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A.1 Proof of the main results

A.1.1 Proposition 1

Proof. The SC weights ŵSC ∈R
J are given by28

ŵSC = argmin
w∈�J−1

1
T0

∑
t∈T0

(
y0t − y′

tw
)2
� (14)

Under Assumptions 1, 2, and 4, the objective function Q̂T0(w) ≡ 1
T0

∑
t∈T0

(y0t − y′
tw)2

converges pointwise in probability to

Q0(w) ≡ σ2
ε

(
1 + w′w

) + [(
μ0 −μ′w

)′
Ω0

(
μ0 −μ′w

) + (
c0 − c′w

)2]
(15)

which is a continuous and strictly convex function. Therefore, Q0(w) is uniquely mini-
mized over �J−1, and we define its minimum as w̄SC ∈ �J−1.

We show that this convergence in probability is uniform over w ∈ �J−1. Define ỹ0t =
y0t − δt and ỹt = yt − δt i, where i is a J × 1 vector of ones. For any w′�w ∈ �J−1, using the
mean value theorem, we can find a w̃ ∈ �J−1 such that∣∣Q̂T0

(
w′) − Q̂T0(w)

∣∣ =
∣∣∣∣2(

1
T0

∑
t∈T0

ỹt ỹ0t − 1
T0

∑
t∈T0

ỹt ỹ′
tw̃

)
· (w′ − w

)∣∣∣∣
≤

[(
2
∥∥∥∥ 1
T0

∑
t∈T0

ỹt ỹ0t

∥∥∥∥ +
∥∥∥∥ 1
T0

∑
t∈T0

ỹt ỹ′
t

∥∥∥∥ × ‖w̃‖
)∥∥w′ − w

∥∥]
� (16)
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28If the number of control units is greater than the number of pre-treatment periods, then the solution to
this minimization problem might not be unique. However, since we consider the asymptotics with T0 → ∞,
then we guarantee that, for large enough T0, the solution will be unique.
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Define BT0 = 2|‖ 1
T0

∑
t∈T0

ỹt ỹ0t‖ + ‖ 1
T0

∑
t∈T0

ỹt ỹ′
t‖ × C. Since �J−1 is compact, ‖w̃‖ is

bounded, so we can find a constant C such that |Q̂T0(w′) − Q̂T0(w)| ≤ BT0(‖w′ − w‖) 1
2 .

Since ỹ0t ỹt and ỹt ỹ′
t are linear combinations of cross products of λt and εit , from As-

sumptions 1, 2, and 4, we have that BT0 converges in probability to a positive constant,
so BT0 = Op(1). Note also that Q0(w) is uniformly continuous on �J−1. Therefore, from
Corollary 2.2 of Newey (1991), we have that Q̂T0 converges uniformly in probability to
Q0. Since Q0 is uniquely minimized at w̄SC, �J−1 is a compact space, Q0 is continuous
and Q̂T0 converges uniformly to Q0, from Theorem 2.1 of Newey and McFadden (1994),

ŵSC exists with probability approaching one, and ŵSC p→ w̄SC.
Now we show that w̄SC does not generally reconstruct the factor loadings. Note

that Q0 has two parts. The first one reflects that different choices of weights will gen-
erate different weighted averages of the idiosyncratic shocks εit . In this simpler case,
this part would be minimized when we set all weights equal to 1

J . Let the J × 1 vector
jJ = ( 1

J � � � � �
1
J )

′ ∈ �J−1. The second part reflects the presence of common factors λt and
of the unit fixed effects that would remain after we choose the weights to construct the
SC unit. This part is minimized if we choose a w∗ ∈ 
̃. Suppose that we start at w∗ ∈ 


and move in the direction of jJ, with w(�) = w∗ + �(jJ − w∗). Note that, for all � ∈ [0�1],
these weights will continue to satisfy the constraints of the minimization problem. If we
consider the derivative of function (15) with respect to � at �= 0, we have that

�′(w∗) = 2σ2
ε

(
1
J

− w∗′w∗
)
< 0 unless w∗ = jJ or σ2

ε = 0�

where we used the fact that jJ
′w∗ = 1

J , because weights are restricted to sum one.
Therefore, w∗ will not, in general, minimize Q0. This implies that, when T0 → ∞,

the SC weights will converge in probability to weights w̄SC that does not reconstruct the
factor loadings of the treated unit, unless it turns out that w∗ also minimizes the variance
of this linear combination of the idiosyncratic errors or if σ2

ε = 0.
Now considering the SC estimator,

α̂0t = y0t − ytŵSC p→ α0t + (
ε0t − ε′

tw̄
SC) + λt

(
μ0 −μ′w̄SC) + (

c0 − c′w̄SC)
� (17)

A.1.2 Proposition 2

Proof. The demeaned SC estimator is given by ŵSC′ = argmin
w∈�J−1

Q̂′
T0
(w), where

Q̂′
T0
(w) = 1

T0

∑
t∈T0

(
y0t − y′

tw −
(

1
T0

∑
t ′∈T0

y0t ′ − 1
T0

∑
t ′∈T0

y′
t ′w

))2

= Q̂T0(w)−
(

1
T0

∑
t∈T0

y0t − 1
T0

∑
t∈T0

y′
tw

)2
� (18)
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Q̂′
T0
(w) converges pointwise in probability to

Q′
0(w) ≡ σ2

ε

(
1 + w′w

) + (
μ0 −μ′w

)′
Ω

(
μ0 −μ′w

)
� (19)

where Ω0 −ω′
0ω0 is positive semidefinite, so Q′

0(w) is a continuous and convex function.

The proof that ŵSC′ p→ w̄SC′
where w̄SC′

will generally not reconstruct the factor load-
ings of the treated unit follows exactly the same steps as the proof of Proposition 1.
Therefore,

α̂SC′
0t = y0t − ytŵSC′ −

[
1
T0

∑
t ′∈T0

y0t − 1
T0

∑
t ′∈T0

y′
tŵ

SC′
]

(20)

p→ α0t + (
ε0t − ε′

tw̄
SC′) + λt

(
μ0 −μ′w̄SC′)

� (21)

A.1.3 Proposition 3

Proof. For any estimator α̂0t(w̃) = y0t − ytw̃ − [ 1
T0

∑
t ′∈T0

y0t − 1
T0

∑
t ′∈T0

y′
tw̃] such that

w̃
p→ w, we have that, under Assumptions 1 to 5,

a� var
(
α̂0t(w̃)

) = σ2
ε

(
1 + w′w

) + (μ0 −μw)′Ω(μ0 −μw)= Q′
0(w)� (22)

which implies that a� var(α̂SC′
0t ) =Q′

0(w̄SC′
), and a� var(α̂DID

0t ) =Q′
0(w̄DID). By definition of

w̄SC′
, it must be that Q′

0(w̄SC′
) ≤Q′

0(w̄DID).

A.1.4 Proposition 4

Proof. Consider the trivial identity

0 =
(

w̄SC′ − 1
J

i
)′
(yt −ω)−

(
w̄SC′ − 1

J
i
)′
(yt −ω)� (23)

where the demeaned SC weights converge to w̄SC′
, and ω= E[yt − iδt].29 Note that these

two vectors are well-defined given the assumption that λt and εjt are stationary.
Following the notation from Chernozhukov, Wuthrich, and Zhu (2017), we define

PN
t = (w̄SC′ − 1

J i)′(yt −ω) and ut = −(w̄SC′ − 1
J i)′(yt −ω). Note that

ut = −
(

w̄SC′ − 1
J

i
)′(

μλ′
t + εt

)
� (24)

where we use the fact that (w̄SC′
)′i = 1

J i′i = 1 to eliminate δt . Since λt and εt are weakly
dependent stationary with mean zero, we have that ut is weakly dependent stationary
with mean zero.

29Although we estimate the weights using all treatment periods instead of only the pretreatment periods,

these weights will converge in probability to w̄SC′
because we consider a setting in which T0 → ∞ while T1

is fixed.
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Now consider

P̂N
t =

(
w̃ − 1

J
i
)′(

yt − 1
T0 + T1

∑
τ∈T0∪T1

yτ

)
= −ût � (25)

Note that

P̂N
t − PN

t =
(

w̃ − 1
J

i
)′( 1

T0 + T1

∑
τ∈T0∪T1

(
μλ′

τ + ετ
)) + (

w̃ − w̄SC′)′(
μλ′

t + εt
)
� (26)

where the first term on the RHS of the previous equation is Op(1)op(1), while the second
one is op(1)Op(1). Therefore, the model considered in equation (23) satisfies all condi-
tions for Theorem 1 from Chernozhukov, Wuthrich, and Zhu (2017).

A.2 Case with finite T0

We consider here the case with T0 fixed. For weights w∗ ∈ 
̃, note that

y0t = y′
tw

∗ +ηt� for t ∈ I0� where ηt = ε0t − ε′
tw

∗� (27)

Since
∑J

j=1 w
∗
j = 1, we can write

ẏ0t = ẏ′
tẇ

∗ +ηt� (28)

where ẏjt = yjt − yJt , ẏt = (ẏ1t � � � � � ẏJ−1�t)
′, and ẇ∗ is the J − 1 vector excluding the last

entry of w∗. The SC weights will be given by the OLS regression in (28) with the nonneg-
ativity constraints, and with the constraint that the sum of the J − 1 weights in ̂̇w∗

must
be smaller than 1. We ignore for now these constraints. Then we have that

̂̇w∗ =
(∑
t∈T0

ẏt ẏ′
t

)−1 ∑
t∈T0

ẏt ẏ0t � (29)

We assume that T0 is large enough so that (
∑

t∈T0
ẏt ẏ′

t ) has full rank. Therefore,

E
[̂̇w∗|{ẏt}t∈T0

] = ẇ∗ +
(∑
t∈T0

ẏt ẏ′
t

)−1 ∑
t∈T0

ẏtE
[
ηt |{ẏt}t∈T0

]
� (30)

By definition of ηt , we have that E[ηt |{ẏt}t∈T0] �= 0 for t ∈ I0, which implies that ̂̇w∗
is

a biased estimator of ẇ∗. Intuitively, the outcomes of the control units work as a proxy
to the factor loadings of the treated unit. However, such proxy is imperfect, because the
idiosyncratic shocks behave as a measurement error.

If we consider the case without the nonnegativity constraints, and assume that λt
and εjt are i.i.d. normal, then the conditional expectation function of y0t given yt would
be linear. As a consequence, the expected value of the SC weights would be exactly
the same for any T0, which in turn, would be the same as the asymptotic value when
T0 → ∞. If we relax the i.i.d. normality assumption and/or include the nonnegativity
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constraints, then E[̂̇w∗|{ẏt}t∈T0] would not be constant irrespectively of {ẏt}t∈T0 . How-
ever, the E[̂̇w∗] would be the integral of E[̂̇w∗|{ẏt}t∈T0] over the distribution of {ẏt}t∈T0 .
Therefore, we have no reason to believe that the distortion in the SC weights would be
ameliorated if we consider a finite T0 setting in comparison to the asymptotic distortion
when T0 → ∞.

Considering the nonnegativity constraints would also affect the distribution of ̂̇w∗

because, with finite T0, there will be a positive probability that the solution to the unre-
stricted OLS problem will not satisfy the nonnegativity constraints. However, this would
not change the conclusion that ̂̇w∗

is a biased estimator of ẇ∗. In Section 4, we show MC
simulations in which the distortion in the SC weights is aggravated when T0 is small and
we consider the nonnegativity constraints.

The larger bias of the SC weights when T0 is smaller is discussed in detail for a par-
ticular set of linear factor models considered in the a previous version of our paper (see
Ferman and Pinto (2019)). We present there a justification why we should expect (in that
particular model) a larger bias for the SC weights when T0 is finite.

A.3 Setting with diverging common factors

A.3.1 Main results with diverging common factors While the assumptions considered
in Sections 3.1 and 3.2 allow for outcomes with divergent pre-treatment averages (which
would be the case when we consider, e.g., GDP or average wages), we restrict to settings
in which such diverging common shocks affect all units in the same way. We now con-
sider that case in which we may have diverging common shocks that may have hetero-
geneous effects across unit. We modify Assumption 1 to include both common shocks
that are nondiverging and diverging.

Assumption 1′ (Potential outcomes). Potential outcomes are given by{
yNjt = cj + δt + γtθj + λtμj + εjt�

yIjt = αjt + yNjt �
(31)

We now separate the factor structure in two parts. One part, λtμj , that has the same
properties as considered in Sections 3.1 and 3.2, and another one, γtθj , which are “di-
verging,” in the sense that pretreatment averages of γt diverge.

Assumption 2′ (Sampling). We observe a realization of {y0t � � � � � yJt}t∈T0∪T1 , where yjt =
djty

I
jt +(1−djt)y

N
jt , while djt = 1 if j = 0 and t ∈ T1, and zero otherwise. Potential outcomes

are determined by equation (31). We treat {μj}Jj=0, {θj}Jj=0, and {γt}t∈T0∪T1 as fixed, and
{λt}t∈T0∪T1 and {εjt}t∈T0∪T1 for j = 0� � � � � J as stochastic.

An important difference relative to the setting considered in Sections 3.1 and 3.2
is that we can consider a fixed sequence of γt . The idea is that, in this setting, we can
find conditions in which the estimator is asymptotically unbiased even conditional on
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the realization of γt .30 Since in this setting we expect γt to diverge as T0 → ∞, we have
to consider the possibility that, for τ ∈ T1, γτ → ∞ when T0 → ∞.31 The assumption
below imposes restrictions on the sequence of γt and on the other common and id-
iosyncratic shocks. Let γ̃t = [1γt], ηj = λtμj + εjt , and ηt = (η1t � � � � �ηJt), and consider

A= diag(T f1
0 � � � � �T

fF1
0 ) and Ã = diag(1�T f1

0 � � � � �T
fF1
0 ) for constants (f1� � � � � fF1) ∈R

F1+ .

Assumption 4′ (Common and idiosyncratic shocks). ∃(f1� � � � � fF1) ∈ R
F1+ such that

(i) T−1
0

∑
t∈T0

[η0tη
′
t] → 0, (ii) T−1

0
∑

t∈T0
[η0tη

′
t]′[η0tη

′
t] → Σ positive definite, (iii) T−1

0 ×∑
t∈T0

Ã−1γ̃′
t γ̃tÃ

−1 → Ω positive definite, (iv) T−1
0

∑
t∈T0

Ã−1γ̃′
tηjt → 0 for all j = 0� � � � � J,

and (v) A−1γt = O(1).

Assumptions 4′(i) and 4′(ii) are equivalent to the assumptions we consider in Sec-
tions 3.1 and 3.2 for the “nondiverging” shocks. Assumptions 4′(iii), 4′(iv), and 4′(v) de-
termine the rates in which the components of γt diverge. Note that these assumptions
would be satisfied if γt is a polynomial trend. Moreover, we also show in a previous ver-
sion of the paper that we can instead assume that γt is a combination of I(1) and poly-
nomial trend factors (see Ferman and Pinto (2019)).

We also consider an additional assumption on the factor loadings associated with
the non-stationary common trends. Let Θ be the J × F1 matrix with information on the
factor loadings θj of the controls.

Assumption 6 (Factor loadings). (i) rank(Θ) = F1 and (ii) ∃w∗ ∈W such that θ0 = Θ′w∗,
where W is the set of possible weights given the constrains on the weights the researcher is
willing to consider.

The first part of Assumption 6 guarantees that the each diverging common shock
generates enough independent variation on the outcomes of the controls. The second
part of the assumption assumes existence of weights that reconstruct the factor loadings
of unit 0 associated with the nonstationary common trends. If this condition does not
hold, then the asymptotic distribution of the SC estimators would trivially depend on the
factor structure γtθj . Importantly, we do not need to assume existence of weights that
satisfy Assumption 6 and also reconstruct μ0. Let 
 be the set of weights that reconstruct
the factor loadings of both the diverging and nondiverging common shocks.

We focus first on the demeaned SC estimator, and then we consider the original SC
estimator.

Proposition 5. Under Assumptions 1′, 2′, 3, 4′, and 6, for τ ∈ T1,

α̂SC′
0τ

p→ α0τ + (
ε0τ − w̄′ετ

) + λτ
(
μ0 −μ′w̄

)
when T0 → ∞� (32)

where μ0 �=μ′w̄, unless σ2
ε = 0 or 
∩ argminw∈W {w′w} �= ∅.

30In contrast, the conditions for asymptotic unbiasedness considered in Sections 3.1 and 3.2 were valid
over the distribution of λt .

31We can think of that as a triangular array, where we fix a post-treatment periods τ, and γτ potentially
changes once we increase T0.
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We present the proof in Appendix A.3.2. Proposition 5 has two important implica-
tions. First, if Assumption 6 is valid, then the asymptotic distribution of the demeaned
SC estimator does not depend on the diverging common trends. The intuition of this re-
sult is the following. As T0 → ∞ minimizing the variance of a linear combination of the
idiosyncratic shocks becomes irrelevant relative to the cost of failing to recover the fac-
tor loadings associated with the diverging common shocks. Therefore, we do not have
the distortion on the SC weights we find in Section 3.1 when we consider the diverging
shocks. Interestingly, while ŵSC′

will generally be only
√
T0-consistent when 
1 ≡ {w ∈

W |θ0 =Θ′w∗} is not a singleton, we show in the proof that there are linear combinations

of ŵSC′
that will converge at a faster rate, implying that γt(θ0 −∑

j �=0 ŵ
SC′
j θj)

p→ 0, despite
the fact that γt explodes when T0 → ∞. Therefore, such diverging common trends will
not lead to asymptotic bias in the SC estimator.

Second, the demeaned SC estimator will be biased if there is correlation between
treatment assignment and the nondiverging common factors λt . The intuition is that the
demeaned SC weights will converge in probability to weights that minimize the asymp-
totic variance of ut = y0t − w′yt = λt(μ0 − μ′w) + (ε0t − w′εt ), restricting to the weights
that satisfy Assumption 6. Following the same arguments as in Proposition 1, ŵSC′

will
not eliminate these nondiverging common factors, unless we have that σ2

ε = 0 or it co-
incides that there is a w ∈
 that also minimizes the linear combination of idiosyncratic
shocks.

The result that the asymptotic distribution of the SC estimator does not depend on
the non-stationary common trends depends crucially on Assumption 6. If there were no
linear combination of the control units that reconstruct the factor loadings of the treated
unit associated to the diverging common trends, then the asymptotic distribution of the
SC estimator would trivially depend on these common trends, which might lead to bias
in the SC estimator if treatment assignment is correlated with such diverging trends.

Proposition 5 remains valid when we relax the adding-up and/or the nonnegativity
constraints, with minor variations in the conditions for unbiasedness. However, these
results are not valid when we consider the no-intercept constraint, as the original SC
estimator does. When the intercept is not included, it remains true that ŵSC converges
in probability to weights in 
1. However, in this case, the weights will not converge fast
enough to compensate the fact that γt explodes, implying that the result from Proposi-
tion 5 that the asymptotic distribution of the estimator does not depend on the diverging
common factor does not hold if we consider the estimator with no intercept. We present
a counterexample in Appendix A.3.2.

A.3.2 Technical results with diverging common factors

Proof of Proposition 5 without constraints. We show this result for the case
without the adding-up, nonnegativity, and no intercept constraints. In this case, the time
fixed effects δt may enter either in the γt or in the λt vectors. Let ŵ be the estimator for
the weights in this case. We then extend these results for the cases with the adding-up
and/or nonnegativity constraints. After that, we show a counterexample in which this
result is not valid when we use the no intercept constraint.
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First, let Θb
a contain the rows a to b of matrix Θ. If we set a = 0, then the first row

of Θb
a is given by θ′

0. Since rank(Θ) = F1, we can assume, without loss of generality, that

rank(ΘJ
J−F1+1) (i.e., the last F1 control units have θj that form a basis of RF1 . Therefore,

we have

⎡⎢⎢⎢⎢⎣
y0�t

y1�t
���

yJ−F1�t

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
c0

c1
���

cJ−F1

⎤⎥⎥⎥⎥⎦ −Θ
J−F1
0

(
ΘJ

J−F1+1
)−1

⎡⎢⎣cJ−F1+1
���

cJ

⎤⎥⎦ +Θ
J−F1
0

(
ΘJ

J−F1+1
)−1

⎡⎢⎣yJ−F1+1�t
���

yJ�t

⎤⎥⎦

+

⎡⎢⎢⎢⎢⎣
η0�t

η1�t
���

ηJ−F1�t

⎤⎥⎥⎥⎥⎦ −Θ
J−F1
0

(
ΘJ

J−F1+1
)−1

⎡⎢⎣ηJ−F1+1�t
���

ηJ�t

⎤⎥⎦ � (33)

which is similar to the triangular representation from Phillips (1991) for cointegrating

relations.

We rewrite this equation as

⎡⎢⎢⎢⎢⎣
y0�t

y1�t
���

yJ−F1�t

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
c̄0

c̄1
���

c̄J−F1

⎤⎥⎥⎥⎥⎦ +Θ
J−F1
0

⎡⎢⎣ỹJ−F1+1�t
���

ỹJ�t

⎤⎥⎦ +

⎡⎢⎢⎢⎢⎣
η̄0�t

η̄1�t
���

η̄J−F1�t

⎤⎥⎥⎥⎥⎦ � (34)

Now define β ∈ R
F1 such that ut = η̄0�t − [η̄1�t � � � η̄J−F1]′β →p 0, and consider the

OLS regression of η̄0�t on η̄t ≡ (η̄1�t � � � � � η̄J−F1), a constant, and ỹt ≡ (ỹJ−F1+1�t � � � � � ỹJ�t).

The OLS estimators (β̂, κ̂, and φ̂) are given by

⎡⎢⎣β̂−β

κ̂

Aφ̂

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T−1
0

∑
t∈T0

η̄t η̄
′
t T−1

0

∑
t∈T0

η̄t T−1
0

∑
t∈T0

η̄t

(
A−1ỹt

)′

T−1
0

∑
t∈T0

η̄′
t 1 T−1

0

∑
t∈T0

(
A−1ỹt

)′

T−1
0

∑
t∈T0

(
A−1ỹt

)
η̄′
t T−1

0

∑
t∈T0

(
A−1ỹt

)
T−1

0

∑
t∈T0

(
A−1ỹt

)(
A−1ỹt

)′

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T−1
0

∑
t∈T0

η̄tut

T−1
0

∑
t∈T0

ut

T−1
0

∑
t∈T0

ỹtut

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� (35)
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From Assumption 4′, we have that⎡⎢⎢⎢⎢⎢⎢⎢⎣

T−1
0

∑
t∈T0

η̄t η̄
′
t T−1

0

∑
t∈T0

η̄t T−1
0

∑
t∈T0

η̄t

(
A−1ỹt

)′

T−1
0

∑
t∈T0

η̄′
t 1 T−1

0

∑
t∈T0

(
A−1ỹt

)′

T−1
0

∑
t∈T0

(
A−1ỹt

)
η̄′
t T−1

0

∑
t∈T0

(
A−1ỹt

)
T−1

0

∑
t∈T0

(
A−1ỹt

)(
A−1ỹt

)′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→p

[
Σ 0
0 Ω

]
� (36)

which is positive definite, and we also have that⎡⎢⎢⎢⎢⎢⎢⎢⎣

T−1
0

∑
t∈T0

η̄tut

T−1
0

∑
t∈T0

ut

T−1
0

∑
t∈T0

ỹtut

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→p 0� (37)

Therefore, ⎡⎢⎣β̂−β

κ̂

Aφ̂

⎤⎥⎦ →p 0� (38)

Now note that, from equation (34), we have that

y0�t =
[
1 −β̂′

]
⎡⎢⎢⎢⎢⎣

c̄0

c̄1
���

c̄J−F1

⎤⎥⎥⎥⎥⎦ + κ̂+ β̂′

⎡⎢⎣ y1�t
���

yJ−F1�t

⎤⎥⎦ (39)

+
([

1 −β̂′
]
Θ

J−F1
0

(
ΘJ

J−F1+1
)−1 + φ̂

(
ΘJ

J−F1+1
)−1

)⎡⎢⎣yJ−F1+1�t
���

yJ�t

⎤⎥⎦ + ût � (40)

which implies that an OLS regression of y0�t on a constant, (y1�t � � � � � yJ−F1), and
(yJ−F1+1�t � � � � � yJ�t) yields estimators ĉ = [ 1 −β̂′ ][ c̄0 c̄1 ��� c̄J−F1 ]′ + κ̂, β̂, and ([ 1 −β̂′ ] ×
Θ

J−F1
0 (ΘJ

J−F1+1)
−1 + φ̂(ΘJ

J−F1+1)
−1).

We are interested in the limiting distribution of α̂0τ, for τ ∈ T1:

α̂0τ = y0τ − y′
τŵ = α0τ + λτ

(
μ0 −μ′ŵ

) + γτ
(
θ0 −Θ′ŵ

) + (
ε0τ − ε′

τŵ
)

+ c0 − [c1 � � � cJ]ŵ − ĉ� (41)

With some algebra, we have that

γτ
(
θ0 −Θ′ŵ

) = γτφ̂ = (
γτA

−1)(Aφ̂)= op(1)� (42)
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Likewise, we have that

c0 − [c1 � � � cJ]ŵ − ĉ = κ̂= op(1)� (43)

implying that

α̂0τ →p α0τ + λτ
(
μ0 −μ′w̄

) + (
ε0τ − ε′

τw̄
)
� (44)

Finally, by definition of ut , the OLS estimator converges to weights that minimize

plim[(y0t − y′
tw)2] subject to w ∈ 
1. Therefore, the proof that ŵ

p→ w̄ /∈ 
 is essentially
the same as the proof of Proposition 1.

Proof of Proposition 5 with adding-up and nonnegativity constraints. To
show that this result is also valid for the case with adding-up constraint we just have to
consider the OLS regression of y0t − y1t on a constant and y2t − y1t � � � � � yJt − y1t . Under
Assumption 6, this transformed model is also cointegrated, so we can apply our previous
result.

We now consider the case with the nonnegative constraints. We prove the case
W = {w ∈ R

J |wj ≥ 0}. Including an adding-up constraint then follows directly from a
change in variables as we did for the case without nonnegative constraints. Let ŵ be
such estimator for the weights.

We first show that ŵ
p→ w̄ where w̄ minimizes E[u2

t ] subject to w ∈ 
1 ∩W . Suppose
that w̄ ∈ int(W ). This implies that w̄ ∈ int(
1 ∩ W ) relative to 
1. By convexity of E[u2

t ],
w̄ also minimizes E[u2

t ] subject to 
1. We know that OLS without the nonnegativity con-
straints converges in probability to w̄. Let ŵu be the OLS estimator without the nonneg-
ativity constraints and ŵr be the OLS estimator with the nonnegativity constraint. Since
w̄ ∈ int(W ), then it must be that, for all ε > 0, ‖ŵu − w̄‖< ε with probability approaching
to 1 (w.p.a.1). Since ŵu = ŵr when ŵu ∈ int(W ) (due to convexity of the OLS objective
function), these two estimators are asymptotically equivalent.

Consider now the case in which w̄ is on the boundary of W . This means that w̄j = 0
for at least one j. Let A = {j|w∗

j = 0}. Note first that w̄ also minimizes E[u2
t ] subject to

w ∈ 
1 ∩ {w|wj = 0 ∀j ∈ A}. That is, if we impose the restriction wj = 0 for all j such that
w̄j = 0, then we would have the same minimizer, even if we ignore the other nonnegative
constraints. Suppose there is an w̃ �= w̄ that minimizes E[u2

t ] subject to w ∈
1 ∩ {w|wj =
0 ∀j ∈A}. By strict convexity of the objective function and the fact that w̄ is in the interior
of 
 ∩ W ∩ {w|wj = 0 ∀j ∈ A} relative to 
1 ∩ {w|wj = 0 ∀j ∈ A}, there must be w′ ∈ 
1 ∩
W ∩ {w|wj = 0 ∀j ∈A} ⊂
1 ∩W that attains a lower value in the objective function than
w̄. However, this contradicts the fact that w̄ ∈
1 ∩W is the minimum.

Now let ŵ′ be the OLS estimator subject to {w|wj = 0 ∀j ∈ A}. We have that ŵ′ is con-
sistent for w̄. Now we show that ŵ′ is asymptotically equivalent to ŵ′′, the OLS estimator
subject to {w|wj ≥ 0 ∀j ∈A}. We prove the case in which A= {j} (there is only one restric-
tion that binds). The general case follows by induction. Suppose these two estimators are
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not asymptotically equivalent. Then there is ε > 0 such that Lim Pr(|ŵ′ − ŵ′′| > ε) �= 0.
There are two possible cases.

First, suppose that LimPr(|ŵ′′
j | > ε′) = 0 for all ε′ > 0 (i.e., the OLS subject to {w|wj ≥

0 ∀j ∈ A} converges in probability to w̄ such that w̄j = 0). However, since the two estima-
tors are not asymptotically equivalent, for all T ′

0, we can always find a T0 > T ′
0 such that,

with positive probability, |ŵ′ − ŵ′′| > ε. Since {w|wj = 0 ∀j ∈ A} ⊂ {w|wj ≥ 0 ∀j ∈ A} and
ŵ′ �= ŵ′′, then QT0(ŵ′′) < QT0(ŵ′), where QT0() is the OLS objective function. Now using
the continuity of the OLS objective function and the fact that ŵ′′

j converges in proba-
bility to zero, we can always find T ′

0 such that there will be a positive probability that
QT0(ŵ′′ − ejŵ

′′
j ) < QT0(ŵ′). Since ŵ′′ − ejŵ

′′
j ∈ {w|wj = 0 ∀j ∈A}, this contradicts ŵ′ being

OLS subject to {w|wj = 0 ∀j ∈A}.
Alternatively, suppose that there exists ε′ > 0 such that LimPr(|ŵ′′

j | > ε′) �= 0. This
means that, for all T ′

0, we can find T0 > T ′
0 such that there is a positive probability that

the solution to OLS on {w|wj ≥ 0 ∀j ∈ A} is in an interior point ŵ′′ with ŵ′′
j > ε′ > 0. By

convexity of QT0(), this would imply that ŵ′′ is also the solution to the OLS without any
restriction. However, this contradicts the fact that OLS without nonnegativity restriction
is consistent (see proof of Proposition 5).

Finally, we show that ŵ′′ and ŵr are asymptotically equivalent. Note that w̄ is in the
interior of W relative to {w|wj ≥ 0 ∀j ∈A}. Therefore, w.p.a.1, ŵ′′ ∈W , which implies that
ŵ′′ = ŵr .

We still need to show that linear combinations of ŵr converge fast enough to recon-
struct the factor loadings of the treated unit associated with the nonstationary common

factors, so that γt(θ0 − ∑
j �=0 ŵ

r
jθj)

p→ 0. Let QT0() be the OLS objective function, and let

W̃ = {w̃1� � � � � w̃2J } be the set of all possible OLS estimators when we consider some of
the nonnegative constraints as equality and ignore the other ones. Let W̃ ′ ⊂ W̃ be the
set of estimators in W̃ such that all nonnegative constraints are satisfied. Then we know
that ŵr = argminw∈W̃ ′QT0(w).

Suppose first that, for each of the 2J combinations of restrictions, there is at least
one w ∈ 
1 that satisfy these restrictions. In this case, we know from the first part of

the proof that γt(θ0 − ∑
j �=0 w̃

h
j θj)

p→ 0 for all h = 1� � � � �2J , where w̃h = (w̃h
1 � � � � � w̃

h
J )

′.
Moreover, since W̃ is finite, then this convergence is uniform in W̃ . Therefore, it must

be that γt(θ0 − ∑
j �=0 ŵ

r
jθj)

p→ 0. Suppose now that for the combination of restrictions

considered for w̃h, with h ∈ {1� � � � �2J}, there is no w ∈ 
1 that satisfies these restric-
tions. Since the parameter space with this combination of restrictions is closed, then
∃η > 0 such that ‖θ0 − ∑

j �=0 wjθj‖ > η for all w that satisfy this combinations of re-
strictions.32 Therefore, QT0(w̃h) diverge when T0 → ∞, implying that, w.p.a.1, ŵr �=
w̃h.

Example with no intercept We consider now a very simple example to show that it is

not possible to guarantee that γt(θ0 − ∑
j �=0 ŵjθj)

p→ 0 if we do not include the inter-
cept. Consider the case in which there are only one treated and one control unit, and
y0t = μ0 + t + u0t while y1t = μ1 + t + u1t . We consider a regression of y0t on y1t without

32Otherwise, there would be w ∈ 
1 that satisfies this combination of restrictions.
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the intercept. Note that y0t = (μ0 − μ1) + y1t + u0t − u1t = μ + y1t + ut . Then we have
that

β̂=

T0∑
t=1

y1ty0t

T0∑
t=1

y2
1t

= 1 +

T0∑
t=1

(μμ1 +μt +μu1t +μ1ut + tut + utu1t )

T0∑
t=1

(
t2 +μ2

1 + u2
1t + “cross terms”

) (45)

which implies that

T(β̂− 1) =

1

T 2

T0∑
t=1

(μμ1 +μt +μu1t +μ1ut + tut + utu1t )

1

T 3

T0∑
t=1

(
t2 +μ2

1 + u2
1t + “cross terms”

) p→
1
2
μ

1
3

� (46)

Therefore, while β̂
p→ 1, it does not converge fast enough so that T(β̂−1)

p→ 0, except
when μ0 = μ1.

A.4 Example: SC estimator vs. DID estimator

We provide an example in which the asymptotic bias of the SC estimator can be higher
than the asymptotic bias of the DID estimator. Assume we have 1 treated and 4 control
units in a model with 2 common factors. For simplicity, assume that there is no additive
fixed effects and that E[λt] = 0. We have that the factor loadings are given by

μ0 =
(

1
1

)
� μ2 =

(
0�5
1

)
� μ3 =

(
1�5
1

)
�

μ4 =
(

0�5
0

)
� μ5 =

(
1�5
1

)
�

(47)

Note that any linear combination 0�5μ2 + w3
1μ3 + w5

1μ5 with w3
1 + w5

1 = 0�5 recovers
μ0. Note also that DID equal weights would set the first factor loading to 1, which is equal
to μ1

0, but the second factor loading would be equal to 0�75 �= μ2
0. We want to show that

the SC weights would improve the construction of the second factor loading but it will
distort the combination for the first factor loading. If we set σ2

ε = E[(λ1
t )

2] = E[(λ2
t )

2] = 1,
then the factor loadings of the SC unit would be given by (1�038�0�8458). Therefore, there
is small loss in the construction of the first factor loading and a gain in the construction
of the second factor loading. Therefore, if selection into treatment is correlated with the
common shock λ1

t , then the SC estimator would be more asymptotically biased than the
DID estimator.
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A.5 Alternatives specifications and alternative estimators

A.5.1 Average of preintervention outcome as economic predictor We consider now an-
other very common specification in SC applications, which is to use the average pre-
treatment outcome as the economic predictor. Note that if one uses only the average
pre-treatment outcome as the economic predictor then the choice of matrix V would be
irrelevant. In this case, the minimization problem would be given by

{ŵj}j �=0 = argmin
w∈�J−1

[
1
T0

∑
t∈T0

(
y0t −

∑
j �=0

wjyjt

)]2

= argmin
w∈�J−1

[
1
T0

∑
t∈T0

(
ε0t −

∑
j �=0

wjεjt

+ λt

(
μ0 −

∑
j �=0

wjμj

)
+ c0 −

∑
j �=0

wjcj

)]2
� (48)

Therefore, under Assumptions 2, 3, and 4, the objective function converges in prob-
ability to

�(w) =
(
c0 −

∑
j �=0

wjcj

)2
� (49)

Therefore, if there are weights that reconstruct the unit fixed effects without recon-
structing the other factor loadings of the treated unit, then there is no guarantee that the
SC control method will choose weights that are close to the correct ones. This result is
consistent with the MC simulations by Ferman, Pinto, and Possebom (2020), who show
that this specification performs particularly bad in allocating the weights correctly.

A.5.2 Adding other covariates as predictors Most SC applications that use the average
preintervention outcome value as economic predictor also consider other time invariant
covariates as economic predictors. Let Zi be a (R× 1) vector of observed covariates (not
affected by the intervention). Assumption 1 changes to{

yNit = δt + ci + θtZi + λtμi + εit �

yIit = αit + yNit �
(50)

We redefine the set 
 = {w ∈ �J−1|c0 = ∑
j �=0 cjwj�μ0 = ∑

j �=0 wjμj�Z0 = ∑
j �=0 wjZj}.

Let X1 be an ((R + 1) × 1) vector that contains the average preintervention outcome
and all covariates for unit 1, while X0 is a ((R + 1) × J) matrix that contains the same
information for the control units. For a given V , the first step of the nested optimization
problem suggested in Abadie, Diamond, and Hainmueller (2010) would be given by

ŵ(V ) ∈ argmin
w∈�J−1

‖X1 −X0w‖V � (51)
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Considering again the assumptions from Section 3.1, the objective function of this
minimization problem converges to ‖X̄1 − X̄0w‖V , where

X̄1 − X̄0w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ̄

(
Z0 −

∑
j �=0

wjZj

)
+

(
c0 −

∑
j �=0

wjcj

)
(
Z1

0 −
∑
j �=0

wjZ
1
j

)
���(

ZR
0 −

∑
j �=0

wjZ
R
j

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (52)

where we assume 1
T0

∑
t∈T0

θt →p θ̄. Therefore, there is no guarantee that an estimator
based on this minimization problem would converge to weights in 
 for any given ma-
trix V , even if 
 �= ∅.

The second step in the nested optimization problem is to choose V such that ŵ(V )

minimizes the preintervention prediction error. Note that this problem is essentially
given by

ŵ = argmin
w∈W̃

[
1
T0

∑
t∈T0

(
y0t −

∑
j �=0

wjyjt

)]2
� (53)

where W̃ ⊆ �J−1 is the set of w such that w is the solution to problem (51) for some pos-
itive semidefinite matrix V . Similar to the SC estimator that includes all pretreatment
outcomes, there is no guarantee that this minimization problem will choose weights in

, even when T0 → ∞. Therefore, it is not possible to guarantee that this SC estima-
tor would be asymptotically unbiased. MC simulation presented by Ferman, Pinto, and
Possebom (2020) confirm that this SC specification systematically misallocates more
weight than alternatives that use a large number of pretreatment outcome lags as pre-
dictors.

A.5.3 Relaxing constraints on the weights and other estimators Our main result that
the original and the demeaned SC estimators are generally asymptotically biased if
there are unobserved time-varying confounders (Propositions 1 and 2) still applies if we
also relax the nonnegative and the adding-up constraints, which essentially leads to the
panel data approach suggested by Hsiao, Ching, and Wan (2012), and further explored
by Li and Bell (2017).33 Our conditions for unbiasedness of the SC estimator also apply
to the estimators proposed by Carvalho, Masini, and Medeiros (2018) and de Carvalho
et al. (2016) when J is fixed.

These papers rely on assumptions that essentially imply no selection on unob-
servables to derive consistency results, which reconciles our results with theirs. Hsiao,

33In this case, since we do not constraint the weights to sum 1, we need to adjust Assumption 4 so that it
also includes convergence of the pretreatment averages of the first and second moments of δt .
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Ching, and Wan (2012) and Li and Bell (2017) implicitly relied on stability in the linear

projection of the potential outcomes of the treated unit on the outcomes of the control

units, before and after the intervention, to show that their proposed estimators are un-

biasedness and consistent. See, for example, equation (A.4) from Li and Bell (2017). For

simplicity, consider that λtμi includes the fixed effects ci and δt . Then the linear projec-

tion of yN0t given yt for any given t is given by δ1(t)+ y′
tδ(t), where

{
δ(t) = [

μ var(λt)μ′]−1
μ var(λt)μ0� and

δ1(t) = E[λt]
(
μ0 −μ′δ(t)

)
�

(54)

Therefore, in general, we will only have (δ1(t)�δ(t)) constant for all t if the distribu-

tion of λt is stable over time. However, the idea that treatment assignment is correlated

with the factor model structure essentially means that the distribution of λt is differ-

ent before and after the treatment assignment. In this case, it would not be reasonable

to assume that the parameters of the linear projection of yN0t given yt are the same for

t ∈ T0 and t ∈ T1 if we consider that treatment assignment is correlated with the fac-

tor model structure. Chernozhukov, Wuthrich, and Zhu (2018) assumed that yN0t and yt
are covariance-stationary for all periods (see their Assumption 6), which implies that

(δ1(t)�δ(t)) constant for all t. Therefore, they also implicitly imply that there is no selec-

tion on unobservables. Since they consider a setting with both large J and T , however,

it is possible that their estimator is consistent when there is selection on unobservables

under conditions similar to the ones considered by Ferman (2019).

Carvalho, Masini, and Medeiros (2018), de Carvalho et al. (2016), Masini and

Medeiros (2019), and Zhou and Geng (2019) assumed that the outcome of the control

units are independent from treatment assignment. If we consider the linear factor model

structure from Assumption 1, then this essentially means that there is no selection on

unobservables. Given Assumption 3, if treatment assignment is correlated with the po-

tential outcomes of the treated unit, then it must be correlated with λtμ0. However, if

this is the case, then treatment assignment must also be correlated with at least some

control units, implying that their assumption that the outcome of the control units are

independent from treatment assignment would be violated. Note that Carvalho, Masini,

and Medeiros (2018), Masini and Medeiros (2019), and Zhou and Geng (2019) encom-

passed a setting with both large J and T . Therefore, it might be possible to consider

a different set of assumptions, as the ones considered by Ferman (2019), so that their

estimator is asymptotically unbiased when J also increases.

Overall, our results clarify what selection on unobservables means in this setting,

and the conditions under which these estimators are asymptotically unbiased when

J is fixed. These results also clarify that there is no contradiction between these pa-

pers and the literature on factor models, which shows that factor loadings can only

be consistently estimated with fixed J under strong assumptions on the idiosyncratic

shocks.
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Appendix B: Tables and figures

Table A.1. MC results-specification test.

No break Break in λ1t

T0 = 120 T0 = 240 T0 = 480 T0 = 1200 T0 = 120 T0 = 240 T0 = 480 T0 = 1200
μ10 (1) (2) (3) (4) (5) (6) (7) (8)

−2�6689 0�172 0�110 0�079 0�059 −2�669 0�619 0�510 0�430
−2�4079 0�179 0�117 0�084 0�063 −2�408 0�691 0�582 0�503
−1�5034 0�183 0�121 0�090 0�063 −1�503 0�670 0�562 0�477
−1�4303 0�170 0�115 0�091 0�064 −1�430 0�594 0�477 0�391
−1�1359 0�167 0�112 0�090 0�063 −1�136 0�560 0�429 0�350
−1�0772 0�168 0�117 0�091 0�068 −1�077 0�666 0�553 0�484
−1�0604 0�173 0�111 0�090 0�069 −1�060 0�626 0�526 0�448
−1�0173 0�165 0�111 0�085 0�061 −1�017 0�598 0�507 0�430
−1�0066 0�167 0�117 0�088 0�059 −1�007 0�576 0�481 0�385
−0�8201 0�150 0�114 0�080 0�065 −0�820 0�616 0�563 0�506
−0�8087 0�151 0�110 0�080 0�061 −0�809 0�577 0�489 0�431
−0�6899 0�170 0�125 0�095 0�064 −0�690 0�412 0�313 0�218
−0�6813 0�145 0�105 0�081 0�068 −0�681 0�534 0�476 0�447
−0�6594 0�158 0�116 0�098 0�061 −0�659 0�459 0�362 0�315
−0�6573 0�152 0�120 0�097 0�060 −0�657 0�479 0�382 0�298
−0�5299 0�155 0�109 0�085 0�063 −0�530 0�374 0�287 0�229
−0�4925 0�138 0�098 0�074 0�059 −0�493 0�412 0�345 0�326
−0�3721 0�156 0�113 0�092 0�063 −0�372 0�324 0�244 0�187
−0�3253 0�158 0�128 0�103 0�065 −0�325 0�291 0�223 0�163
−0�2952 0�126 0�101 0�088 0�060 −0�295 0�321 0�265 0�230
−0�1566 0�138 0�080 0�070 0�049 −0�157 0�270 0�183 0�144
−0�1291 0�136 0�116 0�086 0�060 −0�129 0�214 0�167 0�120
−0�1251 0�138 0�115 0�107 0�066 −0�125 0�233 0�178 0�141
−0�1190 0�153 0�121 0�097 0�062 −0�119 0�271 0�192 0�133
−0�1147 0�136 0�100 0�074 0�062 −0�115 0�243 0�170 0�121
−0�0297 0�145 0�120 0�103 0�066 −0�030 0�225 0�163 0�119
−0�0155 0�131 0�100 0�073 0�057 −0�015 0�202 0�139 0�098

0�1411 0�129 0�112 0�089 0�063 0�141 0�258 0�184 0�130
0�1616 0�126 0�105 0�087 0�059 0�162 0�261 0�202 0�160
0�1895 0�150 0�116 0�093 0�063 0�190 0�247 0�178 0�133
0�2039 0�152 0�125 0�104 0�066 0�204 0�233 0�169 0�127
0�2043 0�145 0�115 0�086 0�059 0�204 0�248 0�181 0�113
0�3557 0�135 0�115 0�100 0�064 0�356 0�408 0�359 0�288
0�3874 0�152 0�106 0�076 0�058 0�387 0�350 0�274 0�201
0�5107 0�152 0�102 0�081 0�057 0�511 0�383 0�297 0�248
0�6244 0�157 0�112 0�093 0�058 0�624 0�512 0�419 0�337
0�6743 0�153 0�120 0�096 0�057 0�674 0�536 0�439 0�345
0�6887 0�155 0�102 0�083 0�056 0�689 0�466 0�355 0�307
0�7582 0�148 0�105 0�080 0�067 0�758 0�504 0�421 0�381
0�7728 0�161 0�110 0�093 0�058 0�773 0�461 0�356 0�284
0�9193 0�160 0�108 0�082 0�067 0�919 0�593 0�486 0�429

(Continues)
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Table A.1 Continued.

No break Break in λ1t

T0 = 120 T0 = 240 T0 = 480 T0 = 1200 T0 = 120 T0 = 240 T0 = 480 T0 = 1200
μ10 (1) (2) (3) (4) (5) (6) (7) (8)

0�9395 0�157 0�111 0�086 0�061 0�939 0�650 0�583 0�522
0�9810 0�182 0�111 0�080 0�061 0�981 0�621 0�514 0�451
1�1221 0�159 0�112 0�093 0�068 1�122 0�594 0�497 0�421
1�2940 0�173 0�117 0�092 0�056 1�294 0�629 0�527 0�450
1�3090 0�186 0�126 0�083 0�064 1�309 0�687 0�578 0�506
1�3762 0�187 0�128 0�095 0�063 1�376 0�719 0�609 0�519
1�3897 0�176 0�108 0�086 0�068 1�390 0�659 0�546 0�467
1�5060 0�168 0�119 0�084 0�068 1�506 0�601 0�494 0�413
1�6281 0�178 0�120 0�087 0�060 1�628 0�692 0�586 0�498
2�1912 0�189 0�119 0�086 0�065 2�191 0�712 0�598 0�513

Note: This table presents rejection rates for the specification test presented in Section 3.2. In columns 1 to 4, there is no
structural break, while in columns 5 to 8 the first common factor has expected value equal to two times its standard deviation
in the post-treatment periods.

Table A.2. Estimated weights—empirical illustration.

Original SC Demeaned SC Abadie et al. (2003)

Andalucia 0�0000 0�0000 0�0000
Aragon 0�0000 0�0000 0�0000
Baleares (Islas) 0�3111 0�2539 0�0000
Canarias 0�0000 0�0000 0�0000
Cantabria 0�0000 0�0008 0�0000
Castilla Y Leon 0�0000 0�0002 0�0000
Castilla-La Mancha 0�0000 0�0000 0�0000
Cataluna 0�0000 0�0536 0�8508
Comunidad Valenciana 0�0000 0�0003 0�0000
Extremadura 0�0000 0�0000 0�0000
Galicia 0�0000 0�0000 0�0000
Madrid (Comunidad De) 0�4831 0�2879 0�1492
Murcia (Region de) 0�0000 0�1898 0�0000
Navarra 0�0000 0�0190 0�0000
Principado De Asturias 0�0000 0�0072 0�0000
Rioja (La) 0�2058 0�1873 0�0000

References

Abadie, A., A. Diamond, and J. Hainmueller (2010), “Synthetic control methods for com-
parative case studies: Estimating the effect of California’s tobacco control program.”
Journal of the American Statiscal Association, 105 (490), 493–505. [13]

Carvalho, C. V., R. Masini, and M. C. Medeiros (2018), “ArCo: An artificial counterfactual
approach for aggregate data.” Journal of Econometrics. (Forthcoming). [14, 15]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Abadie2010&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Abadie2010&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Abadie2010&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4


18 Ferman and Pinto Supplementary Material

Chernozhukov, V., K. Wuthrich, and Y. Zhu (2017), “An exact and robust conformal in-
ference method for counterfactual and synthetic controls.” E-prints, December 2017,
arXiv:1712.09089. [3, 4]

Chernozhukov, V., K. Wuthrich, and Y. Zhu (2018), “Practical and robust t-test based
inference for synthetic control and related methods.” E-prints, December 2018,
arXiv:1812.10820. [15]

de Carvalho, C. Viana, R. Masini, and M. Cunha Medeiros (2016), “The perils of counter-
factual analysis with integrated processes.” Textos para discussão 654, PUC-Rio (Brazil),
Department of Economics. [14, 15]

Ferman, B. (2019), “On the properties of the synthetic control estimator with many pe-
riods and many controls.” E-prints, June 2019, arXiv:1906.06665. [15]

Ferman, B. and C. Pinto (2019), “Synthetic controls with imperfect pre-treatment fit.”
arXiv:1911.08521. version from November 19th, 2019. [5, 6]

Ferman, B., C. Pinto, and V. Possebom (2020), “Cherry picking with synthetic controls.”
Journal of Policy Analysis and Management, 39 (2), 510–532. [13, 14]

Hsiao, C., H. S. Ching, and S. K. Wan (2012), “A panel data approach for program evalu-
ation: Measuring the benefits of political and economic integration of Hong Kong with
mainland China.” Journal of Applied Econometrics, 27 (5), 705–740. [14, 15]

Li, K. T. and D. R. Bell (2017), “Estimation of average treatment effects with panel data:
Asymptotic theory and implementation.” Journal of Econometrics, 197 (1), 65–75. [14, 15]

Masini, R. and M. C. Medeiros (2019), “Counterfactual analysis with artificial controls:
Inference, high dimensions and nonstationarity.” Available at SSRN https://ssrn.com/
abstract=3303308. [15]

Newey, W. K. (1991), “Uniform convergence in probability and stochastic equicontinu-
ity.” Econometrica, 59 (4), 1161–1167. [2]

Newey, W. K. and D. McFadden (1994), “Chapter 36 Large sample estimation and hy-
pothesis testing.” In Handbook of Econometrics, Vol. 4, 2111–2245, Elsevier. [2]

Phillips, P. C. B. (1991), “Optimal inference in cointegrated systems.” Econometrica, 59
(2), 283–306. [8]

Zhou, Q. and H. Geng (2019), “Estimation and inference of treatment effects using a
new panel data approach: Measuring the impact of US SYG law.” Departmental Working
Papers 2019-03, Department of Economics, Louisiana State University. [15]

Co-editor Andres Santos handled this manuscript.

Manuscript received 8 April, 2020; final version accepted 19 March, 2021; available online 31
March, 2021.

http://arxiv.org/abs/arXiv:1712.09089
http://arxiv.org/abs/arXiv:1812.10820
http://arxiv.org/abs/arXiv:1906.06665
http://arxiv.org/abs/arXiv:1911.08521
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/FPP&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/Hsiao&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/Li&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
https://ssrn.com/abstract=3303308
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/Newey&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/Phillips1991&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/FPP&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/Hsiao&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/Hsiao&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/Li&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
https://ssrn.com/abstract=3303308
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/Newey&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/Phillips1991&rfe_id=urn:sici%2F1759-7323%282021%2912%3A4%2B%3C1%3ASTSCWI%3E2.0.CO%3B2-4

	Appendix A: Revisiting the synthetic control estimator (For Online Publication)
	Proof of the main results
	Proposition 1
	Proposition 2
	Proposition 3
	Proposition 4

	Case with ﬁnite T0
	Setting with diverging common factors
	Main results with diverging common factors
	Technical results with diverging common factors
	Example with no intercept


	Example: SC estimator vs. DID estimator
	Alternatives speciﬁcations and alternative estimators
	Average of preintervention outcome as economic predictor
	Adding other covariates as predictors
	Relaxing constraints on the weights and other estimators


	Appendix B: Tables and ﬁgures
	References

