on the break dates,
that is, the breaks in the regression coefficients and in the variance can happen at the
same time or at different times. We proposed statistics with asymptotic distributions
invariant to nuisance parameters and valid with nonnormal errors and conditional het-
eroskedasticity, as well as serial correlation. Extensive simulations of the finite sample
properties show that our procedures perform well in terms of size and power. A specific
to general procedure to estimate the number and type of breaks based on a proposed
sequential test is shown to perform well in selecting the number and types of breaks.

Appendix

Proof of Theorem 1. Part (a) follows from Qu and Perron (2007a, Theorem 5) under
Assumption A1. For part (b),

sup LR2�T (ma�na�ε|n= 0�ma)

= 2
[
log L̂T

(
T̃ c1 � � � � � T̃

c
ma

; T̃ v1 � � � � � T̃ vna
) − log L̃T

(
T̂ c1 � � � � � T̂

c
ma

)]
= T log σ̃2 −

na+1∑
i=1

(
T̃ vi − T̃ vi−1

)
log σ̂2

i

=
na∑
i=1

[
T̃ vi+1 log σ̃2

1�i+1 − T̃ vi log σ̃2
1�i −

(
T̃ vi+1 − T̃ vi

)
log σ̂2

i+1
] + T̃ v1

(
log σ̃2

1�1 − log σ̂2
1
)
�

where σ̃2
1�i = (T̃ vi )−1 ∑T̃ vi

t=1(yt −x′
t β̃− z′

t δ̃t�j)
2 with δ̃t�j = δ̃j for T̂ cj−1 < t ≤ T̂ cj (also let δ0

t�j =
δ0
j for Tc0j−1 < t ≤ Tc0j ) (j = 1� � � � �ma + 1) and σ̂2

i = (T̃ vi − T̃ vi−1)
−1 ∑T̃ vi

t=T̃ vi−1+1
(yt − x′

t β̂ −
z′
t δ̂t�j)

2. Applying a Taylor expansion to log σ̃2
1�i+1, log σ̃2

1�i and log σ̂2
i+1 around logσ2

0 , we
obtain

sup LR2�T (ma�na�ε|n= 0�ma)=
na∑
i=1

(
Fi1�T + Fi2�T

) + op(1)�

where

Fi1�T = (
σ2

0
)−1[

T̃ vi+1σ̃
2
1�i+1 − T̃ vi σ̃2

1�i −
(
T̃ vi+1 − T̃ vi

)
σ̂2
i+1

]
= (
σ2

0
)−1

T̃ vi+1∑
t=T̃ vi +1

[(
yt − x′

t β̃− z′
t δ̃t�j

)2 − (
yt − x′

t β̂− z′
t δ̂t�j

)2]
and

Fi2�T = −(1/2)
[
T̃ vi+1

(
σ̃2

1�i+1 − σ2
0

σ2
0

)2
− T̃ vi

(
σ̃2

1�i − σ2
0

σ2
0

)2
− (
T̃ vi+1 − T̃ vi

)( σ̂2
i+1 − σ2

0

σ2
0

)2]
= (1/2)(I + II + III)� (A.1)
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We first show that Fi1�T = op(1). We can express Fi1�T as

(
σ2

0
)−1[(

Ui+1 +Xi+1
(
β0 − β̃)

+Zi+1
(
δ0
t�j − δ̃t�j

))′(
Ui+1 +Xi+1

(
β0 − β̃) +Zi+1

(
δ0
t�j − δ̃t�j

))
− (
Ui+1 +Xi+1

(
β0 − β̂)

+Zi+1
(
δ0
t�j − δ̂t�j

))′(
Ui+1 +Xi+1

(
β0 − β̂) +Zi+1

(
δ0
t�j − δ̂t�j

))]
= (
σ2

0
)−1[

(β̂− β̃)′X ′
i+1Xi+1(β̂− β̃)+ (δ̂t�j − δ̃t�j)′Z′

i+1Zi+1(δ̂t�j − δ̃t�j)
+ (β̂− β̃)′X ′

i+1Zi+1(δ̂t�j − δ̃t�j)+ 2(β− β̂)′X ′
i+1Xi+1(β̂− β̃)

+ 2
(
δ0
t�j − δ̂t�j

)′
Z′
i+1Zi+1(δ̂t�j − δ̃t�j)+ 2(β̂− β̃)′X ′

i+1Zi+1
(
δ0
t�j − δ̂t�j

)
+ 2(β− β̂)′X ′

i+1Zi+1(δ̂t�j − δ̃t�j)+ 2(β̂− β̃)′X ′
i+1Ui+1 + 2(δ̂t�j − δ̃t�j)′Z′

i+1Ui+1
]
�

The result follows using the facts thatX ′
i+1Xi+1 =Op(T), Z′

i+1Zi+1 =Op(T),X ′
i+1Zi+1 =

Op(T), X ′
i+1Ui+1 = Op(T

1/2) and Z′
i+1Ui+1 = Op(T

1/2). Also, under H0 with Assump-
tion A1, the estimates of the break fractions converge to the true break fractions at a
fast enough rate so that the estimates of the parameters of the models are consistent
and have the same limit distribution as when the break dates are known. We have:
β0 −β̂=Op(T−1/2), δ0

t�j− δ̂t�j =Op(T−1/2), β̂−β̃= op(T−1/2) and δ̂t�j− δ̃t�j = op(T−1/2).

The last two quantities are op(T−1/2) since
√
T(β̂−β0) and

√
T(β̃−β0) have the same

limit distribution underH0, and likewise for
√
T(δ̂t�j −δ0

t�j) and
√
T(δ̃t�j −δ0

t�j). For Fi2�T ,

√
I = (

T̃ vi+1
)−1/2

T̃ vi+1∑
t=1

[{(
yt − x′

t β̃− z′
t δ̃t�j

)
/σ0

}2 − 1
]

= (
T̃ vi+1

)−1/2
T̃ vi+1∑
t=1

[
(ut/σ0)

2 − 1
] + op(1)

⇒ √
ψW

(
λvi+1

)
/
√
λvi+1

by Assumption A1. Similarly,
√

II ⇒ √
ψW (λvi )/

√
λvi and

√
III = [(

T̃ vi+1 − T̃ vi
)
/T

]−1/2
T−1/2

Tvi+1∑
t=Tvi +1

[
(ut/σ0)

2 − 1
] + op(1)

= [(
T̃ vi+1 − T̃ vi

)
/T

]−1/2
{
T−1/2

Tvi+1∑
t=1

[
(ut/σ0)

2 − 1
] − T−1/2

Tvi∑
t=1

[
(ut/σ0)

2 − 1
]} + op(1)

⇒ √
ψ

[
W

(
λvi+1

) −W (
λvi

)]
/
√
λvi+1 − λvi �
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Therefore,

Fi2�T ⇒ −(ψ/2)
[
W 2(λvi+1

)
λvi+1

− W 2(λvi )
λvi

−
(
W

(
λvi+1

) −W (
λvi

))2

λvi+1 − λvi

]

= (ψ/2)

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) �

This yields

sup LR2�T (ma�na�ε|n= 0�ma)⇒ sup
(λv1�����λ

v
na )∈Λcv�ε

na∑
i=1

ψ

2

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

)
≤ sup

(λv1�����λ
v
na )∈Λv�ε

na∑
i=1

ψ

2

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

)
because Λcv�ε ⊆Λv�ε. For part (c),

sup LR3�T (ma�na�ε|m= 0� na)

= 2
[
log L̂T

(
T̃ c1 � � � � � T̃

c
ma

; T̃ v1 � � � � � T̃ vna
) − log L̃T

(
T̂ v1 � � � � � T̂

v
na

)]
=
na+1∑
i=1

(
T̂ vi − T̂ vi−1

)
log σ̃2

i −
na+1∑
i=1

(
T̃ vi − T̃ vi−1

)
log σ̂2

i �

where σ̃2
i = (T̂ vi − T̂ vi−1)

−1 ∑T̂ vi
t=T̂ vi−1+1

(yt − x′
t β̃ − z′

t δ̃)
2 and σ̂2

i = (T̃ vi − T̃ vi−1)
−1 ×∑T̃ vi

t=T̃ vi−1+1
(yt − x′

t β̂ − z′
t δ̂t�j)

2. Applying a Taylor expansion on log σ̃2
i and log σ̂2

i

around logσ2
i0, we obtain

sup LR3�T (ma�na�ε|m= 0� na)=
na+1∑
i=1

(
Fi1�T + Fi2�T

) + op(1)�

where Fi1�T = (T̂ vi − T̂ vi−1)(σ̃
2
i /σ

2
i0)− (T̃ vi − T̃ vi−1)(σ̂

2
i /σ

2
i0) and

Fi2�T = −(1/2)[(T̂ vi − T̂ vi−1
)([
σ̃2
i − σ2

i0
]
/σ2
i0

)2 − (
T̃ vi − T̃ vi−1

)([
σ̂2
i − σ2

i0
]
/σ2
i0

)2]
�

We first show that Fi2�T = op(1) as follows. We have:

Fi2�T = −(1/2)
[(
T̂ vi − T̂ vi−1

)( σ̃2
i − σ2

i0

σ2
i0

)2
− (
T̃ vi − T̃ vi−1

)( σ̂2
i − σ2

i0

σ2
i0

)2]

= −(1/2)
[
T−1(T̂ vi − T̂ vi−1

)[
T 1/2

(
σ̃2
i − σ2

i0

σ2
i0

)]2
− T−1(T̃ vi − T̃ vi−1

)[
T 1/2

(
σ̂2
i − σ2

i0

σ2
i0

)]2]
�
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where [(T̂ vi − T̂ vi−1)/T ][√T(σ̃2
i −σ2

i0)/σ
2
i0]2 and [(T̃ vi − T̃ vi−1)/T ][√T(σ̂2

i −σ2
i0)/σ

2
i0]2 have

the same limit distribution under Assumption A3. For Fi1�T , let σ0 = σ10 without loss of
generality, then

na+1∑
i=1

Fi1�T = (
σ2

0
)−1

na+1∑
i=1

[(
T̂ vi − T̂ vi−1

)
σ̃2
i − (

T̃ vi − T̃ vi−1
)
σ̂2
i

]

+ (
σ2

0
)−1

na+1∑
i=1

([
σ2
i0 − σ2

0
]
/σ2
i0

)[(
T̂ vi − T̂ vi−1

)
σ̃2
i − (

T̃ vi − T̃ vi−1
)
σ̂2
i

]
�

The first term becomes

(
σ2

0
)−1

na+1∑
i=1

[(
T̂ vi − T̂ vi−1

)
σ̃2
i − (

T̃ vi − T̃ vi−1
)
σ̂2
i

]

= (
σ2

0
)−1

T∑
t=1

[(
yt − x′

t β̃− z′
t δ̃

)2 − (
yt − x′

t β̂− z′
t δ̂t�j

)2]

= (
σ2

0
)−1

ma∑
j=1

[T̃ cj+1∑
t=1

(
yt − x′

t β̃− z′
t δ̃

)2 −
T̃ cj∑
t=1

(
yt − x′

t β̃− z′
t δ̃

)2

−
T̃ cj+1∑

t=T̃ cj +1

(
yt − x′

t β̂− z′
t δ̂j+1

)2
]

+ (
σ2

0
)−1

T̃ c1∑
t=1

(
yt − x′

t β̃− z′
t δ̃

)2 − (
σ2

0
)−1

T̃ c1∑
t=1

(
yt − x′

t β̂− z′
t δ̂1

)2

= (
σ2

0
)−1

{
ma∑
j=1

[
Dr(1� j + 1)−Dr(1� j)−Du(j + 1)

] +Dr(1�1)−Du(1)
}
� (A.2)

where Dr(1� j) = ∑T̃ cj
t=1(yt − x′

t β̃ − z′
t δ̃)

2 and Du(j) = ∑T̃ cj

t=T̃ cj−1+1
(yt − x′

t β̂ − z′
t δ̂j)

2. The

second term is op(1) by Assumption A3. Using similar derivations as in Qu and Perron
(2007b), we obtain

Dr(1� j + 1)−Dr(1� j)−Du(j + 1)

= −U ′
1:j+1Z1:j+1

(
Z′

1:j+1Z1:j+1
)−1
Z′

1:j+1U1:j+1 +U ′
1:jZ1:j

(
Z′

1:jZ1:j
)−1
Z′

1:jU1:j

+U ′
j+1Zj+1

(
Z′
j+1Zj+1

)−1
Z′
j+1Uj+1 + op(1)�

⇒
∥∥λcjWq(λcj+1

) − λcj+1Wq
(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
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by Assumption A2. This yields

sup LR3�T (ma�na�ε|m= 0� na)⇒ sup
(λc1�����λ

c
ma)∈Λvc�ε

ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

) �

≤ sup
(λc1�����λ

c
ma)∈Λc�ε

ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

) �

because Λvc�ε ⊆Λc�ε. For part (d), we have:

sup LR4�T (ma�na�ε|m= n= 0)

= 2
[

sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λε

log L̂T
(
Tc1 � � � � �T

c
ma

;Tv1 � � � � �T vna
) − log L̃T

]
= 2

[
log L̂T

(
T̃ c1 � � � � � T̃

c
ma

; T̃ v1 � � � � � T̃ vna
) − log L̃T

]
= T log σ̃2 −

na+1∑
i=1

(
T̃ vi − T̃ vi−1

)
log σ̂2

i

=
na∑
i=1

[
T̃ vi+1 log σ̃2

1�i+1 − T̃ vi log σ̃2
1�i −

(
T̃ vi+1 − T̃ vi

)
log σ̂2

i+1
] + T̃ v1

(
log σ̃2

1�1 − log σ̂2
1
)
�

where σ̃2
1�i = (T̃ vi )

−1 ∑T̃ vi
t=1(yt − x′

t β̃ − z′
t δ̃)

2. Applying a Taylor expansion to log σ̃2
1�i+1,

log σ̃2
1�i and log σ̂2

i+1 around logσ2
0 , we obtain

sup LR4�T (ma�na�ε|m= n= 0)=
na∑
i=1

(
Fi1�T + Fi2�T

) + op(1)�

where the first term is the same as in (A.2), so that

na∑
i=1

Fi1�T =
na∑
i=1

(
σ2

0
)−1[

T̃ vi+1σ̃
2
1�i+1 − T̃ vi σ̃2

1�i −
(
T̃ vi+1 − T̃ vi

)
σ̂2
i+1

] + (
σ2

0
)−1
T̃ v1

(
σ̃2

1�1 − σ̂2
1
)

= (
σ2

0
)−1

T∑
t=1

[(
yt − x′

t β̃− z′
t δ̃

)2 − (
yt − x′

t β̂− z′
t δ̂t�j

)2]

= (
σ2

0
)−1

{
ma∑
j=1

[
Dr(1� j + 1)−Dr(1� j)−Du(j + 1)

] +Dr(1�1)−Du(1)
}

as shown in part (c). The second term is the same as (A.1) but with no changes in δ to
construct σ̃2

1�i, that is, LRv defined by (11). Hence,

Fi2�T = −(1/2)
[
T̃ vi+1

(
σ̃2

1�i+1 − σ2
0

σ2
0

)2
− T̃ vi

(
σ̃2

1�i − σ2
0

σ2
0

)2
− (
T̃ vi+1 − T̃ vi

)( σ̂2
i+1 − σ2

0

σ2
0

)2]
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as shown in part (b). From the proof of part (c),

na∑
i=1

Fi1�T ⇒
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
under Assumption A2 and from that of part (b),

Fi2�T ⇒ ψ

2

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

)
under Assumption A1. Hence, we obtain

sup LR4�T (ma�na�ε|m= n= 0)⇒ sup
(λc1�����λ

c
ma ;λv1�����λvna )∈Λε

[
ma∑
j=1

∥∥λcjWq(λcj+1
) − λcj+1Wq

(
λcj

)∥∥2

λcj+1λ
c
j

(
λcj+1 − λcj

)
+ ψ

2

na∑
i=1

(
λvi W

(
λvi+1

) − λvi+1W
(
λvi

))2

λvi+1λ
v
i

(
λvi+1 − λvi

) ]
�
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