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This study compares and contrasts the multiple characterizations of mean rever-
sion in financial time series as regards the restrictions they imply. This is accom-
plished by translating them into statements about an alternative measure, the “Av-
erage Crossing Time” or ACT. We argue that the ACT measure, per se, provides not
only a useful benchmark for the degree of mean reversion/aversion, but also an in-
tuitive, and easily quantified sense of one time series being “more strongly mean-
reverting/averting” than another. We conclude our discussion by deriving the ACT
measure for a wide class of stochastic processes and detailing its statistical charac-
teristics. Our analysis is principally undertaken within a class of well-understood
production based asset pricing models.
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1. INTRODUCTION

There has been a long-standing debate in the asset pricing literature as to whether time
series of equity and bonds returns are “mean reverting” or “mean averting.” While the
conventional wisdom is that the former returns are mean reverting and the latter mean
averting, the issue is by no means settled.! The debate has also diffused to the pre-
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IThere is a plethora of empirical studies on mean reversion in stock prices at various time horizons.
See, for example, papers by Summers (1986), Campbell and Mankiw (1987), Fama and French (1988), Lo
and MacKinlay (1988), and Poterba and Summers (1988). Others, most notably, Kim, Nelson, and Startz
(1991), and Richardson and Stock (1989) have challenged some of their conclusions. See also the conflicting
perspectives in, for example, Lewellen (2004), Torous, Valkanov, and Yau (2004), and Campbell and Yogo
(2006) versus Goyal and Welch (2003), Welch and Goyal (2008), and Bossaerts and Hillion (1999). Other
important work includes Cochrane (2011), Kim and Nelson (1998), Bessembinder et al. (1995), and Daniel
(2001). Zakamulin (2016) provided an excellent summary of this literature and explores the evidence for
mean reversion and predictability over periods exceeding 10 years.
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dictability literature. Predictability studies implicitly assume that the predicting vari-
ables (dividend-price ratios, earnings-price ratios) follow stationary processes that re-
vert to some unspecified normal value (the mean of the process).? Intuitively, a station-
ary stochastic process illustrates this property: above average values of the process must
regularly be followed by below average values and vice versa. Is a “mean averting” pro-
cess then one for which this property is absent? If so, could such a “mean averting” pro-
cess be “stationary”? What does the mean reversion/aversion distinction ultimately sig-
nify? This paper offers one answer to this question.

In particular, we compare and contrast the multiple characterizations of mean rever-
sion in financial time series as regards the restrictions they imply. This is accomplished
by translating them into statements about an alternative measure, the “Average Cross-
ing Time” or ACT. We argue that the ACT measure, per se, provides not only a useful
benchmark for the degree of mean reversion/aversion, but also an intuitive, and eas-
ily quantified, sense of one time series being “more strongly mean-reverting/averting”
than another. We conclude our discussion by deriving the ACT measure for a wide class
of stochastic processes and detailing its statistical characteristics. While our analysis
is principally undertaken within a family of well-understood production-based asset-
pricing models, we expand the discussion to include arbitrary AR-1 and random walk
processes.

As the name suggests, the ACT measures the average number of periods in the evolu-
tion of a discrete time stochastic process for which the process is strictly above or below
its mean value. Broadly speaking, mean reverting processes are shown to have a rela-
tively shorter average crossing time as compared to mean averting ones. Using the ACT
measure, we also explore the antecedent probability structures behind traditional no-
tions of mean reversion and aversion. Our analysis is both analytical and computational,
with the latter consisting of wide-ranging numerical simulations of the aforementioned
dynamic production-based macro-finance models where the time series of endogenous
security prices and returns are stationary by construction. Using the ACT measure, we
then explore the extent to which these model-generated series satisfy the various char-
acterizations.

Negative (positive) autocorrelation in financial return series, for example, is some-
times cited as an identifying characteristic of mean reversion (aversion) and we adopt
it as our benchmark property. In the case of the simple baseline equilibrium model we
explore, this identifying characteristic classifies the stationary time series characteriz-
ing equity returns as “mean reverting” yet the stationary time series characterizing bond
returns as mean averting, a result consistent with conventional understanding. Mean re-
version, as defined by the benchmark property, is thus not unique to the phenomenon
that “above average values of stochastic process must regularly be followed by below av-
erage values and vice-versa” since mean averting time series are equally consistent with

2As Campbell and Shiller (2005) note: “It seems reasonable to suspect that prices are not likely ever to
drift too far from their normal levels relative to indicators of fundamental value, ... when stock prices are
very high relative to these indicators, then prices will eventually fall in the future to bring the ratios back to
more normal historical levels.”
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this characterization. We later show that realistically parameterized versions of the base-
line model generically display benchmark mean aversion in all financial time series,
whether equity or debt, a result that perhaps diminishes the usefulness of the bench-
mark characterization itself.

An outline of the paper is as follows: In Section 2, we identify four prominent defi-
nitions of mean reversion and mean aversion found in the literature, and partially char-
acterize their interrelationships. In Section 3, these definitions are applied to the anal-
ysis of a simple baseline dynamic macroeconomic model.® The ACT characterization
of “mean reversion” is introduced in Section 4. In Section 5, we add additional features
to the baseline model and study the resulting implications for the strength of mean re-
version/aversion in model-generated equity returns, bond returns, and equity premium
data. Section 6 explores the statistical properties of the ACT measure per se, including
the computation of standard errors, a consideration of its small sample properties and
an exploration of its relationship to the sample impulse response function of the un-
derlying stochastic process. We also compute the ACT for familiar time series processes
such as an AR-1 and a random walk. These extensions are undertaken within a wider
discussion of the usefulness of the ACT measure for distinguishing stationary stochas-
tic processes from nonstationary ones. Section 7 (detailed in Appendix A which may be
found in the Replication file (Donaldson and Mehra (2021)) further generalizes the base-
line model and explores how the generalizations influence the ACTs of its financial time
series. Section 8 relates these concepts to the data by computing empirical autocorrela-
tions and ACTs for prominent financial return series while Section 9 concludes.

All proofs of Propositions are in the online Technical Appendix in the Replication file
(Donaldson and Mehra (2021)).

2. MEAN REVERSION

The empirical finance literature proposes multiple characterizations of “mean rever-
sion.” In the discussion below, we examine four specific characterizations and explore
their interrelationships. They are as follows, expressed in terms of an arbitrary stationary
stochastic process {%,}.*

A stationary stochastic process {X,} is said to be mean reverting if and only if:

3The primary intellectual antecedents of the present study are Basu and Vinod (1994), Cecchetti, Lam,
and Mark (1990), Guvenen (2009), and Lansing (2015). In a Lucas (1978) style exchange model where divi-
dends follow a Markov switching regime (see Hamilton (1989)), Cecchetti, Lam, and Mark (1990) are able to
replicate the observed patterns of mean reversion measures at various horizons. Guvenen (2009) explored
asset pricing in a model where firm owners and workers have differential access to securities markets: firm
owners trade both equity and default free bonds while workers are limited to bond trading. Lansing (2015)
explored the asset pricing consequences of variation in factor shares. Both report slight negative correlation
in equity returns based on data, and as equilibrium outcomes of their models. We note that the analysis in
Basu and Vinod (1994) explores some of the same issues and motivates the present study. None of these
studies, however, explores the fundamental information being conveyed by the mean reversion/aversion
distinction, but rather focus on identifying this property in model generated return series.

“4In all that follows a ~ above a variable denotes a stochastic process while its absence indicates a partic-
ular realization of the process.
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L cov(Xs, X141) <0; (D

var(X;p1 + -+ Xig)
Jvar(X,41)

II. <1, foranyJ >2. 2)
Property I is cited by Guvenen (2009) and Lansing (2015). An early proponent of
Property II is Summers (1986). Property II is also used in Poterba and Summers (1988)
and Mukherji (2011) for their discussions of mean reversion in stock price and rate of
return series.’
The relationship between Properties I and Il is captured in Proposition 2.1.

ProprosITION 2.1. Let {X;} be a stationary stochastic process with an ergodic probability
distribution. With respect to that distribution, statistical Properties 1 and 11 detailed above
are related according to

(@ I=1
(b) If
J-1
|cov(Es, £1)| > | cov(s, Zeps)|  forallJ, 3)
s=2
then1= 115

Condition (3) captures the idea that a process displays strong comovement in adja-
cent elements but that the effect diminishes very rapidly for series elements increasingly
in the future.

The significance of Proposition 2.1, simple as it is, lies in Part (a): if a time series
generated by a particular model fails to satisfy Property I, it will fail to satisfy Property II
as well. In this sense, Property II is more restrictive than Property I. For this reason, we
focus on assessing how restrictive Property I actually is, knowing that Property I is even
more so. In fact, they will both be so strikingly restrictive that it is not surprising to find
that they are not robustly satisfied in data.

Work by Campbell and Mankiw (1987), Cochrane (1988), and Campbell (2018) pro-
poses a weaker version of Property II: rather than requiring the variance ratio to be less

SProperty IT stands in specific contrast to the analogous property of a random walk where var(%,_1 +- - - +
Xpyy) =Jvar(Xeq1).

6For mean aversion, the connections of Proposition 2.1 are reversed. Using the notation of Proposi-
tion 2.1, they are:

(@ I=1I
(b)

J-1

ZCOV()’Z}, )EH—S)

s=2

If |cov (&, %r41)| < forall J thenIl = L (3a)
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than one at all horizons, they admit the possibility of positive autocorrelations at short
horizons together with negative autocorrelations at longer horizons, leading to a vari-
ance ratio that is eventually less than one. Specifically, these authors first define V' (J)
as

var(X;pq1 + -+ X g)

= G

for any stationary stochastic process {X;}. They then define a stochastic process to be
mean reverting if and only if

ML limjo V) <1
We choose to denote this Property as II L since it is a limiting version of Property II.

III. For any time integers 0 <r <s <t < u,
cov(Xg — Xp, Xy — X4) <O, 4)

Property III, to our knowledge first proposed in Exley, Mehta, and Smith (2004), is
a comment about sequential changes in the values of the stochastic process {X;} rather
than a statement about the statistical properties of the values themselves. Interpreting
{x} as { p7}, the price of equity capital at time ¢, Property Il suggests that increases in the
price of equity over a particular interval of time will generally be followed by declines in
the price in future time intervals. As such, it represents a sense of mean reversion differ-
ent from Properties [ and II. In all of the characterizations we consider, if the identifying
inequality is reversed, the series is said to be mean averting.

Property III can be guaranteed if certain sufficient conditions are satisfied.

For any time integers /# > 0, k > 0, define v(h — k) as

v(h — k) =var(x, — Xy).
This allows a simple statement of the following proposition.
PROPOSITION 2.2. Ifv() is concave, then {%,} is mean reverting by Property I11.7
Proor. See Exley, Mehta, and Smith (2004). O

If condition (4) were not satisfied then increases in the value of the series would, on
average, be followed by further increases and declines by further declines. Accordingly,
the range of possible evolutions of a series would tend to fan out with the variance of the
difference in series values growing with the difference in time indices, as in a random
walk. Concavity of v() precludes this effect: increases in X; must be followed, on average,
by eventual decreases and vice versa, a weak sense of mean reversion. Property III is
rarely employed in the empirical finance literature, and, as we demonstrate later, neither
implies nor is it implied by either PropertyI or II. We will thus largely focus on Properties
I and II since they are the most frequently cited:

“If v() is convex, then {%,} is mean averting.



908 Donaldson and Mehra Quantitative Economics 12 (2021)

V. Ei[Xi41 — x¢] = kl[x; — X1, )

where E; is the period ¢ conditional expectations operator, i is the unconditional mean
of the series {¥,} and k < 0 a constant.®

Property IVidentifies a mean reverting process as one that is always being “pulled to-
wards its mean”: if, at some ¢, the process is above its mean (x; > x), the expected change
next period should be negative and vice versa, with the “strength” of the pull-back de-
termined by k and the extent of the current deviation [x; — X]. Of all the characteriza-
tions of mean reversion that we consider, this is perhaps the most intuitively appealing.
Other authors identify mean reversion with conditional or unconditional variance com-
pression, or simply the absence of random walks. Koijen, Rodriguez, and Sbuelz (2009)
explored optimal portfolio allocations when equity index returns display momentum at
short horizons and Property IV mean reversion at long horizons. While we leave these
important generalizations to future analysis, they may all be accommodated by the per-
spective to follow.

As noted in the Introduction, the notion of mean reversion is one of the above aver-
age realizations of the series being regularly followed by below-average values and vice
versa. Which of the above properties is consistent with this intuition? Are the properties
consistent with one another? To what extent do they refine the basic concept of sta-
tionarity?? Since the context of these questions is usually one of equilibrium economic
and financial time series, we choose to address them first within the framework of a sim-
ple stochastic general equilibrium macroeconomic model, although the analysis applies
to any stochastic process that can be well approximated as a Markov chain. Following
Cochrane (2011), the implicit context is one of quarterly frequency.

8This Ornstein-Uhlenbeck style characterization is emphasized in Bekaert and Hodrick (2017), for ex-
ample. It is also expressed as E;[¢n(X,41) — ¢n(x;)] = k[€n(x;) — X]; other similar representations may be
found in the literature, for example, Marques (2004).

9As regards these questions, we can get an indication of the answer by looking at the simplest “canonical
mean reverting process,” an AR(1):

X1 =pxi+E41, O0<p<l,  &~N(0,02) foralls.

For this process, cov(¥;, ¥;4+1) = po‘i, which is mean averting by Property I. Furthermore, since

L 2

X+ X 1 o

var< ot t+1>= +pzvgz> £ =var(X)
2 1—p 1—p

it is mean averting by Property II, confirming Proposition 2.1. As for Property III,
s X s
cov(Xy — Xp, Xy — X)) = COV( Z gjp'~?, Z Z‘jpus) =0, forallr<s<t<u;
Jj=r+1 Jj=r+l1
hence the process is also not Property III mean reverting. Lastly,

Ei(Xp1—x1) = Et((P - Dx: + 5t+1) =(p—1D(x;—%), sincex=0.

An AR(1) process is set up structurally to satisfy Property IV.



Quantitative Economics 12 (2021) Average crossing time 909

3. MODELING PERSPECTIVE AND THE BASELINE MODEL

We first focus on a simple representative agent neoclassical stochastic macroeconomic
model with “planning” representation:

maxE(Z Blu(é,, 1 — flt))

t=0
St ¢ +ir <yr=flky,n)hy,
kiyi=0—-Ok,+1;, kogiven,0<n; <1,
5\1+l ~ G(XH—I; Ar). (6)

Adopting the customary notation, u(c;, 1 — n;) represents the representative agent’s
period utility function defined over his period ¢ consumption ¢, and leisure, (1 — n,),
where n; is labor supplied, f(k;, n;)A; denotes the representative firm’s CRS production
function of capital stock k; and labor supplied with {A;} the stochastic total factor pro-
ductivity shock. The probability distribution function for {A,,1} conditional on A, is de-
noted G(A.41; A;) and is assumed to be known to the representative agent.'® Lastly, 8
denotes the representative agent’s subjective time discount factor and (2 the economy’s
period depreciation rate.

Model (6) has been extensively studied in the literature. Our interest, however, is the
decentralized interpretation,!! which allows us to model an implied financial market
where risk free debt and equity are competitively traded.'?> Under this interpretation,
the period ¢ dividend satisfies

di = f(ks, ne) A —weng — i (7

while the ex-dividend aggregate equity price, p$ = p¢(k;, A,), is identified with next pe-
riod’s capital stock:

pi =k 8)
In (7), w; denotes the competitive wage rate, which, in equilibrium, satisfies
wy = fa(ke, ne) A
Accordingly,

Piy+din
e

t

L+7f, = = fi(ker1, ey A1 + (1= 2)  (by CRS), 9)

10The productivity disturbance {A,} will typically be of the form A, = e* where {%,} is an AR(1) process.

11Gee Prescott and Mehra (1980), Brock (1982), or Donaldson and Mehra (1984).

1275 such, the financial market can be regarded as “complete.”

13In a related study, Lansing (2015) referred to this dividend expression as the “macroeconomic divi-
dend.” With this identification, the dividend is assumed to be exclusively financed out of capital’s income
share.
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where 77 = filkis1, nt+1)5t,+1 — () denotes the net return on unlevered equity from the
“end of period ¢” to the “end of period ¢ + 1.”

The period price, p?, of a risk-free bond paying one unit of consumption in period
t + 1, irrespective of the realized state, is

u1(Crp1, 1 = 7gy1)
ui(cs, 1 —ny)

P? = pb ke, M) = .3/ dG(Ar115 Ar) (10)

with the risk-free rate rf’ =rb(k, 1, A1) satisfying (1 + rf’+1) =1/ pi’ . Accordingly, the
equity premium is defined by ¥ = r¢ — r?. Recalling footnote 4, a tilde above a quantity
indicates that it is to be interpreted as random; an absent tilde indicates a particular
realization of the random quantity.

3.1 The baseline model
We first restrict problem (6) by requiring that

u(e)=tn(c)),  yi=flki,n)hi=k%, nm=1 and 0=1 (11)
with {A,} a strictly positive i.i.d. stochastic process. (12)
Optimal policy functions assume the form'#
¢t =clki, Ar) =1 —aB)y; and (13)
is = ki1 = aPyr = apk¥A.° (14)
Accordingly,

pi = p(ke, M) = ki1 = aBki Ay, (15)

PP = p{ ke &) = (BE(A)/(aB) )i =N, (16)

di = ak®A, — aBkA; = a(1 — B)kYA,, (17)

e = filk) A, = ak® 1A, (18)

As a specialization of Problem (6), there exists an ergodic probability distribution for
{(k:, A,)} that captures the Baseline model’s long run stochastic behavior; the same can
thus be said for {5¢}, {p?}, {d,}, {7¢}, {#*}, and {#/'} .16

We first explore this model with reference to Property 1.

ProrosiTION 3.1. In model (6), specialized as per identifications (11) apd (12), the eq-
uity price { p¢}, the default-free bond price { p*}, and the dividend series {d,} are all mean
averting by Property 1.1

14See Donaldson and Mehra (1984) and Mehra (1984).

15By recursive substitution, k; = [(aB)l+ata®+ta'™! ]kg[ é;g) )\‘S"FH.

161n order to provide a closed form expression for 72, the productivity shock must be further specialized.
See Section 4.

17The part of Proposition 3.1 dealing specifically with {5¢} was first presented in Basu and Vinod (1994)
and Basu and Samanta (2001) in a slightly less general setting. We extend their explorations with a different
goal in mind.
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This result confirms that the notions of Property I mean reversion and stationarity
(the existence of a long run ergodic probability distribution on capital stock—also the
equity price—to which the economy converges) are not equivalent, and that the dis-
tinction arises in the simplest equilibrium macroeconomic models.

CoRroLLARY 3.1. Dividends, equity prices and default-free debt prices are mean averting
under Property 11.

Furthermore, these observations are generic in the sense expressed in the following
result.

ProrosiTiON 3.2. Consider any equilibrium model of the general form (6) for which the
equilibrium investment function i(k,, A;) is continuous and increasing in both its argu-
ments. Suppose also that the period t price of equity and the period t + 1 level of the capital
stock coincide (no costs of adjustment). Then, under both Properties 1 and 11 {p§} will be
mean averting. If p? = h(ks, At), where h(-) is continuous and increasing in both its argu-
ments, then { f)? } will be mean averting as well.

All of the macroeconomic models to be considered in this paper satisfy the condi-
tions of the above proposition; hence, the conclusion to Proposition 3.2 applies quite
generally.

We next examine mean reversion (Property I) in the equity and bond return series
for this model.

ProrosiTiON 3.3. For Model (6), specialized by (11) and (12):
(@) corr(rf, 7, ) < 0; equity returns are mean reverting by Property 1.

(b) corr(7?, ff’H) > 0; that is, bond returns are mean averting by Property 1.

It is clear from the Proof of Proposition 3.3 that concavity of the production function
(a — 1) < 0 plays the key role in inducing Property I mean reversion in equity returns,
a fact first observed in Basu and Vinod (1994). Risk-free returns, however, are Property I
mean averting.

Taken together, Propositions 3.1 and 3.3 remind us that mean reversion in equity
returns need not imply mean reversion in equity prices (at least by the criterion of Prop-
erty I).!® That mean reversion in returns is compatible with mean aversion in prices is
already well known (Spierdijk and Bikker (2012)). To find this compatibility in the sim-
plest possible dynamic equilibrium context is, however, somewhat surprising. Without
further specialization of the productivity process,'? it is difficult to derive fully general
results for Property III. Consider Proposition 3.4.

18Indeed, in this simple model both equity prices and dividends are mean averting, yet equity returns
are nevertheless mean reverting.

19To show, for example, that {5¢} is mean averting, it is sufficient to show var{5¢ — p¢} is convex as a

. 2 - _ 1

function of ¢ — 5, where p¢ =k, = [(aB)!Fote +-+a’ l]k(‘)‘r [Tiz) ae™

=0 A] . Variances of products of random
variables are complex quantities.
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ProrosiTION 3.4. Consider model (6) specialized as per (11) with a productivity shock of
the form (e}, where A, = &, {&,} i.i.d. N(0, 02).2° Then,

(@) The equity price series and dividend series are mean averting by Property I11;

(b) The return on equity is mean reverting by Property 111

The proof of Proposition 3.4 reveals that concavity in production (« < 1) is, once
again, key in generating Property III mean reversion in equity returns. These results are
entirely consistent with those obtained for our earlier analysis of Properties I and II.
Nevertheless, the fact that Property III does not distinguish among AR(1) processes for
various p tends to disqualify it as a discriminating mean reversion characterization.

For the baseline model, Property IV is not satisfied; there exists no single x for which
condition (5) holds. It is “weakly” mean reverting, however, in the sense that if &, = 0 for
all 7, then k, = p¢ < p¢ = k implies Pi.1 > pi and vice versa if pf > p; (a “bar” above a
variable denotes its mean value).

If the notion of mean reversion is intended to capture the property that above aver-
age values of a stochastic process must regularly be followed by below average values,
then all the series considered thus far, {pf}, (dy}, {7 { ﬁf }, and {ff} qualify: each follows
a stationary stochastic process that converges to a unique, irreducible ergodic set. Yet,
as Propositions 3.1-3.3 make clear,

(i) mean aversion in a time series (by Properties I-I1I) does not imply non-stationary,
and (ii) stationary of a series does not guarantee mean reversion by any of the Properties
I-1V.

Properties I-IV thus appear to represent restrictive distinctions relative to the ba-
sic intuitive sense of a mean reverting series. A useful characterization of mean rever-
sion should also allow the easy comparison of one time series being more highly mean-
reverting than another. Our intuition suggests that a more highly mean reverting series
should cross its mean more often; that is, with greater “frequency.”?! Crossing the mean
with greater frequency must in turn imply less persistence as regards the series being
exclusively either in states above or below its mean. In the next section, we develop this
notion of persistence and relate it to the Property I characterization of mean reversion
presented earlier.

4. AN ALTERNATIVE METRIC

In view of the preceding discussion, we propose “Average Crossing Time” (ACT) as a
simple measure of persistence. Intuitively, a larger ACT roughly corresponds to less fre-
quent crossings of the mean, in turn suggesting weaker mean reversion. We offer the
simple ACT measure because not only does it help to evaluate Properties I-1V, but also
because it provides a natural, intuitive sense of one series being more weakly mean re-
verting than another.

20This productivity shock process is typically used in the business-cycle literature.
21A crossing of the mean from above at time ¢ would signify that x, > X, yet x,,| < ¥, and analogously for
crossing the mean from below.
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TaBLE 1. Baseline model: correlations and ACTs®.

a=036,3=0.99,Q=1, A, =%, {§;} iid., o, =0.007120

corr(py, ﬁf+1) corr(ﬁi’, 135’“) corr(7f, Ff+1) corr(Ft”, 7f+1) corr(?tp, 71‘7”)
0.36 0.36 -0.32 0.36 -0.21
ACT{(p¢} ACT{p?} ACT(7¢) ACT {7} ACT{7?)
2.61 2.61 1.66 2.61 1.76

O These ACT computations (averages) include the period of crossing. See Footnote 23 ahead for the justification behind this
convention. Statistics are computed on the basis of 1000 independently constructed series each of length 10,000. In all cases,
the initial value in the series corresponds to the steady state capital stock level.

(i This choice of shock standard deviation is common in the business cycle literature. We retain this value throughout the
paper.

DEerINITION. A discrete-time stochastic process’s average crossing time (ACT) is the av-
erage number of time periods before the process transitions from above its uncondi-
tional mean to below its unconditional mean or vice versa.

Subject to certain modest refinements, the ACT can be computed by dividing the
length of the series by the number of crossings of the mean observed over its duration.??
Under this concept, an economic time series is defined to be mean reverting if and only if
its ACT is finite.?>**2% To gain some intuition for the ACT-autocorrelation relationship,
we computed these quantities for the financial time series generated by the Baseline
model. Table 1 presents the results.

Two observations stand out. First, the ordering (smallest to largest) of correlations
and ACT's is the same, subject to rounding and numerical approximations: a more pos-
itive autocorrelation is associated with a larger ACT, which implies less frequent “cross-
ings.” Second, the single negatively autocorrelated series, {7}, is the only one for which
the ACT is less than two. In the remainder of this section, we explore the generality of
these observations.

First, note that the state variables for any Dynamic Stochastic General Equilibrium
(DSGE) model follow a Markov process for an appropriately defined state space, and
thus can be well approximated by a Markov chain of sufficiently high dimension. The
same is true for all the endogenous return series arising in equilibrium. Accordingly, we
focus our attention on chain representations. Furthermore, when appropriately con-
structed, a specific two state Markov chains turns out to be all that is necessary for the
ACT computation.

22Marques (2004) introduced the “frequency of transition” concept as a measure of persistence. Roughly
speaking, his frequency of transition measure is the reciprocal of ACT. He notes that a white noise process
has unconditional E(y) = 0.5, corresponding to the ACT computation of 2 as demonstrated in Proposi-
tion 4.2 to follow.

Z3This characterization of mean reversion is made more precise in Section 6.

24Dividing the length of the time series by the number of crossings only leads to a precise ACT mea-
surement if the series is of great length. See Section 6 and, in particular, the notes to Figure 11(a) where
alternative methods of calculation are compared.

25Model (6), specialized by restrictions (11) is level stationary so that all the relevant series will have well-
defined means.
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To see this, consider an N state irreducible Markov chain {y,} with states indexed
by vi,vj,i,j:1,2,..., N, transition probabilities ¢;,i=1,2,...,N,j=1,2,...,N and
ergodic probabilities 7; : i = 1,2, ..., N, m; > 0 Vi. We will subsequently interpret these
{¥:} as equilibrium return or price measurements. Let 7 denote the chain’s transition
probability matrix with entries ¢;;. Without much loss of generality, we assume there
exists a state ; such that

Yip <E0) <
arestriction that allows the unambiguous definition of the sets y“ and y?, where

yi={yiivi>E@},  ¥P={vj:vj<EG)} and y1nyP=0p%

We construct a derivative (two state) Markov chain {%AB } on the sets y and y® by
defining its vy, y® transition probabilities as follows:

J

. J
ba4=Prob(Feviyiey?)=>" o (Z ¢,~k> ;
k=1

j=1
D

j ) N
baB= Prob(%ﬂ eyPly e YA) = Z L ( Z ¢jk) ’

j=1 Z’]Tg k=f+1

=1

N

_ j
b4 =Prob(yi11€ vy ey’) = Z NL (Z ¢fk) and
k=1

N N
~ W'
¢pp =Prob(¥,41 € YBly. e YB) = Z N . ( Z ‘f’jk)
j=j+1 Z m | k=i

e=j+1

2611, for some j*, yj+ = E(%;), then y;» is in neither y“ nor y# which distorts the relationship of the origi-
nal transition matrix, which includes y;, to the “aggregated” process {712 }.
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Let 7“8 denote the transition probability matrix with the above entries,

vy AP
TAB . y4 ba4 DaB|>
yB b4 PBB

and denote the long run ergodic probabilities governing the relative frequency of ob-
serving, respectively, elements of y“ and y? by 74 and 7 where

Ty = Z i, and TR = Z TTj.

vier? yiey?

For any discrete time Markov process {7}, we define the average crossing time from
above as the average number of periods the process assumes values above its mean, in-
clusive of the first period it “crosses,” that is, assumes a value below its mean. We denote
this quantity by ACT“{#,}. The average crossing time from below is defined analogously
and is denoted byACTB {7,}. In the case of the two state Markov chain {%AB }, these quan-
tities are easily computed as follows:

o0
ACTA {718} =Zl’leOb(§’fm €y |'yt+] ey?,j=0,1,2,...,n—1)
n=1
> 1
= n(@? )" (1 - )
n=1
B e S
¢ (1- A1) 1M
Similarly,
1
ACTB ZnProb 'yt+l’;1€’y |’y[+j€'}/ ‘]_0’172"”’”_1):71_(1)83'

With these quantities in mind, we focus exclusively on the “set chain” {7;18} rather than
its antecedent, {y;}. The justification for this choice takes the form of a small proposi-
tion.

270ne could also define the average crossing time from y“ to y® by the average time the process remains
—— A
in state y4, not including the period of crossing. Identify this quantity as ACT where

¢AA

—a & »
ACT :ZnProb(yHney Wt+n+1€7 andytﬂey ,J=0, 1,2,...,n—1):m.

—— A
Clearly, ACT? = ACT " + 1, as the respective formulae confirm. We choose to work with ACT rather
4 —B
than ACT~ and the analogous ACT® rather than ACT  as to do so proves to be algebraically simpler.
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ProrosiTION 4.1. For any irreducible Markov chain {y;}
ACT (%) =ACT{#{*8}) and ACT®{%,)=ACT®{7/1B).
Accordingly, ACT{¥,;} = ACT{y18}.

Proposition 4.1 simply claims that the ACT* and ACT® values for the original chain
and its derived “set chain” are identical. Hence, we shift our focus to the latter. We do not
claim, however, that corr(:, %141) = corr(¥;'5, 78, or that any other statistical proper-
ties beyond ACT“ and ACT? are the same for both series.

We next initiate a characterization of {7;18}. Its properties are listed below. All the
calculations are entirely straightforward and are provided in the Technical Appendix in

the Replication file (Donaldson and Mehra (2021)).

A.
1_ &BB 1— A4
4= Aj g5y and 7’ = AZ) BB’
2— (o7 +77) 2—(¢77 +0"7)
where 74, 78 represent, respectively, the ergodic probabilities of the process being

in set y4 or y5.

B. As noted earlier, ACT* = ¢> ——and ACT? =
Time,” ACT, satisfies

T ¢33 Accordingly, “Average Crossing

ACT g am) = ACTAAB}—i—ﬂ-BACT%B}

= . 19
2 (d)AA + d)BB) < 1— (;bBB + 1— d)AA (19)

corr(7{*8, ¥18) = (¢4 + $BB) — 1. (20)

From Eqg. (20), we see that the same autocorrelation can arise from many different
A4 ¢BB pairs; to illustrate, any (¢4, $B8) € {(0.5,0.5), (0.7,0.3), (0.05,0.95)} yields a
corr(y{1B, Y; +1) =0, yet the correspondmg ACTs are, respectively, 2, 2.762, and 19.053.
Independence, as measured by corr(¢;8 d)t +1) = 0, can, in fact, be consistent with
many patterns (as captured by the AC T4, ACT® values).

D.

PROPOSITION 4.2. If ACT{¥{'B} <2, then corr(7/1B, ¥48) < 0. If $*1 = ¢ BB, then

> Viv1
corr(y/'8, yAB) < 0 implies ACT <2.%8

281n Proposition 4.2, ¢4 = $BP is a sufficient condition for the second claim; clearly, it is not nec-

essary. The proposition is thus more general than it appears. For all simulations reported in this paper,

corr(7/'8, 3/18) <0 and ACT <2 go hand-in-hand.
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First, observe that Proposition 4.2 is consistent with the values presented in Table 1:
the only negative autocorrelation is corr(77, 7/, ;) = —0.30 and its ACT = 1.66, suggesting
very frequent crossings. Note that the values in Table 1 also confirm the observation
formalized as Proposition 4.1: although the statistics computed there are based on the
full series “{y;}” the ACT—correlation relationship expressed in Proposition 4.2 for the
“(9/1B}”series is also observed.

Asmodest asitis, Proposition 4.2 is a result of interest. Essentially it says that if Prop-
erties I or II are to be satisfied, the process in question must have an ACT of two or less,
which suggests very frequent crossings relative to the model time period. If real world
data were subject to either Property I or II criteria, it is almost certain that tests for mean
reversion would fail.

Figure 1 (panels A, B, and C) jointly illustrates observations C and D for various mag-
nifications: in particular, the range of ACT's associated with any degree of autocorrela-
tion, and confirms that all ACT's < 2 are identified with negative autocorrelation.??

E.

ProrosiTioN 4.3. Consider two distinct, irreducible two-state Markov chains, {y*}
and {y’} with transition probability matrices T* and T?, respectively, where

Y " %
o[ e 1-4 W[ e 1-9]
T*: and T7:
%) [1—%‘ $3 v, |1-¢; &)
Suppose ¢ = 3 = ¢* and ¢} = 3 = ¢”. Then
corr(¥;, ¥,1) > corr(¥;, ¥,,,) ifandonlyif ACT{3/}> ACT{¥/}. 1)

From the example in part (C) above, it is clear that the statement of our origi-
nal motivating assertion is not generally true: a higher ACT value is not necessarily
equivalent to higher autocorrelation. Yet, this assertion appears to capture the relative
autocorrelation-ACT pattern observed in Table 1, which suggests that the underlying
multistate probability transition matrices are “approximately” symmetric, a fact that fol-
lows intuitively from the technology shock symmetry.

E By continuity, Proposition 4.3 can be generalized in the following way. Consider
a family of irreducible, two state Markov chains of the form {%A By, Let {3:/,} and
{¥:} be two such chains and let us associate them with transition probability pairs
(614, $BB) and ($p44, $BB), respectively. We are interested to identify the set A,
where

A={(¢*1, $) . for any (614, $PB), where (i) 11 < 11 and (ii) B2 < $P5,
then (iii) ACT {7} < ACT{¥}}.

29Figure 1 (panels A, B and) represents a parametric plot of Eq. (19) versus (20) for 0 < d)AA < 0.9 and
0 < ¢BB < 0.99 (various magnifications). The plot was generated in Mathematica.
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Panel A
ACT vs Corr (ACT < 100)

10——m8M

05|

w0 e 80 100
ACT
Panel B
ACT vs Corr (ACT < 10)
1.07 -

Corr

ACT
Panel C
ACT vs Corr (ACT < 3)
1.0 - — -
05/
§ 0.0}
~05! _____,——”"—,
1.0 15 2.0 25 3.0
ACT

F1Gure 1. ACT versus correlation. Panel C clearly shows that negative autocorrelation is coinci-
dent with ACT < 2.

By (C), it is also true that for set A: (iv) corr (37, ys41) < corr(ys, y:41). If either in-
equality (i) or (ii) is strict, then (iii) and (iv) are strict.

That the set A is nonempty follows from E and continuity: there must exist a region
surrounding the 45° line (where ¢4 = ¢55) for which greater ACTs and greater (more
positive) autocorrelations increase hand in hand. The question that remains is “how
large” the region is. The answer is: quite large. This region is portrayed in Figure 2 and
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BB \E—l

1.0}

Region of
Monotonicity

V2-1

0.0 0.2 0.4 0.6 0.8 1.0 ¢A-4

F1GuRre 2. Transition matrices for which greater autocorrelation implies a larger ACT value.

was numerically constructed using the following alternative representation of the set A4:
A={(¢"4, $BB): 0ACT 9§ 4 > 0 and IACT /a$PE > 0}.

For {?AB } that are far from symmetric (i.e., d)AA and ¢>BB are very different; that is,
the nonshaded region of Figure 2), we do not observe ACT and autocorrelation increas-
ing in tandem as our original intuition suggested. While individually JACT* /9¢A44 >
0 and JACT®E /&QSBB > 0 uniformly, it does not necessarily follow that, for example,
JACT /3¢ > 0. To illustrate, compare the ACTs for 214, B8 = (0.9,0.05) and ¢4,
¢BB = (0.9,0.10):

A CT(¢AA:0.9,¢BB:0,05) =9.148,

ACT(¢AA=0.9,¢BB:0.10) =9.111.

The phenomenon arises because the relative stationary probabilities change as ¢35 in-
creases: more probability weight is placed on ACT?, ACT® < ACT* causing the overall
ACT to decline. If $44 ~ ¢BB there is little change in the corresponding (w4, 78) when
either ¢4 or ¢pB8 is marginally increased, so that the more intuitive relationship be-
tween the ACT and its corresponding autocorrelation is observed.

Observation C also suggests that to identify mean reversion solely with either Prop-
erty I or II is to forgo information. Any value that this particular measurement assumes
is clearly compatible with a wide range of stochastic structures (¢4, $58). It is rather
the knowledge of ACT“ and ACT® that is critical to a comprehensive description of a
“mean-reverting” process for investors. If the intuitive notion of “mean reversion” is the
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sense of “frequent crossings,” then as regards the ACT measurement, a mean reverting
process by Properties I or II is not far from a sequentially independent one.3°

The results in Table 1 are also in the spirit of Observations E and E Recall that the
time series on which the values reported in Table 1 are generated arise by approximat-
ing the underlying real economy about its steady state. Given i.i.d. productivity shocks,
the economy evolves symmetrically (about its steady state), suggesting that to a first ap-
proximation ¢4 ~ ¢B8. The lock-step increases in ACT and correlation that are mani-
fest in Table 1 follow naturally from Observation F; equivalently, the series described in
Table 1 all have corresponding (44, $pBB) ¢ A.

Note also that the statistics computed for Table 1 were created from the basic un-
derlying {7/} processes rather than its “aggregate state” process {y;!2}. The fact that the
relationships of Proposition 4.2, which are based on the transformed {71}, are borne
out in ACT data generated by the original {y,} again confirms that ACT{i/tAB } =ACT{y,}
as per Proposition 4.1.

Certain distinctive results in Table 1 are unique to the baseline parameterization (in
particular, to the p =0, {2 =1 assumptions). In particular corr( p7, pf 1) = corr( ﬁi’, ﬁi’ 1)

—1
and ACT{p¢} = ACT{p"}. These identities follow from the fact that p? = %( poH
for the baseline model. Accordingly, { [J’? } exceeds its mean when {p¢} does and vice
versa. With identical ACT's, their autocorrelations must be identical. Furthermore, since

b= # — 1, r? will exceed its mean if and only if p? falls short of its mean, and vice versa,
t

leading to identical ACT's for { 5?} and {#*}. These relationships do not generally apply to
more elaborate versions of the baseline formulation where p # 0.

Let us in this context reinforce our earlier remarks concerning the commonplace
characterizations of mean reversion. The results of Table 1 clearly suggest that to iden-
tify a mean reverting series exclusively with negative autocorrelation is not fully infor-
mative: all the series in Table 1 mean revert (they have finite ACT measurements), yet
only {7f} is negatively autocorrelated. Negative autocorrelation means “extremely fre-
quent crossings of the mean” (a very small ACT value), nothing more, and the nature of
these crossings can differ widely (Observation C).

We conclude this section with a few summary remarks:

1. Since multiple ACT's may in general, result from the same autocorrelation measure,
the former is admittedly a coarser measure (and, in principle, less informative). For
near to symmetric and symmetric chains, however, the mapping is one-to-one.

2. However, ACT*! and ACT? together provide more information than autocorrela-
tion, as they capture chain asymmetries.

301t is reasonable to propose the following question, “Is the argument for the ACT measure simply that
two statistics ACT* and ACT? are more informative than one (autocorrelation)?” Why not show the entire
transition probability matrix? While this is an entirely appropriate question, two comments may be offered
in response. First, ACT*! and ACT?® are measures of the frequency of crossing, something that strikes us as
more intuitive than the correlation measure. Second, a complex, many state transition probability matrix
is, without further analysis, lacking in any intuition as to the underlying process’s mean reverting charac-
teristics. The ACT reduces this complexity to two numbers.



Quantitative Economics 12 (2021) Average crossing time 921

3. Properties I and II represent highly restrictive characterizations of mean reversion.

The baseline model falls short of a full-fledged business cycle model on many di-
mensions. In particular, none of the aggregate series is sufficiently persistent vis-a-vis
the data. In the next section, we remedy this particular shortcoming and explore its con-
sequences for the various characterizations of “mean reversion.”

5. MODEL GENERALIZATION: ADDING PERSISTENCE IN THE PRODUCTIVITY SHOCK

The “mean reverting” properties of financial time series arising from production-based
asset pricing models have not been fully explored in the literature. In this section, we ex-
plore how the ACT“!, ACT®, ACT, and autocorrelation of security prices and returns are
affected by adding an important feature to the baseline formulation; namely, productiv-
ity shock autocorrelation.3! It is an absolute minimal requirement for macroeconomic
data replication.3?

Table 2 and Proposition 5.2 illustrate the consequences of introducing persistence
in the productivity shocks into the baseline model in a way typical of the production-
based asset pricing literature. We specialize the production technology to be of the form
yr = (ky)®e™ where A, = pA; + &4 1; (&) is i.i.d., & ~ N(0, 02), and p > 0. Even with
persistence in the productivity shocks of this type, the decision rules take the same form
as (13)-(14).33

Furthermore, the addition of persistence does not alter the expressions for p§ and
r¢. However, the expressions for p? and r? are modified as follows:

ph = Be 2k el M y(aB)®  with = 1/pb — 1. 22)
As regards prices and dividends, the results mirror their earlier counterparts.

ProposITION 5.1. For the baseline model, where p > 0 the equity price series {p;}, the
dividend series {d,}, and the risk-free asset price series { p*} are all mean averting by Prop-

erty L.

Our analysis of returns relies on numerical simulations of (13)—(18). Panel A of Ta-
ble 2 documents the correlations while panel B gives the corresponding ACTs.

31Donaldson and Mehra (1983) showed that the resulting Markov process on output, capital stock, and
consumption converges to a stationary distribution.

32For a full analysis of mean reversion/aversion, it is useful to resort to DSGE models to frame the dis-
cussion. Without the context of a model, it is difficult to obtain any intuition for the magnitudes involved in
the ACT-correlation association. In many cases, small changes in autocorrelation have large consequences
for the magnitude of the ACT.

33The necessary and sufficient condition for the optimal investment function is

uy(c) = B/ ”1(5t+1)01k?;11€5”“ dF (Ar41: Ao).

For the indicated functional forms and decision rules, this equation becomes

—1 =
1 / a(aﬁk;"e)")a ePhitEm

- — dF (¢ .
(1 - a,B)k;'eA’ 1- aB)[“Bk?E/\’]aep)""'sfﬂ (&¢41)



922 Donaldson and Mehra Quantitative Economics 12 (2021)

TaBLE 2. Baseline model: autocorrelations, ACTs.?)

u(c) =log(c), 8=0.99, 2 =1, =0.36, A,p1 = pA; + 41, 0 = 0.00712.1)

p=0 p=02 p=04 p=0.6 p=0.8 p=0.95
Panel A: Autocorrelations: Various p
corr(p¢, p¢, 1) 0.36 0.52 0.66 0.79 0.90 0.98
corr(pY, pl. ) 0.36 0.61 0.80 0.83 0.66 0.43
corr (7, 7, ;) —0.32 —0.18 —0.05 0.09 0.22 0.33
corr (7, 7, 1) 0.36 0.61 0.80 0.83 0.66 0.43
corr(#, 72 }) —0.21 —0.06 0.07 0.20 0.31 0.36
Panel B
ACTs
ACT(p?) 2.61 3.08 3.72 4.75 6.98 14.32
ACT(p?) 2.61 3.46 4.85 5.31 3.68 2.80
ACT (7¢) 1.66 1.79 1.94 2.12 2.33 2.54
ACT () 2.61 3.46 4.85 5.31 3.68 2.80
ACT (#F) 1.76 1.92 2.10 2.29 2.49 2.60
ACTs (Above)
ACTA(p¢) 2.60 3.07 3.70 4.73 6.93 14.13
ACTA(pb) 2.61 3.45 4.84 5.31 3.68 2.80
ACTA (7) 1.65 1.78 1.93 2.11 2.33 2.53
ACTA () 2.61 3.45 4.84 5.31 3.68 2.80
ACTAFP) 1.76 1.92 2.09 2.29 2.48 2.59
ACT's (Below)
ACT®(p¢) 2.62 3.09 3.73 4.77 7.04 14.50
ACTB(pb) 2.62 3.46 4.85 5.32 3.69 2.81
ACTB (7¢) 1.66 1.79 1.95 2.13 2.34 2.54
ACTB (7 2.62 3.46 4.85 5.32 3.69 2.81
ACTBFP) 1.77 1.93 2.10 2.30 2.50 2.61

O The reported statistics represent sample averages of 10,000 independently constructed series each of length 10,000.

() The numbers reported in this table are unaffected by the magnitude of o,. They are also unaffected by the choice of 8,
0<B<l.

While the results of Table 2—Panel A for equity returns mirror the conclusions of
Propositions 3.3 for the p = 0 case, they are not robust: sufficient persistence in the ran-
dom productivity disturbance yields an equity return series that is mean averting (by
Properties I and II). The other patterns are consistent with the conclusions of Proposi-
tion 4.2: negative autocorrelated series have ACT's < 2, and Observation F; that is, for all
series, ACT's and correlations increase and decrease in tandem. This latter fact follows
from the recognition that all the financial series for the baseline model evolve roughly
symmetrically about their unconditional means, with the implication that their corre-
sponding 7# matrices are close to symmetric.3*

The results of Table 2 for the {7} series are partially rationalized in Proposition 5.2.

34We use the word “close” because the series, {5} = {lzf 11}, for example, is lognormally distributed, al-

though with a very small standard deviation, and thus is not symmetric. See Footnote 15.
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ProrosiTION 5.2. Consider the model defined by (13) and (14) with production technol-
ogy and shock process specialized to y; = k%e* where ;\,H = pAr+ 841, (&} 11.d.N(O, ag).
A sufficient condition for bond and equity returns to be mean averting by Properties 1 and
Misthata+p > 1.

Proposition 5.2 argues that sufficiently persistent productivity disturbances in con-
junction with production function concavity results in Property I {#{} mean aversion
(bond returns are always so). Therefore, if a model of this sort is to come close to match-
ing the observed high persistence in output, equity returns will be mean averting by
Property I and Property II.

None of these results is surprising in the least: the process on the disturbance com-
ponent, {e*'}, is itself highly mean reverting (by Property I) only if p < 0, a selection in-
consistent with the behavior of its counterpart, the Solow residual. See Proposition 5.3.

ProPOSITION 5.3.3% Consider a stochastic process of the form
Xi=px;_1+&, where{g}isiid. N(0, af).
Define a new stochastic process by
A} ={e"}.
Then

COV(;\t,;\z+1){>O ifl>p>0 }

<0 if-1<p<0

For calibrations customary to the macrofinance literature (1 > p > 0) mean aversion
in equity returns results as well. It is not obvious what model features would allow high
persistence in aggregate series (as the data reveals) to be compatible with mean rever-
sion in equity returns and the equity premium, at least as characterized by Properties I
and II. Cogley and Nason (1995) emphasized the close relationship of the properties of
the productivity process to the derived properties of model’s state variables, and thus
security prices and returns.

Proposition 5.3 bears upon two other unexpected features of Table 2. First, as pro-
ductivity persistence p increases, corr(p?, 13? 1), while always positive, first increases
(seeming to peak at p = 0.6) and then monotonically declines. The same pattern is ob-
served for corr (72, Fth ), although this is to be expected in view of the close association
of { ﬁf} and {?f’ } noted earlier. We attempt to rationalize these results as follows: for the
indicated shock process, the price of the bond is specialized to the form indicated in
Eq. (22) and is composed of three building blocks: the positive constant Be"f 2/(aB)?,
a capital stock term k%", and a productivity shock term e(1~2~»A:_ While the second
term is mean averting for all values of p, the third term is Property I mean averting for
(1 —a—p) > 0, and Property I mean reverting for (1 — a« — p) < 0 by Proposition 5.3 with

35We thank Sergio Villar for his help in proving Proposition 5.3.
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the switch occurring for p slightly greater than 0.6 (since « = 0.36). Thus for low values of
p, the mean aversion across the two terms is reinforcing as p increases; for p exceeding
0.64, the Property I mean reversion of the third term works against the Property I mean
aversion of the second to bring about the observed effect.

With {7} consistently mean averting, the sign of the premium’s autocorrelation fol-
lows the same pattern as {7{}. A comparison of Panels A and B also reveals that the con-
clusions of Proposition 4.2 are observed for all cases.

At this point, it is natural to revisit Property II L to see if it provides different insights
concerning the “mean reverting nature” of these model generated series. For any arbi-
trary return series {74}, Campbell (2018) observed that the variance ratio '(J) can be
expressed as

J-1
V) =142 A =k/Dpi—is» (23)
k=1
where p,_ x = Corr(#,_g, ;). Fundamental to this identification is the additional re-
quirement that Corr(7;, 7,y ) = Corr (7,1, Fr1 ;1) for any integer /.

Using equivalence (23), we next explore the extent to which any of the model series
found to be mean averting under Properties I and II become mean reverting by Prop-
erty II L (limy_, » V' (J) < 1) and vice versa. This is accomplished by computing V' (J) for
various J in the case of each of our series of interest, {p{}, {[7?}, {f,b}, {re}, {f,p} for var-
ious p. That is, Panel A of Table 2 is effectively represented graphically using the 17(J)
measure with increasing J. Figure 3 provides the results for { p¢}; Figure 4 for series { [)’? }
and {ff’ } jointly (recall that their correlation structures are identical), Figure 5 for {r{} and
Figure 6 for {#/}. Note first that { 5¢}, { p*}, and {#’} remain mean averting by property II
L at all horizons, J, and for all shock correlations p: Properties I, IT and II L thus provide
identical mean aversion-reversion identifications for these series. This assertion follows
from the fact that I (J) is a monotone increasing function of J for each of these series,
for all p, and V' (J) > 1, VJ. In the case of {7/}, however, IV(J) < 1 for sufficiently large J
for all p values: {77} is Property II L mean reverting. The pattern for the equity premium
conforms to that of Panel A, Table 2: mean reverting for low p values and means averting
for high values.

In summary, measure II L classifies some stationary series that repeatedly cross their
respective means as mean reverting and others as mean averting, as do all the other
measures we consider. For empirically relevant high p values Properties I, II, and II L
generally give identical classifications ({7{} is the sole exception). Turning to Property
111, as shock persistence p increases, our earlier Property III results (Proposition 3.4) are
weakened for prices: Table 3 summarizes the results of extensive numerical simulations
that compute corr(Xs — %, ¥, — X,) for a wide class of {r, s, t, u}, wherer < s <t < u.

These results are largely inconsistent with earlier results concerning {77}, {Ftp 1,
and{p¢}for Property I (see Table 2, right most column), a fact that accounts for our ear-
lier comment that Property III represents a fundamentally different measurement from
either Property I or I1.36

36For this reason, it deserves greater recognition and evaluation. The patterns in Table 3 are largely con-
sistent with Proposition 3.4.



Quantitative Economics 12 (2021) Average crossing time 925

2

a0r-

v p=0
— p=0.2
p=0.4
e p=0.6
- = p=0.8

—— p=0.95

0 1 1 1 I I 1 1 1 I J
0 50 100 150 200 250 300 350 400 450 500

J

Ficure 3. Computation of V' (J) for various J, {p{} series. Baseline model: u(c) = log(c),
B=0.99,02=1,a=0.36, o, =0.00712.
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F1GURE 4. Computation of V' (J) for various J, { f)i’ }and {7;’ } series. Baseline model: u(c) =log(c),
B=0.99,02=1,a=0.36, o, =0.00712.
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Ficure 5. Computation of VV'(J) for various J, {7} series. Baseline model: u(c) =1log(c), 8 =0.99,

N=1,a=0.36, o, =0.00712.

We close Section 5 with a summary of what we have learned: First, persistence in
the productivity disturbance generically overturns specific results relative to the case of
independence: equity returns appear necessarily to be Property I mean reverting only
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FiGure 6. Computation of V' (J) for various J, {f,p } series. Baseline model: u(c) = log(c),

B=0.99,0=1,a=0.36, 0, =0.00712.
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TABLE 3. Estimated Property III correlations: various series.?

u(c) =log(c), =099, 2=1,a=0.36, ;\t+1 = pAt + 8441, 0 =0.00712, p = 0.95.

Property III correlation Range of values across all r, s, u, ¢
(@) corr(p§ — pf, Py, — PY) (—0.26,0.08)
(i) corr(p? — p2, pb — p?) (—0.18,0.01)
(iii) corr(7¢ — 7€, 7e — Ff) (—0.20,0.013)
(iv) corr (7% — 7, 72 — ) (—0.19,0.01)
) corr(7F? —7F,7b — 7y (=0.19, 0.01)

O The reported range of Property III correlations reflects observations from 1000 independent time series, each of length
10,000 for all combinations of indices i, j, k satistying: (a) s=r+i,t=r+j,andu=r+jand (b) i <j < k < 30.

in the presence of low persistence productivity disturbances. Proposition 5.3 further
suggests that this particular phenomenon is likely to be pervasive across many produc-
tion based asset pricing formulations, implying that the search for mean reversion in
equity returns and the equity premium, at least as characterized by Properties I and
IT is unlikely to be fruitful—if the present family of models has anything to say about
actual economies. To put it differently, we find it unsurprising from a theoretical per-
spective that evidence for mean reversion in historical equity returns is weak if, indeed,
the underlying pricing fundamentals resemble those emphasized in the present, simple
macroeconomic model.

6. STATISTICAL PROPERTIES OF THE ACT

Although we propose the ACT and its ACT* and ACT® constituents as a measure by
which definitions of mean reversion commonplace to the literature may be assessed,
it can be viewed as an independent statistic of interest. In Section 6, we present an in-
troduction to the sample properties of the ACT measure by first analyzing the case of
an AR-1 process. The analogous discussion for a simple random walk is then detailed.
Finally, we consider the sampling properties of the baseline model both for the case in
which its technology shock follows the customary AR-1 process and for the case in which
it is governed by a random walk.

6.1 General procedure

We constructed sampling distributions for the ACTs in the following way: for all vari-
ables of interest, j = 1,2, ..., J time series were independently constructed, each N el-
ements in length. For each sample j of length N, a sample ACT(j, N) was computed
and analogously for ACT“(j, N) and ACT5(j, N).37 The set {ACT(j,N):j=1,2,...,J}
constituted the sampling distribution for the ACT with the sample mean ACT de-

—

fined by ACT = J%l ij-zlACT (j, N) and analogously for ACTA and ACT®. We then

37To save space, we continue the discussion referring largely to the ACT, but the identical procedure was
followed for ACT*! and ACT®.
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constructed the standard error (SE) of the/A/\ﬁ as the standard deviation of the set
{ACT(j,N):j=1,2,...,J} relative to the ACT. For all cases reported in this section,
J =1000 and N = 10,000.

6.2 ACT sampling properties for an AR-1 process

Consider an AR-1 process:
= = = 2
Xt41 = PpXt + €41, {8t}'\‘N(O: 0'3)-

Computations are simplified because the ACT of such a process can be computed
directly. See Proposition 6.1.

ProrosiTiON 6.1. Consider an AR-1 process of the form: X,.1 = px: + &1, {&} ~
N(0, 02). Then the ACT of the process is given by

ACT = 7 . 24)

(m/2) —tan"" (p/,/1 — p?)

Although Eq. (24) is a bit opaque, it clearly implies a positive relationship of the ACT
and the autoregressive parameter p, which itself coincides with corr(X;, ¥;,1). The ACT
and autocorrelation thus rise and fall together for an AR-1. By the symmetry of the AR-1
process about its mean of zero, ACT = ACT*! = ACT®. To get an idea as to the magnitudes
involved, and to confirm the validity of Propositions 6.1 and 4.1 (on which 6.1 is based)
we followed the procedure outlined in Section 6.1 to compute the ACT for a variety of
persistence parameters p. The results of the exercise are presented in Figure 7. Note the
near perfect congruence of the theoretical ACT and ACT'. Not surprisingly, both the ACT
and ACT grow monotonically with persistence.

Figure 8 presents the SEs for an AR-1 process, with p = 0.8 and o, = 0.00712. As is ap-
parent, the standard errors decline rapidly with increasing sample length. More signifi-
cant is their small magnitude. Confidence intervals for all p < 0.8 will thus be extremely
tight. Note that as p — 1, the ACT in Eq. (24) explodes to +o0o0. When p = 1, the AR-1
process becomes a random walk. It is to this further formulation that we next turn.

6.3 ACT sampling properties for a random walk

We consider the simplest possible random walk:
Frp1 =X+ 81, (B~ N(0, a2). (25)

While such a process is not stationary (var X; = ta:f > 0o as t > o0), it has a well-
defined unconditional mean, Ex; = 0, for all t. Furthermore, it is well known that such
a process will return (cross) its mean an infinite number of times with probability one.
Accordingly, for sufficient sample length, an estimated ACT can be computed, along
with its standard error. In light of formula (24), we would expect both quantities to be
increasing with sample length N. This is indeed the case; see Figures 9 and 10.

Figures 9 and 10 suggest that the ACT measure could be used as a test for non-
stationarity. We consider this possibility later in Section 6.
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F1GURE 7. Estimated versus theoretical ACTs (Estimated ACTs based on 1000 independent sim-
ulation runs each 10,000 data points in length.). AR-1 process, various p. ¥;11 = pXx; + &141,
{8} ~ N(0, 02), 7. = 0.00712.
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Ficure 8. ACT standard errors versus sample length (SEs compiled on the basis of 1000 inde-
pendently generated sample runs.). AR-1 process, p = 0.8. {&;} ~ N (0, af), o, =0.00712.
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FIGURE 9. ACT versus sample length including confidence intervals (Computations based on
J = 1000 independent runs for each N). Random walk: X,11 = x; + &1, {&/41} ~ N(O, og),
oe =0.00712.
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F1Gure 10. Standard errors versus sample length (Computations based on J = 1000 indepen-
dent runs for each N). Random walk: X,1 = x; + &,41, {&,41} ~ N(0, ag), o, =0.00712.



Quantitative Economics 12 (2021) Average crossing time 931

6.4 Baseline model revisited: Sampling properties

We next consider the sampling properties for each of the financial time series { 5¢}, { 5},
{re}, {Ff}, and {F;D } generated by the baseline model using the same procedure detailed
in Section 6.1. The assumption of J = 1000 and N = 10,000 is maintained, except for
explorations requiring a variety of sample lengths. Two cases are considered.

6.4.1 Baseline model: AR-1 technology shock The first results of this exercise are pre-
sented in Table 4.

A number of observations are in order. Most importantly, the sampling distribution
for the ACT (ACT*, ACT?®) is very compact: the confidence intervals surrounding the
sample means are small, a fact also captured by the Panel B coefficients of variation
which, for all the return series, rarely exceed 2%. Comparing the corresponding entries
in Tables 2 and 4 (same series and identical p), the corresponding SEs increase or de-
crease in tandem with autocorrelation.3® This follows from the near symmetry of the
various series about their means: high persistence, which is equivalent to a high ACT,
suggests an increasing presence of extremely long subseries which are either continu-
ously above or below the corresponding mean, a phenomenon leading to greater vari-
ation across the elements of the sampling distribution. This variation, however, is very
small in absolute terms because the individual series themselves are all of substantial
length.

Figure 11(a)-11(d) describe how ACT 39 standard errors computed as in Table 4, vary
with sample length N, beginning with N = 500 and ending with N = 10,000 when p =0.8.
For N = 10,000, the graphical representation coincides with the corresponding values
in Table 4 when p = 0.8. Because of the precise algebraic relationship relating {7’} and
{pP}, as detailed in Eq. (22), only the former values are reported. Our choice of p = 0.8
is arbitrary; for smaller p, the standard errors are smaller than those portrayed in the
figures (for each N); they are slightly larger for p = 0.95.

We see that for all the series the SEs decline very rapidly with series length. But more
significantly, for all series of interest their standard deviations are very small at all sample
lengths. We chose N = 500 as the lower bound on sample length since most empirical
asset pricing work has access to data sets of this magnitude or greater. In general, the
standard errors for returns, for any sample length, lie below those of the corresponding
price series. This is significant as financial research is largely focused on returns.

6.4.2 Baseline model: Random walk technology shock ~Similar explorations can be pro-
posed for the baseline model when its TFP process has the form {e*}, with {},} following
(25). See also Swanson (2019) and Kehoe et al. (2019). With the baseline model, the form
of the decision rules, Egs. (13) and (14), is unaffected, as is the identification of the equity
price process {p¢} with {k,}. Pricing and return formulae (15)-(18) and (22) are similarly
unchanged. While this random walk modification leads to a nonstationary capital stock

385 earlier, all our remarks in this section apply equally to the ACT, ACT4, and ACT®. To avoid repetition,
our discussion going forward will thus be expressed only in terms of the ACT.

390ther computational nuances surrounding Figures 11(a)-11(d) are discussed in the notes to the fig-
ures.
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TABLE 4. Baseline model: measures of statistical precision.

u(c) =log(c), B=0.99, @ =0.36, 2 =1, A4 = pA; + 8141, {8} ~ N(0, 0), o5 = 0.00712.
Estimates for each series based on 1000 independent runs, each 10,000 elements in length.

p=0 p=02 p=04 p=0.6 p=038 p=0.95
Panel A: SE®
SEACT
(%) 0.0348 0.0457 0.0620 0.0985 0.2069 0.8031
(%) 0.0339 0.0541 0.0894 0.1123 0.0748 0.0427
{7 0.0123 0.0141 0.0177 0.0217 0.0275 0.0312
{7} 0.0334 0.0548 0.0921 0.1104 0.0752 0.0422
{7 0.0147 0.0175 0.0200 0.0261 0.0296 0.0335
SEACT "
(%) 0.0387 0.0504 0.0660 0.1034 0.2125 0.8126
(%) 0.0368 0.0590 0.0963 0.1194 0.0786 0.0465
{7 0.0155 0.0177 0.0206 0.0253 0.0303 0.0348
{7} 0.0373 0.0590 0.1003 0.1162 0.0790 0.0456
") 0.0187 0.0203 0.0237 0.0298 0.0335 0.0373
SEACT
(5%} 0.0382 0.0493 0.0679 0.1064 0.2220 0.8608
(7" 0.0381 0.0579 0.0962 0.1195 0.0798 0.0456
{7} 0.0161 0.0177 0.0221 0.0253 0.0312 0.0347
{7} 0.0367 0.0598 0.0969 0.1194 0.0796 0.0457
(7"} 0.0181 0.0217 0.0238 0.0303 0.0333 0.0371
Panel B: SE/ACT
(SE/ACT)/ACT
(5%} 0.0133 0.0149 0.0167 0.0207 0.0296 0.0560
(%) 0.0130 0.0156 0.0184 0.0211 0.0203 0.0152
{7} 0.0074 0.0079 0.0091 0.0103 0.0118 0.0123
{7} 0.0128 0.0158 0.0190 0.0207 0.0204 0.0151
{7 0.0083 0.0091 0.0095 0.0114 0.0119 0.0129
SEACT YracT”
(5%} 0.0149 0.0164 0.0178 0.0218 0.0306 0.0574
(") 0.0141 0.0171 0.0199 0.0224 0.0213 0.0166
{7} 0.0094 0.0099 0.0107 0.0120 0.0130 0.0137
{7} 0.0143 0.0171 0.0207 0.0219 0.0215 0.0163
7"} 0.0106 0.0106 0.0113 0.0130 0.0135 0.0144
(SEACT )/ ACT
(5% 0.0146 0.0160 0.0182 0.0223 0.0315 0.0592
(7" 0.0145 0.0167 0.0198 0.0224 0.0216 0.0163
{7) 0.0097 0.0098 0.0114 0.0119 0.0133 0.0136
{7} 0.0140 0.0171 0.0200 0.0224 0.0216 0.0163
(7" 0.0102 0.0113 0.0113 0.0132 0.0133 0.0142

() SEs are computed from the ACT calculated for J = 1000 independent runs, each of length N = 10,000.
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FIGURE 11(a). Baseline model: p = 0.8, o, = 0.00712. ACT standard errors {5¢} versus sample
length (). (i) Same calibration of the baseline model as in Tables 2 and 4 except that p = 0.8. (ii)
All SEs computed on the basis of 1000 independently generated runs of indicated length N. (iii)
When the sample length is “small,” the method by which the ACT is computed matters. There
are two methods. The first is to take the length N of the sample and divide it by the number
of observed crossings within it. Second, one may compute and record the sequential lengths
of individual subseries that are uniformly above or below the sample mean w(N, j) for that se-
ries, mechanically keeping track of their length and number. The ACT is then computed as the
average lengths of these subsamples: divide the sum of the various lengths by the number of
segments. The issue is how to address the ending points in a sample that may not be identified
with a crossing time because the sample length is not long enough for a “final” crossing to have
occurred. In the first method described above, these “unassociated data points” are included in
the numerator; in the second case, they are not. Accordingly, the ACT computed using the first
method will exceed that computed using the second. For large samples (N > 1000) the difference
is negligible. For small samples it can be significant if the sample length is small. In Figure 7, we
report the simple average using the two methods. Note that only the second method is appropri-
ate for ACT*! and ACT® calculations.

series (so also for the equity price), where mean and variance grow without bound, all
the implied return series and the bond price series remain stationary. For the same sta-
tistical regimen that underlies Tables 2 and 4, the results may be found in Table 5.

Clearly, the ZC\T, ZC\TA, and ZC\TB for {p¢} are growing enormously with N as are
their respective standard errors, a sign of nonstationarity. For the return series, com-
paring the results in Table 5 with the corresponding values for p = 0.95 in Tables 2
and 4 we find little systematic difference in ACTS, or their standard errors, which is ev-
idence of their continued stationarity. Most patterns are retained, though slightly exag-
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F1GUuRE 11(b). Baseline model: p = 0.8, o, = 0.00712. ACT standard errors {7{} versus sample
length (N).
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Ficure 11(c). Baseline model: p = 0.8, o, = 0.00712. ACT standard errors {ftb } versus sample
length (N).
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Ficure 11(d). Baseline model: p = 0.8, o, = 0.00712. ACT standard errors {Ftp } versus sample
length (N).

gerated in some cases. Due to the lognormality of the underlying capital stock series,

XC\TA < ZC\TB for all series when p < 1. When p = 1, this latter feature remains the
case although greatly exaggerated for the equity return series in particular.

Figure 12 presents the ACT as a function of the sample length for the baseline
random walk case. We observe that the ACT is increasing monotonically with sample
length. Figure 13 presents the corresponding standard errors which are also increasing
monotonically with the sample length.

These observations suggest the possibility of using the ACT measure as the basis for
a test for nonstationarity in economic time series. An ACT that steadfastly grows with
sample length, for example, would be an indicator of nonstationarity. Yet, it is unclear

TaBLE 5. Estimated ACTs and SE for the baseline model. yr = k%e’s, where 5\[“ =X + &41,
g~ N(, ag). Based on sample length N = 10,000; 1000 independent samples with o, = 0.00712.

ACT ACT? ACTB
— — ——A —A ——B ——B
ACT SE SE/ACT ACT SE SE/ACT ACT SE SE/ACT
{pf} 336.44 632.03 1.88 279.5 483.34 1.73 391.18 810.63 2.07
{ﬁtb} 2.611 0.0348 0.0133 2.608 0.0379 0.0145 2.614 0.0386 0.0148
{77} 2.612 0.0334 0.0128 2.605 0.0366 0.0141 2.620 0.0374 0.0143
{7;’} 2.611 0.0339 0.0130 2.608 0.0376 0.0144 2.614 0.0373 0.0143

(" 2.612 0.0352  0.0135 2.601 0.0387 0.0149 2.623 0.0384 0.0146
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FIGURE 12. ACT versus sample length, {p{} series. Baseline model with ;\t+1 = A + 441,
{811} ~ N(O, 03), oe = 0.00712. Computations based on J = 1000 independent runs for each N.
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FIGURE 13. SE versus sample length, {j¢} series. Baseline model with A, 1 = A, + &1,
{&r1} ~ N(O, og), o, =0.00712. Computations based on J = 1000 independent runs for each N.
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what advantage such tests would offer beyond existing well-understood tests for unit
roots. A related issue concerns the consequences for detrending. There are many de-
trending procedures for macroeconomic time series, the Hodrick-Prescott filter being
one popular example. Detrended time series will have well-defined ACTs. The precise
ACT values will, however, depend on the choice of the detrending methodology. System-
atic differences in ACT values that may exist across detrending procedures are presently
unresearched.

Another approach, especially suited to nonstationary stochastic production mod-
els is to normalize the “offending series.” To illustrate, suppose the model in (6) were
generalized to have a production technology of the form k¢ (n, P~ where n, is labor
supplied, 0 < n, <1, and {p,} represent the stochastic labor productivity measure, as-
sumed to follow the process p,.1 = X;,11 p; where {x,} is level stationary with E(x;) > 1.
All series can be made stationary by normalizing them through division by { p;}. For ex-
ample, define I%t = k¢/ p:. This normalized series will have well-defined ACTs. See King
et al. (1988a, 1988b). Such a procedure need only be defined relative to {p¢} (the return
series are stationary in any event).

We leave the extensive explorations necessary to resolve these questions to future
work.

6.5 ACTs and impulse response functions

It remains to connect the ACT measure to the notion of an impulse response function.
The latter represents the evolution of a variable of interest, which has been subjected
to a one standard deviation shock at time ¢ = 0. Intuitively, we would expect stochastic
processes with more drawn-out impulse response functions to have higher ACTs: the
more slowly a process tends to return to its mean value, the more time it must spend
above or below it, and hence, on average, its ACT should be higher. For all stationary
processes considered in the present discussion, this turns out to be the case.

We choose to measure the “speed” by which a process returns to its mean by its
half-life, the time horizon necessary for the process to halve its distance from its mean
when perturbed away from it. We expect to find that stochastic processes with greater
ACTs have more drawn-out impulse response functions; equivalently their half-lives are
greater. In the case of the AR-1 process, if at some time 7, x; = o, with &, =0 for t > i,
then the half-life of the process, #, is defined to satisfy

Xiph = 0s/2. Since x,45, = p"'x; = p" o5, h must satisfy
(26)
X =0s/2=p"c,, or h=1log(0.5)/log(p).

In this very specialized case, with ACT (p) defined by (24), it is evident that an in-
crease in p leads both to a greater half-life and a higher ACT. Thus a higher ACT and a
more drawn-out impulse response go hand-in-hand.

The same relationship holds for the baseline model. Here, the key expression de-
scribes the evolution of the capital stock, k; = aBk¥er . Equivalently,

Péoy = aB(pf) et 27)
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FIGURE 14. Impulse response to a one SD shock away from the mean for {p¢}, Baseline model,
various shock autocorrelations.

The steady state capital stock is defined by k* = aB(k*)”‘eO's”‘g implying k* =
(aBe®372)1/(1-)  Analagously, the steady state equity price is (p¢)* = (aBe?37%)1/(1-a),
We subject the equity price (p¢)* to a one standard deviation shock A; = ¢ and then
allow it to evolve in an environment where &; = 0 for all s > ¢. The half-life of this impulse
to the equity price is defined as that / for which (pf+h —(pH*) =0.5((p9)*e% — (p9)*).
Figure 14 displays the impulse response function for { ¢} and its associated half-life for a
variety of autocorrelations. It is apparent that the half-life increases as p increases. Since
the ACT also increases with p, it follows that there is a monotonic relationship between
ACT and the half-life. Higher ACTs and more drawn-out impulse response functions go
hand-in- hand. This relationship extends beyond the {p¢} series to the other financial
series discussed in this paper.

7. FURTHER GENERALIZATIONS THE BASELINE MODEL

In this section, we explore a number of generalizations of the baseline model such as in-
complete depreciation, greater risk aversion, etc. as regards their effects on the financial
time series of interest. Generally speaking, these features only serve to increase Property
I and II aversion. We substantiate this assertion in Appendix A.

8. EMPIRICAL SUPPORT

Table 6 presents the ACTs and autocorrelations for a representative collection of U.S.
financial return time series. They are: AGG (Barclays Aggregate Bond Fund), EEM (MSCI
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TABLE 6. Average crossing times, autocorrelations and conditional probabilities: various finan-
cial return series.

Series® Data period ACT ACTA ACT® p ¢4 ¢BB
Panel A: Quarterly frequency

SPY 2.1993-4.2017 23 2.61 2 0.092 0.62 0.5

EEM 3.2003-4.2017 2.23 2.31 2.15 0.207 0.57 0.54
AGG 4.2003-4.2017 1.9 1.87 1.93 —0.21 0.46 0.48
TIP 1.2004-4.2017 1.87 1.87 1.87 0.054) 0.46 0.46
VNQ 4.2004-4.2017 2.30 2.25 2.36 0.15 0.56 0.57
GLD 1.2005-4.2017 1.86 1.86 1.86 0.04iD 0.46 0.46
VTI 3.2001-4.2017 2.13 2.53 1.75 0.12 0.61 0.43
USsoO 3.2006-4.2017 2 2.27 1.75 0.14 0.56 0.43
VIX 2.1990-4.2017 1.82 1.43 2.19 —0.31 0.30 0.54

Panel B: Monthly frequency

SPY 02.1993-12.2017 2.02 2.26 1.78 0.068 0.56 0.44
EEM 05.2003-12.2017 2 2.05 1.95 0.12 0.51 0.49
AGG 10.2003-12.2017 2.16 2.21 2.13 0.04 0.55 0.53
TIP 01.2004-12.2017 1.78 1.77 1.81 —0.03 0.43 0.45
VNQ 10.2004-12.2017 1.96 2.10 1.82 0.05i) 0.52 0.45
GLD 12.2004-12.2017 1.99 1.97 2 —0.11 0.49 0.5

VTI 06.2001-12.2017 2.09 2.40 1.79 0.16 0.58 0.44
Uso 05.2006-12.2017 2.09 2.18 2 0.29 0.54 0.5

VIX 02.1990-12.2017 1.73 1.47 2 —-0.16 0.32 0.5

Panel C: Daily frequency

SPY 02.01.1993-12.29.2017) 1.92 1.97 1.87 —0.06 0.49 0.46
EEM 04.14.2003-12.29.2017 1.95 2.02 1.88 —-0.10 0.51 0.47
AGG 09.29.2003-12.29.2017 1.85 1.89 1.81 —0.12 0.47 0.45
TIP 12.08.2003-12.29.2017 1.96 1.98 1.96 0.014 0.50 0.49
VNQ 09.30.2004-12.29.2017 1.96 2.00 1.91 —-0.18 0.50 0.47
GLD 11.19.2004-12.29.2017 1.92 1.96 1.87 —0.02 0.49 0.47
VTI 06.01.2001-12.29.2017 1.95 2.04 1.85 —0.06 0.51 0.46
USsoO 04.11.2006-12.29.2017 1.93 1.96 1.89 —0.05 0.49 0.47
VIX 01.03.1990-12.29.2017 1.99 1.81 2.15 —0.08 0.45 0.54

(O The series corresponding to these abbreviations are found in the text.
() The notation 2.1993 indicates the second quarter of 1993, etc.

(i) [ndicates departures from theory.

(V) The notation 02.1993, signifies the 2nd month of 2003, etc.
v)02.01.1993 is to be read as February 1, 1993, etc.

Emerging Markets Index ETF), SPY (SPDR S&P 500 ETF), GLD (SPDR Gold Shares), USO
(United States Oil Fund ETF), TIP (Barclays TIPS Bond Fund ETF), VTI (Vanguard Total
Stock Market EFT), VNQ (Vanguard Real Estate EFT), and VIX (CBOE Volatility Index).
We provide the data at daily, monthly, and quarterly frequencies. The quarterly series
best corresponds to the implicit time period in the model economies. Nevertheless, all
three frequencies should generate ACT and autocorrelation relationships generally in
accordance with Proposition 4.2 and Observations A-E
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There are a number of relevant observations. First, note that at quarterly frequencies
(Panel A), the majority (5 out of 9) of return series are Property I mean averting, as was
the case for all the models of Section 5, when they were subject to empirically relevant
productivity autocorrelations. Unlike the present models, empirical bond returns (the
AGG series) are mean reverting; this is also true of the VIX although it has no counter-
part in the model-generated return series. In contrast, all series but one are Property I
mean reverting at daily frequency; the sole exception (the TIPS series) being essentially
independently distributed through time (note that ¢#4 = ¢$58). Nothing here is surpris-
ing; it is to be expected that the underlying processes governing daily returns, whatever
they are, will be largely unrelated to an economy’s aggregate investment and consump-
tion processes.

By Proposition 4.2, if ACT < 2, Property I mean reversion should be observed. At
daily frequencies, this is the case for all series except for TIPs. For monthly and quar-
terly series, the exceptions are TIPs and GLD (quarterly) and VNG (monthly). Due to the
relative lack of data at quarterly frequencies, it is not entirely surprising that the great-
est number of inconsistencies are found there. At all frequencies the VIX series strongly
endorses the theory.

Note that at daily frequencies all the corresponding entries in the transition matrices
are close to independence with the VIX the possible exception. At monthly and quarterly
frequencies, however, this is generally not so, with the VIX return series again being the
most asymmetric in both cases; the VTI is the next most extreme in this regard. In par-
ticular, at quarterly frequencies, the VIX has a 0.30 probability (¢4 = 0.3) of remaining
in the above-mean state, while only experiencing a mildly less-than-even chance of re-
turning to it (1 — qSBB = 0.46). At quarterly frequencies, the VTI series remains in the
above-mean state with probability 0.61 and returns to it only with probability 0.57. As a
result, it has a high ACT“. By comparison, the ACT for the VIX is the lowest of all the se-
ries for all data frequencies. We leave the rationale for this pattern to those more familiar
with its underlying determination.

Observation E makes clear that there is no necessary positive association between
an increasing ACT and an increasing autocorrelation across the series, and we do not
observe it in the data. With ACT's around 2 (all of our series), the range of (ACT, corre-
lation) possibilities is large (see Figures 1 and 2). Nevertheless, there is a weak positive
association between a series’ ACT and its autocorrelation.

9. CONCLUSION

In this paper, we have argued that notions of mean reversion and mean aversion can
be synthesized under one metric, the Average Crossing Time (ACT) with ACT* and
ACT® as its underlying constituents. By the ACT measure, the mean aversion/reversion
distinction becomes largely artificial, with a mean reverting (stationary) process being
identified only by a finite ACT value. One may model mean averting processes as those
with larger ACT's since there is nothing in the ACT concept that specifies a mean re-
version/aversion demarcation value. The ACT concept does provide, however, a simple,
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intuitive sense of one time series being more strongly mean reverting than another: its
ACT* and ACT® are each lower than its comparison counterparts.

As an identifying measure, the ACT allows us to evaluate other time series character-
istics that have been “traditional identifiers” of “mean reversion.” We considered four of
these, classifying them as Properties I-IV. Properties I and II were shown to be satisfied
in the case of the ACT being less than or equal to two, which strikes us as an extremely
strong criterion for “mean reversion.” Most of the analysis in the paper concerns these
properties, as they are the most widely employed. A careful analysis of Property I is left
to future work, for two reasons. First it does not discriminate in any way for the canoni-
cal “mean reverting” AR(1) process across autocorrelation parameters. Second, it is not
often employed in the finance literature. The same should be said for Property 1V; it is
very restrictive, not being exactly satisfied in the traditional stationary models such as
those reviewed in Section 5, or in general macroeconomic data.

Is there any real mean reversion/aversion distinction regarding stationary time se-
ries? Our analysis suggests the distinction is somewhat arbitrary, at least for Properties I
and II.
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