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Linear regression with many controls of limited explanatory
power
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We consider inference about a scalar coefficient in a linear regression model. One
previously considered approach to dealing with many controls imposes sparsity,
that is, it is assumed known that nearly all control coefficients are (very nearly)
zero. We instead impose a bound on the quadratic mean of the controls’ effect
on the dependent variable, which also has an interpretation as an R2-type bound
on the explanatory power of the controls. We develop a simple inference proce-
dure that exploits this additional information in general heteroskedastic models.
We study its asymptotic efficiency properties and compare it to a sparsity-based
approach in a Monte Carlo study. The method is illustrated in three empirical ap-
plications.

Keywords. High dimensional linear regression, L2 bound, invariance to linear
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1. Introduction

A classic issue that arises frequently in applied econometrics is how to deal with a po-
tentially large number of control variables in a linear regression. In observational stud-
ies, the plausibility of an unconfoundedness assumption often hinges on having cor-
rectly controlled for the value of predetermined variables, which might require includ-
ing higher order interactions, leading to many control variables. As is well understood,
excluding controls that have nonzero coefficients in general yields estimators with omit-
ted variable bias, and corresponding confidence intervals with less than nominal cover-
age. In empirical practice, this issue is often addressed by reporting results from several
specifications that vary in the number and identity of included control variables.

A seemingly more systematic approach is to use a pretest to identify which controls
have nonzero coefficients, such as testing down procedures, or information criteria, and
then proceed with standard inference using only the selected controls. As stressed by
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Leeb and Pötscher (2005) (also see Leeb and Pötscher (2008a, 2008b) and the references
therein), however, this does not yield uniformly valid inference: If a control coefficient is
of order O(n−1/2) in a sample of size n, then it is not selected with probability one, yet it
induces an omitted variable bias that is still large enough to yield oversized confidence
intervals. This speaks to a broader theoretical result that in the regression model with
Gaussian errors, a hypothesis test either overrejects for some value of the control coeffi-
cients, or its power is uniformly dominated by the “long regression” that simply includes
all potential controls. Hence, an assumption on the control coefficients is necessary to
make progress.

In that context, the empirical practice of reporting several specifications amounts to
two extremes: A specification that does not include a set of potential control variables is
justified under the assumption that all coefficients are zero, while the specification with
the control variables leaves them entirely unconstrained. A potentially more attractive
middle ground is an assumption that the control coefficients are, in some sense, of lim-
ited magnitude.

One formalization of this idea that has spawned a burgeoning literature is the as-
sumption of sparsity (Tibshirani (1996), Fan and Li (2001), etc.). Most of the control co-
efficients are known to be zero (or very close to zero), but it is not known which ones.
A standard Lasso implementation does not lead to valid inference about the coefficient
of interest. But by combining a sparsity assumption on the control coefficients with a
sparsity assumption on the correlations between the regressor of interest and the control
variables, recent work by Belloni, Chernozhukov, and Hansen (2014) shows how a novel
Lasso based “double selection procedure” does yield uniformly valid large-sample infer-
ence (also see Zhang and Zhang (2014) and van de Geer, Bühlmann, Ritov, and Dezeure
(2014) for related approaches).

While this work is important progress, a sparsity assumption might not always be a
compelling starting point: In social science applications, it is usually not obvious why
the large majority of control coefficients should be very nearly zero. In addition, the
sparsity restriction does not remain invariant to linear reparameterizations of the con-
trols. For instance, in the context of technical controls that are functions of an underly-
ing continuous variable, sparsity drives a distinction between specifying the controls as
powers or Chebyshev polynomials, and when including a set of fixed effects, in general
it matters which one is dropped to avoid perfect multicollinearity. Finally, in a Lasso
implementation, the imposed degree of sparsity is implicitly controlled by a penalty
parameter, which makes the small sample interpretation of the resulting inference less
than straightforward.

This paper develops an alternative approach that considers a priori upper bounds
on the weighted average of squared control coefficients, rather than on the number of
nonzero control coefficients. To be precise, consider constructing a confidence interval
for the scalar parameter β from the observations {yi�xi�qi�zi}ni=1, where

yi = βxi + q′
iδ+ z′

iγ + εi� (1)

the m × 1 control variables qi are the baseline specification, the p × 1 additional vari-
ables zi are potential additional control variables, and εi is a conditionally mean zero
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error term. To ease notation, assume that zi has been projected off qi, so that z′
iγ is the

contribution of zi to the conditional mean of yi after having controlled for the baseline
controls qi. We impose the bound

κ2 = n−1
n∑
i=1

(
z′
iγ
)2 ≤ κ̄2� (2)

The parameter κ2 is the average of the squared mean effects z′
iγ on yi induced by zi, that

is, κ is the quadratic mean of the mean effects of zi on yi, after controlling for the baseline
controls qi. Small values of κ̄ thus embed the a priori assumption that the explanatory
power of the controls is small.

Let β̂short and β̂long be the coefficients on xi from a linear regression of yi on (xi�qi),
and from a linear regression of yi on (xi�qi�zi), respectively. We combine the informa-
tion in (β̂short� β̂long) and the bound (2) to develop a likelihood ratio (LR) procedure

that is more informative than the usual confidence interval centered at β̂long. Since

(β̂short� β̂long) and the bound (2) are invariant to linear transformations of the additional
controls, so is the new confidence interval. The new interval essentially reduces to the
usual intervals centered at β̂short and β̂long for κ̄ = 0 and κ̄→ ∞, respectively.1 The in-
tervals thus provide a continuous bridge between omitting the additional controls and
including them with unconstrained coefficients.

Choosing κ̄ in practice is difficult. At the same time, it is arguably no more diffi-
cult than choosing the a priori degree of sparsity of γ , say. Typical implementations
of sparsity-based inference use penalty-based implicit choices for the level of sparsity,
which makes it even harder to relate to the effective constraint that is imposed.2 And, as
noted above, it is impossible to sharpen long regression based inference without addi-
tional constraints on γ , so the implicit assumption embedded in the choice of penalty
terms is the substantive constraint that drives the validity of sparsity-based inference.

In contrast, the interpretation of κ̄ as the quadratic mean of the effect of zi on yi
makes it more explicitly interpretable. It might also be useful to consider the ratio of
nκ̄2 and the sum of squared residuals of a regression of yi on qi; this R2-type ratio is the
upper bound on the fraction of the variability of yi that is explained by the effect of zi
on yi under the null hypothesis of β = 0, after controlling for the baseline controls qi.
Thus, beliefs about plausible upper bounds on the explanatory power of zi in terms of
R2 values directly translate into plausible values of κ̄, and vice versa.

Still, we expect that empirical researchers will typically not argue for a particular κ̄,
but report results for a range of values. In this way, readers learn about the sensitivity
of the results to the additional controls in a more comprehensive manner compared to
the κ̄ = 0 short regression and κ̄→ ∞ long regression extremes. It turns out that when
the short regression rejects, and the long regression does not, then there is a unique κ̄∗

LR
such that for all κ̄ < κ̄∗

LR, the LR based test rejects, and for κ̄ > κ̄∗
LR, it does not. The re-

sulting threshold value κ̄∗
LR, and the associated R2-type ratio, thus form interpretable

1See Section 3 for details.
2Indeed, recent work by Wüthrich and Zhu (2020) documents severe small sample size distortions of the

LASSO-based post-double-selection method even in some very sparse designs.
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summaries about the robustness of the statistical significance of β to allowing for ad-
ditional controls. Whether the value κ̄∗

LR is substantively large or small depends on the
particular situation at hand; see Section 6 below for three empirical examples and dis-
cussion.

Our suggested test and confidence interval is based on the Likelihood Ratio (LR) test
statistic obtained from the large sample normality of (β̂short� β̂long) and the bound on

the omitted variable bias of β̂short implied by (2). From an econometric theory perspec-
tive, it is interesting to investigate whether this simple “bivariate” approach comes close
to efficiently exploiting the information contained in (2). To this end, we consider the
Gaussian homoskedastic version of the regression model (1) and consider asymptotics
where the number of additional controls p is of the same order of magnitude as the
sample size n. Our main theoretical finding is that in this model, tests that depend on
the data only through (β̂short� β̂long) are asymptotically efficient in a well-defined sense
as long as κ = o(n−1/4). This rate corresponds to a ratio of nκ2 to the sum of squared
residuals of a regression of yi on qi of order o(n−1/2). While converging to zero, this rate
allows for finitely many nonzero coefficients of order o(n−1/4), which would lead to cor-
responding individual t-statistics that diverge at the rate o(n1/4). It also allows for a frac-
tion o(n1/4) of control coefficients of the already problematic order O(n−1/2). Since we
expect that our procedure is most valuable in cases where the additional control coeffi-
cients are not obviously relevant a priori, this limited efficiency result is thus still useful.
The validity of the suggested inference does not depend on any assumptions about κ
or κ̄.

L2 penalties of the form (2) play a key role in ridge regression (Hoerl and Kennard
(1970)), but our set-up uses (2) as a constraint on the nuisance parameter γ only. Fur-
thermore, our focus is on hypothesis testing and confidence intervals, and ridge regres-
sion estimators do not automatically lead to shorter confidence intervals (see, for in-
stance, Obenchain (1977)). Armstrong and Kolesár (2018) derive small sample minimax
optimal confidence intervals in a class of Gaussian regression models with the regres-
sion function an element of a known convex set. As they point out in Section 4.1.2 of
the corresponding working paper Armstrong and Kolesár (2016), their generic results
could be applied to (1) under the bound (2), and we provide some comparison with the
LR confidence interval in our Section 2.2 below. Our approach of exploiting an a priori
bound on the value of a nuisance parameter is also related in spirit to the analysis of
Conley, Hansen, and Rossi (2012), who consider instrumental variable estimation with
an imperfect instrument that has a direct effect on the outcome of bounded magnitude.

The rest of the paper is organized as follows. Section 2 contains the analysis of the
Gaussian linear regression model (1). In this model, bivariate LR inference is exact, and
we analyze and compare its properties. Section 2.3 derives the asymptotic efficiency re-
sult for bivariate inference. Section 3 discusses the implementation of feasible inference
for non-normal, possibly heteroskedastic and clustered linear regressions. Section 4
contains two extensions: First, we discuss instrumental variable regression with a scalar
instrument and a scalar endogenous variable, and second, how to further sharpen infer-
ence under an additional bound on the explanatory power in the population regression
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of xi on the potential controls zi. Section 5 provides a small sample Monte Carlo analy-
sis of our procedure and compares it to the double selection Lasso procedure proposed
by Belloni, Chernozhukov, and Hansen (2014). Section 6 provides a self-contained de-
scription of the suggested methodology, and applies it in three empirical illustrations.
Section 7 concludes. All proofs are collected in the Appendix.

2. Gaussian linear model

2.1 Set-up

Write model (1) in vector form as

y = xβ+ Qδ+ Zγ + ε (3)

in obvious notation. To ease notation, assume that x and the additional controls Z have
been projected off the baseline controls Q (so that Q′x = 0 and Z′Q = 0), and that x and
Z are normalized to satisfy x′x = n and Z′Z =nIp. Our efficiency results focus on the sim-
plest model where the regressors (x�Q�Z) are nonstochastic and ε ∼ N (0� In).

We assume throughout that (x�Q�Z) is of full column rank. The (1 +m+ p) vector
of OLS estimators⎛⎜⎝β̂long

δ̂

γ̂

⎞⎟⎠=
⎛⎜⎝ n 0 x′Z

0 Q′Q 0
Z′x 0 nIp

⎞⎟⎠
−1 ⎛⎜⎝x′y

Q′y
Z′y

⎞⎟⎠∼ N

⎛⎜⎜⎝
⎛⎜⎝βδ
γ

⎞⎟⎠ �
⎛⎜⎝ 1 0 x′Z

0 Q′Q 0
Z′x 0 nIp

⎞⎟⎠
−1
⎞⎟⎟⎠ (4)

form a sufficient statistic. Inference about β thus becomes inference about one element
of the mean of a p + m + 1 dimensional multivariate normal with known covariance
matrix.

Let Y = (y�x�Q�Z) ∈ R
(2+m+p)n be the observed data, let ϑ = (β�δ′�γ ′) ∈ R

1+m+p,
and let ϕβ0(Y) ∈ {0�1} be nonrandomized level α tests of the null hypothesisH0 : β= β0,
where ϕβ0(Y)= 1 indicates rejection. A confidence set of level 1 − α is obtained by “in-
verting” the family of tests ϕβ0 , that is, by collecting the values of β0 for which the test
does not reject, CS(Y)={β0 : ϕβ0(y) = 0}. By Proposition 15.2 of van der Vaart (1998),
for one-sided hypothesis tests about β, the uniformly most powerful test is simply
based on the statistic β̂long, and the uniformly most powerful unbiased test is based

on the statistic |β̂long|. By Pratt (1961), the inversion of these uniformly most power-
ful tests yield confidence sets of minimal expected length: Let (−∞�U(Y)) be a confi-
dence interval obtained from inverting one-sided tests of the form H0 : β ≥ β0 against
Ha : β<β0. For a given realization Y and true valueβ, the excess length of this interval is
max(U(Y)−β�0)= ∫∞

β (1 −ϕβ0(Y))dβ0. By Tonelli’s theorem, Eϑ [∫∞
β (1 −ϕβ0(Y))dβ0] =∫∞

β Eϑ [1 −ϕβ0(Y)]dβ0, and the integrand on the right-hand side is minimized by a fam-
ily of uniformly most powerful tests, indexed by β0. Similarly, for a two-sided test, the
length of the resulting confidence set can be written as

∫
(1 − ϕβ0(Y))dβ0, so we ob-

tain Eϑ [∫ (1 −ϕβ0(Y))dβ0] = ∫
(1 −Eϑ [ϕβ0(Y)])dβ0 and the inversion of uniformly most

powerful unbiased tests thus yield the confidence interval of shortest expected length
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among all unbiased confidence intervals. In the Gaussian model, no procedure whatso-
ever can therefore do better than simply running the “long regression” that includes all
controls in a well-defined sense.

2.2 Bivariate inference problem

In order to exploit the bound (2) for more informative inference, consider the coeffi-
cient estimator β̂short from the regression of y on (x�Q) that excludes the additional
controls Z. Since Q′x = 0, β̂short = x′y/n. Let ρ2 = x′ZZ′x/n2, the observed R2 of a regres-
sion of x on Z. To avoid trivial complications in notation, assume 0< ρ in the following.
Straightforward algebra yields

(
β̂long

β̂short

)
∼N

((
β

β+Δ

)
� n−1Σ(ρ)

)
� Σ(ρ)=

⎛⎝ 1

1 − ρ2 1

1 1

⎞⎠ � (5)

where Δ = x′Zγ/n is the unknown omitted variable bias. Equation (5) is intuitive: the
long regression provides an unbiased signal β̂long about β, but with a variance that is

larger than the (typically biased) signal β̂short from the short regression.3 If ρ→ 0, then
Z is orthogonal to x, there is no bias from the short regression, and the two signals are
identical, β̂long = β̂short.

Notice that κ2 = γ ′γ in (2) may be rewritten as

κ2 = γ ′Z′x
(
x′ZZ′x

)−1x′Zγ + γ ′Mργ

= ρ−2Δ2 + γ ′Mργ� (6)

where Mρ = In−Z′x(x′ZZ′x)−1x′Z. The bound κ2 ≤ κ̄2 in (2) thus implies an upper bound
on the omitted variable bias,

|Δ| ≤ ρκ̄ (7)

and this bound is sharp. This limit on the magnitude of the omitted variable bias in (5)
makes β̂short potentially valuable for inference about β, especially if ρ is close to one (so
that β̂short is much less variable than β̂long).

We focus in the following on tests of H0 : β = 0, since the general case H0 : β = β0

may be reduced to this case by subtracting β0 from β̂long and β̂short. In terms of the lo-
calized parameters b= √

nβ, d = √
nρ−1Δ, and k̄= √

nκ̄, the inference problem then be-
comes testingH0 : b= 0 from observing the bivariate normal vector b̂ = (b̂long� b̂short)

′ ∼
(
√
nβ̂long�

√
nβ̂short)

′, (
b̂long

b̂short

)
∼ N

((
b

b+ ρd

)
�Σ(ρ)

)
� |d| ≤ k̄� (8)

3This strict ranking of the variance of the short and long regression estimators holds because we consider
fixed regressors; see Section 4.2 for discussion.
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Figure 1. Five percent critical value of LR(k̄) as a function of k̄�.

The inference problem (8) is a fairly transparent small sample problem indexed by
two known parameters (ρ� k̄) ∈ (0�1)×[0�∞), and involves a one-dimensional unknown
nuisance parameter d ∈ R. The second observation b̂short augments the usual Gaussian
shift experiment, and there are a variety of potential approaches to exploiting this addi-
tional information. We found that a simple but effective test ofH0 : b= 0 is generated by
the generalized likelihood ratio statistic

LR(k̄) = min
|d̃|≤k̄

(
b̂long

b̂short − ρd̃

)′
Σ(ρ)−1

(
b̂long

b̂short − ρd̃

)

− min
b̃�|d̃|≤k̄

(
b̂long − b̃

b̂short − b̃− ρd̃

)′
Σ(ρ)−1

(
b̂long − b̃

b̂short − b̃− ρd̃

)
� (9)

The level α critical value cvρ(k̄) is the largest 1 − α quantile under (8) with b = 0,
maximized over |d| ≤ k̄. Figure 1 plots cvρ(k̄) for ρ ∈ {0�5�0�95�0�99}, and Figure 2 plots
the rejection region of the resulting 5% level test for ρ = 0�95 and k̄ ∈ {0�1�3�10}. For

Figure 2. Acceptance regions of LR(k̄) for ρ= 0�95. Notes: The lines are the boundaries of the
acceptance region. For all values of k̄, (0�0) is in the acceptance region.
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k̄ = 0, the LR test reduces to rejecting for large values of (b̂short)
2 > cvρ(0) = 1�962, that

is, it reduces to the usual t-test based on the short regression. More generally, whenever
|b̂short| � ρk̄, that is the short regression coefficient is much larger than ρk̄ in absolute
value, then the LR test rejects. On the other hand, for |b̂short| � ρk̄ and k̄ large, the LR test
rejects when (1 − ρ2)(b̂long)

2 > cvρ(k̄), that is, whenever the long regression coefficient
is too large in absolute value, with a critical value that is slightly larger than 1�962. Once
k̄ is moderately large (say, larger than 8), the critical value cvρ(k̄) stabilizes at cvρ(∞),
and further increases of k̄ simply amount to an additional elongation of the acceptance
region along the b̂short-axis.

To formally characterize the limit of the acceptance region for values of |b̂short| ≈ ρk̄
under larger and larger bounds k̄→ ∞, consider the observation b̂o = (b̂long� b̂

o
short)

′ ∼
(b̂long� b̂short − ρs)′ with b̂short, that is, b̂oshort is shifted by ρs relative to b̂short. Under a
corresponding reparameterization a= d− s, we obtain

b̂o ∼ N
((

b

b+ ρa

)
�Σ(ρ)

)
� a ∈A (10)

and the constraint a ∈A resulting from |d| ≤ k̄ depends on the relationship between s
and k̄. In particular, with s = k̄, a ∈A1 = (−∞�0], and this corresponds to the case where
the bound k̄ is very large and b̂short is close to the bound ρk̄. Similarly, with s = −k̄, b̂short

is close to −ρk̄, and the corresponding constraint in (10) becomes a ∈ A−1 = [0�∞).
Finally, if k̄→ ∞ and k̄− |s| → ∞, so that the bound k̄ is much larger than |b̂short|, then
a ∈A0 = R is unrestricted in (10). For each of these three cases i ∈ {1�−1�0}, the LR(k̄)
statistic converges to

LRoi = min
ã∈Ai

(
b̂long

b̂oshort − ρã

)′
Σ(ρ)−1

(
b̂long

b̂oshort − ρã

)

− min
b̃�ã∈Ai

(
b̂long − b̃

b̂oshort − ρã− b̃

)′
Σ(ρ)−1

(
b̂long − b̃

b̂oshort − ρã− b̃

)
�

We consider this LR approach attractive for a number of reasons. First, it is easy to
implement (we discuss implementation issues in more detail in Section 3 below). Sec-
ond, inversion of the LR statistic for general null hypotheses H0 : b = b0 yields a con-
fidence interval for b that is translation equivariant, that is, the interval obtained from
the observation (b̂long + c� b̂short + c) simply shifts the interval from (b̂long� b̂short) by c,
for any c ∈R. Third, it yields confidence intervals that are close to minimal weighted ex-
pected length under a weighting function where d is uniform between [−k̄� k̄], among all
translation equivariant confidence intervals. This is shown in panel A of Table 1, which
reports a lower bound on this weighted expected length for selected values of (ρ� k̄),
along with the weighted expected length of the LR interval. Given the tight link between
the power of tests and their expected length discussed in Section 2.1 above, this im-
plies that the LR tests are also close to maximizing the corresponding weighted average
power. Fourth, as shown in panel B, it is reasonably close to being maximin in terms of
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expected length among all equivariant confidence intervals. Fifth, its expected length is
nearly uniformly shorter over all |d| ≤ k̄ than the standard long regression interval; panel
C provides corresponding numerical evidence. And finally, the LR approach has the po-
tentially attractive feature that if |b̂short| > 1�96 and

√
1 − ρ2|b̂long| < 1�96 (i.e., the short

regression rejects, but the long regression does not), then there is a unique threshold
value k̄∗

LR > 0 such that the LR test rejects only when k̄ < k̄∗
LR, so in this sense, imposing

a smaller value of k̄ always leads to more informative inference.
A family of level α tests of H0 : b = b0 given a value of k̄ in (8) can be inverted to

obtain a level 1 − α confidence set S(b̂)⊂R
2, which collect pairs of (b0� k̄) for which the

test does not reject. The informativeness of a procedure is usefully measured by the size
of this set. The discussion so far concerned the length of the interval for b for a given
k̄, which are slices of S(b̂) in one direction. Now consider the length along the other
direction: Let φ(k̄� b̂) ∈ {0�1} be the tests of H0 : b = 0 for given k̄. Then the threshold
value k̄∗

φ : R2 �→ [0�∞)∪ {+∞} is the lower endpoint of S(b̂) along the b= 0 axis,

k̄∗
φ(b̂)= inf

k̄

{
k̄ :φ(k̄� b̂)= 0

}
that is, k̄∗

φ(b̂) is the smallest value of k̄ for which the test φ(k̄� b̂) does not reject. From

this alternative perspective, one might prefer testsφ that generate large k̄∗
φ(b̂). As k̄∗

φ(b̂)

can be equal to +∞, it is not sensible to maximize the expectation of k̄∗
φ(b̂). Instead,

consider a quantile of k̄∗
φ(b̂), such as its median. Since φ(k̄� b̂) is a level α test of H0 :

b = 0, |d| ≤ k̄, the 1 − α quantile of k̄∗
φ(b̂) must be smaller than |d| under b = 0, and

[k̄∗
φ(b̂)�∞) is thus a 1 − α confidence interval for |d| under b = 0. This constrains the

possibility of making the median of k̄∗
φ(b̂) arbitrarily large. In panel D of Table 1, we

report the median of k̄∗
LR of the LR tests under b= 0 and P(d = d0)= P(d = −d0)= 1/2

for various d0, along with an upper bound that holds for all k̄∗
φ(b̂).

4 We find that unless

|d| is very small, the median of k̄∗
LR is only slightly smaller than the upper bound, and

unreported results show this to hold also for other quantiles and assumptions about the
distribution of b. The LR approach thus also performs well in the sense that it is nearly as
informative as possible about values of k̄ that are empirically incompatible with b = 0,
|d| ≤ k̄.

Finally, consider the problem of improving the estimation of b under the constraint
(2). Our suggested estimator is b̂LR(k̄), the center of the 95% confidence interval con-
structed by inverting the LR(k̄) statistic. As shown in panel E of Table 1, this estimator
comes close to minimizing the weighted average mean square error among all trans-
lation equivariant estimators of b, with a weighting function on d that is uniform on
[−k̄� k̄]. (Unreported results show that the center of the 95% interval does particularly

4Note that existence of an estimator k̄∗
φ(b̂) with median larger than M under some distribution F for

(b�d) is equivalent to the existence of a test φM(b̂) ∈ {0�1} such that E[φM(b̂)] ≤ α for all b = 0, |d| ≤M

and E[φM(b̂)] ≥ 1/2 with (b�d) ∼ F , since we can always set φM(b̂) = 1[k̄∗
φ(b̂) ≥M] or k̄∗

φ(b̂) =MφM(b̂),
respectively. The upper bound can therefore be obtained from the upper bound of the power of tests in
Elliott, Müller, and Watson (2015).



414 Li and Müller Quantitative Economics 12 (2021)

Table 1. Properties of 95% bivariate LR inference.

Panel A: Weighted expected length of CI for b under d ∼U[−k̄� k̄]

ρ\k̄
LR(k̄) Interval Lower Bound

0 1 3 10 30 0 1 3 10 30

0�50 3�9 4�2 4�4 4�5 4�5 3�9 4�2 4�4 4�5 4�5
0�90 3�9 5�0 7�1 8�5 8�9 3�9 5�0 6�9 8�2 8�7
0�99 3�9 5�3 9�1 18�7 25�3 3�9 5�2 8�9 17�4 23�9

Panel B: Expected length of CI for b, maximized over |d| ≤ k̄

ρ\k̄
LR(k̄) Interval Lower Bound

0 1 3 10 30 0 1 3 10 30

0�50 3�9 4�3 4�5 4�5 4�6 3�9 4�2 4�4 4�5 4�5
0�90 3�9 5�0 7�4 9�1 9�1 3�9 5�0 7�1 8�4 8�9
0�99 3�9 5�3 9�1 20�0 28�7 3�9 5�2 8�9 18�4 25�1

Panel C: Ratio of expected length of LR CI for b relative to long regression interval

ρ\k̄
Minimized over |d| ≤ k̄ Maximized over |d| ≤ k̄

0 1 3 10 30 0 1 3 10 30

0�50 0�87 0�92 0�93 0�92 0�94 0�87 0�94 1�00 1�01 1�03
0�90 0�43 0�55 0�72 0�73 0�73 0�43 0�56 0�82 1�01 1�02
0�99 0�14 0�19 0�33 0�59 0�61 0�14 0�19 0�33 0�72 1�03

Panel D: Median of k̄∗
φ under b= 0, P(d = d0)= P(d = −d0)= 1/2

ρ\d0

k̄∗
LR Upper Bound

0 1 3 10 30 0 1 3 10 30

0�50 0�0 0�0 0�0 3�1 13�2 0�0 0�0 0�7 4�2 14�3
0�90 0�0 0�0 0�9 7�1 25�3 0�0 0�0 1�2 7�6 25�8
0�99 0�0 0�0 1�3 8�0 28�0 0�0 0�0 1�4 8�4 28�4

Panel E: Weighted average MSE of equivariant estimators of b under d ∼U[−k̄� k̄]

ρ\k̄
b̂LR Lower Bound

0 1 3 10 30 0 1 3 10 30

0�50 1�00 1�11 1�25 1�31 1�32 1�00 1�07 1�22 1�30 1�32
0�90 1�00 1�29 2�62 4�42 4�98 1�00 1�25 2�53 4�38 4�97
0�99 1�00 1�33 3�79 21�1 39�9 1�00 1�32 3�77 20�4 39�7

Note: Bounds in Panels A, B, D, and E are numerically determined using the algorithm in Elliott, Müller, and Watson (2015)
and Müller and Wang (2019), and impose translation equivariance in Panels A, B, and E (cf. Müller and Norets (2016)). Based
on 500,000 importance sampling draws.
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well compared to other levels.) One might think that the maximum likelihood estimator
of b in (8) under |d| ≤ k̄ is a more natural estimator; but unreported results show that
the MLE is much more variable, resulting in a substantially larger mean squared error
compared to b̂LR(k̄).

As mentioned in the Introduction, the problem (8) falls into the general class con-
sidered by Armstrong and Kolesár (2016). They construct fixed-length confidence inter-
vals for b that are minimax among all fixed length confidence intervals centered at a
linear estimator of b. Table S.1 in the supplemental Appendix (Li and Müller (2021)) is
the analogue of Table 1 for their confidence interval, and implied estimators k̄∗

φ(b̂) and

midpoint b̂φ(k̄). Comparing the tables reveals that the LR approach never does sub-
stantially worse, but in some dimensions does substantially better: The LR approach
can yield much shorter intervals, it leads to much larger k̄∗

φ, and it has lower weighted

average MSE, especially for large k̄.

2.3 Asymptotic efficiency of bivariate inference

Regardless how exactly they are constructed, confidence intervals about β obtained
from the bivariate observation (β̂long� β̂short)

′ will in general be shorter than those based

on β̂long alone. But this does not mean that they necessarily fully exploit the informa-
tion in the bound (2). After all, the reduction to the bivariate problem (5) was not based
on any sufficiency argument. So the question arises whether one can do systematically
better than what can be achieved in the bivariate problem (8).

In general, the distribution of tests and confidence intervals about β that are a func-
tion of the entire set of observations Y not only depends on β, the bias Δ = x′Zγ/n of
the short regression and the slackness in the inequality (7) τ2 = κ2 −ρ−2Δ2 = γ ′Mργ , but
also of the direction of γ that leads to identical values of Δ and τ. Let PxZ be a p× (p−1)
matrix such that P′

xZZ′x = 0 and P′
xZPxZ = Ip−1. Then with φ̂= P′

xZ γ̂ , it follows from (4)
that

ξ̂=

⎛⎜⎜⎜⎝
β̂long

β̂short

δ̂

φ̂

⎞⎟⎟⎟⎠∼ N

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

β

β+Δ
δ

τω

⎞⎟⎟⎟⎠ �
⎛⎜⎝n

−1Σ(ρ) 0 0

0
(
Q′Q

)−1 0
0 0 n−1Ip−1

⎞⎟⎠
⎞⎟⎟⎟⎠ � (11)

where ω = P′
xZγ/‖P′

xZγ‖ = P′
xZγ/τ. The parameter ω is an element of the surface of

the p − 1 dimensional unit hypersphere and indicates the direction of γ in the p − 1
dimensional subspace orthogonal to Z′x.

As noted before, by sufficiency, it suffices to consider functions of ξ̂. Given the de-
composition of κ2 in (6), it would clearly be beneficial to know the value of τ2 for infer-
ence about β, as it would allow the strengthening of the bound on Δ under (2) to

|Δ| ≤ ρ
√
κ̄2 − τ2� (12)

Since φ̂ contains information about τ, it thus seems that one can do better than restrict-
ing attention to tests that are a solely a function of (β̂long� β̂short)

′.
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We initially discuss a result concerning maximin length properties, which fol-
lows from the logic in Donoho (1994). To make the claim precise, let CS(Y) ⊂ R be a
generic level 1 − α confidence set for β, as introduced in Section 2.1, and let 
(ξ�CS)=
Eξ[

∫
CS(Y) dβ0] its expected length under parameter ξ = (β�Δ�δ� τ�ω) ∈Ξ(κ̄)= {ξ : |Δ| ≤

ρ
√
κ̄2 − τ2}. Also, let CSbiv(β̂long� β̂short) ⊂ R be a level 1 − α confidence set of β that

depends on the data Y only through (β̂long� β̂short).

Proposition 1. Under (11), minCS maxξ∈Ξ(κ̄) 
(ξ�CS)= minCSbiv maxξ∈Ξ(κ̄) 
(ξ�CSbiv).

In words, the proposition states that for the purpose of obtaining maximin expected
length confidence sets, one may restrict attention to bivariate confidence sets that are
functions of (β̂long� β̂short). So to the extent that the bivariate LR confidence set is nu-
merically close to being maximin in terms of expected length (cf. Panel B of Table 1), it is
therefore also approximately maximin among all confidence sets that are functions of Y.
The proof of Proposition 1 follows from the arguments in Donoho (1994): If (δ� τω) was
known, the maximal expected length can only decrease. The maximal expected length
of confidence sets that treat (δ� τω) as known is thus a lower bound for the maximal ex-
pected length in the original problem, for any (δ� τω). Furthermore, with (δ� τω) known,
it is evident from (11) that we may ignore (δ̂� φ̂), that is, the maximin confidence set in
the resulting problem can be written as a function of (β̂long� β̂short) alone. In particu-
lar, this holds for (δ� τω)= 0. Thus, the maximal expected length of the bivariate confi-
dence set that is optimal for (δ� τω)= 0 known is a lower bound on the overall expected
length. But it is also an upper bound on the overall maximal expected length, since for
(δ� τω) �= 0, the expected length of the bivariate procedure can only decrease, since it
can only lead to a lower bound (12) if τ > 0.

This is a noteworthy result, but there is the usual concern that the maximin criterion
is inherently too pessimistic: One might well be willing to give up a little bit of worst-
case expected length in return for much expected length in other parts of the parame-
ter space. We now establish a further result about the asymptotic efficiency of bivariate
inference based on (β̂long� β̂short), although this additional result only holds for small
values of τ and large p.

We focus on tests ϕ(κ̄�Y) ∈ [0�1] of H0 : β = 0, where values between zero and one
indicate the probability of rejection, so that a nonrandomized test has range {0�1}. In ab-
sence of any information about the controls (Q�Z) beyond (2), it seems natural to con-
sider tests whose rejection probability does not depend on the baseline coefficients δ,
or the direction ω. Otherwise, the ability of the test to reject would necessarily be higher
for some values of (δ�ω) compared to others, which only makes substantive sense in
the presence of some a priori information about (δ�ω).

The following lemma shows that for any such test, there exists another test with
the same rejection probability that is a function of the three-dimensional statistic T =
(β̂long� β̂short� τ̂)

′, where

τ̂2 = γ̂ ′Mργ̂ = φ̂
′
φ̂�
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Note that the distribution of T only depends on (β�Δ�τ). Thus, to the extent that one is
willing to restrict attention to tests whose power function is symmetric in this sense, one
might focus on tests that are functions of T, with an effective parameter space equal to
θ= (β�Δ�τ) ∈R

2 × [0�∞).

Lemma 1. For given κ̄ and any n > p+m, if Eξ[ϕ(κ̄�Y)] does not vary in (δ�ω) for any
(β�Δ�τ), then there exists a test ϕ̃ :R3 �→ [0�1] such that Eξ[ϕ̃(T)] =Eξ[ϕ(κ̄�Y)] for all ξ.

For the observation τ̂2 to be useful to obtain a sharper bound (12), the estimation
error in τ̂2 must not be too large relative to κ̄2. The following lemma shows that in large
samples, τ̂ does not contain useful information about τ as long as τ is small. From now
on, we use subscripts to denote the value of quantities and functions that depend on the
sample size n.

Lemma 2. Let Ln(τ) be the likelihood of τ based on the observation τ̂n in the regression
model (1) with n observations and εi ∼ iidN (0�1). Ifpn/n→ c ∈ (0�1), τn = o(n−1/4) and

tn = o(n−1/4), then Ln(tn)/Ln(0)
p→ 1.

The lemma shows that even the likelihood ratio statistic for the observation τ̂n does
not drive an asymptotic wedge between the values τn = 0 and τn = o(n−1/4), suggesting
that Tn does not help to determine the value of τn of order o(n−1/4).

As discussed in the Introduction, τn = o(n−1/4) allows for a fixed number of nonzero
coefficients in φ = τω (and thus γ) of order o(n−1/4), with associated t-statistics diverg-
ing at a corresponding rate o(n1/4), or a fraction of o(n1/4) nonzero coefficients of or-
der O(n−1/2), with associated t-statistics that indicate a statistically significant nonzero
value with probability close to one. The condition τn = o(n−1/4) thus captures statisti-
cally meaningful departures from a baseline assumption that the control coefficients γ

are entirely irrelevant. Intuitively, the high-dimensional nature of φ̂ makes it impossible
to know “where to look” for such departures, leading to Lemma 2.

Combining the observations in Lemmas 1 and 2 with limit of experiments arguments
leads to the following result.

Theorem 2. Consider a sequence of observations from the linear regression model with
εi ∼ iid N (0�1) where pn/n → (0�1) and ρ2

n → ρ2 ∈ [0�1), and let ϕn(κ̄n�Yn) be a se-
quence of tests that, for all sufficiently large n, satisfy the assumption of Lemma 1. If for
some sequence sn and all (b�a) ∈ R

2, Eθn[ϕn(κ̄n�Yn)] converges along a sequence θn with
(
√
nβn�

√
nΔn− sn)= (b�a) and τn = o(n−1/4) (where τn may depend on (b�a)), then there

exists a function φ : R2 �→ [0�1] such that limn→∞Eθn[ϕn(κ̄n�Yn)] = Eb�a[φ(b̂o)], with b̂o

distributed as in (10). Furthermore, limn→∞Eθn[ϕn(κ̄n�Yn)] = Eb�a[φ(b̂o)] then holds un-
der all sequences θn with (

√
nβn�

√
nΔn − sn)= (b�a) and τn = o(n−1/4).

The theorem allows for
√
nκ̄n → k0 and sn = 0, so the localized problem (8) ini-

tially considered in Section 2.2 is covered as a special case with a = d, and the case
with |sn| → ∞ and

√
nκ̄n − |sn| → 0 or

√
nκ̄n − |sn| → ∞ correspond to the |k̄| → ∞
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cases discussed below (10). The theorem thus demonstrates that under τn = o(n−1/4)

the asymptotic power function of any test satisfying the condition of Lemma 1 can al-
ways be matched by the power function of a bivariate test that depends on the data
only through the short and long regression coefficient estimators. The determination
of inference procedures with attractive asymptotic power properties is hence reduced
to the problem of identifying good bivariate inference, as discussed in the last subsec-
tion.

The implementation of asymptotically valid bivariate tests is straightforward in the
Gaussian homoskedastic model. In particular, the test

ϕLR�n(κ̄n�Yn)= 1
[
LRn(

√
nκ̄n) > cvρn(

√
nκ̄n)

]
(13)

with LRn(k̄) equal to (9) and b̂ = (
√
nβ̂long�

√
nβ̂short)

′ and cvρ(k̄) as defined in Sec-
tion 2.2 has asymptotic rejection probability equal to the small sample rejection proba-
bility of the LR test discussed there. The attractive properties of the LR approach among
all bivariate tests thus translate via Theorem 2 into attractive asymptotic properties in
the Gaussian homoskedastic model among the larger class of tests that are only required
to satisfy Lemma 1.

Note that Theorem 2 does not require τn to be smaller than κ̄n; for instance,
√
nκ̄n

may converge, while
√
nτn diverges. This corresponds to a situation where the bound κ̄n

is much smaller than the actual value κn. This is most easily interpreted along the lines
discussed at the end of Section 2.2 above: The limited information in the data may make
it impossible to correctly conclude that such small values of κ̄n are incompatible with
β= 0, but one would still prefer a procedure that comes to this conclusion for as many
κ̄n as possible. Specifically, assuming thatϕn(κ̄�Yn) is not randomized, one would prefer
the threshold value κ̄∗

n(Yn) ∈ [0�∞)∪ {+∞} defined via

κ̄∗
n(Yn)= inf

κ̄

{
κ̄ : ϕn(κ̄�Yn)= 0

}
(14)

to be as large as possible, as discussed in Section 2.2, under the constraint that [0� κ̄∗
n(Yn)]

forms a 1 − α confidence set for |Δn| under β= 0. We formulate a corresponding result
in terms of a generic scalar estimator ψn(Yn), which allows for potential recentering,
ψn(Yn)= κ̄∗

n(Yn)− cn.

Corollary 1. In addition to the assumptions of Theorem 2, suppose ψn(Yn) has a dis-
tribution that depends on ξ only through (β�Δ�τ) for all large enough n. If for some se-
quence sn, and all (b�a) ∈ R

2, ψn(Yn) converges in distribution along a sequence θn with
(
√
nβn�

√
nΔn − sn)= (b�a) and τn = o(n−1/4) (where τn may depend on (b�a)), then the

limit distribution is of the form ψo(b̂o�U) for some function ψo : R3 �→ R ∪ {+∞}, with
b̂o distributed as in (10), and U a uniform random variable on [0�1] independent of b̂o.
Furthermore, ψn(Yn) then converges in distribution to ψo(b̂o�U) under all sequences θn
with (

√
nβn�

√
nΔn − sn)= (b�a) and τn = o(n−1/4).

The corollary shows that the problem of constructing asymptotically attractive
threshold estimators κ̄∗

n(Yn) is effectively reduced to considering functions of β̂long,
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β̂short, and potentially an independent randomization device, as long as one restricts
attention to κ̄∗

n(Yn) whose distribution does not depend on the nuisance parameters
(δ�ω). The local asymptotic properties of the threshold estimator (14) implied by the
LR test (13) corresponds to the small sample properties of k̄∗

LR(b̂) discussed at the end
of Section 2.2, so similar to Theorem 2, its attractive features again extend to this larger
class. And by settingψn(Yn) in Corollary 1 equal to a potentially recentered and rescaled
estimator of β that exploits the bound (2), the same holds for our suggested midpoint
estimator β̂LR(κ̄).

In summary, under pn → ∞ asymptotics, as long as τn = o(n−1/4), the quality of
asymptotic inference in the Gaussian homoskedastic model is limited from above by
the performance of bivariate procedures. The attractive small sample features of the
LR approach discussed in Section 2.2 thus translate into attractive large sample infer-
ence.

3. Implementation in non-Gaussian and potentially heteroskedastic models

In the Gaussian linear regression model, the bivariate tests introduced in Section 2.2
have exact small sample properties. But for applied use, it is important to have a valid
implementation in non-Gaussian and potentially heteroskedastic models. With the re-
gressors nonstochastic (or after conditioning on the regressors with a conditionally
mean zero error term), the general model is still of the form (1), where now εi ∼ (0�σ2

i )

independent across i. Under weak technical conditions on the tails of the distribution of
εi, on the sequence {σ2

i }ni=1 and on the regressors {xi�qi�zi}ni=1, a central limit theorem
yields

Ω
−1/2
n

(
β̂long�n −βn

β̂short�n −βn −Δn

)
⇒ N (0� I2) (15)

for some suitably defined Ωn, since (β̂long�n −βn� β̂short −βn −Δn) are linear combina-
tions of the heterogeneous but mean zero and independent random variables {εi}ni=1.
We provide a corresponding result in the supplemental Appendix that allows for depen-
dence among the εi due to clustering.

Suppose Ω̂n is a consistent estimator of Ωn in the sense that Ω−1
n Ω̂n

p→ I2. The nat-
ural LR statistic ofH0 : βn = 0 under the bound (2) then becomes

L̂Rn(κ̄n) = min
|Δ̃|≤ρnκ̄n/

√
x′
nxn/n

(
β̂long�n

β̂short�n − Δ̃

)′
Ω̂

−1
n

(
β̂long�n

β̂short�n − Δ̃

)

− min
β̃�|Δ̃|≤ρnκ̄n/

√
x′
nxn/n

(
β̂long�n − β̃

β̂short�n − β̃− Δ̃

)′
Ω̂

−1
n

(
β̂long�n − β̃

β̂short�n − β̃− Δ̃

)
�

where ρ2
n is the R2 of a regression of xi on zi. Exploiting the invariance of the LR statistic

to reparameterizations, the distribution of L̂Rn(κ̄n) under the approximations (15) and
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Ω̂n = Ωn is effectively indexed by χ = (χ1�χ2) with

χ1 = |Ω11 −Ω12|√
Ω11Ω22 −Ω2

12

� (16)

χ2 =
√
Ω11√

Ω11Ω22 −Ω2
12

ρnκ̄n√
x′
nxn/n

� (17)

where Ωij is the i, jth element of Ωn, and under the null hypothesis of βn = 0 and√
Ω11Δn/

√
Ω11Ω22 −Ω2

12 → g, the asymptotic distribution of L̂Rn(κ̄n) is equal to

min
|g̃|≤χ2

(
Z1

Z2 + g− g̃

)′(
Z1

Z2 + g− g̃

)

− min
h̃�|g̃|≤χ2

(
Z1 − h̃

Z2 + g−χ1h̃− g̃

)′(
Z1 − h̃

Z2 + g−χ1h̃− g̃

)
� (18)

where (Z1�Z2)
′ ∼ N (0� I2). This limit distribution depends on the nuisance parameter

|g| ≤ χ2, but a numerical calculation shows that its 1 −α quantile is maximized at g= χ2

for α ∈ {0�01�0�05�0�1} and all χ1. It is hence straightforward to obtain the appropriated
critical value cv(χ) via simulation, and we provide a corresponding look-up table in the
replication files. Alternatively, a linear interpolation of the values in Table 2 that only
depend on χ1 generate (slightly conservative) critical values or all χ2 (cf. Figure 1). Ei-
ther way, a subsequence argument then yields asymptotic validity of this feasible LR test
ϕ̂LR�n(κ̄n�Yn)= 1[L̂Rn(κ̄n) > cv(χ̂n)], where χ̂n = (χ̂n�1� χ̂n�2) are as in (16) and (17), with
the elements of Ωn replaced by those of Ω̂n.

Lemma 3. (a) If Ω−1
n Ω̂n

p→ I2 and (15) holds, then lim supn→∞Eθn[ϕ̂LR�n(κ̄n�Yn)] ≤ α for
all sequences θn with βn = 0 and |Δn| ≤ ρnκ̄n/

√
x′
nxn/n.

(b) Under the assumptions of Theorem 2, Eθn[ϕ̂LR�n(κ̄n�Yn)] −Eθn[ϕLR�n(κ̄n�Yn)] → 0.

Note that the asymptotic validity in part (a) holds without any assumptions about
the sequences pn or κ̄n. In particular, it is not required that pn/n→ c ∈ (0�1) or κ̄n =
o(n−1/4). In the Gaussian homoskedastic model, Ωn is equal to (x′

nxn)−1Σ(ρn), and in
large samples, ϕ̂LR�n reduces to the bivariate LR test introduced in Section 2.2. Formally,

Table 2. Interpolation table for upper bound on cv(χ).

α\χ1 0 2 5 8 12 25 ∞

0�01 6�663 6�931 7�170 7�218 7�251 7�287 7�306
0�05 3�845 3�959 4�081 4�142 4�174 4�203 4�219
0�10 2�711 2�750 2�810 2�870 2�898 2�926 2�941

Note: Linear interpolation within each row yields slightly conservative asymptotic critical values for L̂Rn(κ̄n).
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part (b) of the Lemma shows that the large sample power properties of ϕ̂LR�n in the Gaus-
sian homoskedastic model are equal to the small sample power properties of the LR
test as introduced in Section 2.2. Thus, ϕ̂LR�n(κ̄n�Yn) has the same asymptotic efficiency
properties as ϕLR�n(κ̄n�Yn) discussed below Theorem 2, even among tests that depend
on the data beyond the short and long regression coefficient.

Given Lemma 3, the only obstacle to a straightforward implementation of the LR test
in a more general model is the estimation of the asymptotic variance Ωn. If the number
of controls p is fixed, or only slowly increasing with n, the usual heteroskedasticity ro-
bust White (1980) estimator for Ωn is consistent under reasonably weak assumptions.
However, under asymptotics where pn/n→ c ∈ (0�1), as employed for the asymptotic
efficiency argument in Theorem 2, Cattaneo, Jansson, and Newey (2018a) show that
the White (1980) estimator is no longer consistent, and Cattaneo, Jansson, and Newey
(2018b) provide an alternative estimator that remains consistent. Alternatively, if the ex-
planatory power of the additional controls is limited in the sense that κn = o(1), one may
also consistently estimate Ω̂n from the usual White formula based on the residuals from
the short regression that only includes the baseline controls. This has the advantage of
being readily implementable also with clustering. We provide a corresponding result in
the supplemental Appendix.

Given any value of κ̄ ≥ 0, a confidence set for β is obtained by collecting the val-
ues for β0 such that the test H0 : β = β0 based on the LR statistic does not reject (in
the following, we drop n subscripts again to ease notation). For κ̄ = 0, and under ho-
moskedasticity, this yields the same interval as obtained from standard short regression
inference using the 2�2 element of Ω̂ as the variance estimator. In small samples, when
Ω̂ does not impose homoskedasticity, the confidence interval for κ̄= 0 is centered at a
slightly different value, since under heteroskedasticity, it is in general more efficient to
estimateβ by a linear combination of β̂long and β̂short that puts nonzero weight on β̂long.

For κ̄→ ∞, the interval is exactly centered at β̂long, but the LR test uses a slightly larger
critical value, as discussed in Section 2.2 above.

4. Extensions

4.1 Instrumental variable regression

Suppose the scalar regressor xi of interest in the linear regression (1) is endogenous, but
we have access to a scalar instrument wi (wi could be a linear combination of a vector
of instruments, such as in two stage least squares). As in the baseline model, we treat
{wi�qi�zi}ni=1 as nonstochastic, or equivalently, we condition on their realization in the
following. To simplify notation, let wi be orthogonal to the baseline controls qi. Assume
that the data is generated via

xi = ηwi + q′
iδx + z′

iγx + εxi� (19)

yi = βxi + q′
iδ+ z′

iγ + εi� (20)

where (εxi� εi) is mean-zero independent across i, but potentially heteroskedastic, and
if εxi is correlated with εi, the regressor xi in (20) is endogenous.
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Let (β̂IV
long� β̂

IV
short) be the IV estimators of β that include or exclude the additional

controls zi. These estimators involve the term
∑n
i=1wixi, which under (19) is stochastic

and depends on the realization of εxi, complicating the description of their bias. In order
to avoid these difficulties, we focus on their moment condition instead, as in Anderson
and Rubin (1949). Let ŵzi be the residuals of a regression of wi on zi. The estimators
β̂IV

long and β̂IV
short are identified from the two moment conditions E[n−1 ∑n

i=1 ŵ
z
i εi] = 0

and E[n−1 ∑n
i=1wiεi] = 0, respectively. Consider testing H0 : β = 0 (nonzero values can

be reduced to this case by subtracting β0xi from yi). Similar to (15), under H0, the em-
pirical moment conditions then satisfy

(
ΩIV)−1/2

⎛⎜⎜⎜⎜⎝
n−1

n∑
i=1

ŵzi yi

n−1
n∑
i=1

wiyi −ΔIV

⎞⎟⎟⎟⎟⎠⇒ N (0� I2) (21)

for some suitably defined ΩIV, which can be consistently estimated by Ω̂
IV

. The “bias”
ΔIV in (21) is given by ΔIV = n−1 ∑n

i=1wiz
′
iγ , and a straightforward calculation shows that

under (2), we have the sharp bound

∣∣ΔIV
∣∣≤ κ̄√w′Z

(
Z′Z

)−1Z′w/n

with w = (w1� � � � �wn)
′. Thus, under the null hypothesis of H0 : β = 0, the observations

(21) have the identical structure as (15) of the previous section, and one can apply the
LR test in entirely analogous fashion to obtain a valid large sample test that exploits the
bound (2) to sharpen inference in instrumental variable regression. Our focus on the
moments (21), rather than the estimators (β̂IV

long� β̂
IV
short), has the additional appeal that

no assumptions about the strength of the instrument are required.

4.2 Double bounds

In Sections 2 and 3, we have treated the regressors {xi�qi�zi}ni=1 as either nonstochastic,
or the analysis conditioned on their value. In the simple Gaussian model of Section 2
with random regressors, the Gram matrix forms an ancillary statistic. It is textbook ad-
vice to condition inference on ancillary statistics in general and on the Gram matrix in
particular (see, for instance, Chapter 2.2 in Cox and Hinkley (1974)), providing a ratio-
nale for our analysis. Furthermore, our approach does not require or depend on a model
for the potentially stochastic properties of the regressors. This is attractive in so far as it
relieves applied researchers from having to defend a particular data generating mecha-
nism, and avoids a source of potential misspecification.

We now discuss how one could exploit additional assumptions on the generation of
the regressor of interest xi to potentially further sharpen inference aboutβ. In particular,
assume that x̃i is generated by the linear model

x̃i = q′
iδx + z′

iγx + εxi� (22)
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where εxi is conditionally mean zero given {qi�zi}ni=1. The regressor xi is simply defined
as the residuals of a least squares regression of x̃i on qi, so that consistent with our no-
tation above Q′x = 0. We maintain, as in Sections 2 and 3, that εi in (1) is conditionally
mean zero (so x̃i is not endogenous, and no instrument is required). Assume further that
we are willing to assume that in addition to (2), also

κ2
x = n−1

n∑
i=1

(
z′
iγx

)2 ≤ κ̄2
x� (23)

so that κ̄x has the interpretation of an upper bound on the quadratic mean of the ef-
fect of zi on xi, after controlling for qi. This “double bounds” structure of limiting the
population coefficients in both the regression of interest (1), and the auxiliary regres-
sion (22), parallels the assumptions validating the double Lasso procedure by Belloni,
Chernozhukov, and Hansen (2014).

As in the previous subsection, it is convenient to focus on the moment conditions
defining the OLS estimators (β̂long� β̂short): Under weak regularity conditions, (2), (22),
and (23) imply that underH0 : β= 0

(
ΩDbl)−1/2

⎛⎜⎜⎜⎜⎝
n−1

n∑
i=1

x̂zi yi

n−1
n∑
i=1

xiyi −ΔDbl

⎞⎟⎟⎟⎟⎠⇒ N (0� I2)� (24)

where x̂zi are the residuals of a regression of xi on zi, and ΔDbl satisfies the sharp bound
|ΔDbl| ≤ κ̄ · κ̄x (see the supplemental Appendix for details). With an appropriate estima-

tor Ω̂
Dbl

, this again has the same structure as the problem discussed in Section 3, so the
LR test defined there can be used to exploit the additional information contained in (22)
and (23).

5. Small sample simulations

In this section, we use Monte Carlo simulations to evaluate the finite-sample proper-
ties of confidence intervals based on ϕ̂LR, and we compare it to the performance of the
Lasso-based post-double-selection technique of Belloni, Chernozhukov, and Hansen
(2014) (abbreviated BCH in the following two sections).

As in BCH’s Monte Carlo, we set the total number of observations to n = 500, let
p= 200, and generate data from a model where the baseline control is simply a constant,

yi = δ̃1 + x̃iβ+ z̃′
iγ + εi� i= 1� � � � � n (25)

with εi ∼ iid N (0�1) independent of {x̃i� z̃i}, and z̃i is generated by the linear model

x̃i = z̃′
iμ+ εxi (26)

with εxi ∼ iid N (0�1) independent of {z̃i}. To be consistent with our previous nota-
tion, we orthogonalize the regressors in (25) off the baseline control, that is, xi =
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x̃i − n−1 ∑n
l=1 x̃l and zi = (zi1� � � � � zip)

′ with zij = z̃ij − n−1 ∑n
l=1 z̃lj , so that (25) implies

the linear model (1) with an appropriate definition of δ1. We set β = 0 throughout.
Our designs vary according to the value of four parameters: the previously introduced
ρ2 ∈ {0�6�0�95} and κ ∈ {0�2�0�5}; the scalar η ∈ {0�1�0�3} determines the degree of spar-
sity of γ = (γ1� � � � � γp)

′ and μ = (μ1� � � � �μp)
′; and ν ∈ {0�0�5�1} determines the over-

lap between the nonzero indices of γ and μ. Specifically, γj = cγ1[j ≤ �ηp�], where the
scalar cγ is chosen such that the implied value of κ2 is equal to the specified value, and
μj = cμ1[�η(1 − ν)p� + 1 ≤ j ≤ �η(2 − ν)p�], j = 1� � � � �p, where cμ ∈ R is chosen such
that the sample R2 of a regression of xi on zi is equal to ρ2.

The parameter η plays a crucial role for the BCH method, since the method requires
that the number of nonzero values in γ and μ is not too large. In contrast, the test ϕ̂LR re-
mains numerically invariant to any linear reparameterizations of the regressors. Finally,
the parameter ν determines the omitted variable bias in the short regression coefficient
β̂short (which is the coefficient on xi in the regression of yi on (1�xi)). Under ν = 0, there
is no overlap, and the variables zij with nonzero coefficient γj are uncorrelated with the
regressor of interest xi, so there is no omitted variable bias, at least over repeated sam-
ples with random regressors. In the other extreme, with ν = 1, every variable zij with
nonzero coefficient γj is correlated with xi, leading to a large omitted variable bias.

We consider four types of confidence intervals for β. First, the usual confidence in-
terval based on β̂short. Second, the usual confidence interval based on β̂long. Third, the
confidence interval obtained by inverting the feasible test ϕ̂LR introduced in Section 3,
where we set κ̄ equal to the actual value of κ. Fourth, the Lasso-based post-double-
selection method “LPDS” from BCH, as specified in their Monte Carlo Section 4.2. For
the first three types of methods, we estimate standard errors of (β̂long� β̂short)

′ with the
heteroskedasticity-robust estimator of Cattaneo, Jansson, and Newey (2018b). In addi-
tion, we report quartiles of the threshold value κ̄∗

LR ∈ [0�∞) ∪ {+∞} computed from the
family of tests ϕ̂LR for each draw, defined to be zero if κ̄ = 0 does not lead to rejection,
and +∞ if none of the κ̄ values lead to rejection.

Table 3 contains the results. The confidence interval based on β̂short has coverage
substantially below the nominal level whenever the overlap parameter ν is positive. This
shows that the considered values of κ are large enough to severely distort inference that
simply sets the control coefficients to zero. In contrast, the interval associated with β̂long

has size very close to the nominal level throughout, but at the cost of being fairly long.
The LPDS method sometimes substantially undercovers even in the relatively sparse de-
sign with η = 0�1. Apparently, the relatively small values of γj make it difficult for the
method to correctly pick up the η · p= 20 nonzero coefficients, leading to a remaining
omitted variable bias that is large enough to induce nonnegligible overrejections. When
κ = 0�5 and ρ2 = 0�95, so that both γj and μj are relatively larger, the LPDS method re-
liably controls size in the η = 0�1 sparse design, but yields somewhat longer intervals
compared to β̂long. The new tests ϕ̂LR(κ�Y) control size throughout as they should, given

that κ̄ = κ trivially implies κ ≤ κ̄, and yield intervals that are shorter than the β̂long-
interval when ν > 0, with larger gains for larger values of ρ and ν.

Of course, with κ unknown in practice, one cannot apply ϕ̂LR(κ̄�Y) with κ = κ̄. We
expect that in practice, researchers will consider a range of values of κ̄ to gauge the sensi-
tivity of the results about β. Then, by construction, researchers will also consider κ̄= κ,
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Table 3. Small sample properties for n= 500 and p= 200.

η ρ2 ν

β̂short β̂long LPDS ϕ̂LR(κ�Y) κ̄∗
LR

Cov Lgth Cov Lgth Cov Lgth Cov Lgth Q1 Q2 Q3

κ= 0�20

0�10 0�60 0�00 0�94 0�14 0�94 0�22 0�95 0�23 0�94 0�22 0�00 0�00 0�00
0�10 0�60 0�50 0�74 0�14 0�95 0�22 0�92 0�23 0�95 0�22 0�00 0�00 0�00
0�10 0�60 1�00 0�27 0�14 0�94 0�22 0�82 0�23 0�95 0�20 0�00 0�04 0�08
0�10 0�95 0�00 0�94 0�05 0�94 0�22 0�95 0�26 0�98 0�14 0�00 0�00 0�00
0�10 0�95 0�50 0�42 0�05 0�95 0�22 0�95 0�26 0�98 0�14 0�00 0�02 0�05
0�10 0�95 1�00 0�01 0�05 0�95 0�22 0�95 0�25 0�95 0�13 0�08 0�11 0�15
0�30 0�60 0�00 0�94 0�14 0�95 0�22 0�95 0�21 0�95 0�22 0�00 0�00 0�00
0�30 0�60 0�50 0�74 0�14 0�94 0�22 0�87 0�21 0�94 0�22 0�00 0�00 0�00
0�30 0�60 1�00 0�27 0�14 0�94 0�22 0�62 0�21 0�95 0�20 0�00 0�04 0�08
0�30 0�95 0�00 0�94 0�05 0�95 0�22 0�95 0�18 0�98 0�14 0�00 0�00 0�00
0�30 0�95 0�50 0�43 0�05 0�95 0�22 0�91 0�17 0�98 0�14 0�00 0�02 0�05
0�30 0�95 1�00 0�01 0�05 0�95 0�22 0�81 0�17 0�95 0�13 0�08 0�11 0�15

κ= 0�50

0�10 0�60 0�00 0�92 0�14 0�94 0�22 0�95 0�24 0�94 0�22 0�00 0�00 0�00
0�10 0�60 0�50 0�13 0�14 0�94 0�22 0�77 0�24 0�94 0�22 0�03 0�08 0�12
0�10 0�60 1�00 0�00 0�14 0�94 0�22 0�38 0�24 0�95 0�22 0�22 0�26 0�31
0�10 0�95 0�00 0�91 0�05 0�95 0�22 0�95 0�27 0�95 0�22 0�00 0�00 0�00
0�10 0�95 0�50 0�00 0�05 0�94 0�22 0�95 0�26 0�96 0�19 0�13 0�16 0�20
0�10 0�95 1�00 0�00 0�05 0�94 0�22 0�95 0�25 0�95 0�15 0�37 0�41 0�44
0�30 0�60 0�00 0�91 0�14 0�94 0�22 0�95 0�22 0�94 0�22 0�00 0�00 0�00
0�30 0�60 0�50 0�12 0�14 0�94 0�22 0�50 0�22 0�94 0�22 0�04 0�08 0�12
0�30 0�60 1�00 0�00 0�14 0�94 0�22 0�03 0�22 0�95 0�22 0�22 0�27 0�31
0�30 0�95 0�00 0�92 0�05 0�94 0�22 0�95 0�18 0�95 0�22 0�00 0�00 0�00
0�30 0�95 0�50 0�00 0�05 0�94 0�22 0�74 0�18 0�96 0�19 0�13 0�16 0�20
0�30 0�95 1�00 0�00 0�05 0�94 0�22 0�42 0�17 0�95 0�15 0�37 0�41 0�44

Note: Entries are coverage and average length of 95% confidence intervals for β, and the quartiles of the distribution of
κ̄∗

LR. Rows correspond to different DGPs, with η measuring the sparsity of the design, ν the overlap between the nonzero in-

dices on zi in the regressions of yi on zi and of xi on zi , and ρ2 is R2 of a regression of xi on zi . The columns are different
confidence intervals, with β̂short and β̂long the confidence interval based on short and long regression coefficients, ϕ̂LR(κ̄�Y)
the LR based confidence interval developed in this paper that imposes the bound κ≤ κ̄, and LPDS is BCH’s Lasso-based post-
double-selection procedure. Based on 20,000 Monte Carlo simulations.

and the length of ϕ̂LR(κ�Y) in Table 3 indicates that at that point, the interval exploit-

ing the bound (2) is often considerably more informative than the interval based on

β̂long. In addition, researchers might compute the threshold value κ̄∗
LR, defined such that

ϕ̂LR(κ̄�Y) rejects for all κ̄≤ κ̄∗
LR. The last three columns in Table 3 report the quartiles of

the distribution of κ̄∗
LR. For ν = 1, as well as for (κ� ν) = (0�5�0�5), its median is always

positive. Thus, in the majority of draws, researchers would have been able to conclude

that small upper bounds for κ̄ are empirically incompatible with β= 0. Unreported re-

sults show that if the true value of β is nonzero, these medians become larger. Thus, the

LR approach helps sharpen inference about β in a meaningful way.
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Still, looking over the table, it is tempting to conclude that one should use β̂short

whenever there is no overlap, ν = 0, as this leads to the shortest intervals by far, and only
slight size distortions. Similarly, if ν < 1 the quartiles of κ̄∗

LR are much smaller than κ.
However, it is not possible to consistently determine the value of ν from the observa-
tions. This is the result of the asymptotic efficiency derivations in Section 2.3: For small
values of κ̄, it is impossible to do better than to construct inference based on the bivari-
ate statistics (β̂long� β̂short)

′ at least in large samples, and as demonstrated there, the LR
approach comes close to exploiting the information contained in this pair of statistics.

6. Empirical applications

6.1 Overview

We illustrate the suggested method in three empirical examples based on studies by
Macchiavello and Morjaria (2015), Donohue and Levitt (2001), and Imbens, Rubin, and
Sacerdote (2001). Our examples serve to highlight the mechanics of the bivariate LR test
and illustrate its empirical content. In particular, for each of the studies, we calculate
the LR statistic L̂R(κ̄) over a grid of values for κ̄, resulting in a family of confidence in-
tervals in β indexed by κ̄ ≥ 0. This family provides an explicit correspondence between
assumptions on the control coefficients γ and empirical conclusions about the parame-
ter of interest β. As a by-product, we obtain the threshold value κ̄∗

LR, so that the intervals
exclude the zero-effect value β= 0 for κ̄ < κ̄∗

LR, and contain it otherwise.
The intervals are computed in the following steps:

1. Let y be the n× 1 vector of outcome variables, x̃ the scalar regressor of interest, Q
the matrix of baseline controls, and Z̃ the matrix of additional controls of question-
able relevance. Run the long regression of y on (x̃� Z̃�Q) to find the long coefficient
β̂long, and run the short regression of y on (x̃�Q) to find the short coefficient β̂short.

2. Let x and Z denote the residuals of x̃, Z̃ in a regression on Q. Define vi =
((x′x)−1xi� (x̌′x̌)−1x̌i)

′, i = 1� � � � � n with x̌ the vector of residuals of a linear regres-
sion of x on Z.

3. Obtain an estimate Ω̂n of the 2 × 2 covariance matrix of (β̂long� β̂short)
′:

(a) If the total number of controls (the number of elements in δ and γ) is small
compared to the sample size, a standard heteroskedasticity robust estimator
may be used

Ω̂n =
∑
j

(∑
i∈Gj

viei

)(∑
i∈Gj

viei

)′
� (27)

where the sets Cj partition the indices i = 1� � � � � n into clusters (so that for in-
dependent samples, Cj = {j}), and ei are the residuals of the long regression.

(b) If the total number of controls is of the same order as the sample size (say,
5% or more), then without clustering, apply the Cattaneo, Jansson, and Newey
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(2018b) estimator

Ω̂n =
n∑
i=1

n∑
j=1

κije
2
i viv′

i�

where κij are the elements of the n × n matrix (M � M)−1 with M = In −
W(W′W)−1W′ and W = (Q�Z), � denotes the element-by-element product, and
ei are the residuals of the long regression.

(c) If the number of baseline controls is small, and the number of additional con-
trols is of the same order as the sample size (say, 5% or more), then under clus-
tering, use (27) with ei equal to residuals of the short regression.

4. Compute ρ2 = x′Z(Z′Z)−1Z′x/(x′x), the R2 of a regression of x on Z, and for given
κ̄, χ1 and χ2 from equations (16) and (17) with Ωij the elements of Ω̂n. Define the
function h :R2 �→ R via h(Y1�Y2)= h0(Y1�Y2)− h1(Y1�Y2), where

h0(Y1�Y2) = Y 2
1 + 1

[|Y2|>χ2
](|Y2| −χ2

)2
�

h1(Y1�Y2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(χ2 +χ1Y1 −Y2)
2

1 +χ2
1

if χ2 +χ1Y1 <Y2�

(χ2 −χ1Y1 +Y2)
2

1 +χ2
1

if χ2 −χ1Y1 <−Y2�

0 otherwise�

5. Compute the level α critical value cv as the 1 − α quantile of h(Z1�Z2 + χ2), where
(Z1�Z2) are independent standard normals via simulation (or rely on the look-up
table in the replication files, or on the slightly conservative interpolation from Ta-
ble 2).

6. The level 1 − α confidence interval for β is formed by the values of β0 that satisfy

h

(
sign(Ω11 −Ω12)

β̂long −β0√
Ω11

�
Ω11(β̂short −β0)−Ω12(β̂long −β0)√

Ω11

√
Ω11Ω22 −Ω2

12

)
≤ cv

and the estimator β̂LR(κ̄) is the midpoint of this interval.

6.2 Macchiavello and Morjaria (2015)

Macchiavello and Morjaria (2015) use data on African rose exports to identify reputa-
tional effects in markets without contract enforcement. The authors construct a model
with the feature that binding incentive constraints yield observable proxies for the
buyer–seller relationship value during periods of maximum temptation for sellers and
buyers to undercut each other. They find, empirically, that this value proxy is correlated
with relationship age but not outside prices, evidence that reputation constrains trade
in the absence of enforcement. We apply our approach to determine the extent to which
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the correlation between relationship value and age is sensitive to Macchiavello and Mor-
jaria’s (2015) choice of control variables.

We treat the panel regression from Table 5, Column 8 of Macchiavello and Morjaria
(2015) as the short regression, where relationships are the unit of observation and the
time dimension corresponds to four growing seasons (years), for a total of n= 372 obser-
vations. This regression has the log of the relationship value as the dependent variable,
the regressor of interest is the log of relationship age, and the baseline controls are the
maximum of the previous observed log auction value as well as relationship and sea-
son fixed-effects. This is a difference-in-differences model in which the main effect is
identified by variation in sales across seasons for buyer–seller relationships of different
ages. Macchiavello and Morjaria (2015) find that β, the coefficient on relationship age,
is statistically significant at standard confidence levels.

We investigate the sensitivity of these results to p = 123 additional buyer × season
fixed effects. This specification is an extension of the baseline season controls that al-
lows flexibility over buyers. One might imagine that because sellers are located in Kenya,
but buyers are located globally, time trends might be more plausibly heterogeneous for
buyers. Hence, to the extent that purchase patterns over seasons differed between buy-
ers with relationships of various lengths for reasons unrelated to learning about seller
quality, omitting these additional fixed effects could lead to bias in β. However, absent
constraints on the coefficient of these additional controls, only variation from seller dif-
ferences across seasons can identify the main effect β, so including these additional
fixed effects in an unconstrained fashion leads to much less informative inference.

Figure 3 plots 90%, 95%, and 99% confidence intervals for β from our new proce-
dure as a function of κ̄, along with the point estimates β̂LR(κ̄). The standard errors are
clustered by seller and are computed as described in Step 3c of Section 6.1. We see that
the short regression strongly rejects, but the long regression does not. The largest value
of κ̄ that still leads to rejection, κ̄∗

LR, of the 5% level test is indicated by a vertical line
and equals κ̄∗

LR = 0�203. Thus, since the outcome is measured in logs, as long as one
believes that season-specific idiosyncratic buyer preferences not already captured by
Macchiavello and Morjaria’s (2015) baseline controls induce on average changes in the

Figure 3. LR Confidence intervals for β in Macchiavello and Morjaria (2015).



Quantitative Economics 12 (2021) Linear regression with many controls 429

Figure 4. Sparsity based confidence intervals for β in Macchiavello and Morjaria (2015).

relationship value of no more than 20�2%, the conclusion of a statistically significant ef-
fect of the age of the relationship is upheld. The corresponding R2-type ratio of n(κ̄∗

LR)
2

and the sum of squared residuals of a regression of yi on qi equals 18�8% in this exam-
ple. In other words, significance of β at the 5% level prevails as long as the direct effect
of season-specific idiosyncratic buyer preferences is assumed to be responsible for less
than 18�8% of residual variation in the log-relationship value.

It might be useful to contrast these results to what is obtained from an analysis im-
posing sparsity. Figure 4 provides post-double Lasso point estimates and confidence in-
tervals for β, where the penalty terms suggested by Belloni, Chernozhukov, and Hansen
(2014) are multiplied by a common factor that induces the sparsity index 0 ≤ p̂ ≤ p in
the post-double Lasso regression.5 The confidence interval on the very left and very right
are again standard short and long regression inference. But in between, the bounds on
the confidence intervals are not a monotone function of the sparsity index, complicating
the interpretation of a higher index as a “weaker” assumption on the control coefficients.
What is more, there is no justification for the confidence intervals reported in Figure 4:
The asymptotic justification for double selection Lasso inference is not for a specific
sparsity index, but rather, it is shown to be valid under certain asymptotic sequences
of penalty terms if the model satisfies some asymptotic sparsity constraint. The default
penalty choice suggested by Belloni, Chernozhukov, and Hansen (2014) applied to the
example selects p̂= 2 controls and leads to a significant β at all conventional levels.

6.3 Abortion and crime

In an influential paper, Donohue and Levitt (2001) found a significant effect of lagged
abortion rates on crime, using a panel data of U.S. states from 1985 to 1997, but these
results were disputed in follow-up studies (see, for instance, Foote and Goetz (2008), and

5The gaps in the figure arise because it seems numerically impossible to induce all values of 0 ≤ p̂≤ p by
varying the penalty term factor. When there is more than one post selection regression at a given sparsity
level p̂ (which is possible, since Lasso is based on an L1 penalty, rather than directly penalizing sparsity),
we report the lower and upper envelopes.
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Figure 5. LR confidence intervals for β in Donohue and Levitt (2001).

Joyce (2004, 2009)). BCH also consider this example as an illustration of their methodol-
ogy.

We apply the same specification as in BCH, and focus on violent crimes (results are
similar for property and murder crime rates). The regression models panel data from 48
states over 12 years, with all variables expressed in first differences to account for state
fixed-effects, for a total of n = 576 observations. The explanatory variable is the violent
crime rate, the regressor of interest with coefficient β is a measure of lagged abortion
rates, the “short” specification includes a set of 20 controls (including 12 time dummies)
present in Donohue and Levitt’s original specification, and the potential additional con-
trols are a set of p = 284 regressors proposed by BCH, including higher-order terms,
initial conditions, and interactions of variables with state-specific observables. Using
standard errors clustered at the state level, as described in Step 3c of Section 6.1, the t-
tests based on β̂short rejects at the 5% level, but the t-test using the estimator β̂long from
the long regression does not.

Figure 5 plots the LR confidence intervals for β as a function of the bound κ̄. It is
apparent from the figure that trying to control for the 284 additional controls is very
ambitious, as it leads to a dramatically increased standard error compared to the short
regression. Correspondingly, the cut-off value κ̄∗

LR is rather small at 0�6%: As soon as
one allows for a quadratic mean effect of the additional controls on the crime rate to be
larger than 0�6%, one loses significance of lagged abortion rates on violent crime rates.
The corresponding threshold of the ratio of n(κ̄∗

LR)
2 to the sum of squared residuals in a

regression of yi on qi is a mere 0�7%. This conclusion of extreme fragility of the empirical
results to inclusion of this large set of additional controls accords qualitatively with the
analysis of BCH, who find that post double Lasso inference about β is not significant.

6.4 Earnings, lottery winnings and treatment heterogeneity

It is well understood that inference on average treatment effects is sensitive to the ac-
commodation of treatment heterogeneity (Imbens and Wooldridge (2009)). In particu-
lar, procedures that ignore heterogeneity of treatment effects may misappropriate ex-
planatory power from the treatment to the confounding factors in a way that biases the
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average treatment effect. However, allowing too much heterogeneity can lead to noisy
inference. Our approach can be used to illuminate how assumptions on treatment het-
erogeneity shape inference on the average treatment effect. We illustrate this in this sec-
tion using data from a study by Imbens, Rubin, and Sacerdote (2001).6

Using data on a cross-section of n = 496 individuals participating in the Mas-
sachusetts lottery from 1984 to 1988, these authors study the effects of unearned income
on the marginal propensity to earn (MPE). In their main empirical exercise, the authors
regress post-lottery earnings on lottery winnings, and they interpret the coefficient on
lottery winnings as the effect of income on MPE. Although winning the lottery is plausi-
bly exogenous conditional on purchasing a lottery ticket, the frequency of lottery ticket
purchases may be correlated with factors that also affect labor and wages. Hence, the au-
thors include observable individual characteristics as control variables. For illustration,
we focus on the specification from Row 1, Column 2 of their Table 4,

yi = βxi +
7∑
j=1

qijδj + εi� (28)

In this specification, the outcome yi denotes the average of social security earnings in
the 6 years after the lottery measured in multiples of $1000, the main regressor xi de-
notes lottery winnings in multiples of $1000, and the baseline covariates qij include years
of education, age, an intercept term, and dummies for gender, some college, age greater
than 55, and age greater than 65. In Row 1, Column 2 of their Table 4, the authors esti-
mate β, the coefficient on winnings, to be −0�052 and statistically significant at standard
levels.

Following their baseline specification, Imbens, Rubin, and Sacerdote (2001) explore
heterogeneity in the main effect. In particular, in their Table 5, the authors explore how
β differs by gender, prior earnings, age, education, and years since winning. Despite this
heterogeneity, the coefficients in (28) may still be unbiased for the conditional average
effect in the sample of 496 individuals, if one assumes that potential heterogeneity inβ is
uncorrelated with the observed regressors. However, without this assumption, inference
based on the short regression (28) may be invalid. We apply our approach to assess the
extent to which allowing heterogeneity inβ over different subgroups of the data changes
inference on the conditional average effect.

In particular, we consider potential controls in the form of subgroup dummies and
interactions with the regressor of interest in order to allow for heterogeneity in the co-
efficient of interest. Formally, we identify subgroups of the data generated by the cross-
products of dummies for gender, full college, age greater than 45, age greater than 55,
and age greater than 65. This results in 16 potential subgroups G1� � � � �G16 that parti-
tion the full set of observables i ∈ {1� � � � �496}, with each individual i belonging to one
subgroupGj . A linear model allowing for arbitrary heterogeneity of the treatment effect

6Also see Imbens and Rubin (2015) for further exploration of this data set from a causal inference per-
spective.
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across these groups is given by

yi =
16∑
j=1

1[i ∈Gj]xiβj +
7∑
j=1

qijδj +
16∑
j=1

1[i ∈Gj]γj + εi

with βj the conditional treatment effect in subgroup j.
Suppose that under treatment heterogeneity, the parameter of interest is the average

β= n−1 ∑n
i=1

∑16
j=1 1[i ∈Gj]βj . Following Section 5.2 of Imbens and Wooldridge (2009),

inference about β can conveniently be performed by augmenting the short regression

(28) by controls zik consisting of dummies 1[i ∈Gj] and interaction terms (1[i ∈Gj] −
n−1 ∑n

l=1 1[l ∈Gj])xi. Dropping collinear terms, this results in the “long regression” with

25 additional controls zik,

yi = βxi +
7∑
j=1

qijδj +
25∑
k=1

zikγk + εi�

We use our approach to study the sensitivity of inference aboutβ to varying assump-

tions about population group heterogeneity, that is, the coefficients γk. Figure 6 plots

confidence intervals for β as a function of the bound κ̄, using Cattaneo, Jansson, and

Newey (2018b) standard errors. We find that for the 95% level, κ̄∗
LR = $1�79k, so under

the assumption that the quadratic mean of heterogeneity across groups is smaller than

$1�79k, we still reject the null hypothesis that the conditional average treatment effect of

lottery winnings on post-lottery earnings is zero at the 5% significance level. This trans-
lates into a ratio of 1�8% of n(κ̄∗

LR)
2 to the sum of squared residuals in a regression of yi

on qi. As such, we conclude that the significance of the homogeneous baseline (28) are

somewhat sensitive, but not extremely sensitive to the assumption of treatment homo-

geneity.

Figure 6. LR confidence intervals for β in Imbens, Rubin, and Sacerdote (2001).
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7. Conclusion

Improving inference over including all potential controls in a “long regression” requires
some a priori knowledge about the control coefficients. In this paper, we develop a
simple inference procedure that exploits a bound on the overall explanatory power of
questionable additional controls. This yields a continuous bridge between excluding
these controls and including them with unconstrained coefficients, as a function of the
bound. The approach enables applied researchers to explore the robustness of an em-
pirical result relative to set of additional controls, beyond the dichotomous conclusion
that significance is, or is not lost with their inclusion.

In particular, we suggest computing κ̄∗
LR, the threshold value for the explanatory

power of the additional controls for which the parameter of interest is still significant.
We offer a purely statistical and a more substantive approach to judging the magnitude
of κ̄∗

LR in practice: On the one hand, one can translate κ̄∗
LR into a fraction of the variation

of the outcome that is explained by the additional controls. In the three illustrations we
considered, the threshold values for this fraction were 18�8%, 0�7%, and 1�8%, respec-
tively. Since we expect that this approach would typically be applied to additional con-
trols that are a priori plausibly irrelevant, a fraction of 5% is quite large, and even 1% is
arguably not an entirely trivial fraction. On the other hand, κ̄∗

LR is directly interpretable
in terms of the quadratic mean of the effects of the additional controls. This number has
the same units as the outcome variable, and its magnitude must necessarily be judged
in the context of the application at hand. From that perspective, we deem κ̄∗

LR quite large
in Macchiavello and Morjaria (2015), but very small in Donohue and Levitt (2001) and of
moderate magnitude in Imbens and Wooldridge (2009), although one might reasonably
disagree with this assessment. Ultimately, these judgements might best be left to con-
sumers of the empirical study, with κ̄∗

LR delineating what one must be willing to assume
to sustain the finding of a significant effect.

Appendix: Proofs

A.1 Proof of Lemma 1

Let ϕ0(ξ̂) = Eξ[ϕ(κ̄�Y)|ξ̂], so that by sufficiency of ξ̂, and the law of iterated expecta-
tions, Eξ[ϕ(κ̄�Y)] = Eξ[ϕ0(ξ̂)]. Since by assumption, Eξ[ϕ(κ̄�Y)] does not depend on δ,
Eξ[ϕ0(ξ̂)] = Eξ0[ϕ0(ξ̂)], where ξ0 = (β�Δ�0� τ�ω). Define ϕS(ζ̂)= Eξ0[ϕ0(ξ̂)|ζ̂] with ζ̂ =
(β̂long� β̂short� φ̂

′
). Then by the law of iterated expectations, Eξ0[ϕS(ζ̂)] = Eξ0[ϕ0(ξ̂)] =

Eξ[ϕ(κ̄�Y)] for all ξ.
Furthermore, with O a (p− 1)× (p− 1) rotation matrix

Eβ�Δ�τ�ω
[
ϕS(ζ̂)

] = Eβ�Δ�τ
[
ϕS(ζ̂)

]
= Eβ�Δ�τ

[
ϕS

((
β̂long� β̂short� (τω+ e)′

))]
= Eβ�Δ�τ

[
ϕS

((
β̂long� β̂short� (τω+ Oe)′

))]
= Eβ�Δ�τ

[
ϕS

((
β̂long� β̂short� (τOω+ Oe)′

))]
�
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where e ∼ N (0� n−1Ip−1) is independent of (β̂long� β̂short), the first and last equality

follow from assumption about the rejection probability of ϕ(κ̄�Y), and the before last

equality follows from the spherical symmetry of the distribution of e. Since O was arbi-

trary, we also have

Eξ

[
ϕ(κ̄�Y)

]=
∫
Eβ�Δ�τ

[
ϕS

((
β̂long� β̂short� (Oτω+ Oe)′

))]
dHp−1(O)�

where Hp−1 is the Haar measure on the p − 1 rotation matrices. Now set ϕ̃(T) =∫
ϕS((β̂long� β̂short� τ̂ι

′O))dHp−1(O) = ∫
ϕS((β̂long� β̂short� φ̂

′
O))dHp−1(O) with ι =

(1�0� � � � �0)′ ∈R
p−1. Then

Eβ�Δ�τ
[
ϕ̃(T)

] = Eβ�Δ�τ

[∫
ϕS

((
β̂long� β̂short� φ̂

′
O′))dHp−1(O)

]
=
∫
Eβ�Δ�τ

[
ϕS

((
β̂long� β̂short� (τOω+ Oe)′

))]
dHp−1(O)

and the result follows.

A.2 Proof of Lemma 2

We will make use of the following lemma.

Lemma 4. Let Im denote the modified Bessel function of the first kind of degree m > 0.

Then for any positive sequence sm = o(m1/2),

lim
m→∞Im(sm)

�(m+ 1)(
1
2
sm

)m = 1�

where � is the Gamma function.

Proof. From the definition of Im, for any s > 0,

Im(s) =
(

1
2
s

)m ∞∑
j=0

(
1
4
s2
)j

j!�(m+ j + 1)

=

(
1
2
s

)m
�(m+ 1)

⎛⎜⎜⎜⎝1 +
∞∑
j=1

(
1
4
s2
)j

j!
�(m+ 1)

�(m+ j + 1)

⎞⎟⎟⎟⎠ �
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Now

∞∑
j=1

(
1
4
s2
)j

j!
�(m+ 1)

�(m+ j + 1)
≤

∞∑
j=1

s2j

j!
�(m+ 1)

�(m+ j + 1)

≤
∞∑
j=1

(
s2/m

)j
j! = exp

[
s2/m

]− 1

where the second inequality uses the elementary inequality �(m+1)mj/�(m+ j+1)≤ 1
obtained from repeatedly applying �(m+ i+1)= (m+ i)�(m+ i)≤m�(m+ i) for all i≥ 0
andm> 0. The result now follows from s2m/m→ 0 under sm = o(m1/2).

For ease of notation, we omit the dependence on n (and p= pn), except for tn. From
(11), it follows that nτ̂2 = nφ̂

′
φ̂ with φ̂ ∼ N (τω� n−1Ip−1) is distributed noncentral χ2

with p−1 degrees of freedom and noncentrality parameter nτ2. Without loss of general-
ity, assume ω= ι= (1�0� � � � �0)′. Then, with ω̂= φ̂/‖φ̂‖, from the density of φ̂ and using
the notation of the proof of Lemma 1,

Ln(tn)= C
∫

exp
[
−1

2
n‖τ̂Oω̂− ιtn‖2

]
dHp−1(O)

for some constant C that does not depend on tn (and note that Ln(tn) does not depend
on the realization of ω̂). Thus

Ln(tn)/Ln(0)=
∫

exp
[
ntnτ̂ω̂

′Oι− 1
2
nt2n

]
dHp−1(O)�

We initially show the convergence under τ = 0. It then suffices to show that E[(Ln(tn)/
Ln(0)− 1)2] → 1 under φ̂ ∼ N (0� n−1Ip−1) and an arbitrary sequence tn = o(n−1/4). Ob-
serve that

E
[(
Ln(tn)/Ln(0)− 1

)2]
=E

[(∫
exp

[
tnφ̂

′
Oι− 1

2
nt2n

]
dHp−1(O)− 1

)2]
=E

[(∫
exp

[
tnφ̂

′
Oι− 1

2
nt2n

]
dHp−1(O)− 1

)
×
(∫

exp
[
tnφ̂

′
Õι− 1

2
nt2n

]
dHp−1(Õ)− 1

)]
=E

[(∫
exp

[
tnφ̂

′
Oι− 1

2
nt2n

]
dHp−1(O)

)(∫
exp

[
tnφ̂

′
Õι− 1

2
nt2n

]
dHp−1(Õ)

)]
− 2 ·E

[∫
exp

[
tnφ̂

′
Oι− 1

2
nt2n

]
dHp−1(O)

]
+ 1

= hn(tn)− 2h̃n(tn)+ 1�
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In what follows, we show that hn(tn)→ 1. The convergence h̃n(tn)→ 1 follows from the
same arguments and is omitted for brevity.

Tonelli’s theorem and φ̂∼N (0� n−1Ip−1) imply

hn(tn) = E

[∫ ∫
exp

[
tnφ̂

′
(Oι+ Õι)− nt2n

]
dHp−1(O)dHp−1(Õ)

]
=
∫ ∫

E
[
exp

[
tnφ̂

′
(Oι+ Õι)− nt2n

]]
dHp−1(O)dHp−1(Õ)

=
∫ ∫

exp
[

1
2
nt2n‖Oι+ Õι‖2 − nt2n

]
dHp−1(O)dHp−1(Õ)

=
∫ ∫

exp
[
nt2n(Oι)′Õι

]
dHp−1(O)dHp−1(Õ)

=
∫

exp
[
nt2nι

′Oι
]
dHp−1(O)�

Using the notation of Lemma 4, the formula for the normalizing constant of the
von Mises–Fisher distribution (see, for instance, equation (9.3.4) of Mardia and Jupp
(2000)) implies hn(tn) = 2p̃/2−1 · Ip̃/2−1(nt

2
n) · �(p̃/2)/(nt2n)p̃/2−1 where p̃ = p− 1. Appli-

cation of Lemma 4 with sn = nt2n now yields hn(tn)→ 1, since under tn = o(n−1/4) and
p/n→ c ∈ (0�1), s2n = n2t4n = o(p/2 − 1).

This concludes the proof under τn = 0. Now apply this very result to another se-

quence tn, tn = t ′n. Then Ln(t
′
n)/Ln(0)

p→ 1 implies via LeCam’s first lemma (see, for
instance, Lemma 6.4 in van der Vaart (1998)) that in the experiment of observing τ̂2

n,

the sequence τn = t ′n is contiguous to τn = 0. Thus, Ln(tn)/Ln(0)
p→ 1 also holds under

τn = t ′n = o(n−1/4) by definition of contiguity, which was to be shown.

A.3 Proof of Theorem 2

Let 
n(Tn) be the log-likelihood ratio statistic based on Tn of testing H0 : (b�a� τn) =
(b0� a0� τn�0) against H1 : (b�a� τn) = (b1� a1� τn�1). Let hj�n = (bj� bj + ρnaj)

′ and hj =
(bj� bj + ρaj), j = 0�1. From (11),


n(Tn) = √
x′
nxn

(
β̂long�n

β̂short�n − sn

)′
Σ(ρn)

−1(h1�n − h0�n)− 1
2
h′

1�nΣ(ρn)
−1h1�n

+ 1
2
h′

0�nΣ(ρn)
−1h0�n + log

(
Ln(τn�1)

Ln(τn�0)

)

and with 
0(b̂o) the log-likelihood ratio statistic based on b̂o of of testing H0 : (b�a) =
(a0� b0) againstH1 : (b�a)= (b1� a1),


0
(
b̂o

)=
(
b̂long

boshort

)′
Σ(ρ)−1(h1 − h0)− 1

2
h′

1Σ(ρ)
−1h1 + 1

2
h′

0Σ(ρ)
−1h0�
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By Lemma 2,

Ln(τn�1)

Ln(τn�0)
= Ln(τn�1)

Ln(0)
Ln(0)
Ln(τn�0)

p→ 1

and from ρn → ρ,
√

x′
nxn(β̂long�n� β̂short�n)

′ ⇒ b̂o and hj�n → hj for j = 0�1. Thus, under

H0, 
n(Tn)⇒ 
0(b̂o). This straightforwardly extends more generally to {
n(Tn)}(b�a)∈H ⇒
{
0(b̂o)}(b�a)∈H for any finite H ⊂ R

2. Thus, by Definition 9.1 in van der Vaart (1991),
under the assumptions of the lemma, the sequence of experiments of observing Tn with
local parameter space (b�a) ∈ R

2 converges to the experiment of observing b̂o. The first
claim now follows from Theorem 15.1 in van der Vaart (1991).

For the second claim, for given (b�a), suppose Eθn[ϕn(κ̄n�Yn)] → Eb�a[φ(b̂o)] along
θn = θn�1 with τn = τn�1 = o(n−1/4). Let τn�2 = o(n−1/4) be another sequence, and de-
note θn�2 the corresponding sequence of θ. Suppose Eθn�2[ϕn(κ̄n�Yn)] does not converge

to Eb�a[φ(b̂o)]. By Prohorov’s theorem (see, for instance, Theorem 2.4 in van der Vaart
(1998)) and 0 ≤ ϕn(κ̄n�Yn)≤ 1, there exists a subsequence of n such that ϕn(κ̄n�Yn) con-
verges in distribution along that subsequence. Furthermore, by Lemma 2, the likelihood
ratio statistic between the corresponding sequences θn�1 and θn�2 with identical val-
ues of (b�a) converges in probability to one, and this convergence automatically holds
jointly with ϕn(κ̄n�Yn) along the subsequence. Thus, a trivial application of LeCam’s
third lemma (see, for instance, Theorem 6.6 in van der Vaart (1998)) yields that un-
der θn�2, ϕn(κ̄n�Yn) converges to the same weak limit as under θn�1 under the subse-
quence. But convergence in distribution implies convergence of expectations given that
0 ≤ ϕn ≤ 1, and the desired contradiction follows.

A.4 Proof of Corollary 1

We use the same notation as the proof of Lemma 1, and momentarily drop the index
n to ease notation. By assumption, the distribution of ψ(Y) only depends on ξ through
(β�Δ�τ), so ψ(Y) has the same distribution under ξ and ξ0. By sufficiency, the condi-
tional distribution of ψ(Y) given ζ̂ under ξ0 does not depend on ξ0, so by inverting the
probability integral transform conditional on ζ̂ , we can write ψ(Y)∼ψS(ζ̂�US) for some
function ψS : Rp+2 �→R with US ∼ [0�1] independent of ζ̂ .

Let Ô be a random rotation matrix drawn from the Haar measureHp−1, independent

of (ζ̂�US). Since by assumption, the distribution ofψ(Y) does not depend on ω, we have

ψS(ζ̂�US) ∼ ψS
((
β̂long� β̂short� (τÔι+ e)′

)
�US

)
∼ ψS

((
β̂long� β̂short� (τι+ e)′Ô′)�US)

∼ ψS
((
β̂long� β̂short� τ̂ι

′Ô′)�US)�
where the second equality follows from the spherical symmetry of the distribution of e.
Since (β̂long� β̂short� τ̂ι

′Ô′) is a one-to-one function of T, so we can hence write ψ(Y) ∼
ψ̃(T�US) for some function ψ̃ :R4 �→R.

Now reintroducing n subscripts, consider the sequence of experiments of observ-
ing (T′

n�US). Recalling that US is independent of Tn, these experiments converge to the
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limit experiment of observing (b̂o′�US) ∈ R
3 under the assumptions of the corollary,

by the same arguments employed in the proof of Theorem 2. Thus, by the asymptotic
representation theorem (Theorem 9.3 in van der Vaart (1998)), there exists a function
ψ̃o :R4 �→R∪ {+∞} and uniform random variable U independent of (b̂o′�US) such that
the limit distribution of ψ̃n(Tn�US) can be written as ψ̃o(b̂o�US�U), for all (a�b). Since
the distribution of ψ̃o(b̂o�US�U) conditional on b̂o does not depend (a�b), there exists
a function ψo : R3 �→ R∪ {+∞} so that ψ̃o(b̂o�US�U)∼ψo(b̂o�U) for all (a�b), as was to
be shown.

A.5 Proof of Lemma 3

We will make use of the following lemma.

Lemma 5. Let Hn and Ĥn be the Choleski decompositions of Ωn = HnH′
n and Ω̂n =

ĤnĤ′
n, respectively, and let wn = (β̂long�n − βn� β̂short�n − βn − Δn)′. Then under (15) and

Ω−1
n Ω̂n

p→ I2:

(a) Ĥ−1
n Hn

p→ I2

(b) Ĥ−1
n wn ⇒ N (0� I2).

Proof. (a) Note that Ĥ−1
n HnH′

nĤ′−1
n , by similarity, has the same eigenvalues as

Ĥ′−1
n Ĥ−1

n HnH′
n = Ω̂

−1
n Ωn

p→ I2, so they both converge to one in probability. But
Ĥ−1
n HnH′

nĤ′−1
n is symmetric, and all symmetric matrices with eigenvalues converging

to one converge to the identity matrix. Thus Ĥ−1
n HnH′

nĤ′−1
n

p→ I2, and since Ĥ−1
n Hn is

lower triangular, this further implies Ĥ−1
n Hn

p→ I2.

(b) Note that Hn is related to Ω
1/2
n via Hn = Ω

1/2
n On for some rotation matrix On.

Thus, also H−1
n wn = O′

nΩ
−1/2wn ⇒ N (0� I2). (Suppose otherwise. Then, by the Cramér–

Wold device, for some 2 × 1 vector υ and c ∈ R, lim infn→∞ |P(υ′O′
nΩ

−1/2wn > c) −
P(N (0�υ′υ) > c)| > 0. Pick a subsequence along which the liminf is attained, and On

converges. Then we have a contradiction, because the continuous mapping theorem
implies the convergence P(υ′O′

nΩ
−1/2wn > c)− P(N (0�υ′υ) > c)→ 0 along that subse-

quence.) Invoking Lemma 5(a), also Ĥ−1
n wn = (Ĥ−1

n Hn)H−1
n wn ⇒ N (0� I2) by the contin-

uous mapping theorem.

(a) Write L(Z1�Z2 + g�χ1�χ2) for the expression in equation (18). Reparametrize
χ and g in (18) in terms of (r�φ�u) ∈ [0�∞) × [0�π/2) × [0�1] via χ1 = r cos(φ), χ2 =
r sin(φ) and u= g/χ2 (with u= 0 if χ2 = 0). By a direct calculation, the limit ofL(Z1�Z2 +
ur sin(φ)� r cos(φ)� r sin(φ)) as r → ∞ exists for almost all Z1, Z2 and all (u�φ) ∈ [0�1] ×
[0�π/2) and is equal to

L∞(Z1�Z2�u�φ)=

⎧⎪⎪⎨⎪⎪⎩
(
Z1 − (1 + u) tanφ

)2
if Z1 > (1 + u) tanφ�(

Z1 + (1 − u) tanφ
)2

if Z1 <−(1 − u) tanφ�

0 otherwise.
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Correspondingly, limr→∞ cv((r cos(φ)� r sin(φ)) = cv∞(φ) exists, too, and satisfies
sup0≤u≤1 P(L

∞(Z1�Z2�u�φ) ≥ cv∞(φ)) ≤ α. (In general, this inequality is not sharp,
since the definition of cv∞(φ) also requires P(L(Z1�Z2 + ur sin(φ)� r cos(φ)� r sin(φ))≥
cv∞(φ))≤ α for all finite r.) If r → ∞ and φ→ π/2, then the limit still exists and is equal
to L∞(Z1�Z2�u�π/2)= 0.

Suppose the assertion of the lemma is false. Then there exists a subsequence of n
such that along that subsequence,

lim
n→∞Eθn

[
ϕ̂LR�n(κ̄n�Yn)

]= lim sup
n→∞

Eθn
[
ϕ̂LR�n(κ̄n�Yn)

]
>α�

Pick a sub-subsequence, such that with (rn�φn�un) the parameters computed from

Ω = Ωn and gn = √
Ωn�11Δn/

√
Ωn�11Ωn�22 −Ω2

n�12, (rn�φn�un) converge along that sub-

subsequence to some value (r0�φ0�u0) ∈ [0�∞] × [0�π/2] × [0�1]. Correspondingly, let
cv0 be the limit of cv((rn cos(φn)� rn sin(φn)) along that sub-subsequence (which exists
by the above observations also when rn → ∞, even when φ0 = π/2).

By Lemma 5(a), (Ẑn�1� Ẑn�2)′ = Ĥ−1
n wn ⇒ (Z1�Z2)

′ ∼ N (0� I2) by the continuous
mapping theorem. Since

Ĥ−1
n =

⎛⎜⎜⎜⎜⎝
1/
√
Ω̂n�11 0

− Ω̂n�12√
Ω̂n�11

√
Ω̂n�11Ω̂n�22 − Ω̂2

n�12

√
Ω̂n�11√

Ω̂n�11Ω̂n�22 − Ω̂2
n�12

⎞⎟⎟⎟⎟⎠
the definitions of χ̂1�n = χ̂1 and χ̂2�n = χ̂2 yield

L̂Rn(κ̄n)= min
|g̃|≤χ̂2�n

∥∥∥∥∥
(

Ẑn�1
Ẑn�2 + ĝn − g̃

)∥∥∥∥∥
2

− min
h̃�|g̃|≤χ̂2�n

∥∥∥∥∥
(

Ẑn�1 − h̃
Ẑn�2 + ĝn − g̃− χ̂1�nh̃

)∥∥∥∥∥
2

�

where ĝn =
√
Ω̂n�11Δn/

√
Ω̂n�11Ω̂n�22 − Ω̂2

n�12. Let (r̂n� φ̂n� ûn) ∈ [0�∞) × [0�π/2) × [0�1]
be such that χ̂1�n = r̂n cos(φ̂n), χ̂2�n = r̂n sin(φ̂n) and ûn = ĝn/χ̂2�n (with ûn = 0 if

χ̂2�n = 0). Write Ĥ−1
n Hn

p→ I2 from Lemma 5(b) element-by-element to conclude that

Ω̂11�n/Ω11�n
p→ 1, (Ω̂11�nΩ̂22�n − Ω̂2

12�n)/(Ω11�nΩ22�n − Ω2
12�n)

p→ 1 and (Ω̂12�n − Ω12�n)/

(Ω11�nΩ22�n − Ω2
12�n)

p→ 0. Therefore, also (r̂n − rn)/max(rn�1)
p→ 0, ûn − un

p→ 0 and

φ̂n −φn p→ 0. Thus, along the sub-subsequence defined above, by the continuous map-
ping theorem,

L̂Rn(κ̄n)⇒L0 =
{
L
(
Z1�u0r0 cos(φ0)+Z2� r0 cos(φ)� r0 sin(φ0)

)
if r0 <∞�

L∞(Z1�Z2�u0�φ0) otherwise

and Eθn[ϕ̂LR�n(κ̄n�Yn)] → P(L0 > cv0). But by the definition of cv0, P(L0 > cv0) ≤ α,
yielding the desired contradiction.
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