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Appendix A: General solution of first-order approximation

Without loss of generality, assume henceforth that the re-ordering of a QZ decomposi-
tion always places the n∞ zeros appearing on the main diagonal of S in the lower-right
n∞ × n∞ block. Given such a reordering, the following proposition summarizes the key
results needed to generate a set of first-order approximations.

Proposition A.1. Suppose (T�S�U�R) is a real QZ decomposition as described in the
text, so that the first ny columns of U are a basis for a w ∈ W∗. Partition

T =
⎛⎜⎝T11 T12 T13

0 T22 T23

0 0 T33

⎞⎟⎠ � S =
⎛⎜⎝S11 S12 S13

0 S22 S23

0 0 S33

⎞⎟⎠ �
R=

(
R1 R2 R3

)
� U =

(
Uyy Uyz
Uzy Uzz

)
�

where the rows and columns of T and S, and the columns ofR, are partitioned into groups
of size ny , nz −n∞, and n∞ (in that order), and the columns and rows ofU are partitioned
into groups of size ny and nz . Then S33 = 0 whenever it has nonzero dimension (i.e., when-
ever n∞ ≥ 1), and

φθ =U�−1
zz Ψ� φy = −U�−1

zz U�
yz� φζ = 0�

πθ =UyzΨBθ −Uyy�1 −πyUyzΨ� πy =UyyS−1
11 T11U

−1
yy � πζ = 0�

where �1 ≡ −S−1
11 (TyzΨ − SyzΨBθ +R�

1 C), Tyz ≡ (T12�T13), Syz ≡ (S12� S13), and

Ψ =
(
Ψ2

Ψ3

)
�
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where Ψ3 ≡ −T−1
33 R

�
3 C, and Ψ2 is the solution to the Sylvester equation1

S−1
22 T22Ψ2 −Ψ2Bθ =�2� (A.1)

where, if n∞ ≥ 1, �2 ≡ −S−1
22 (T23Ψ3 − S23Ψ3Bθ + R�

2 C), while if n∞ = 0 we have �2 ≡
−S−1

22 R
�
2 C.

Appendix B: Proofs of propositions

Proof of Proposition 1

First, note that w ∈ W if and only if (a) w is a linear subspace, and (b) x ∈ w implies
Ax ∈ w (i.e., w is A-invariant). Suppose (π�φ) satisfies (2). We verify that W (φ) ∈ W .
W (φ) is clearly a linear subspace, so it remains only to verify that it isA-invariant. Now,
(πy�φy)must satisfy (4), which can be rewritten

	x

(
Iny
φy

)
+ 	x′

(
Iny
φy

)
πy = 0


Premultiplying by −	−1
x′ , using the definition ofA, and rearranging, we get

A

(
Iny
φy

)
=

(
Iny
φy

)
πy
 (A.2)

Next, x ∈W (φ) if and only if z = φyy for some y ∈ R
ny . Thus, take x ∈W (φ), so that we

may write

x=
(
Iny
φy

)
y


We need to verify that x∗ ≡Ax ∈W (φ). We have

x∗ =A
(
Iny
φy

)
y =

(
Iny
φy

)
πyy =

(
Iny
φy

)
y∗�

where the second equality uses (A.2) and y∗ ≡ πyy. Thus z∗ =φyy
∗ ∈W (φ), which con-

firms thatW (φ) isA-invariant.

1While Sylvester equations can be analytically solved using vectorization and the Kronecker product, it
is typically much faster to solve them using efficient numerical routines. This can be done for Ψ2 using
the function sylvester in MATLAB and Julia, the SLICOT routine SB04MD in Fortran, or the Armadillo
routine syl in C++. Note that a solution for Ψ2 generally only exists when S−1

22 T22 and Bθ do not share

any eigenvalues. It can be verified that the eigenvalues of S−1
22 T22 are precisely the generalized eigenvalues

of (A�B) that are not associated with the RGEs making up w. Thus, if λ is both an eigenvalue of Bθ and a
generalized eigenvalue of (A�B), then the corresponding RGEs would always need to be included in w.
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Proof of Proposition 2

Supposew is as stated in the proposition. LetA=UTU� be a real Schur decomposition2

ordered so that the ny eigenvalues associated with w are the eigenvalues of the upper-
left ny × ny diagonal block of T , and the first ny columns ofU are a basis for w. Note that
U is an orthogonal matrix (UU� = In) and T is block upper-triangular. Partition U and
T conformably with x= (y� z) as

U =
(
Uyy Uyz
Uzy Uzz

)
� T =

(
Tyy Tyz
0 Tzz

)
�

and for any x let x̃= (ỹ� z̃)≡U−1x=U�x. Since the first ny columns of U are a basis for
w, for any x ∈w we must have z̃ = 0, that is, we must haveU�

yzy+U�
zzz = 0, which can be

solved to obtain z =ψy, where

ψ= −U�−1
zz U�

yz


Further, since by definition y =Uyyỹ+Uyzz̃, if x ∈w then z̃ = 0, and thus y =Uyyỹ, which
can be solved to obtain ỹ =U−1

yy y.
Next, take x ∈ w, and let x∗ = Ax, which is by construction also an element of w.

Premultiplying both sides byU� and using the Schur decomposition ofA, we have x̃∗ =
T x̃. Since z̃ = 0, it follows that ỹ∗ = Tyy ỹ. Substituting in ỹ =U−1

yy y and ỹ∗ =U−1
yy y

∗, then
premultiplying both sides by Uyy , we obtain that y∗ = κy, where

κ≡UyyTyyU−1
yy

Clearly, the eigenvalues of κ are the eigenvalues of Tyy ,3 which are in turn the eigenvalues
associated with the RGEs making up w.

We now show that (πy�φy) = (κ�ψ) is a solution to (4). As shown in the proof of
Proposition 1, this is equivalent to showing that (A.2) holds for this choice, which in turn
holds if and only if

A

(
Iny
ψ

)
y =

(
Iny
ψ

)
κy (A.3)

holds for all y ∈R
ny . Choose any y ∈R

ny , and set z =ψy, so that

x=
(
Iny
ψ

)
y ∈w


Since w is A-invariant, we have x∗ ≡Ax ∈ w, and in particular, as noted above, y∗ = κy

and, by construction of w, z∗ =ψy∗. Thus

A

(
Iny
ψ

)
y =Ax=

(
Iny
ψ

)
y∗ =

(
Iny
ψ

)
κy


Since y was chosen arbitrarily, (A.3) indeed holds for all y ∈R
ny .

2See the discussion in Section 3.2.
3κv = λv if and only if TyyU−1

yy v = λU−1
yy v and, therefore, (λ�v) is an eigenvalue-eigenvector pair of κ if

and only if (λ�U−1
yy v) is an eigenvalue-eigenvector pair of Tyy .
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Proof of Proposition 3

To avoid cluttering the notation, we prove the Proposition for the case of Q empty. It is
straightforward to extend the proof to any arbitraryQ.

Note first that (2), (3), and Propositions 1–2 do not rely in any way on the distinction
between predetermined and jump variables. Thus, their content would hold for any ar-
bitrary reordering and partition of the vector x into two subvectors y and z. In particular,
each such reordering/partition is associated with a set S∅ of solutions (π�φ) to (2) and a
set W∗

∅ given as in Proposition 2. The following lemma will be useful.

Lemma A.1. Let (y� z) and (ỹ� z̃) be two partitions of x.4 Let S∅ and W∗
∅ denote the sets

associated with (y� z), and S̃∅ and W̃∗
∅ the ones associated with (ỹ� z̃). Suppose w ∈ W∗

∅
and w̃ ∈ W̃∗

∅ are such that w̃ ⊂ w, and let (π�φ) ∈ S∅ and (π̃� φ̃) ∈ S̃∅ be the associated
solutions to (2). ThenM(φ̃)⊂M(φ).

Proof. Let p denote the dimension of y and q of ỹ. It will be useful to recast (2) as
follows. For a given x, let h(x) be the value of x′ solving (1) (which exists uniquely by
Assumption 1), so that x evolves according to x′ = h(x). Partitioning h(x)= (f (x)�g(x))
conformably with x= (y� z), for this partition we may rewrite condition (2) as requiring
that (

π(y)

φ
(
π(y)

)) =
(
f
(
y�φ(y)

)
g
(
y�φ(y)

)) � ∀y ∈Θ
 (A.4)

Note that, for such a φ, M(φ) is, by construction, a p-dimensional h-invariant mani-
fold in R

n: if x ∈M(φ) (i.e., x= (y�φ(y)) for some y), then letting y ′ = π(y)≡ f (y�φ(y)),
we have that h(x) = (y ′�φ(y ′)) ∈M(φ). Similarly, partitioning h(x) = (f̃ (x)� g̃(x)) con-
formably with x= (ỹ� z̃), for this partition (2) can be written(

π̃(ỹ)

φ̃
(
π̃(ỹ)

)) =
(
f
(
ỹ� φ̃(ỹ)

)
g
(
ỹ� φ̃(ỹ)

)) � ∀ỹ ∈ Θ̃� 
 (A.5)

andM(φ̃) is also h-invariant.
Let V : Rp →M(φ) be a smooth invertible function whose inverse is also smooth.

Such functions necessarily exist since M(φ) is a p-dimensional manifold. Thus, X ≡
V −1(x) is a coordinate system onM(φ), where the change between coordinatesX ∈R

p

and x ∈M(φ) is smooth. Since M(φ) is an h-invariant manifold, we can therefore write
the restriction of the system x′ = h(x) toM(φ) as

X ′ =H(X)≡ V −1(h(
V (X)

))
�

with x= V (X).
Take w̃, w as in the statement of the Proposition. Since w̃ ⊂ w, q ≤ p. To make the

problem nontrivial, assume q < p. Let A= UTU� be a real Schur decomposition such

4It is straightforward to extend the lemma to the case of arbitrary reorderings of x as well, but doing so
requires carrying around the mapping relating the elements of two different reorderings throughout both
the statement of the lemma and its proof. As this is quite tedious, we omit it here for simplicity.
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that the first q columns ofU are a basis for w̃ and the firstp columns a basis forw (which
is possible since we have taken w̃ ⊂ w). Without loss of generality, choose V such that
VX is equal to the first p columns of U , and note that this implies V �

X VX = Ip. Then the
linearized system x′ =Ax restricted toW (φ) can be written

X ′ = ÂX�
with x = VXX , where Â ≡ V �

X AVX = Tyy , and Tyy is the upper-left p× p block of T . Â
thus has the eigenvalues associated with the RGEs that make up w (see proof of Propo-
sition 2). LetΩ be the set of nontrivial Â-invariant linear subspaces of Rp.

Partition X = (Y�Z), where Y is a q-vector, and partition H = (F�G) conformably.
Let (Π��) be a pair of functions satisfying (A.4) for the restricted system, that is,(

Π(Y)

�
(
Π(Y)

)) =
(
F

(
Y��(Y)

)
G

(
Y��(Y)

)) � ∀y ∈R
q� (A.6)

and denote the set of such pairs Σ. Analogous to the results presented in Section 2.2,
elements of Σ are indexed by elements ofΩ∗, where Ω∗ is the subset of elements ω ofΩ
that can be written

ω= {
(Y�Z) ∈R

p : Y ∈R
q�Z =ψY}

for some matrix ψ.
Next, note that, since Â = Tyy , where Tyy is the upper-left p× p block of T , we see

that Â = ÛTyyÛ
� with Û = Ip is a real Schur decomposition of Â. Let ω̃ be the space

spanned by the first q columns of Û , that is, ω̃= {(Y�Z) ∈ R
p :Z = 0}. Let (Π��) be the

associated element of Σ, and μ(�) the q-dimensional H-invariant manifold mapped
out by Z =�(Y). By construction, the set M̃ ≡ V (μ(�)) is contained in M(φ). We now
verify that M̃ =M(φ̃), which would establish that M(φ̃) ⊂M(φ). To see this, partition
V = (V ỹ� V z̃) and V −1 = (V −Y �V −Z) conformably with, respectively, x= (ỹ� z̃) andX =
(Y�Z), and note that condition (A.6) is equivalent to

V
(
Π(Y)��

(
Π(Y)

)) = h(
V

(
Y��(Y)

))
� ∀y ∈Θ
 (A.7)

Now, let

K(Y)≡ V ỹ(Y��(Y))�
and note that K is a bijection from R

q to Θ∗ ≡ {ỹ ∈ R
q : (ỹ� ÿ) ∈ Θ for some ÿ}, and in

particular, for x= (ỹ� z̃) ∈ M̃ , ỹ =K(V −Y (x)). Define also the functions

π̃∗(ỹ)≡K(
Π

(
K−1(ỹ)

))
�

φ̃∗(ỹ)≡ V z̃(K−1(ỹ)��
(
K−1(ỹ)

))



Then condition (A.7) can be written(
π̃∗(ỹ)

φ̃∗(π̃∗(ỹ)
)) =

(
f̃
(
ỹ� φ̃∗(ỹ)

)
g̃
(
ỹ� φ̃∗(ỹ)

)) � ∀ỹ ∈Θ∗
 (A.8)
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Comparing this with (A.5), we see that (π̃∗� φ̃∗) ∈ S̃ and M̃ = M(φ̃∗). Using the same
reasoning as in Section 2.2, solutions to (A.8) are determined uniquely by the element
w̃∗ ∈ W̃ ∗ that is tangent to M(φ̃∗). To confirm that M̃ =M(φ̃), we need therefore only
verify that w̃∗ = w̃. Since (i) M̃ ≡ V (μ(�)), (ii) ω̃ is tangent to μ(�), and (iii) w̃∗ is tan-
gent to M̃ , we must have w̃∗ = VXω̃. Now, ω̃ is the set of p-vectors with only the first q
elements nonzero. Thus, VXω̃ is equal to the span of the first q columns of VX . But VX is
the first p columns of U , and by construction, its first q columns are a basis for w̃. Thus,
w̃∗ = VXω̃= w̃, and the proof is complete.

Corollary A.1. Let (π�φ) and (π̃� φ̃) be as in Lemma A.1. Then for any x0 ∈M(φ̃), the
sequence xt = (yt� zt) given by yt = πt(y0), zt =φ(yt), and the sequence x̃t = (ỹt � z̃t) given
by ỹt = π̃t(y0), zt = φ̃(yt) are identical, that is, xt = x̃t for all t.

Proof. By construction, if x ∈M(φ), then x′ = h(x) implies (y ′� z′) = (π(y)�φ(π(y))).
Thus, for any x0 ∈ M(φ), the sequence generated by xt+1 = h(xt) is precisely the se-
quence generated by yt = πt(y0), zt = φ(yt). Similarly, for any x0 ∈M(φ̃), the sequence
generated by xt+1 = h(xt) is precisely the one generated by ỹt = π̃t(y0), zt = φ̃(yt). Since
M(φ̃)⊂M(φ) by Lemma A.1, it follows immediately that for any x0 ∈M(φ̃) (so that also
x0 ∈M(φ)), the two sequences in the statement of the proposition are identical.

Consider now part (i) of the Proposition 3. Suppose by hypothesis that λ is real, with
λ > 1. Fix a (π�φ) ∈ S∅ such that r(λ) ⊂W (φ). Let x = (ỹ� z̃) be a partition where ỹ has
only one element, and S̃∅ and W̃∗

∅ be as in the statement of Lemma A.1. Let w̃ ∈ W̃∗
∅ be a

one-dimensional subset of r(λ) (e.g., the space spanned by one of the ordinary eigenvec-
tors associated with λ), and (π̃� φ̃) the associated element of S̃∅. Since w̃⊂ r(λ)⊂W (φ),
we may apply Corollary A.1 to conclude that, if (3) is violated for (π̃� φ̃), then it is also
violated for (π�φ): trajectories beginning on M(φ̃) ⊂ M(φ) do not remain bounded,
regardless of how close they begin to zero. Reasoning similar to the discussion immedi-
ately following Proposition 3, we see that the one-dimensional graph of ỹ ′ = π̃(ỹ) either
crosses the 45-degree more than once, or else it violates (3). Since the former is ruled out
by Assumption 1, only the latter is possible, and thus (3) is also violated for (π�φ), which
verifies part (i).

To show part (ii), suppose to the contrary that we have a unique model solution
(π�φ), but there exists a λ with |λ|< 1 such that w ≡ r(λ) �⊂W (φ). Note that, since the
model solution is assumed to be unique, the partition of x associated with (π�φ) is just
(y� z). Next, let q be the dimension of w, and repartition x= (ỹ� z̃), where ỹ has dimen-
sion q. By Proposition 2, there exists a solution (π̃� φ̃) to (2), where π̃ and φ̃map ỹ into ỹ ′
and z̃, respectively, withM(φ̃) tangent to w and such that the q eigenvalues of π̃ỹ are all
equal to λ. Since, for ‖ỹ‖ small enough, the system ỹ ′ = π̃(ỹ) is dominated by its linear
part, which converges by hypothesis, this implies that there is an open set containing
zero for which (π̃� φ̃) (which evolves onM(φ̃)) satisfies (3).

If q ≥ ny , then (π̃� φ̃) itself forms part of a second solution, contradicting the sup-
position that the solution is unique, in which case we are done. Thus, suppose in-
stead q < ny . Let us construct a new model solution (Q∗�π∗�φ∗�χ∗) as follows. Let
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Q∗ = {1� 
 
 
 � nz}, so that (in the notation of Definition 2) ŷ∗ = x, u∗ = z, and z∗ is the
empty vector. We then define φ∗ as the function that always returns the empty vector,
and define

π∗(ŷ∗) ≡
{(
π̃(ỹ)� φ̃

(
π̃(ỹ)

))
� if ŷ∗ ∈M(φ̃)�(

π(y)�φ
(
π(y)

))
� otherwise


Finally, let

χ∗(y)≡
{
φ̃(z)(ỹ)� if

(
y� φ̃(z)(ỹ)

) ∈M(φ̃)�
φ(y)� otherwise�

where φ̃(z) denotes the last nz elements of φ̃. It can then be easily verified that
(Q∗�π∗�φ∗�χ∗) is an additional solution, which contradicts the initial supposition that
the solution was unique. This completes the proof.

Proof of Proposition 4

Supposew,w1,w2 are as in the statement of the proposition. Sincewj ⊂w, by Lemma A.1
(with appropriate modifications for any reorderings) we have M(φj)⊂M(φ). Thus, πj

is just the restriction of π to M(φj). Since (2) is satisfied for π on x ∈ M(φ), it must
therefore also be satisfied for πj on x ∈M(φj), that is, (3) must hold, and therefore for
any χj (e.g., χj(y) = 0), (Qj�πj�φj�χj) is a model solution. Further, since w1, w2 are
distinct by construction, so are (Q1�π

1�φ1), (Q2�π
2�φ2).

Proof of Proposition A.1

To see that S33 = 0 whenever n∞ ≥ 1, suppose instead that S33 �= 0. This implies that there
is at least one nonzero entry in the bottom-right n∞ × n∞ block of S. Since the entries
in the bottom-left n∞ × (n− n∞) block of S are necessarily all zero, this implies that the
last n∞ columns of S are not contained in the span of the first n − n∞ columns and,
therefore, rank(S) > n−n∞. But as noted in the text, rank(S)= rank(B)= n−n∞, which
is a contradiction. We therefore conclude that S33 = 0.

Next, letting x̃≡U−1x=U�x and partitioning x̃= (ỹ� z̃) as x= (y� z), we seek a so-
lution such that z̃ =Ψθ for some matrixΨ . ReplacingA=RTU� and B=RSU� in (16),
using the definition of x̃, the partitions given in the statement of the proposition, and
substituting in z̃ =Ψθ and E[z̃] =ΨΠθθ, we obtain⎛⎜⎝S11 S12 S13

0 S22 S23

0 0 S33

⎞⎟⎠(
Eỹ ′
ΨΠθθ

)
=

⎛⎜⎝T11 T12 T13

0 T22 T23

0 0 T33

⎞⎟⎠(
ỹ

Ψθ

)
+R�Cθ
 (A.9)

Note that, by construction, the eigenvalues of S33 are zero and, therefore, those of T33
must all be nonzero (see Klein (2000)), so that T33 is invertible. The last n∞ equations of
(A.9) can therefore be written as

Ψ3θ= −T−1
33 R

�
3 Cθ
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Since this must hold for every θ, we obtainΨ3 = −T−1
33 R

�
3 C. Given this value, the middle

nz − n∞ equations in (A.9) can be written(
S−1

22 T22Ψ2 −Ψ2Πθ
)
θ=�2θ�

where �2 is defined in the statement of the proposition. Again, this must hold for every
θ, which yields (A.1).

Given the solutions for Ψ2 and Ψ3, substituting the definition z̃ = U�
yzy + U�

zzz into
z̃ =Ψθ, we can then solve for z =φθθ+φyy, where φθ and φy are as in the statement of
the proposition.

Next, the first ny equations of (A.9) can be rearranged as

Eỹ ′ = S−1
11 T11ỹ −�1θ� (A.10)

where �1 is as in the statement of the proposition. Note also that y =Uyyỹ +Uyzz̃. Sub-
stituting in z̃ = Ψθ, we can solve for ỹ =U−1

yy y −U−1
yy UyzΨθ. Using this to replace ỹ and

ỹ ′ in (A.10), along with E[θ′] =Πθθ, we obtain E[y ′] = πθθ+πyy, where πθ and πy are as
stated in the proposition.

Finally, as is well known (see, e.g., Fernández-Villaverde, Rubio-Ramírez, and Schor-
fheide (2016)), to a first-order approximation the system exhibits certainty equivalence,
so that we must have πζ = 0 and φζ = 0 (though in general higher-order derivatives
involving ζ will be nonzero).

Appendix C: Perturbation solution

To improve computational efficiency, we first define Ωt ≡ e
ϕe
t λt and ιt ≡ Yt+1 +

1−δ−γ
1−δ Xt − 1−δ−ψ

1−δ γYt . This allows us to write system (17) equivalently as

μtλt =Q(et)Et[Ωt+1]�
λt = ι−ωt �

Xt+1 = (1 − δ)Xt +ψYt+1�

Yt+1 = zteαt �
Ωt = eϕet λt�

ιt = Yt+1 + 1 − δ− γ
1 − δ Xt − 1 − δ−ψ

1 − δ γYt


This gives us six equations in the two endogenous predetermined variables (Xt�Yt) and
four endogenous jump variables (et�λt�Ωt� ιt). We then make the following change of
variables. In order to bound the employment rate between 0 and 1, we define e∗ ≡
− log(1/e − 1) ∈ (−∞�∞), and then replace all appearances of e in the above system
with (exp{−e∗} + 1)−1 ∈ (0�1). All other variables (endogenous and exogenous) are log-
transformed, so that, for example, we replaceX with exp{X̃}, Y with exp{Ỹ }, etc., where
variables with tildes denote logs.
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The first-order approximations to elements of S were found as described in the text.
In doing so, Proposition 3(i) was used to rule out RGEs associated with real, positive, un-
stable eigenvalues. In practice, this always left only a single element of S as a candidate
solution. The second- and third-order approximations were then solved for sequentially
using MATLAB functions that were generated automatically using the MATLAB Sym-
bolic Toolbox. To check that this candidate solution satisfied (15), we simulated 1000
periods of data beginning from an arbitrary initial condition near the nonstochastic SS
and verified that the implied employment rate never left the interval [0
2�0
9999]. If it
did, we concluded that no solution exists, and the parameterization was discarded.

Appendix D: Parameter estimates and model fit

Parameter estimates are shown in Table A.I. The fit of the estimated model spectrum is
shown in Figure A.1. In each panel, the thick solid curve reports the spectrum obtained
from the data,5 while the thinner gray curve shows the spectrum from the model. Panel
(a) shows the results for the discount factor shock, while panel (b) shows the results
for the technology shock. In both cases, the model fits the spectrum reasonably well.
Both models also fit the mean unemployment rate almost exactly, which was 0
0583 in
the data sample, 0
0584 in the μ-shock model, and 0
0583 in the z-shock model. The
skewness of hours was −0
0922 in the data, which was matched closely in the μ-shock
model at −0
0873. The z-shock model fit less well, however, with a skewness of −0
3808.

Appendix E: Finite elements solution

To implement the FE method for the μ-shock model, in order to bound the shock
process, as in Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006) we first make

Table A.I. Estimated parameter values.

(a) (b)
μ-shock z-shock

ē 0
9430 0
9455
ω 0
2736 0
2596
γ 0
6259 0
6489
ψ 0
3905 0
3929
ϕe 0
0460 0
0454
φ 0
9108 0
9871
�̄ 0
0470 0
0430
�̄2 0
0018 0
0030
�̄3 0
00066 0
00126
ρμ 0
0671 –
σμ 0
00014 –
ρz – 0
6254
σz – 0
0027

5Note that the horizontal axis in the figures is periodicity (i.e., the length of the underlying cycle, in quar-
ters).
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Figure A.1. Estimation fit. Notes: Thick black curve shows data spectrum. Thin gray curve
shows model spectrum. Data spectrum obtained by computing raw periodogram at 1024 fre-
quencies, then kernel-smoothing the result using a Hamming kernel of length 13. Model spec-
trum obtained by simulating 500 data sets of same length as actual data set (270 quarters), com-
puting average of the raw periodograms, and then smoothing the result as with the actual data.

the change of variables Mt ≡ tanh(log(μt)) and νμ�t ≡ εμ�t/
√

2. Letting s = (X�Y�M)

be the new state vector, we construct grids X ≡ {X0� 
 
 
 �XnX+1}, Y ≡ {Y0� 
 
 
 �YnY+1},
M ≡ {M0� 
 
 
 �MnM+1} for the state variables. We then construct the ijkth element as

Ψijk(s)≡ΨX�i(X)ΨY�j(Y)ΨM�k(M)�

where for B ∈ {X�Y�M} and � ∈ ηB ≡ {1� 
 
 
 � nB}, we define ΨB�� as the tent function

ΨB��(B)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B−B�−1

B� −B�−1
� if B ∈ [B�−1�B�]�

B�+1 −B
B�+1 −B� � if B ∈ [B��B�+1]�
0� otherwise


Then, given a set of coefficients κ ≡ {κijk}i∈ηX�j∈ηY �k∈ηM , we approximate the policy
function for e by

e(s;κ)=
∑
i∈ηX

∑
j∈ηY

∑
k∈ηM

κijkΨijk(s)
 (A.11)

From this policy function, we may then obtain the other implied policy functions as

Y ′(s;κ)= F(
e(s;κ))�

X ′(s;κ)= (1 − δ)X +ψY ′(s;κ)�
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λ(s;κ)=U ′
(
Y ′(s;κ)+

(
1 − γ

1 − δ
)
X − γ

(
1 − ψ

1 − δ
)
Y

)
�

Ω(s;κ)= [
e(s;κ)]ϕeλ(s;κ)


Next, define

Ω′(s� νμ;κ)=Ω(
X ′(s;κ)�Y ′(s;κ)� tanh

(
ρμ tanh−1(M)+ √

2σμνμ
);κ)

as the value of Ω in the subsequent period given the current state s and the next-period
shock innovation realization νμ. Then we may write the Euler equation as

R(s;κ)= 0� (A.12)

where

R(s;κ)≡ 1√
π

√
1 −M
1 +M

Q
(
e(s;κ))
λ(s;κ) Ωe(s;κ)− 1�

Ωe(s;κ)≡ √
πE

[
Ω′(s� νμ;κ)] =

∫ ∞

−∞
exp

{−ν2
μ

}
Ω′(s� νμ;κ)dνμ


In practice, the integrals inΩe are computed using a Gauss–Hermite quadrature with 10
nodes.

Given κ, (A.12) will only hold at all points in the state space if (A.11) is indeed the true
solution. We therefore choose κ to make R(s;κ) as close to zero as possible throughout
the state space. In practice, letting Sijk ≡ [Xi−1�Xi+1] × [Yj−1�Yj+1] × [Mk−1�Mk+1], we
choose the nXnYnM elements of κ to solve the nXnYnM equations,∫

Sijk

Ψijk(s)R(s;κ)ds = 0� i ∈ ηX� j ∈ ηY �k ∈ ηM
 (A.13)

In practice, the integrals are approximated using a Gauss–Legendre quadrature with 3
nodes. For �= 1�2�3, let p� denote the �th Gauss–Legendre node and w� the associated
weight, and for B ∈ {X�Y�M} define ΨB�i�� ≡ΨB�i(B̃i��), where

B̃i�� ≡ Bi+1 −Bi−1

2
p� + Bi+1 +Bi−1

2



For ��m�n ∈ {1�2�3}, define also R�mnijk (κ) ≡ R((X̃i��� Ỹj�m� M̃k�n);κ). Then given the
quadrature approximation to the integral in (A.13), one can show that we may write
(A.13) equivalently as the requirement that

vec(W ijk)
′ vec

(
Rijk(κ)

) = 0� i ∈ ηX� j ∈ ηY �k ∈ ηM
 (A.14)

where W ijk is the 3 × 3 × 3 array whose (��m�n)th entry is given by

w�wmwnΨX�i��ΨY�j�mΨM�k�n�

and Rijk(κ) is the 3 × 3 × 3 array whose (��m�n)th entry is given byR�mnijk (κ). A nonlinear
solver is used to find the κ that makes equations (A.14) hold up to a desired tolerance.
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For the results reported in the paper, we use nX = nY = 20 and nM = 15, for a total
of 6000 elements. Gridpoint bounds were chosen so as to make the system unlikely to
hit them in practice. Gridpoints forX and Y were evenly spaced. Gridpoints forM were
chosen as evenly spaced percentiles (ranging from 0
001 to 0
999) of the unconditional
distribution for M , which puts a higher concentration of gridpoints in regions where M
is more likely to be.

Appendix F: Euler errors

For a given value of the current state vector (Xt�Yt�μt� zt), the components of equation
(18) are computed as follows. First, Ct−1 = Xt/(1 − δ) + [1 − ψ/(1 − δ)]Yt . Next, et is
computed using the approximate policy function, which in turn is used to yield Yt+1 =
zte

α
t , Ct =Xt +Yt+1, andXt+1 = (1 − δ)Xt +ψYt+1.
From there, the expectation Et[eϕet+1λt+1] is computed using a Monte Carlo approach

as follows. First, we draw N random values of the date-(t + 1) shock innovations,
and use them to compute associated draws for (μt+1� zt+1). Together with the values
of Xt+1 and Yt+1 obtained above, each of these draws gives a draw for the full state
(Xt+1�Yt+1�μt+1� zt+1) at t + 1. From each of these draws, we compute the associated
et+1 using the approximate policy function, and then in turn obtain Yt+2 = zt+1e

α
t+1,

Ct+1 = Xt+1 + Yt+2, and λt+1 = (Ct+1 − γCt)
−ω. Finally, we set Et[eϕet+1λt+1] equal to

the mean of the resulting value of eϕet+1λt+1 across the N draws. In practice, we use
N = 15�000.

References

Aruoba, S. B., J. Fernández-Villaverde, and J. F. Rubio-Ramírez (2006), “Comparing solu-
tion methods for dynamic equilibrium economies.” Journal of Economic Dynamics and
Control, 30 (12), 2477–2508. [9]

Fernández-Villaverde, J., J. F. Rubio-Ramírez, and F. Schorfheide (2016), “Solution and
estimation methods for DSGE models.” Handbook of Macroeconomics, 2, 527–724. [8]

Klein, P. (2000), “Using the generalized Schur form to solve a multivariate linear rational
expectations model.” Jounral of Economic Dynamics and Control, 24 (10), 1405–1423. [7]

Co-editor Kjetil Storesletten handled this manuscript.

Manuscript received 18 November, 2019; final version accepted 13 January, 2021; available on-
line 28 January, 2021.

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Aruobaetal06&rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/FVetal16&rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/Klein00&rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Aruobaetal06&rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Aruobaetal06&rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/FVetal16&rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/Klein00&rfe_id=urn:sici%2F1759-7323%282021%2912%3A3%2B%3C1%3ASTSCSR%3E2.0.CO%3B2-L

	Appendix A: General solution of ﬁrst-order approximation
	Appendix B: Proofs of propositions
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition A.1

	Appendix C: Perturbation solution
	Appendix D: Parameter estimates and model ﬁt
	Appendix E: Finite elements solution
	Appendix F: Euler errors
	References

