Supplementary Material

Supplement to “A discrete choice model for partially ordered

alternatives”
(Quantitative Economics, Vol. 13, No. 3, July 2022, 863-906)

ELENI ARISTODEMOU
Department of Economics, University of Cyprus

ADAM M. ROSEN
Department of Economics, Duke University, CeMMAP, and Institute for Fiscal Studies

Section S1 of this supplement provides derivation of formulae used to compute
price elasticities in the empirical application in Section 6 of the main text Aris-
todemou and Rosen (2022). Section S2 provides estimates of features of the distri-
bution of elasticities using simulated data from DGP2 as described in Appendix D
of Aristodemou and Rosen (2022).

S1. DERIVATION OF ELASTICITIES

The elasticity of the quantity sold of brand &’s product of quality y with respect to the
price py, of product (k, ¢£) is

I§by Pkt

Nbykl = .
i’ IPke Pby

We consider elasticities conditional on Z = z. Prices py, can be plugged in directly and

$by = ©by(z; {) is given in (5.3) in the text. It is then additionally necessary to compute

. . J, zZ;
derivatives 2259
Dke

For this, we start with (5.3) with the function A the difference of bivariate normal
CDF values defined in (5.4) and parameters m;, m, , m{, my defined in (5.6) and (5.5),

Eleni Aristodemou: aristodemou.d.eleni@ucy.ac.cy

Adam M. Rosen: adam.rosen@duke . edu

We are grateful to three anonymous referees for suggestions that led to substantial improvements in this
paper. We thank Tim Christensen, Allan Collard-Wexler, Francesca Molinari, Lars Nesheim, and several con-
ference and seminar audiences for helpful discussions and comments. Xinyue Bei, Khuong (Lucas) Do, and
Muyang Ren provided excellent research assistance. We gratefully acknowledge financial support from the
UK Economic and Social Research Council through a grant (RES-589-28-0001) to the ESRC Centre for Mi-
crodata Methods and Practice (CeMMAP) and through the funding of the “Programme Evaluation for Pol-
icy Analysis” node of the UK National Centre for Research Methods, as well as from the European Research
Council (ERC) under grants ERC-2009-StG-240910-ROMETA and ERC-2009-AdG, grant agreement 249529.
Eleni Aristodemou gratefully acknowledges financial support from ESRC and UCL. Data supplied by Kantar
UK Ltd. The use of Kantar UK Ltd. data in this work does not imply the endorsement of Kantar UK Ltd. in
relation to the interpretation or analysis of the data. All errors and omissions remain the responsibility of
the authors.

© 2022 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE1497


mailto:aristodemou.d.eleni@ucy.ac.cy
mailto:adam.rosen@duke.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE1497

2 Aristodemou and Rosen Supplementary Material

respectively. Notation

—1_x
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will also be used. There are three cases to consider, as follows, where A; is used to denote

the partial derivative of A with respect to its j;;, argument, j =1, ..., 4. The expressions
gmy _ omy

below additionally make use of the fact that for any (%, ¢): e = e =

L. gb,y <2, < 8b,y+1-
5 - - s 5 + o
,SOby(Z, )= A(gb,y) ZZy’ my,m, ) + A(ZZy, 8b,y+1, My, My )

Referring back to equations (5.1), (A.6), and (A.11) in the proof of Proposition 2, this
can be equivalently written

hp(y, z,v, 0) — pﬂv
(o)
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where it follows from steps in the proof of Proposition 2 that
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Consequently, we see that

Ippy(2, {)
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and, therefore,
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2. 8by < 8&byt1 = ZZy' Using similar arguments as in case 1 above,
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3. zl’;y < &b,y < &b,y+1- Again, following similar steps as in case 1, it follows that:
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Thus to compute these derivatives at a given value of parameters and a given value of
observed variables, the following expressions (arguments suppressed) are needed:

Wby  byr1  Imy  Imy
IPke IPke IDke IPke

’ AI»AZ)A3-

Since gy, y = g»(y; z, 0) = Ap,, — xpBp from (4.8), we have that

dgb,y _ IAp,y 98b,y+1 _ IAp,y41
Ipke  Ipke’ IPke ke

In our application, with the linear specification a;, = 65 + v5 ppy, we have that at the
estimated parameter vector apy > 2ay; for all observations. Under this inequality,

Ap1 = ap1, Ap2 = app — apy,
and it follows that

P 2
bl _ Pl =k, £ =1] yp,
&pkg &pké
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98b2 _ dAp2
IDke  ODke
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If there were observations for which instead ay < 2a;,, then for these observations
we would have
Ab1 = Ap2 = ap2/2,

and given the linear specification ayy, = 8, + vp ppy, for each y € {1, 2},

d, JA
oy J 2 b=k, e=2]- 22,
pke  IPke 2
9zF —
Now consider &;Zyg . Recall that zj = w — x3Bp and, therefore, for y € {1, 2}
andy=3—y:
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The variables m] and mj are defined in (5.6) and (5.5). Applying the linear specifi-
cation ay, = 8 + v ppy and making explicit dependence on (b, y) yields

YxXpBp + 64 + Yapar — 8b — YbPby — XdBd
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Finally, there is
A(h! k; my, mZ) = (I)Z(kr my, mZ) - CDZ(hr my, mZ)r

where ®;(x, y, p) denotes the CDF of a bivariate normal vector with standard normal
marginals and correlation coefficient p evaluated at (x, y). Thus the partial derivatives
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of A(h, k, m1, my) are obtained as

d
Al(hv k) my, mZ) = _&—hz(h) my, mZ)v
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Expressions for the relevant partial derivatives of the bivariate normal CDF are

L) —
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ax

V11— p?

42 _ X —py
W(x) yr P) - ¢()’)CD<—>,

11— p?

where ¢(-) and ®(-) denote the standard normal density and cumulative distribution

function, respectively.

S2. ESTIMATES OF ELASTICITIES FROM SIMULATED DATA

The data used in Section 6.3 of Aristodemou and Rosen (2022) is not publicly avail-
able, but code used to estimate features of the distribution of household elastici-
ties is included in our replication code. In order to demonstrate usage, the file Com-
pute_POR_Elasticities.R was used to compute quantities reported in Table 6 of the main
text instead using data simulated from DGP2, which is described in Appendix D.5! The
resulting estimates using 2000 observations generated from DGP2 are reported here in

Table S1.

SlIn DGP2 prices have bounded support on R, and higher-quality products are priced higher than
lower-quality products.
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TaBLE S1. Estimated means and 0.2, 0.5, and 0.8 quantiles of household elasticities using a sam-
ple of 2000 observations from DGP2.

Price elasticities

Jlog ppy

7108 pre P11 P12 P21 P22
11
Mean —4.764 2.984 0.782 0.423

Quantiles —6.966 —3.768 —2.298 1.355 2.428 4.389 0.338 0.631 1.171 0.080 0.374 0.728

£12
Mean 1.888 —4.122 0.014 0.489

Quantiles 0.991 1.780 2.523 —5.300 —3.790 —2.630 0.000 0.000 0.000 0.256 0.462 0.707

21
Mean 1.263 0.024 —7.106 5.017

Quantiles 0.865 1.252 1.632 0.000 0.000 0.000-10.167 —5.761 —3.773 2.620 4.302 7.256

22
Mean 0.236 0.402 1.464 -3.161

Quantiles 0.051 0.216 0.395 0.204 0.379 0.589 0.674 1.331 2.098 —4.284 —2.845 —1.849

0
Mean 1.086 0.000 1.329 0.000
Quantiles 0.707 1.067 1.466 0.000 0.000 0.000 0.807 1.377 1.848 0.000 0.000 0.000
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