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1. Introduction

Economic data is often characterized by dependence and heterogeneity and account-
ing for these features is important when performing statistical inference. This paper
presents a bootstrap method that is robust to spatial (cross-sectional) dependence and
heterogeneity of unknown forms in the context of a linear regression model. Spatially
dependent observations often need to be indexed in more than one dimension and are
not naturally ordered nor regularly spaced. This makes the application of the bootstrap
potentially challenging. For instance, the spatial block bootstrap (see, e.g., Lahiri and
Zhu (2006), and Nordman, Lahiri, and Fridley (2007)) requires a careful partition of the
data into blocks, which may not be feasible in many applications.

Our approach in this paper is based on a variation of the wild bootstrap and does
not require resampling blocks of observations. We propose a residual-based wild boot-
strap using a regression model, where the external random variables used to perturb the
residuals are cross-sectionally dependent. Covariances between pairs of external ran-
dom variables are equal to a kernel weight that depends on a distance measure. Shao
(2010) proposed this method for the time-series case with distances equal to time gaps,
calling it a “dependent wild bootstrap.” The theory for the spatial context is not trivial;
however, it is as easy to apply as in the time-series case, requiring only (potentially im-
perfect) measures of distances between all pairs of observations.

The economics involved in applications with spatial data often suggests “economic
distance” measures which can be used to model spatial dependence, which decays with
distance. We exploit the availability of such distance measures to generate bootstrap
observations with cross-sectional dependence. Distance measures can vary depending
on the application and multiple metrics are also easily allowed in our setup. This allows
our method to apply to panel data settings. For instance, our example application in
Section 7 illustrates using our method with firm-level data where correlations across
firms arise from both overlap in their local markets and similarity in their technologies.

We prove the first-order asymptotic validity of our “spatial dependent wild boot-
strap” under a set of regularity assumptions that are similar to those used in the spa-
tial HAC literature (Conley (1999), Kelejian and Prucha (2007), Kim and Sun (2011)). In
particular, we assume that the score vector for each observation i is a linear transfor-
mation of a possibly infinite number of common i.i.d. random innovations. Modeling
spatial dependence as a linear process is quite common in the spatial econometrics lit-
erature (see, e.g., Kelejian and Prucha (2007), Kim and Sun (2011, 2013), and Robinson
(2011)). It avoids having to index observations in a Euclidean space, as required with
mixing conditions, and a special case of this model is the popular spatial autoregressive
(SAR) process. Compared to Shao (2010), who assumes a stationary mixing time series,
our assumptions allow for heterogenous spatial dependence in dimensions higher than
one, but we rule out nonlinear forms of dependence.

We generate spatially dependent external random variables using the eigendecom-
position of the bootstrap kernel matrix. This matrix contains weights given by a kernel
function evaluated at the distance measure and is equal to the bootstrap covariance ma-
trix of the n× 1 vector of external random variables. Hence, it must be positive semidef-
inite, and a sufficient condition is that we choose a bootstrap kernel function whose
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Fourier transform is weakly positive. A similar assumption is imposed by Shao (2010) in
the one-dimensional time series context. We discuss a class of kernels that satisfy this
condition when spatial dependence is of dimension higher than one and the distance is
Euclidean. We also propose a modification for cases where the bootstrap kernel matrix
is not positive semidefinite. Our bootstrap method contains several existing methods as
special cases. One is the regular wild bootstrap. The other is the cluster wild bootstrap,
popularized by Cameron, Gelbach, and Miller (2008) and studied by Djogbenou, MacK-
innon, and Nielsen (2019).

We provide a theoretical justification for bootstrap hypothesis tests based on stu-
dentized statistics requiring the use of a spatial HAC estimator for the original and the
bootstrap test statistics. We allow for kernels used to construct test statistics to be dif-
ferent than those used for generating the bootstrap data. This is important since the
bootstrap kernel function needs to be positive semidefinite, but one may want to use
other kernels to construct test statistics. We also allow for the use of restricted residu-
als when computing bootstrap critical values for hypothesis tests. The use of restricted
rather than unrestricted residuals often results in better size control.

The structure of the paper is as follows. In Section 2, we describe the setup and re-
view the spatial HAC literature. In Section 3, we introduce the spatial dependent wild
bootstrap and prove the consistency of the bootstrap distribution under a set of regular-
ity assumptions that rely on a linear array representation for the score vector. The results
of this section can be used to justify the construction of bootstrap percentile intervals,
which do not require studentization. In Section 4, we discuss hypothesis testing based
on studentized test statistics. Section 5 discusses an extension of our method to nonlin-
ear models. Section 6 illustrates the finite sample performance of the method in com-
parison to alternative asymptotic-based methods. In Section 7, we illustrate our method
in a firm-level regression investigating the relationship between a firm’s sales growth and
the import activity in its local market, where two metrics characterize residuals’ depen-
dence. An Appendix contains mathematical derivations.

2. Linear regression with spatial or space-time dependence

We consider the following linear regression model:

yi = x′
iβ+ ui, i= 1, � � � , n,

where the (p× 1) vector of regressors, xi, and error term ui, might be spatially or space-
time dependent. The OLS estimator of β is

β̂=
(

n∑
i=1

xix
′
i

)−1 n∑
i=1

xiyi.

Under some regularity conditions, we know that

(
Q−1JnQ

−1)−1/2√
n(β̂−β)

d−→N(0, Ip ), (1)
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whereQ= plimn→∞ n−1∑n
i=1 xix

′
i is a positive definite matrix and

Jn = Var

(
n−1/2

n∑
i=1

xiui

)
≡ 1
n

n∑
i,j=1

E
(
ViV

′
j

)
, where Vi ≡ xiui.

We assume throughout that Jn is nonsingular uniformly in n. According to (1), the
asymptotic covariance matrix of β̂ is Cn = Q−1JnQ

−1, which we need to estimate for
inference on β. A consistent estimator ofQ is

Q̂n = 1
n

n∑
i=1

xix
′
i.

Estimating Jn in the presence of spatial (cross-sectional) or space-time correlation is
more challenging as all pairs of observations could potentially be correlated.

The literature on spatial HAC inference confronts this problem by using auxiliary
data on distances to model covariances between observations and to construct a non-
parametric estimator for Jn; see Conley (1999). The basic idea is that measurements of a
distance between observations can serve to characterize covariance structures in a man-
ner analogous to time lags in a time-series setting. Observations that are deemed close
are modeled as potentially highly dependent, but those far enough away are approxi-
mately independent.

The spatial HAC literature has considered estimators of the form:

Ĵn = 1
n

n∑
i=1

n∑
j=1

K

(
dij

dn

)
V̂iV̂

′
j , (2)

where V̂i = xiûi andK(·) is a real-valued kernel function withK(0) = 1. The distance be-
tween i and j is denoted dij and dn is a scale parameter (bandwidth). We require dij ≥ 0,
dii = 0, dij = dji, but not the triangular inequality dij ≤ dik + dkj . This approach can be
viewed as an extension of smoothed periodogram spectral density estimators that have
long been used in the time-series literature, for example, Bartlett (1955) where distances
are analogous to time lags. It can be viewed as a generalization of what are commonly
called cluster or group dependence estimators (see, e.g., Liang and Zeger (1986) and
Moulton (1986)), where observations are taken to be correlated within a known set of
groups or clusters but independent across groups/clusters. These cluster estimators are
a special case of spatial HAC with a discrete distance metric reflecting group member-
ship and a uniform kernel K.

Distances need not be based upon physical locations; they can be much more gen-
eral measures of “economic distance” as in Conley (1999). For example, Conley and
Ligon (2002) use an economic distance measure based on the transportation cost be-
tween countries in the context of a cross-country growth regression. Other examples
include economic distances based on the similarity of input and output structures as
considered by Chen and Conley (2001) and Conley and Dupor (2003). In many applica-
tions, distances can be based on attributes, for example, input shares for firms. In these
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cases, observations’ locations can be indexed by a vector of attributes si ∈ R
τ , and the

distance between two units, i and j, may correspond to the Euclidean distance between
si and sj . Our method will be applicable with non-Euclidean metrics as well, possibly
with a modification (see Section 3.3).

The existing spatial HAC literature also allows for the presence of measurement error
in dij (see, e.g., Conley (1999), Conley and Molinari (2007), Kelejian and Prucha (2007),
and Kim and Sun (2011)), that is, Ĵn is based on d̃ij rather than on the “true” measures
dij , where d̃ij is such that

d̃ij = dij + ξij ,
where ξij is a measurement error. We will follow this literature and also allow for mea-
surement errors in d̃ij when applying the dependent wild bootstrap. Regularity condi-
tions on ξij will be discussed in Section 3.2.

Our method is readily applicable to a panel data setting where distances between
observations are in part a function of the observations lead/lag in time. When distances
between pairs of observations are derived from locations, for example, si and sj , time
can be viewed as just another element of these location vectors with K defined to be
a product kernel with one time series and one spatial component as in Conley (1999)
(see also Kim and Sun (2013)). In general, distance can depend on any fixed number
of metrics; see, for example, Kelejian and Prucha (2007) who suggest a HAC estimator
with M metrics based on K(min1≤m≤M {dij,m/dn}), where dij,m denotes the mth distance
measure between i and j. For ease of exposition, we present our theory using a single
distance measure.

3. Bootstrap inference

3.1 The bootstrap method

The bootstrap data generating process is described as follows. Let

y∗
i = x′

iβ̂+ u∗
i , i= 1, � � � , n, (3)

and generate

u∗
i = ûi ·ηi, (4)

where ûi = yi − x′
iβ̂ and ηi is an external random variable chosen by the researcher.

In this section, we rely on the unrestricted estimator β̂ to generate the bootstrap ob-
servations on the dependent variable and discuss bootstrap consistency results that do
not impose any constraint on β. We will discuss hypothesis testing in the next section,
where β̂ can be a restricted OLS estimator, which imposes the null hypothesis under
consideration. This is a key advantage of our method since the bootstrap literature has
shown that imposing the null on the bootstrap DGP can result in large size improve-
ments; see, for example, Davidson and MacKinnon (1999) and Djogbenou, MacKinnon,
and Nielsen (2019).

The choice ofηi is crucial. The regular wild bootstrap generatesηi in an i.i.d. fashion
such that E∗(ηi ) = 0 and Var∗(ηi ) = 1 for all i. This implies that the bootstrap errors u∗

i
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are independently distributed, conditional on the data, with mean zero and variance û2
i .

Hence, the wild bootstrap preserves heteroskedasticity but destroys cross-sectional (or
space-time) dependence.

Our goal in this paper is to generalize the regular wild bootstrap method so as to pre-
serve cross-sectional or space-time dependence and heterogeneity with a general form.
As usual, we require that E∗(ηi ) = 0 and Var∗(ηi ) = 1 for all i. However, we do not gen-
erate ηi independently across i. Instead, given a potentially mismeasured distance d̃ij
between observations, we generate {ηi : i = 1, � � � , n} such that their covariance struc-
ture is given by

Cov∗(ηi, ηj ) =K∗
(
d̃ij

d∗
n

)
for all (i, j), (5)

whereK∗(·) denotes a real valued kernel function and d∗
n is a bandwidth parameter. The

choice of K∗ and d∗
n is discussed below, where formal assumptions on these quantities

will be introduced. We will also provide an algorithm on how to generate ηi such as to
verify (5). Before we do so, let us provide some intuition for why this bootstrap method
can be robust to cross-sectional dependence. Let

β̂∗ =
(

n∑
i=1

xix
′
i

)−1 n∑
i=1

xiy
∗
i

denote the bootstrap OLS estimator. Using the bootstrap data generating process above,
we can easily show that the bootstrap covariance matrix of

√
n(β̂∗ − β̂) is

Var∗(√n(β̂∗ − β̂))= Q̂−1
n Ĵboot,nQ̂

−1
n ,

where

Ĵboot,n = Var∗
(

1√
n

n∑
i=1

xiu
∗
i

)
= 1
n

n∑
i,j=1

xiCov∗(u∗
i , u∗

j

)
x′
j

= 1
n

n∑
i,j=1

xiûix
′
jûj Cov∗(ηi, ηj ) = 1

n

n∑
i,j=1

K∗
(
d̃ij

d∗
n

)
V̂iV̂

′
j ,

given that Cov∗(ηi, ηj ) =K∗(
d̃ij
d∗
n

) by (5). This shows that the spatial dependent wild boot-

strap algorithm induces a bootstrap covariance matrix Ĵboot,n, which is just an example
of a spatial HAC covariance estimator, where the kernel function is K∗ and the band-
width parameter is d∗

n. Given the link to the spatial HAC covariance matrix estimator, we
can expect this bootstrap method to be valid under conditions similar to those used in
the spatial HAC literature.

Next, we describe our requirements on the bootstrap spatial kernel function K∗. To
do so, we introduce the notion of “pseudo-neighbors.”Given the bandwidth parameter
d∗
n, an observation j is defined as a pseudo-neighbor of i if its measured distance to i is
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less than d∗
n. More specifically, let

B∗
i,n = {

j : d̃ij ≤ d∗
n

}
, �∗i,n =

n∑
j=1

1
{
j ∈ B∗

i,n

}
and �∗n = 1

n

n∑
i=1

�∗i,n. (6)

Then B∗
i,n is the set of pseudo neighbors that unit i has based on d∗

n, �∗i,n is the size of
B∗
i,n and �∗n is its average. Note that B∗

i,n is a random set due to measurement error in d̃ij ,
implying that both �∗i,n and �∗n are random sequences.

The following condition specifies the requirements on the spatial kernelK∗.

Assumption 1. (i) The kernel functionK∗ : R→ [−1, 1] satisfiesK∗(0) = 1, andK∗(z) =
K∗(−z) for all z ∈R;

(ii) 1
E�∗n supi E(

∑
j /∈B∗

i,n
|K∗(

d̃ij
d∗
n

)|) =O(1) and 1
E�∗n supi

∑
j /∈B∗

i,n
|K∗(

d̃ij
d∗
n

)| =OP (1);

(iii) The matrix K
∗
n = [K∗(d̃ij/d∗

n )]ni,j=1 is symmetric and positive semidefinite for all n,
almost surely.

Part (i) is a standard assumption in the HAC literature, which is satisfied by stan-
dard kernels such as the rectangular, Bartlett, Parzen, and Quadratic Spectral (QS) ker-
nels. Parts (ii) and (iii) are new to our context. Assumption 1(ii) is automatically satisfied
by truncated kernels for which K∗(z) = 0 for |z| ≥ 1, regardless of the distance used. It
allows for kernels that do not truncate provided the tails of K∗ decay sufficiently fast.
Providing more primitive conditions for general distances is difficult, but we can do so
for the Euclidean distance. For instance, with locations indexed on the line (such as a
time series) and assuming away the presence of measurement error in distances, this
condition is satisfied if

∫∞
−∞ |K∗(u)|du <∞. Standard kernels used in time-series anal-

ysis satisfy this condition, including the QS kernel and the exponential (Gaussian) ker-
nel. Shao (2010) excludes these kernels by assuming a truncated kernel. Similarly, if we
map locations into a two-dimensional lattice, a sufficient condition for part (ii) is that∫∞
−∞

∫∞
−∞ |K∗(

√
x2 + y2 )|dxdy <∞ or equivalently

∫ 1
0 r|K∗(r )|dr <∞, a condition that is

satisfied by the Gaussian kernel.
Part (iii) is a high level condition that requires the matrix of weights K

∗
n = [K∗(d̃ij/

d∗
n )]ni,j=1 to be symmetric and positive semidefinite. The reason why we impose this

condition is that K∗
n is the bootstrap variance matrix of η= (η1, � � � , ηn )′ and, therefore,

needs to satisfy these conditions. When distances correspond to Euclidean distances
between points in R

τ , a sufficient condition is that the kernelK∗ be positive definite.
Bochner’s theorem provides a necessary and sufficient condition for a kernel K∗ to

be positive definite in R
τ : the Fourier transform of the kernel functionK∗ is weakly posi-

tive. For example, with locations indexed on the line,
∫∞
−∞K

∗(u)e−iur du≥ 0 for all r ∈R.
This well-known condition is met by a number of kernel functions such as the Bartlett
kernel or the Parzen kernel. Shao (2010) imposes this condition (see his equation (2))
when studying the properties of the dependent wild bootstrap for the one-dimensional
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dependent context. In higher dimensions, an analogous condition applies;K∗(x) is pos-
itive definite if it is of the form:

K∗(x) = �
(
τ

2

)∫ ∞

0

(
2
rx

)(τ−2)/2

J(τ−2)/2(rx)dF(r ), x≥ 0, (7)

where F is a probability distribution function on [0, ∞) and J(τ−2)/2(·) is a Bessel func-
tion of order (τ−2)/2. This characterization follows from simplifying the integrals in the
Fourier transform via polar coordinates to exploit the radial symmetry ofK∗(x). Discus-
sions of positive definite kernels can be found in, for example, Conley (1999), Chen and
Conley (2001), Gneiting (2002), or Kelejian and Prucha (2007); see Yaglom (1987) for a
textbook characterization of this class of functions.

The set of positive definite kernels depends on the dimension τ and it shrinks as τ
grows, implying that a kernel which is positive definite in τ dimensions will be positive
definite in any smaller number of dimensions. An example of this class of kernel func-
tions from Kelejian and Prucha (2007) is

K∗
v (x) =

{
(1 − x)v, 0 ≤ x≤ 1,

0, x > 1,
(8)

where v ≥ (τ + 1)/2. This is similar to the sharp (or steep) origin kernel in Phillips, Sun,
and Jin (2007).

The set of kernels that are positive definite in any dimensional Euclidean space (τ =
∞) can be represented as

K∗(x) =
∫ ∞

0
exp

(−x2r2)dF(r ), x≥ 0. (9)

An example kernel in this class is

K∗(x) = exp
(−x2), (10)

which is a Gaussian kernel (see, e.g., Stein (1999, p. 44)). Choosing a kernel that is pos-
itive definite in any dimensional Euclidean space avoids the need to know the dimen-
sion τ. When distances are non-Euclidean, we do not know if there is a class of kernels
guaranteed to be positive definite; we discuss one strategy to overcome this issue in Sec-
tion 3.3.

A recent paper by Kojevnikov (2021) also considers a modification of the dependent
wild bootstrap kernel function that satisfies Assumption 1(iii) in the context of a network
dependent model. His weighting function depends on the topology of the network and
requires a structure of locations, which we do not require.

Under Assumption 1, K∗
n is symmetric and positive semidefinite, which implies that

there exists 	n such that

K
∗
n =	n
n	′

n,
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where 
n is a diagonal matrix with the nonnegative eigenvalues of K∗
n and the columns

of 	n are the associated orthonormal eigenvectors (	′
n	n = In ). We can write

	n = [φ1, � � � , φn] with φk =
⎡
⎢⎣
φ1k

...
φnk

⎤
⎥⎦ and


n =

⎡
⎢⎢⎢⎢⎢⎣
λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

⎤
⎥⎥⎥⎥⎥⎦ with λi ≥ 0 for all i.

Thus, we can generate ηi as follows. Letting Ln =	n
1/2
n , we set

η
n×1

=
⎛
⎜⎝
η1
...
ηn

⎞
⎟⎠=Ln · v, v∼ i.i.d.(0, In ), (11)

where ηi is the ith element of η. This algorithm implies that E∗(η) = 0 and Var∗(η) =
LnL

′
n =K

∗
n.

An attractive feature of our bootstrap method is that it contains several existing
methods as special cases. The simplest example is the wild bootstrap with K

∗
n = In and

Ln = In.
A more complex example is the cluster wild bootstrap proposed by Cameron, Gel-

bach, and Miller (2008). This method is very popular in applied work and its theoretical
properties have been recently studied by Djogbenou, MacKinnon, and Nielsen (2019).
The usual way of describing the cluster wild bootstrap is as follows. Suppose we can
partition the sample of n observations into G groups of observations, so that the n× 1
vector û can be partitioned as û= (û1, � � � , ûG )′, where for each g, ûg = (û1g, � � � , ûng ,g )′,
and n=∑G

g=1 ng. The cluster wild bootstrap generates residuals as follows:

û∗
jg = ûjg · εg,

where εg is a common shock to all observations in cluster g.
One way to map this setup to ours is to order the observations by cluster. The weight-

ing matrix K
∗
n has typical element given by K

∗
n(l,m) = 1 (l and m belong to same clus-

ter), that is, the (l,m) element is 1 if the two observations belong to the same cluster
and 0 otherwise. This results in a block diagonal K∗

n with matrices of ones of dimensions
ng × ng along the diagonal. In other words,

K
∗
n =

⎛
⎜⎜⎜⎜⎝
K

∗
1,n 0 0
0 K

∗
2,n

. . . 0
0 0 K

∗
G,n

⎞
⎟⎟⎟⎟⎠ ,
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where K
∗
g,n = ιngι

′
ng

, with ιng = (1, � � � , 1)′ for each g = 1, � � � ,G. The eigendecomposi-
tion of K∗

n is equal to LnL′
n, where Ln is a block diagonal matrix with Lg,n on the main

diagonal and Lg,n is an ng × ng matrix whose first column is a vector of ones and the
remaining columns are zero. Thus, setting η=Ln · v where v∼iid (0, In ) is equivalent to
generating an n× 1 vector of shocks partitioned as η = (η′

1, � � � , η′
G )′, where for each g

cluster, ηg = (εg, � � � , εg )′ contains the same shock εg.

3.2 Bootstrap distribution consistency

In this section, we examine the properties of our bootstrap procedure. To establish the
asymptotics, we assume that the p× 1 vector of scores Vi has a linear array representa-
tion. In particular, we make the following assumption.

Assumption 2. (i) For a= 1, � � � , p,

V (a)
i =

∞∑
l=1

r(a)
il el, (12)

where V (a)
i is the ath component of Vi, el is a random innovation, and r(a)

il is a
nonstochastic weight.

(ii) el ∼iid (0, 1) and there exists a constantM <∞ such that E(e4
l )<M .

(iii) For each l,
∑∞
i=1 |r(a)

il |<M , and for each i,
∑∞
l=1 |r(a)

il |<M , for all a= 1, � � � , p.

Assumption 2 is sufficient for proving that a central limit theorem applies to the

scaled average of the scores, that is, that J−1/2
n n−1/2∑n

i=1 Vi
d−→N(0, Ip ). A linear trans-

formation of i.i.d. random variables is often employed in the literature to characterize
spatial (or spatiotemporal) processes; see, for example, Kelejian and Prucha (2007), Kim
and Sun (2011, 2013), Robinson (2011), Robinson and Thawornkaiwong (2012), Lee and
Robinson (2016), and Hidalgo and Schafgans (2017). In particular, our linear array model
in (12) is the same as in Robinson (2011) (see also Hidalgo and Schafgans (2017) for a
panel extension of this model), with the difference that we impose the linear array rep-
resentation directly on the score vector rather than assuming that the error term ui is a
linear array.

As in the time-series context, an alternative to a linear array representation would
be to assume some mixing-type conditions in the cross-sectional dimension as, for ex-
ample, in Conley (1999). This is also the approach of Shao (2010), who considers the
one-dimensional (time-series) case. Although mixing assumptions have the advantage
of allowing for nonlinear forms of dependence, these types of conditions are harder to
deal with in the cross-sectional context than in the time-series context and in particu-
lar more difficult to apply without directly indexing observations in Euclidean space as
in Conley (1999). The linear array representation is general enough to cover most spa-
tial models used in economics, including in particular the class of spatial autoregressive
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(SAR) models as a special case.1 Because the coefficients r(a)
il are functions of i, we allow

for heterogeneity in the second and higher order moments of {Vi}.
A key requirement for bootstrap validity is that the asymptotic bootstrap variance

of
√
n(β̂∗ − β̂) replicates the asymptotic variance of

√
n(β̂ − β). This entails showing

the consistency of the bootstrap variance Ĵboot,n toward Jn. For this result, we need to
impose further restrictions on the cross-sectional dependence of {Vi}. Define

K∗
q = lim

z→0

1 −K∗(z)
|z|q for q ∈ [0, ∞)

and let q∗
0 = max{q : K∗

q < ∞} be the Parzen characteristic exponent of K∗(z). For in-
stance, q∗

0 = 1 for the Bartlett and Kelejian and Prucha (2007) kernels and q∗
0 = 2 for the

QS, Parzen, and Gaussian kernels. Larger values of q∗
0 imply smoother kernel functions

at 0 and a smaller asymptotic bias for the HAC estimator, ceteris paribus (see Andrews
(1991) for the time-series HAC estimator and Kim and Sun (2011) for its spatial ana-
logue).

As in the HAC literature, the asymptotic bias of the bootstrap variance estimator de-
pends on the decaying rate of spatial dependence as a function of the distance metric
and q∗

0. Our next assumption follows Kim and Sun (2011, 2013) and is used to control
this bias.

Assumption 3. There exists a constant Cq∗
0
<∞ such that 1

n

∑n
i=1

∑n
j=1 ‖E(ViV ′

j )‖dq
∗
0
ij <

Cq∗
0
, for all n, where ‖ · ‖ denotes the Euclidean norm of a matrix.

Assumption 3 requires the degree of cross-sectional dependence between Vi and Vj
to decrease as a function of the “true” distance dij (and the degree of smoothness of the
kernel function at zero as dictated by q∗

0). In the time-series context, this assumption
is implied by a standard smoothness condition on the spectral density function of {Vt }
evaluated at zero:

∑+∞
j=−∞ ‖E(VtV ′

t+j )‖|j|q
∗
0 <∞ (see Andrews (1991, equation (3.4))).

Our next assumption imposes conditions on the measurement error ξij that imply
that the presence of measurement error in d̃ij does not change this absolute summability
condition.

Assumption 4. (i) {ξij } are independent of {el} and {xi};

(ii) |ξij| ≤ cξ for all i, j = 1, � � � , n.

Assumption 4 assumes that measurement errors are bounded, which is standard
in the spatial HAC literature; see, for example, Conley (1999) and Kelejian and Prucha
(2007). The independence assumption implies that {ξij } is independent of {Vi}, greatly
simplifying the proof.

1Distance construction can be problematic for some SAR specifications. While SAR models are linear
processes, they do not necessarily have a covariance structure that can be characterized by a set of dis-
tances. In particular, simple graph distances in some SAR models will not fully characterize the implied
covariance structure; see Martellosio (2012). We leave the characterization of SAR models for which an ar-
ray of distances can be constructed for future work.
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Our next assumption controls the number of pseudo neighbors that a given obser-
vation i is allowed to have and corresponds to Assumption 5 in Kim and Sun (2011). In
particular, we require that each observation i has at most cE�∗n pseudo neighbors, where
c is an arbitrary (large) constant and E�∗n is the expected average number of pseudo
neighbors.

Assumption 5. For all i, �∗i,n ≤ cE�∗n, a.s., for some constant c > 0.

Assumption 5 rules out the possibility that most observations are concentrated
around some locations and not others. Note that in the time-series context with reg-
ularly spaced observations �∗i,n ≤ 2d∗

n (with equality for all i ∈ [d∗
n, n− d∗

n + 1] if d∗
n is an

integer) and E�∗n > d∗
n, and this implies that �∗i,n ≤ 2E�∗n for all i. Thus, Assumption 5

is automatically satisfied in this case. We can also see that E�∗n and d∗
n are related to

each other and both parameters can be thought of as bandwidth parameters. This is
true more generally, with E�∗n clearly increasing with d∗

n. More specifically, as discussed
by Kim and Sun (2011, p. 354), for locations on a regular lattice, it is natural to assume
that E�∗n is proportional to d∗τ

n , where τ is the dimension of the space. When τ = 1, this
implies that E�∗n is proportional to d∗

n, as discussed above, whereas for τ = 2 we obtain
E�∗n = αd∗2

n for some constant α. Since E�∗n (and d∗
n) plays the role of the bandwidth pa-

rameter in the usual time-series HAC literature, we will let E�∗n → ∞ as n→ ∞ but at a
slower rate than nwhen deriving our results. This is because we will show that (as usual)
a larger E�∗n (and hence a larger d∗

n) reduces the asymptotic bias but increases the vari-
ance of the bootstrap variance estimator at the rate O(E�∗n/n).

The final assumption imposes regularity conditions on the regressors. Note that As-
sumption 1 implies that a similar moment condition holds for the scores Vi, that is,
E‖Vi‖4 ≤M .

Assumption 6. (i) There exists a constantM <∞ such that E‖xi‖4 ≤M ;

(ii) n−1∑n
i=1 xix

′
i

P−→Q, a positive definite matrix.

Theorem 3.1. Suppose Assumptions 1–6 hold. If d∗
n, E�∗n → ∞ such that E�∗n/n1/2 = o(1)

and E∗|vi|4 ≤M , then we have

sup
x∈Rp

∣∣P∗(√n(β̂∗ − β̂)≤ x)− P(√n(β̂−β) ≤ x)∣∣= op(1)

as n→ ∞.

Theorem 3.1 states the consistency of the bootstrap distribution of
√
n(β̂∗ − β̂). The

proof of Theorem 3.1 is in the Appendix. It follows by showing that Ĵboot,n− Jn →P 0 and

(
Q−1JnQ

−1)−1/2√
n
(
β̂∗ − β̂)→d∗

N(0, Ip ),

in probability; see the Appendix for the definition of →d∗
in probability.

The rate condition on the bandwidth parameter E�∗n/
√
n → 0 is stronger than the

rateE�∗n/n→ 0 used for showing the consistency of the (spatial HAC) variance estimator
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Ĵboot,n (analogously Theorem 1 of Kim and Sun (2011) and the proof of Lemma A.2). The
stronger rate condition on E�∗n is used to prove that a bootstrap central limit theorem
holds for the scaled average of the bootstrap scores, n−1/2∑n

i=1 V
∗
i ≡ n−1/2∑n

i=1 Viηi.
For the one-dimensional context, Shao (2010) proves the validity of the dependent

wild bootstrap for smooth functions of sample means of stationary mixing time-series
data that are possibly irregularly spaced in time. His rate condition on the bandwidth
parameter (which is given by �∗n rather than E�∗n since there is no measurement error) is
more stringent than ours, requiring that �∗n/n1/3 → 0 as n→ ∞. He also assumes that the
external random variables ηi are �∗n-dependent, an assumption we do not make. As he
remarks after his Theorem 3.1, this assumption makes the proof of the bootstrap central
limit theorem easier as he relies on a blocking argument that exploits the �∗n-dependence
of the process ηi. Our method of proof is different from his. In particular, we use the
eigendecomposition of K

∗
n to write ηi = ∑n

k=1(
√
λkφik )vk, where λk and φk are the

kth eigenvalue and eigenvector of K∗
n, and vk ∼ i.i.d.(0, 1) independently of the original

sample. It follows that n−1/2∑n
i=1 V

∗
i can be written as n−1/2∑n

k=1ωkvk, where condi-
tionally on the original sample, ωk = √

λkV
′φk is a known function and vk ∼ i.i.d.(0, 1).

Hence, we apply Lyapunov’s CLT for independent heterogeneous arrays and rely on the
rate condition E�∗n/n1/2 → 0 as n→ ∞ to verify the Lyapunov’s condition. Note that de-
spite the (conditional) independence of the array ωkvk, the conditional bootstrap vari-
ance of n−1/2∑n

i=1 V
∗
i is still robust to spatial dependence. Indeed, we can show that this

variance is equal to

n−1
n∑
k=1

ω2
k = V ′

(
n−1

n∑
k=1

λkφkφ
′
k

)
V = n−1V ′	n
n	′

nV

= n−1V ′
K

∗
nV = n−1

n∑
i,j=1

K∗
(
d̃ij

d∗
n

)
ViV

′
j = Jboot,n,

a spatial HAC variance estimator. Although this estimator is infeasible as it is based on
Vi = xiui, we show in Lemma A.2(ii) that the difference between this estimator and its
feasible version Ĵboot,n is asymptotically negligible under our assumptions.

We now provide an algorithm to compute valid bootstrap percentile intervals.

Algorithm (Bootstrap Percentile Intervals).

(i) Compute

β̂=
(

n∑
i=1

xix
′
i

)−1 n∑
i=1

xiyi, ûi = yi − x′
iβ̂, and V̂i = xiûi, i= 1, � � � , n.

(ii) For a given bandwidth choice d∗
n (to be discussed later), compute the matrix

K
∗
n = [K∗(d̃ij/d∗

n )]ni,j=1 and its eigendecomposition K
∗
n = 	n
n	

′
n, where 
n is a

diagonal matrix with the nonnegative eigenvalues of K∗
n and the columns of 	n

are the associated orthonormal eigenvectors. Let Ln =	n
1/2
n .
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(iii) Generate an n×1 vector v∼ (0, In ). We recommend using a sequence of standard
normal variables, but other distributions like independent Rademacher random
variables (+1 or −1 with equal probability) could be used. Then generate a se-
quence of random variables {ηi : i= 1, � � � , n} by multiplying this vector ν by Ln:

η=Lnv.

(iv) Let

y∗
i = x′

iβ̃+ u∗
i , where u∗

i = ũiηi,
and compute the bootstrap OLS estimator

β̂∗ =
(

n∑
i=1

xix
′
i

)−1 n∑
i=1

xiy
∗
i .

(v) Repeat steps (iii)–(iv) B times. Symmetric (1 −α) confidence intervals can be ob-
tained as

[β̂− q̂1−α, β̂+ q̂1−α],

where q̂1−α is the (1 − α) quantile of the distribution of |β̂∗ − β̂|. If preferred,
equal-tailed intervals can be obtained as

[β̂− p̂1−α/2, β̂− p̂α/2],

where p̂α/2 and p̂1−α/2 are respectively the α/2 and 1 − α/2 quantiles of the dis-
tribution of (β̂∗ − β̂).

3.3 Extension to bootstrap kernels that are not positive semidefinite

The asymptotic validity of the spatial dependent wild bootstrap described in the previ-
ous section depends crucially on the positive semidefiniteness and symmetry properties
of K∗

n (cf. Assumption 1(iii)). These assumptions guarantee that the bootstrap covari-
ance matrix of the external random vector η is nonnegative definite, thus ensuring that
the bootstrap measure is a valid measure. Although the symmetry property of the dis-
tance metric (which we assume for d̃ij) implies the symmetry of K∗

n, the assumption that
K

∗
n is positive semidefinite can fail when d̃ij is non-Euclidean. In this case, choosing K∗

as a nonnegative definite function (as, e.g., letting K∗ be the Gaussian kernel) does not
guarantee the nonnegative definiteness of K∗

n.
In this section, we provide an alternative bootstrap method that does not require K

∗
n

to be positive semi-definite.2 The idea is to transform K
∗
n into a positive semidefinite

matrix M
∗
n and choose η such that E∗(ηη′ ) =M

∗
n. For example, if we assume that V̂ ′

K
∗
nV̂

is positive definite, we could choose

M
∗
n =K

∗
nV̂

(
V̂ ′

K
∗
nV̂

)−1
V̂ ′

K
∗
n.

2We thank Andrès Santos for this suggestion.
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Note that this matrix has rank equal to the rank of V̂ , which is p. The next theorem
implies the validity of percentile confidence intervals constructed using the previous
algorithm by defining Ln =	n


1/2
n , where 
n is a diagonal matrix with the eigenvalues

of M∗
n on the diagonal and	n is the matrix of associated eigenvectors. In addition, in this

case, the external variables must be generated from the standard normal distribution.

Theorem 3.2. Suppose the assumptions of Theorem 3.1 hold but K∗
n is not necessarily

positive semidefinite. Suppose V̂ ′
K

∗
nV̂ is positive definite and define M

∗
n =

K
∗
nV̂ (V̂ ′

K
∗
nV̂ )−1V̂ ′

K
∗
n. If v∼ N(0, In ),

sup
x∈Rp

∣∣P∗(√n(β̂∗ − β̂)≤ x)− P(√n(β̂−β) ≤ x)∣∣= op(1)

as n→ ∞ and d∗
n → ∞ such that E�∗n/n→ 0.

This result proves the consistency of the bootstrap distribution of
√
n(β̂∗ − β̂), thus

justifying the construction of bootstrap percentile intervals for β even when K
∗
n is not

positive semidefinite.

Remark 1. Assuming that V̂ ′
K

∗
nV̂ is positive definite is weaker than assuming that K∗

n

is positive definite. In practice, it is possible to ensure that V̂ ′
K

∗
nV̂ is a positive definite

matrix by replacing its negative eigenvalues by ε > 0, a small positive constant, as sug-
gested by Politis (2011) (see also McMurry and Politis (2010)). Since under our remaining
assumptions, n−1V̂ ′

K
∗
nV̂ converges in probability to Jn, and Jn is assumed to be positive

definite uniformly in n, this regularization is asymptotically negligible.

The Gaussianity assumption on v is crucial for proving Theorem 3.2, as we explain
here. For simplicity, assume that p= 1, that is, that V̂i = xiûi is a scalar. Then n−1V̂ ′

K
∗
nV̂

is a scalar and K
∗
nV̂ is n× 1, which implies that the rank of M∗

n is 1. This implies that

η=Lnv=√
λ1φ1v1,

where λ1 is the only nonzero eigenvalue of M∗
n and φ1 is its corresponding eigenvector.

It follows that ηi = √
λ1φi1v1, for all i= 1, � � � , n. Since u∗

i = ûiηi, we have that

u∗
i = ûiηi = (

√
λ1φi1ûi )v1,

implying that the bootstrap scores V ∗
i ≡ xiu

∗
i = (V̂i

√
λ1φi1 )v1 are all proportional to v1.

The implication is that n−1/2∑n
i=1 V

∗
i does not satisfy a bootstrap central limit theorem.

To obtain a Gaussian distribution, we need to generate v1 as N(0, 1). Under this condi-
tion, conditionally on the original sample,

n−1/2
n∑
i=1

V ∗
i = (

n−1/2V̂ ′√λ1φ1
)
v1 ∼N(0, n−1V̂ ′

M
∗
nV̂

)
,

where by construction,

n−1V̂ ′
M

∗
nV̂ = n−1V̂ ′

K
∗
nV̂ ≡ Ĵboot,n.
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Thus, conditionally on the data,

√
n
(
β̂∗ − β̂)= Q̂−1

n

1√
n

n∑
i=1

V ∗
i ∼N(0, Q̂−1

n Ĵboot,nQ̂
−1
n

)
.

Theorem 3.2 follows because Q̂−1
n Ĵboot,nQ̂

−1
n −Cn = op(1), where Cn =Q−1JnQ

−1 (apply
Lemma A.2, noting that it does not require the positive definiteness assumption on K

∗
n).

When p > 1, the same argument applies except that the rank of M∗
n is now p > 1,

implying that we can write

n−1/2
n∑
i=1

V ∗
i =

p∑
k=1

(
n−1/2V̂ ′√λkφk)vk,

in which case the joint Gaussianity of (v1, � � � , vp ) determines the Gaussianity of the
scaled average of the bootstrap scores.

4. Hypothesis testing

The previous results justify the construction of bootstrap percentile confidence inter-
vals. These are based on the bootstrap quantiles of the unstudentized statistic

√
n(β̂∗ −

β̂). In this section, we consider bootstrap tests based on studentized statistics. Specifi-
cally, we consider testing

H0 :Rβ= r0 vs H1 :Rβ 
= r0, (13)

where R is a r ×pmatrix with r ≤ p and r0 is a r × 1 vector.
For testing (13), we employ the Wald statistic given by

Wn = √
n(Rβ̂− r0 )′

[
RQ̂−1

n ĴnQ̂
−1
n R

′]−1√
n(Rβ̂− r0 ), (14)

a special case of which is the squared t-statistic when r = 1. The Wald test statistic re-
quires the use of a spatial HAC estimator given by Ĵn. Our assumption is that this esti-
mator is of the usual form

Ĵn = 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
V̂iV̂

′
j ,

where K(·) and dn correspond to a spatial kernel function and a bandwidth parameter
that are possibly different from the bootstrap kernel function K∗(·) and the bootstrap
bandwidth parameter d∗

n.
For bootstrap testing, using restricted residuals is often preferable as this reduces the

size distortions. In this case, the bootstrap data generating process can be described as
follows. Let β̃ denote the restricted OLS estimator of β obtained under H0. We generate
bootstrap data as y∗

i = x′
iβ̃+ u∗

i , where u∗
i = ũiηi, with ũi = yi − x′

iβ̃ and ηi generated as
before. In what follows, we denote by β̈ either β̃ or β̂, depending on whether we use the
restricted or the unrestricted residuals.
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The bootstrap Wald statistic is then defined as

W∗
n = √

n
(
Rβ̂∗ −Rβ̈)′[RQ̂−1

n Ĵ
∗
nQ̂

−1
n R

′]−1√
n
(
Rβ̂∗ −Rβ̈),

where

Ĵ∗
n = 1

n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
V̂ ∗
i V̂

∗′
j ,

with V̂ ∗
i = xiû∗

i , û∗
i = y∗

i −x′
iβ̂

∗, and β̂∗ the unrestricted OLS estimator from regressing y∗
i

on xi.
Similar to the Wald test statistic, the bootstrap Wald statistic also requires the choice

of a spatial kernel and a bandwidth parameter. Our approach in this paper is to use
the same kernel and bandwidth for studentizing the two Wald test statistics. Hence, our
approach is similar to the naive bootstrap approach considered by Gonçalves and Vo-
gelsang (2011).

To establish the asymptotic validity of the bootstrap Wald test, we need to impose
conditions on K and dn. In order to do so, we define another set of pseudo neighbors of
i using the bandwidth dn:

Bi,n = {j : d̃ij ≤ dn}, �i,n =
n∑
j=1

1{j ∈ Bi,n} and �n = 1
n

n∑
i=1

�i,n,

and make the following assumption.

Assumption 7. (i) K : R → [−1, 1] satisfiesK(0) = 1, andK(z) =K(−z) for all z ∈R;

(ii) 1
E�n

supi E(
∑
j /∈Bi,n K(

d̃ij
dn

)) =O(1), 1
E�n

supi
∑
j /∈Bi,n K(

d̃ij
dn

) =OP (1);

(iii) There exists a constant Cq0 <∞ such that 1
n

∑n
i=1

∑n
j=1 ‖E(ViV ′

j )‖dq0
ij < Cq0 , for all

n, where q0 denotes the Parzen characteristic exponent ofK(z);

(iv) For all i, �i,n ≤ cE�n, a.s., for some constant c > 0.

Assumption 7 imposes conditions on K and dn, which are similar to those imposed
onK∗ and d∗

n by Assumption 1(i) and (ii), and Assumptions 3 and 5. The main difference
is that we do not require the kernel functionK to be positive definite. If necessary, we can
ensure that RQ̂−1

n ĴnQ̂
−1
n R

′ (and its bootstrap analogue) is positive definite by replacing
its negative eigenvalues by ε > 0, a small positive constant, as discussed in Remark 1.

Theorem 4.1. Suppose Assumptions 1–7 hold. If E∗|vi|4 < M and dn, E�n → ∞ and
d∗
n, E�∗n → ∞ as n → ∞ such that E�n/n = o(1) and E�∗n/n1/2 = o(1), then under H0,

as n→ ∞,

sup
x∈R

∣∣P∗(W∗
n ≤ x)− P(Wn ≤ x)

∣∣= oP (1).
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Assumption 7 (along with our remaining assumptions) is used to show the consis-
tency of Ĵ∗

n for Ĵboot,n = Var∗(n−1/2∑n
i=1 xiu

∗
i ); see Lemma A.4. Since Ĵboot,n converges to

Jn, this implies that Ĵ∗
n is consistent for Jn, which together with Theorem 3.1 imply the

result.
Theorem 4.1 shows that the bootstrap Wald test W∗

n mimics the null distribution of
Wn when the null is true, irrespective of whether we use the restricted or unrestricted
approach. This is sufficient to claim the first order asymptotic validity of the bootstrap
critical values under the null hypothesis. When the null is not true, the bootstrap distri-
bution of the bootstrap Wald test based on the unrestricted residuals still converges to
the null limiting distribution of Wn. This result follows because (i) the bootstrap distri-
bution of

√
n(β̂∗ − β̂) converges to a normal distribution with mean zero and variance-

covariance equal to Cn = Q−1JnQ
−1, and (ii) Ĵ∗

n is consistent for Jn, independently of
the true value of β underlying the DGP. For the restricted approach, we can show that
the same is true when the true value of β is equal to β0 + δ/

√
n. Hence, the restricted

bootstrap Wald test mimics the null limiting distribution of Wn under a set of local alter-
natives. This ensures that the bootstrap Wald test achieves the same local power as the
test based on asymptotic critical values.

Next, we provide a description of the steps involved in testingH0 :Rβ= r0 using our
bootstrap method.

Algorithm (Spatial Dependent Wild Bootstrap for TestingH0 :Rβ= r0).

(i) Compute

β̂=
(

n∑
i=1

xix
′
i

)−1 n∑
i=1

xiyi, ûi = yi − x′
iβ̂, and V̂i = xiûi, i= 1, � � � , n.

(ii) Compute Wn = √
n(Rβ̂− r0 )′[RQ̂−1

n ĴnQ̂
−1
n R

′]−1√n(Rβ̂− r0 ), where

Q̂n = 1
n

n∑
i=1

xix
′
i and Ĵn = 1

n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
V̂iV̂

′
j ,

for a given kernel K, a bandwidth dn, and a set of distances {d̃ij }. Section 6 pro-
vides a method for choosing dn.

(iii) Compute the matrix K
∗
n = [K∗(d̃ij/d∗

n )]ni,j=1 and its eigendecomposition K
∗
n =

	n
n	
′
n, where 
n is a diagonal matrix with the nonnegative eigenvalues of K∗

n

and the columns of 	n are the associated orthonormal eigenvectors. Let Ln =
	n


1/2
n .

(iv) Generate an n×1 vector v∼ (0, In ). We recommend using a sequence of standard
normal random variables, but another distribution could be used. Then gener-
ate a sequence of random variables {ηi : i= 1, � � � , n} by multiplying this vector ν
by Ln:

η=Lnv.



Quantitative Economics 14 (2023) Bootstrap inference 529

(v) Compute the restricted OLS estimator

β̃= β̂−
(

n∑
i=1

xix
′
i

)−1

R′
[
R

(
n∑
i=1

xix
′
i

)
R′
]−1

(Rβ̂− r0 )

and the restricted residuals ũi = yi − x′
iβ̃, i= 1, � � � , n. Let

y∗
i = x′

iβ̃+ u∗
i , where u∗

i = ũiηi.
(vi) Compute W∗

n = √
n(Rβ̂∗ − r0 )′[RQ̂−1

n Ĵ
∗
nQ̂

−1
n R

′]−1√n(Rβ̂∗ − r0 ) using

β̂∗ =
(

n∑
i=1

xix
′
i

)−1 n∑
i=1

xiy
∗
i ,

bootstrap scores V̂ ∗
i = xiû∗

i , and

Ĵ∗
n = 1

n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
V̂ ∗
i V̂

∗′
j .

(vii) Repeat steps (iv)–(vi) B times and compute the bootstrap p-value as

p̂n = 1
B

B∑
b=1

1
(
W∗(b)
n >Wn

)
,

where W∗(b)
n is the bootstrap Wald statistic in replication b and 1(·) is the indica-

tor function. Reject the null hypothesis if p̂n is less than the chosen significance
level of the test.

Finally, we note that the spatial dependent wild bootstrap based on the modified
nonnegative kernel M∗

n discussed in Section 3.3 is not asymptotically valid when applied
to studentized test statistics. In particular, suppose we consider testing H0 : β= β0 in a
simple location model yi = β+ ui by relying on a t-test

tn =
√
n(β̂−β0 )

se(β̂)
,

where β̂= ȳ = n−1∑n
i=1 yi and se(β̂) is the square root of

Ĵn = 1
n

n∑
i,j=1

K

(
d̃ij

dn

)
(yi − ȳ )(yi − ȳ ) ≡ 1

n

n∑
i,j=1

K

(
d̃ij

dn

)
V̂iV̂j ,

with V̂i = ûi ≡ yi − β̂. Now, consider the spatial dependent bootstrap based on the
modified kernel M∗

n. Specifically, let y∗
i = β̂ + u∗

i , with u∗
i = ûiηi, and η = Lnv, where

v∼N(0, In ) and Ln =	n
n, as described in Section 3.3. The bootstrap analog of tn is

t∗n =
√
n
(
β̂∗ − β̂)
se
(
β̂∗) ,
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where se(β̂∗ ) is the square root of

Ĵ∗
n = 1

n

n∑
i,j=1

K

(
d̃ij

dn

)(
y∗
i − ȳ∗)(y∗

i − ȳ∗)≡ 1
n

n∑
i,j=1

K

(
d̃ij

dn

)
V̂ ∗
i V̂

∗
j ,

with V̂ ∗
i = û∗

i ≡ y∗
i − β̂∗. We can show that V̂ ∗

i = u∗
i − ū∗ = v1(zi − z̄), where we let zi ≡

ûi
√
λ1φi1. With this notation, we can write

t∗n ≡
√
n
(
β̂∗ − β̂)√
Ĵ∗
n

= v1√
v2

1

Zn = a1Zn,

where a1 = v1√
v2

1

is a discrete (Rademacher) random variable given by

a1 =
{

1 with prob. 1/2,

−1 with prob. 1/2,

depending on the sign of v1, and

Zn =

1√
n

n∑
i=1

zi√√√√1
n

n∑
i,j=1

K

(
d̃ij

dn

)
(zi − z̄)(zj − z̄)

is a function of the original sample. Thus, conditionally on the data, t∗n has a discrete
distribution function given by

F̂n(x) ≡ P∗(t∗n ≤ x)= P∗(a1Zn ≤ x) = 1
2

1(Zn ≤ x) + 1
2

1(−Zn ≤ x).

Since F̂n(x) is discrete, we cannot expect it to converge to	(x), the limiting distribution
function of tn. Although the consistency of the bootstrap distribution is not necessary
for the validity of a bootstrap p-value (as recently emphasized by Cavaliere and Georgiev
(2020)), we can also show that the bootstrap p-value induced by this modified procedure
has a discrete distribution, and hence it cannot be uniformly distributed, as n→ ∞.

5. Extension to nonlinear models

In this section, we describe an extension of the score wild bootstrap of Kline and San-
tos (2012a) to the spatial context. This method is a fast resampling method, which can
be used for inference in nonlinear models estimated by asymptotically linear estimators
such as the QMLE or the GMM estimator. The main idea of the score wild bootstrap is
to perturb the score vector evaluated at the estimated parameter of interest by an ex-
ternal random variable ηi with mean zero and variance one. Kline and Santos (2012a)
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assume that ηi is i.i.d., as in the regular wild bootstrap. Instead, here we allow for spa-
tial dependence of unknown form in the score contributions and generate ηi such that

Cov∗(ηi, ηj ) = K∗(
d̃ij
d∗
n

). For brevity, we only provide a description of the method, omit-

ting the proof of asymptotic validity.3

Let {Zi : i = 1, � � � , n} denote a sample of observations on a random vector Z ∈ R
dZ

and let θ ∈ � ⊆ R
p. For the linear model considered previously, Zi = (yi, x′

i )
′, but this

decomposition does not need to hold in general. The parameter of interest is denoted by
θ0 and we assume that its estimator θ̂ admits the following asymptotic linear expansion:

√
n(θ̂− θ0 ) =An(θ0 )

1√
n

n∑
i=1

Vi(θ0 ) + oP (1),

whereAn(θ) is a p× �matrix and Vi(θ) ≡ V (Zi, θ) is an �× 1 vector, where �≥ p. If

An(θ0 )
P−→A0 and

1√
n

n∑
i=1

Vi(θ0 )
d−→N(0, J0 ),

it follows that
√
n(θ̂− θ0 )

d−→N(0, C0 ),

where C0 ≡A0J0A
′
0.

Two examples of θ̂ that fit into this framework are the QMLE and the GMM estimator.
For QMLE,

θ̂= arg min
θ∈�

1
n

n∑
i=1

q(Zi, θ),

where q(·, θ) is a quasi-log-likelihood real valued function. Assuming that q is twice dif-
ferentiable in θ, we can write

√
n(θ̂− θ0 ) = −H−1

n (θ0 )
1√
n

n∑
i=1

Vi(θ0 ) + op(1),

where

Hn(θ) = 1
n

n∑
i=1

∂2q(Zi, θ)
∂θ∂θ′ ,

is the p× p Hessian matrix and Vi(θ0 ) = ∂q(Zi ,θ0 )
∂θ is the p× 1 score vector for observa-

tion i. Thus, we have that

An(θ0 ) = −H−1
n (θ0 ) and Vi(θ0 ) = ∂q(Zi, θ0 )

∂θ
.

3This could be established under conditions similar to those used by Kim and Sun (2011) (who studied
the spatial GMM estimator) by applying the bootstrap uniform law of large numbers and the bootstrap
central limit theorems derived in Gonçalves and White (2004). Providing primitive conditions on the data
such that a linear array representation holds for the score vector is difficult and case-specific.
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A special case is the OLS estimator considered previously, where Vi(θ0 ) = −2xiui and
Hn(θ) = 2n−1∑n

i=1 xix
′
i.

For GMM estimators, assume that

E
[
g(Zi, θ0 )

]= 0,

where g :Z×�−→ R
� contains the �moment conditions with �≥ p. The GMM estima-

tor of θ0 is defined as

θ̂= arg min
θ∈�

(
1
n

n∑
i=1

g(Zi, θ)

)′
Wn

(
1
n

n∑
i=1

g(Zi, θ)

)
,

where Wn is a random positive definite symmetric matrix, which converges in proba-
bility to W > 0. Assuming g is differentiable in θ, we define the Jacobian matrix of the
moment conditions as

Gn(θ) = 1
n

n∑
i=1

∂g(Zi, θ)
∂θ′ .

Under standard regularity conditions that allow for spatially dependent observations
(see, e.g., Kim and Sun (2011)),

√
n(θ̂− θ0 ) = −(Gn(θ0 )′WnGn(θ0 )

)−1
Gn(θ0 )′Wn

1√
n

n∑
i=1

gi(θ0 ) + op(1),

implying that

An(θ0 ) = −(Gn(θ0 )′WnGn(θ0 )
)−1
Gn(θ0 )′Wn, and Vi(θ0 ) = gi(θ0 ).

Following Kline and Santos (2012a), we can approximate the distribution of
√
n(θ̂−

θ0 ) by relying on the bootstrap distribution of

ν∗
n =An(θ̂)

1√
n

n∑
i=1

V ∗
i ,

where V ∗
i = Vi(θ̂)ηi and ηi are such that Cov∗(ηi, ηj ) =K∗(

d̃ij
d∗
n

).
This method contains the spatial dependent wild bootstrap for linear regressions as

a special case. In particular, note that for the linear model,

An(θ̂) =
(
n−1

n∑
i=1

xix
′
i

)−1

= Q̂−1
n , and V ∗

i = Vi(θ̂)ηi = xiûiηi ≡ xiu∗
i ,

where u∗
i = ûiηi. Since y∗

i = x′
iβ̂+ u∗

i , this implies that

ν∗
n = Q̂−1

n

1√
n

n∑
i=1

xiu
∗
i = Q̂−1

n

1√
n

n∑
i=1

xi
(
y∗
i − x′

iβ̂
)= √

n
(
β̂∗ − β̂),

which shows that ν∗
n is equal to

√
n(β̂∗ − β̂), as we considered before.
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For GMM, the spatial score bootstrap simulates the critical values of

ν∗
n = −(Gn(θ̂)′WnGn(θ̂)

)−1
Gn(θ̂)′Wn

1√
n

n∑
i=1

gi(θ̂)ηi,

in order to approximate the distribution of
√
n(θ̂− θ0 ). Since ν∗

n does not depend on any
bootstrap GMM estimator θ̂∗, this is a fast resampling method that does not require any
optimization in the bootstrap world.

6. Monte Carlo simulations

In this section, we consider a simulation experiment to document the properties of
our proposed approach. Our design follows Lee and Robinson (2016) and Sun and Kim
(2015). The data is generated as

yi = α+βxi + ui,
where α = 0 and β = 1. The observations lie within a square of dimension

√
n × √

n

where n is the sample size. The locations si = (si1 , si2 ) are drawn uniformly within that
square once and for all for each design, that is, we let si1 ∼ U[0,

√
n] independently of

si2 ∼U[0,
√
n]. The distance between observations at locations si and sj is Euclidean:

dij =
√

(si1 − sj1 )2 + (si2 − sj2 )2.

Regressor and errors have the same dependence structure. Each of zi = (xi, ui )′ and
zj are drawn from a standard normal N(0, I2 ) distribution but with correlation θdij be-
tween them. The parameter θ controls the degree of dependence among observations
with a higher value of θ leading to observations that are more highly correlated. In our
experiments, we consider values of θ between 0 and .9 in increments of .1. We report
results for three sample sizes: n= 25, 100, and 400 as a function of θ with 10,000 replica-
tions.

We consider rejection rates of the null hypothesis of β= 1 against a two-sided alter-
native at the 5% level using the t statistic:

tn =
√
n(β̂− 1)

se(β̂)
,

where se(β̂) is the square root of the (2, 2) element of Q̂−1
n ĴnQ̂

−1
n with

Ĵn = 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
V̂iV̂

′
j ,

using the Gaussian kernel, the data-based choice of dn discussed below, and d̃ij = dij is
the Euclidean distance between the locations si and sj . We will later consider the pres-
ence of measurement error in locations and the misspecification of the distance mea-
sure.
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The choice of bandwidth is clearly important. Our suggested approach is to com-
pute an estimate of C(d(k)

0 ), the spatial analog of the autocovariance function of the

residuals for a set of potential bandwidths {d(k)
0 , k = 1, � � � ,M }, arranged in increasing

order of magnitude. We estimate C(d(k)
0 ) nonparametrically using a local average esti-

mator Ĉ(d(k)
0 ), following Conley and Dupor (2003) and Conley and Topa (2002). We view

Ĉ(d(k)
0 ) as a test statistic for the null hypothesis of spatial independence at distance d(k)

0 ,
and construct an acceptance region via a bootstrap simulation imposing this null, based
on bootstrap data sets with i.i.d. draws from the empirical distribution of residuals. The
bootstrap analog of Ĉ(d(k)

0 ) is then constructed for each spatially independent bootstrap
sample, with their distribution providing a reference distribution for the null of spatial
independence. We identify the first distance in the ordered set {d(k)

0 , k = 1, � � � ,M } for
which the bootstrap test does not reject independence and select the bandwidth as the
previous value of that distance.

The next algorithm details the steps involved.

Algorithm (Bandwidth Selection).

(i) Compute

β̂=
(

n∑
i=1

xix
′
i

)−1 n∑
i=1

xiyi, ûi = yi − x′
iβ̂, and V̂i = xiûi, i= 1, � � � , n.

(ii) Choose a set of potential bandwidths d0 = (d(1)
0 , � � � , d(M )

0 )′, ordered in increasing

magnitude, and tolerance level ε. For each k= 1, � � � ,M , compute Ĉ(d(k)
0 ), the co-

variance between residuals at distance d(k)
0 , via a uniform kernel regression with

tolerance of ε:

Ĉ
(
d(k)

0

)= 1∑
i,j

1
(
|d̃ij − d(k)

0 | < ε
)∑
i,j

1
(
|d̃ij − d(k)

0 | < ε
)
ûiû

′
j .

(iii) Generate data using an i.i.d. bootstrap from the empirical distribution of residu-
als ûi for each location si. For each k = 1, � � � ,M , compute the bootstrap analog
of Ĉ(d(k)

0 ),

Ĉ∗(d(k)
0

)= 1∑
i,j

1
(
|d̃ij − d(k)

0 | < ε
)∑
i,j

1
(
|d̃ij − d(k)

0 | < ε
)
û∗
i û

∗′
j .

(iv) Repeat step (iii) B times and obtain a bootstrap acceptance region for the null of
spatial independence using the 2.5% and 97.5% quantiles of Ĉ∗(d(k)

0 ).

(v) We search for the first element of d0 for which Ĉ(d(k)
0 ) is within these bands and

set the bandwidth as the previous element of d0.

We implement this algorithm as follows. We set d(k)
0 = ck × n1/6, for ck between 0.5

and 4 in increments of 0.5, which givesM = 8. From Kim and Sun (2011), the chosen rate
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of expansion is optimal in the MSE-sense when locations lie in a two-dimensional space
using the Gaussian kernel. We also set the tolerance level ε as 0.1×n 1

6 . These values were
arrived at with some experimentation.

We compare the test statistic to 3 different critical values. The first one is the critical
value from the standard normal distribution. The second critical value is obtained from
the i.i.d. bootstrap, which approximates the fixed-b asymptotic distribution in Bester,
Conley, Hansen, and Vogelsang (2016) that assumes that the bandwidth dn is a fixed pro-
portion of the sample size. As in the time-series context (see, e.g., Kiefer and Vogelsang
(2005)), the fixed-b asymptotic distribution in the spatial context is nuisance parameter-
free, but is highly nonstandard. In contrast to the time- series case, it is a complicated
functional of Brownian sheets and it depends on the sampling region. Thus, for practical
purposes, it is hard to implement the fixed-b asymptotic critical values without resorting
to the i.i.d. bootstrap. Finally, the last critical value is obtained using our spatial depen-
dent wild bootstrap (SDWB) using the restricted residuals to obtain the bootstrap draws.
We implement it using the same Gaussian kernel and bandwidth used to compute the t-
statistic in the sample. We use independent standard normal random variables as exter-
nal draws andB= 399 bootstrap samples. The use of the Gaussian kernel with Euclidean
distance ensures that the matrix K

∗
n is positive semidefinite.

Figure 1 reports the rejection rates for the three sets of critical values under the null
hypothesis of β= 1. The first thing to note from Figure 1 is that, as expected, size distor-
tions increase with higher dependence (higher value of θ). Second, the use of asymptotic
normal critical values leads to sizable size distortions for small values of n. For exam-
ple, for n = 25, the rejection rate for θ = 0.5 is 25.1% instead of 5%. This is reduced to
13.7% for n = 400. The i.i.d. bootstrap critical values perform much better and reduce
the size distortions considerably. Again, for θ= 0.5, the rejection rate is 12.7% for n= 25
and 7.8% for n= 400. Finally, the spatial dependent wild bootstrap gives rejection rates
closer to the nominal level, 10.9% for n= 25 and 6.5% for n= 400.

Figures 2 to 5 explore measurement error in locations as in Lee and Robinson (2016).
Hence, location i becomes

s̃i =
(
si1 + ζ1

i , si2 + ζ2
i

)
,

where ζi = (ζ1
i , ζ2

i )′ is independently drawn from N(0, ζI2 ) with ζ = 2 (Figure 2), ζ = 4
(Figure 3), or ζ = 10 (Figure 4). In other words, the data is generated as above with the
correct locations si and using the Euclidean distance in the data-generating process.
However, when implementing all test procedures, we use the incorrect random distance

d̃ij =
√

( s̃i1 − s̃j1 )2 + ( s̃i2 − s̃j2 )2 arising from the mismeasured locations.

Comparing Figures 1 and 2, measurement error in locations worsens all meth-
ods. For n = 25, the i.i.d. bootstrap performs best, but our SDWB dominates it for
n = 100 and 400 though the difference is much smaller than when the correct loca-
tions are used. Making measurement error larger reinforces these findings as shown in
Figures 3 and 4. If measurement error is large enough, distances convey no informa-
tion and are discarded. The results with asymptotic theory converge toward the White
heteroskedasticity-robust standard errors, and our method deteriorates analogously.
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Figure 1. Rejection rate with no measurement error.
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Figure 2. Rejection rate withN(0, 2) error in locations.
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Figure 3. Rejection rate withN(0, 4) error in locations.
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Figure 4. Rejection rate withN(0, 10) error in locations.
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Figure 5. Rejection rate, max distance in DGP, Euclidean in sample.
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The i.i.d. bootstrap is obviously more robust since it relies less on the existence of a dis-
tance measure (it still relies on it in the construction of the statistic). Nonetheless, our
SDWB performs better for larger sample size and stronger dependence.

Finally, Figure 5 considers the case where the wrong distance measure is used, This
experiment generates data as before by drawing locations uniformly in a square of di-
mension

√
n× √

n, but the distance between observations is the maximum distance:

dij = max
[|si1 − sj1 |, |si2 − sj2 |

]
.

We suppose that the researcher believes that he is in the same context as for Figure 1
and uses the Euclidean distance between observations. This is a different type of mis-
specification than what was considered in Figures 2–4. Here, the locations are correctly
observed, but the wrong metric between them is used. Because the Euclidean distance
and Gaussian kernel are used in the sample, the resulting K

∗
n matrix is still positive semi-

definite.
When comparing Figures 1 and 5, we see that the misspecification worsens results

for all methods, but the effect is quite small, much less than aN(0, 2) measurement error
in locations. For example, with θ = 0.5, our bootstrap has a rejection rate of 11.8% for
n= 25, 8.4% with n= 100, and 6.6% for n= 400 compared to 10.9%, 8.0%, and 6.5% with
no measurement error, and 20.0%, 18.7%, and 7.9% with N(0, 2) measurement error in
locations.

We conclude from these experiments that the spatial dependent wild bootstrap re-
moves a large fraction of the size distortions associated with the use of the normal
asymptotic critical values. Its superiority is especially pronounced with stronger spa-
tial dependence (larger values of θ). Moreover, it outperforms the i.i.d. bootstrap except
for cases with large misspecification combined with either small sample size or weak
dependence.

7. Empirical example

In this section, we present an example application to illustrate our method. This appli-
cation’s goal is to understand how firms are affected by import behavior in their local
markets. An extensive empirical literature has examined the role of import competition
in the reallocation of manufacturing within and across industries, for example, Bernard,
Jensen, and Schott (2006), Autor, Dorn, Hanson, and Song (2014), and Acemoglu, Autor,
Dorn, Hanson, Price (2016). Recent work in this literature, such as Utar (2017) and San-
doval (2020), has been concerned with the distinct effects of imports depending on their
location in the supply chain. This motivates an empirical investigation of the impact of
different types of imports upon firm outcomes. We examine a regression that provides
stylized facts about the correlations between firms’ growth and the level of importing ac-
tivity in their local markets, distinguishing between three types of imports. These three
categories are: final goods imports which may reflect competition facing domestic pro-
ducers in the local market, intermediate goods imports which could reflect, for example
the scale of operation by competitors or the supply of inputs in the market, and capi-
tal goods imports, which may reflect varying access to technology and/or competitors’
scale of operation.
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We use Canadian firm-level data from the National Accounts Longitudinal Micro-
data File (NALMF), constructed by Statistics Canada, for the years 2003 and 2007. The
NALMF contains all incorporated firms in Canada, and is mainly used to track GDP and
employment of firms, and their locations. We use data from 2003 and 2007 and link
wholesaler import data from Statistics Canada to the NALMF.4 This provides data on
firm-level imports that include their value, country of origin, and product at the level of
a ten-digit harmonized system code. These import-linked data allow us to study how the
import activity of Canadian wholesalers in intermediate, final, and capital good markets
affect manufacturing firms’ outcomes.5

Specifically, we examine the relationship between manufacturing firms’ sales growth
and the level of exposure to import activity in their local markets. We estimate that rela-
tion using a cross-section of firms and the following specification:

Sales Growthi = α+ θXFinal
i + γXIntermediate

i + δXCapital
i +Z′

iψ+ εi, (15)

where i corresponds to a manufacturing firm. The dependent variable, Sales Growthi,
corresponds to the growth rate of real sales between 2003 and 2007. The local market of
firm i is taken to be its Economic Region (ECR) among the 72 ECRs defined by Statistics
Canada.6 Importing activity variables X are defined at the ECR level and reflect 2003
activity. We define the parameter vector as β= (α, θ, γ, δ, ψ′ )′.

XFinal
i is computed as a ratio. Its numerator is the value of all imports by wholesalers

of final goods within firm i′s ECR. Its denominator is the total value of all imports and
domestic sales of manufacturing firms in firm i′s ECR. The import measuresXIntermediate

i

and XCapital
i are defined analogously. See Sandoval (2020) for an extensive discussion of

the merits of these particular measures of import activity.
Our conditioning information in Zi includes 2003 data on firm age, the logarithm

of real sales, and measures of capital and skill intensity. Following Bernard, Jensen, and
Schott (2006), we measure capital intensity as the natural log of a capital/labor ratio
using the book value of tangible assets divided by firm’s total payroll, and measure skill
intensity as the ratio of the total payroll to the payments to production workers. We focus
on a cross-section of manufacturing firms with more than 20 workers in 2003, yielding
a sample of 6120 firms. Approximately 88% of Canadian manufacturing workers in 2003
worked in these sample firms.

We anticipate that spatial dependence will be present in this cross-section of firms
due to two main factors. Firms that are close in terms of travel time will have relevant lo-
cal markets that overlap. When firms’ local markets overlap, they will tend to face corre-
lated shocks, for example, labor supply shocks. We use physical distance between firms
as our measure of the overlap between firms’ local markets. Correlated unobservables
could also easily arise due to similarities in firms’ technology making them vulnerable

4See Sandoval (2020) for a detailed description of these linked data.
5We classify imports according to their end-use as intermediate, final, or capital goods using the corre-

spondence tables between the HS and Broad Economic Categories (BEC) classification.
6Approximately 96% of the firms in our sample have single locations; for the remaining firms, we take a

firm’s location as the location of its designated headquarters.
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to a common set of shocks or changes to their technology. We represent firms’ technol-
ogy via two characteristics that we use to generate a “technology distance”: their capital
to labor ratio and the fraction of total payroll going to production workers.

We combine our two distance measures to implement the spatial dependent wild
bootstrap. For physical distance, we use the coordinates of the centroids of the ECR in
which firms are located as firm coordinates and use straight line distance as our measure
of firms’ physical distance.7 Each firm’s technology is summarized by a two-dimensional
vector containing its capital/labor ratio and ratio of total payroll to production worker
payroll, both in 2003. Technology distance is calculated as the Euclidean distance be-
tween firms’ two-dimensional technology characteristics vectors.

We add both distance measures after scaling them so neither dominates. The com-
bined distance for firms i and j, d̃ij , is constructed by adding a scaled multiple of their
technology distance to their physical distance:

d̃ij = physical distance + scale × (technology distance).

The technology scale factor is constructed so that the median of the scaled technology
distance is equal to the median physical distance (560 km). Thus, for two firms with
identical measured technology, our combined distance d̃ij is equal to physical distance,
providing at least some sense of units.

We use the same kernel and bandwidth for the spatial dependent wild bootstrap
procedure and spatial HAC:

K∗(d̃ij/dn ) =K(d̃ij/dn ) = exp
(−(d̃ij/dn )2), where dn = d∗

n.

We present results in Table 1 using a methodology for choosing dn similar to that de-

scribed in Section 6. Specifically, we obtain Ĉ(d(k)
0 ) for a range of values for d(k)

0 . Figure 6
gives these estimates for an assortment of distances, along with upper and lower ends of
a 90% acceptance region for spatial independence. Ĉ(d(k)

0 ) is normalized in Figure 6 by
dividing by the sample variance of residuals. Although spatial covariances can be small
relative to the variance of residuals, it is important to note that there can be a very large
number of firms at the smaller distances from each other so their covariances’ sum can
still be substantial relative to their variance. Pointwise hypothesis tests for spatial inde-
pendence can be done by simply comparing the covariance estimates (circles) to the ac-
ceptance region (between dashes).8 Estimated autocovariances are generally decreasing
and independence is rejected until about 500–700 units and then “borderline rejected”
until about 1100 units. This motivated our choice of a bandwidth of 560 for our reported
estimates; the implied weight K is greater than 0.14 for only 25% of the pairs of firms.

7Centroids are calculated from Statistics Canada maps of 2016 ECR boundaries.
8It is important to remember that these acceptance regions are for the null hypothesis of independence

rather than zero correlation. Rejections can occur due to differences in the sampling distribution under
dependence versus independence, even if the covariance at the given distance were zero. We anticipate
that with spatial dependence rejections at smaller distances will occur largely due to nonzero autocovari-
ances. At larger distances, we anticipate some (correct) rejections even though true covariance is zero at
that distance due to the sampling variability being larger under dependence than independence.
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Table 1. Inference for regression (15) predicting the growth of sales between 2003 and 2007.

Half width of 95% confidence intervals

β̂ OLS White
Cluster

ECR

Clustered
Wild

Bootstrap
ECR

Cluster
Industry

Clustered
Wild

Bootstrap
Industry

Spatial
HAC

Spatial
Wild

Bootstrap

Import Pen.
Intermediate

4.342 1.666 1.799 1.833 2.048 1.696 1.746 1.838 2.074

Import Pen.
Final

−3.033 1.584 1.454 2.164 1.465 1.344 2.063 1.557 1.695

Import Pen.
Capital

−0.130 1.307 1.027 1.271 1.119 1.199 1.061 1.013 1.021

Log real sales 0.013 0.017 0.016 0.014 0.010 0.031 0.019 0.021 0.023
Age −0.003 0.004 0.004 0.003 0.003 0.004 0.004 0.004 0.005
Capital
intensity

0.028 0.021 0.030 0.032 0.034 0.037 0.028 0.028 0.031

Skill intensity 0.004 0.051 0.023 0.023 0.012 0.025 0.011 0.023 0.013
Constant −0.265 0.191 0.197 0.192 0.200 0.455 0.266 0.280 0.311

Note: The import penetration variables are computed at the ECR-level and for the year 2003. The reminder of the regressors
refer to firm-level data for the year 2003. For the Wild bootstrap, we compute a symmetric t-percentile confidence interval using
2000 Bootstrap repetitions. Skill intensity is measured in 100s.

We obtained qualitatively very similar results with bandwidth choices up to 1120; at this
bandwidth,K is greater than 0.14 for 53% of firm pairs andK is greater than 0.61 for 25%
of pairs.

Figure 6. Circles are local average estimates of spatial covariances and dashed lines represent
edges of a 90% acceptance region for the null hypothesis of spatial independence. Uniform ker-
nel with tolerance δ = 57 for smallest distance and δ = 113 for all others. Covariances are nor-
malized by dividing by sample variance of residuals.
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We also include in Table 1 confidence intervals using different methods for com-
puting standard errors and critical values. Specifically, we compute asymptotic theory-
based intervals that rely on different standard errors: classical OLS, heteroskedasticity
consistent (labeled White), clustered at the ECR-level, clustered at the 3-digit industry-
level, and spatial HAC. We also include three bootstrap-based intervals: cluster wild
bootstrap at the ECR level, cluster wild bootstrap at the industry level and our spatial
dependent wild bootstrap using the same kernel and bandwidth as in the spatial HAC.9

The results presented in Table 1 have several key features. The relative sizes of con-
fidence intervals across methods differ across elements of β. For example, for the first
element of β, the coefficient on intermediate goods imports, our spatial wild bootstrap
CIs are the widest but for the coefficient for final goods imports, Cls using clustering on
ECR are largest.

There is evidence of substantial dependence as a function of physical distance, but
its impact on inference again varies across elements of β. This can be seen by compar-
ing, for example, White CIs with ECR cluster for the capital imports coefficient where
the length of CIs differ by 24%, but for the intermediate goods coefficient, these CIs are
nearly the same length. There is also some evidence of correlations due to similar tech-
nology, which are partly reflected in CIs under Clustered by Industry. CIs using Industry
clusters are sometimes larger and sometimes smaller than White CIs across the three co-
efficients of interest. Both the spatial HAC and spatial dependent wild bootstrap attempt
to allow for both types of correlation.

Finally, there is evidence that using the spatial dependent wild bootstrap matters
relative to a spatial HAC estimator using the same kernel. Across all parameters, the dif-
ference in length of the CIs is typically about 10% to 20%, possibly reflecting the greater
robustness of the bootstrap intervals to finite sample deviations from the normal distri-
bution.

8. Conclusion

This paper has proposed a method for generating bootstrap data under spatial and
space-time dependence of unknown form. It is implemented by multiplying a vector
of external variables by the eigendecomposition of a bootstrap kernel. The wild boot-
strap and wild cluster bootstrap are special cases of this approach and do not require
the decomposition of a full n× n matrix, but our method can also be used to generate
data with dependence patterns for which no alternative method exists. Simulation ex-
periments suggest that there are gains from generating bootstrap samples that replicate
the spatial patterns in the data.

Results by Zhang and Shao (2013) show that the Gaussian dependent bootstrap is
second-order correct for the Gaussian location model under fixed-b asymptotics. Ex-
tending these results to the regression model with non-Gaussian errors and spatial de-
pendence is an open but challenging topic for future research (see Kline and Santos
(2012b) for results for the standard wild bootstrap in the i.i.d. context).

9We do not compare to blocking/clustering methods allowing for general dependence structures as in
Bester, Conley, and Hansen (2011) or Ibragimov and Müller (2010) due to the difficulties in defining appro-
priate blocks/clusters when dependence is characterized by multiple metrics.
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Another interesting extension of our results would be to investigate the properties
of the spatial dependent wild bootstrap when locations are randomly selected from a
given population rather then being fixed, as we have assumed here. This setup has been
recently considered by Müller and Watson (2022), who propose a new estimator of the
spatial long run variance using a fixed number of principal components obtained from a
“worst-case” benchmark parametric model for the covariance structure of the error term
in a location model. A critical value is then constructed using this benchmark model
under the additional assumption of Gaussianity so as to ensure that the size of the re-
sulting test is asymptotically correct. Contrary to our setup, Müller and Watson (2022)
assume locations to be randomly selected from a density g and show that allowing for a
nonuniform density has implications for the conventional fixed-b limiting distributions.
The choice of sampling design may also impact bootstrap validity (see, e.g., Lahiri and
Zhu (2006) for results on the spatial block bootstrap). Interestingly, Shao (2010) shows
that the wild dependent bootstrap is asymptotically valid when the sampling design is
stochastic with a potentially nonuniform spatial density g. It would be interesting to
extend these results to our context, where spatial dependence is not restricted to be in-
dexed on the line.

Appendix

As usual in the bootstrap literature, we use P∗ to denote the bootstrap probability mea-
sure, conditional on the original sample (defined on a given probability space (�, F , P )).
For any bootstrap statistic T ∗

n , we write T ∗
n = oP∗(1), in prob-P , or T ∗

n →P∗
0, in prob-P ,

when for any δ > 0, P∗(|T ∗
n |> δ) = oP (1). We write T ∗

n =OP∗(1), in prob-P , when for all
δ > 0 there exists Mδ <∞ such that limn→∞ P[P∗(|T ∗

n | >Mδ ) > δ] = 0. By Markov’s in-
equality, this follows if E∗|T ∗

n |q = OP (1) for some q > 0. Finally, we write T ∗
n →d∗

D, in
probability, if conditional on a sample with probability that converges to one, T ∗

n weakly
converges to the distributionD under P∗, that is,E∗(f (T ∗

n )) →P E(f (D)) for all bounded
and uniformly continuous functions f .

A.1 Auxiliary lemmas

Define

Jboot,n = Var∗
(

1√
n

n∑
i=1

Viηi

)

and note that Jboot,n differs from Ĵboot,n = Var∗( 1√
n

∑n
i=1 V̂iηi ) by replacing V̂i with Vi.

Recall that d̃ij = dij +ξij , where dij is deterministic, and ξij is a measurement error which
is independent of {el} and {xi}. Let�n = {ξij , i, j = 1, � � � , n}.

Lemma A.1. Under Assumptions 1(i) and (ii), we have

1

n2

n∑
i=1

n∑
j=1

E

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣=O
(
E�∗n
n

)

as E�∗n, d∗
n → ∞ such that E�∗n/n→ 0.



Quantitative Economics 14 (2023) Bootstrap inference 547

Proof of Lemma A.1. Note that

1

n2

n∑
i=1

n∑
j=1

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣= 1

n2

n∑
i=1

n∑
j∈B∗

i,n

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣+ 1

n2

n∑
i=1

n∑
j /∈B∗

i,n

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣,
where B∗

i,n is a random set containing the neighbors of i using d̃ij . Thus, we have that

1

n2

n∑
i=1

E

n∑
j=1

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣= 1

n2

n∑
i=1

E

(
n∑

j∈B∗
i,n

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣
)

+ 1

n2

n∑
i=1

E

(
n∑

j /∈B∗
i,n

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣
)

.

If K∗ truncates, the second term is automatically zero, whereas the first term can be
bounded by n−2E

∑n
i=1

∑n
j∈B∗

i,n
1 = n−1E(n−1∑n

i=1 �
∗
i,n ) = n−1E�∗n. When K∗ does not

truncate, then we use Assumption 1(ii) to bound the second term. Specifically, we obtain
that

1

n2

n∑
i=1

E

n∑
j /∈B∗

i,n

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣≤ E�∗n
n

(
1
E�∗n

sup
i
E

n∑
j /∈B∗

i,n

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣
)

=O
(
E�∗n
n

)
.

The following lemma establishes the consistency of Jboot,n and Ĵboot,n toward Jn.
This is a key result for proving the asymptotic validity of the bootstrap distribution of√
n(β̂∗ − β̂) and the corresponding Wald test W∗

n .

Lemma A.2. Suppose that the conditions of Theorem 3.1 hold. Then (i) Jboot,n − Jn →P 0
and (ii) Ĵboot,n − Jn →P 0.

Our next result is an auxiliary result used to prove Theorem 3.1.

Lemma A.3. Suppose Assumptions 1 and 2 hold. Then, for any pair (i, j), conditionally
on�n = {ξij },

n∑
i=1

n∑
j=1

∣∣E(ViV ′
j |�n

)
φikφjk

∣∣≤M ,

uniformly in k = 1, � � � , n, where φik is the ith element of φk = (φ1k, � � � , φnk )′, the kth

eigenvector of K∗
n=(K∗(

d̃ij
d∗
n

))i,j=1, ���,n, and where the constantM is independent of�n.

Proof of Lemma A.2. Part (i) Since Jboot,n−Jn →P 0 if and only if α′Jboot,nα−α′Jnα→P

0 for any p× 1 vector α, we consider the case that Jboot,n and Jn are scalars without loss
of generality. Write

Jboot,n − Jn = 1
n

n∑
i=1

n∑
j=1

K∗
(
d̃ij

d∗
n

)[
ViVj −E(ViVj )

]+ 1
n

n∑
i=1

n∑
j=1

(
K∗

(
d̃ij

d∗
n

)
− 1

)
E(ViVj )

≡ b1 + b2.
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For b1, note that by the law of iterated expectations and the independence between {Vi}
and�n ≡ {ξij },

E(b1 ) = 1
n

n∑
i=1

n∑
j=1

E

[
K∗

(
d̃ij

d∗
n

)
E
(
ViVj −E(ViVj )|�n

)]

= 1
n

n∑
i=1

n∑
j=1

E

[
K∗

(
d̃ij

d∗
n

)(
E(ViVj|�n ) −E(ViVj )

)]= 0,

where E(ViVj|�n ) = E(ViVj ) given Assumption 4(i). Hence, it suffices to prove that
Var(b1 ) = o(1). We have

Var(b1 ) = Var

(
1
n

n∑
i=1

n∑
j=1

K∗
(
d̃ij

d∗
n

)[
ViVj −E(ViVj )

])

= 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E

[
K∗

(
d̃i1j1
d∗
n

)
K∗

(
d̃i2j2
d∗
n

)]

× [
E(Vi1Vj1Vi2Vj2 ) −E(Vi1Vj1 )E(Vi2Vj2 )

]
, (16)

using again the law of iterated expectations and the independence assumption between

{Vi} and�n. Adding and subtracting appropriately in (16), we can bound Var(b1 ) by

Var(b1 ) ≤ b11 + b12 + b13,

where

b11 = 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

∣∣E(Vi1Vj1Vi2Vj2 ) −E(Vi1Vj1 )E(Vi2Vj2 )

−E(Vi1Vi2 )E(Vj1Vj2 ) −E(Vi1Vj2 )E(Vj1Vi2 )
∣∣

and

b12 = 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E

[
K∗

(
d̃i1j1
d∗
n

)
K∗

(
d̃i2j2
d∗
n

)]∣∣E(Vi1Vi2 )E(Vj1Vj2 )
∣∣,

b13 = 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E

[
K∗

(
d̃i1j1
d∗
n

)
K∗

(
d̃i2j2
d∗
n

)]∣∣E(Vi1Vj2 )E(Vj1Vi2 )
∣∣.

We can show that b12 and b13 are both of order O( E�
∗
n
n ), whereas b11 = O( 1

n ). Thus,

Var(b1 ) = o(1) under our assumptions provided E�∗n
n = o(1). Next, we focus on the term

b12 (the argument for b13 is the same and the proof that b11 = O( 1
n ) follows by an argu-

ment similar to the one used to show that C1 =O(1) in the proof of Theorem 3.1, so we
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omit the details here). We can write

b12 ≤ 1

n2

n∑
i1=1

n∑
j1=1

E

∣∣∣∣K∗
(
d̃i1j1
d∗
n

)∣∣∣∣ n∑
i2=1

∣∣E(Vi1Vi2 )
∣∣ n∑
j2=1

∣∣E(Vj1Vj2 )
∣∣

≤ 1

n2

n∑
i1=1

n∑
j1=1

E

∣∣∣∣K∗
(
d̃i1j1
d∗
n

)∣∣∣∣
(

sup
c

n∑
i2=1

∣∣E(VcVi2 )
∣∣)

︸ ︷︷ ︸
≤�

(
sup
c

n∑
j2=1

∣∣E(VcVj2 )
∣∣)

︸ ︷︷ ︸
≤�

≤ �2 1

n2

n∑
i1=1

n∑
j1=1

E

∣∣∣∣K∗
(
d̃i1j1
d∗
n

)∣∣∣∣=O
(
E�∗n
n

)
= o(1),

if E�
∗
n
n → 0 by Lemma A.1. Note that we have used the fact that supi

∑n
j=1 |E(ViVj )| ≤ �

under Assumption 2.

For b2, note that

|b2| ≤ 1(
d∗
n

)q∗
0

1
n

n∑
i=1

n∑
j=1

∥∥E(ViVj )
∥∥d̃q∗

0
ij

(
K∗
q∗

0
+ o(1)

)=OP
(

1(
d∗
n

)q∗
0

)
as d∗

n → ∞,

because

P

(
1
n

n∑
i=1

n∑
j=1

∥∥E(ViVj )
∥∥d̃q∗

0
ij > �

)
≤ 1
�

1
n

n∑
i=1

n∑
j=1

∥∥E(ViVj )
∥∥E(d̃q∗

0
ij

)→ 0 as �→ ∞

given Assumption 4. Hence, b2 = oP (1), completing the proof of part (i).

For part (ii), given (i) it suffices to show that Ĵboot,n − Jboot,n = oP (1). Since xiûi =
xi[ui + xi(β− β̂)], we can write

Ĵboot,n − Jboot,n = 1
n

n∑
i=1

n∑
j=1

K∗
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d̃ij

d∗
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)
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n
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)
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xixj(β− β̂)2 + 2xjui(β− β̂)

]≡ c1 + c2.

Because β̂−β=OP (n−1/2 ),

c1 =OP (1)
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)
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because by Markov’s inequality

P
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under Lemma A.1. For c2,
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We have
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by Lemma A.1. Therefore, Ĵboot,n − Jboot,n = oP (1) under the rate condition on E�∗n,

which concludes the proof.

Proof of Lemma A.3. The proof uses the weak dependence of Vi and the fact that∑n
i=1φ

2
ik = 1 for any realization of K∗

n. Let us rearrange the sequence of {φik, i= 1, � � � , n}

as {φ(a)
k , a= 1, � � � , n} for each k in a way that |φ(a)

k | is the ath largest component among

{|φik|, i = 1, � � � , n}. That is, |φ(1)
k | ≥ |φ(2)

k | ≥ · · · ≥ |φ(n)
k |. Using this, conditionally on �n,
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we can rewrite
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where we have used the independence of {Vi} and�n.
It follows that
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where the second inequality is due to |φ(a)
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assuming that the term in parentheses is bounded. This last condition is slightly stronger
than the usual weak dependence 1

n

∑n
i=1

∑n
j=1 ‖E(ViV ′

j )‖ < ∞, but it holds under As-
sumption 2.

A.2 Proof of main results in the paper

Proof of Theorem 3.1. LetCn =Q−1JnQ
−1 and define its square root matrix asC1/2

n =
Q−1J

1/2
n , where J1/2

n is such that J1/2
n (J1/2

n )′ = Jn and it exists by assumption. It follows
that C−1/2

n = J−1/2
n Q and

C
−1/2
n

√
n
(
β̂∗ − β̂)= C−1/2

n Q̂−1
n

1√
n

n∑
i=1

xiu
∗
i = J−1/2

n QQ̂−1
n

1√
n

n∑
i=1

xiu
∗
i

= J−1/2
n

1√
n

n∑
i=1

xiu
∗
i + oP∗(1),
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since under Assumption 6(ii), Q̂n →P Q. Thus, it suffices to show that

J
−1/2
n

1√
n

n∑
i=1

xiu
∗
i →d∗

N(0, Ip ), in prob-P , (17)

to conclude that

C
−1/2
n

√
n
(
β̂∗ − β̂)→d∗

N(0, Ip ), in prob-P . (18)

Given that C−1/2
n

√
n(β̂−β) →d N(0, Ip ) under our assumptions, (18) implies the result

by Polya’s theorem and the continuity of the normal distribution. Using the definition of
u∗
i , (17) follows if

1√
n

n∑
i=1

xi(ûi − ui )ηi →p∗
0, in prob-P , and (19)

J
−1/2
n

1√
n

n∑
i=1

xiuiηi →d∗
N(0, Ip ), in prob-P , (20)

as n→ ∞. For (19), we note that

1√
n

n∑
i=1

xi(ûi − ui )ηi = 1
n

n∑
i=1

xix
′
iηi︸ ︷︷ ︸

=a1

√
n(β− β̂)︸ ︷︷ ︸
=OP (1)

,

so it suffices to show that a1 = oP∗(1) in prob-P . By Markov’s inequality, this follows if
E∗|a1|2 = oP (1). Routine calculations show that

E∗|a1|2 = 1

n2

n∑
i=1

n∑
j=1

tr
(
xix

′
ixjx

′
j

)
E∗(ηiηj ) = 1

n2

n∑
i=1

n∑
j=1

∣∣tr(xix′
ixjx

′
j

)∣∣K∗
(
d̃ij

d∗
n

)

=OP
(
E�∗n
n

)
→ 0, (21)

as E�∗n
n → 0, given Lemma A.1.
Next, we prove (20). Given Assumption 1, K∗

n is symmetric and positive semidefinite,
which implies that K∗

n = 	n
n	
′
n, where 
n is a diagonal matrix with the nonnegative

eigenvalues of K∗
n and the columns of 	n are the associated orthonormal eigenvectors.

Then Ln can be written as

Ln =	n
1/2
n = [

λ
1/2
1 φ1, � � � , λ1/2

n φn
]
,

implying that

η=	n
1/2
n v= [

λ
1/2
1 φ1, � � � , λ1/2

n φn
]
v,

where v∼ i.i.d.(0, In ). Given that Vi = xiui is p× 1, let

V ′
p×n=

[
V1 · · · Vn

]
.
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It follows that

J
−1/2
n

1√
n

n∑
i=1

xiuiηi = J−1/2
n

1√
n

n∑
i=1

Viηi = J−1/2
n

1√
n
V ′η

= 1√
n

n∑
k=1

(
J

−1/2
n λ

1/2
k V ′φk

)
vk = 1√

n

n∑
k=1

Z∗
k,

where by definition,

Z∗
k = J−1/2

n

(
λ

1/2
k V ′φk

)
vk.

Note that (λ1/2
k J

−1/2
n V ′φk ) is a p × 1 vector of constants conditional on the data and

that vk ∼ i.i.d.(0, 1), which implies that Z∗
k is an independent heterogeneous array. We

will show that n−1/2∑n
k=1Z

∗
k →d∗

N(0, Ip ), in prob-P , by applying Lyapunov’s CLT (see,
e.g., Proposition 2.27 of van der Vaart (1998)). First, note that conditionally on the data,
E∗(Z∗

k ) = 0 and

Var∗
(

1√
n

n∑
k=1

Z∗
k

)
= 1
n

n∑
k=1

λkJ
−1/2
n V ′φkφ′

kV
(
J

−1/2
n

)

= J−1/2
n V ′

(
1
n

n∑
k=1

λkφkφ
′
k

)
V
(
J

−1/2
n

)′ = J−1/2
n J∗

0n
(
J

−1/2
n

)′
,

where

Jboot,n = Var∗
(

1√
n

n∑
i=1

Viηi

)
= Var∗

(
1√
n

n∑
k=1

(
V ′λ1/2

k φk
)
vk

)
= V ′

(
1
n

n∑
k=1

λkφkφ
′
k

)
V .

By Lemma A.2, Jboot,n − Jn →P 0, which then implies that

Var∗
(

1√
n

n∑
k=1

Z∗
k

)
→P Ip.

Hence, it remains to check Lyapunov’s condition, which requires that for some υ> 0,

1

n1+υ/2

n∑
k=1

E∗∥∥Z∗
k

∥∥2+υ →P 0. (22)

Note that

1

n1+υ/2

n∑
k=1

E∗∥∥Z∗
k

∥∥2+υ = 1

n1+υ/2

n∑
k=1

E∗∥∥J−1/2
n

(
λ

1/2
k V ′φk

)
vk
∥∥2+υ

≤ ∥∥J−1/2
n

∥∥2+υ 1

n1+υ/2

(
sup
a
λ

1+υ/2
a

) n∑
k=1

E∗
∥∥∥∥∥
n∑
i=1

Viφikvk

∥∥∥∥∥
2+υ
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= ∥∥J−1/2
n

∥∥2+υ 1

nυ/2

(
max
a
λ

1+υ/2
a

)

× 1
n

n∑
k=1

( p∑
m=1

n∑
i=1

n∑
j=1

V (m)
i V (m)

j φikφjk

)1+υ/2

E∗|vk|2+υ. (23)

We will show that the Lyapunov condition holds for υ= 2 by showing that

1
n

(
max
a
λ2
a

)
= oP (1), (24)

1
n

n∑
k=1

( p∑
m=1

n∑
i=1

n∑
j=1

V (m)
i V (m)

j φikφjk

)2

= OP (1), (25)

and noting that E∗|vk|4 <M by assumption. To prove (24), since K
∗
nφa = λaφa, for a =

1, � � � , n, we have that for each i= 1, � � � , n, and a= 1, � � � , n,

n∑
j=1

K∗
(
d̃ij

d∗
n

)
φja = λaφia.

Let i= ia such that |φiaa| = maxi |φia|. Then, for a= 1, � � � , n, it follows that

λa|φiaa| ≤
n∑
j=1

∣∣∣∣K∗
(
d̃iaj

d∗
n

)∣∣∣∣|φja| ⇐⇒ λa ≤
n∑
j=1

∣∣∣∣K∗
(
d̃iaj

d∗
n

)∣∣∣∣ |φja|
|φiaa|

≤
n∑
j=1

∣∣∣∣K∗
(
d̃iaj

d∗
n

)∣∣∣∣.
Thus, we can obtain an upper bound for {λa} as follows:

sup
a
λa ≤ sup

a

n∑
j=1

∣∣∣∣K∗
(
d̃aj

d∗
n

)∣∣∣∣.
Assumptions 1 and 5 imply

sup
a

n∑
j=1

∣∣∣∣K∗
(
d̃aj

d∗
n

)∣∣∣∣≤ sup
a

∑
j∈B∗

a,n

1

︸ ︷︷ ︸
=supa �

∗
a,n<cE�

∗
n

+ sup
a

∑
j /∈B∗

a,n

∣∣∣∣K∗
(
d̃iaj

d∗
n

)∣∣∣∣,

and since λa ≥ 0 for a= 1, � � � , n,

1
n

sup
a
λ2
a ≤ 1

n
sup
a

(
n∑
j=1

∣∣∣∣K∗
(
d̃aj

d∗
n

)∣∣∣∣
)2

≤ 1
n

(
cE�∗n + sup

a

∑
j /∈B∗

a,n

∣∣∣∣K∗
(
d̃iaj

d∗
n

)∣∣∣∣
)2

≤ 2

(
cE�∗n

)2

n
+ 2

(
E�∗n

)2

n

(
1
E�∗n

sup
a

∑
j /∈B∗

a,n

∣∣∣∣K∗
(
d̃iaj

d∗
n

)∣∣∣∣
)2

≤OP
((

E�∗n
n1/2

)2)
= oP (1)

given Assumption 1(ii) and the fact that we let E�
∗
n

n1/2 = o(1).
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Next, we prove (25). We will focus on the special case where p= 1 for simplicity, and

show that

1
n

n∑
k=1

E

(
n∑
i=1

n∑
j=1

ViφikVjφjk

)2

=E
[

1
n

n∑
k=1

E

((
n∑
i=1

Viφik

)4∣∣∣�n
)]

=O(1),

which suffices to prove (25) given Markov’s inequality. In particular, we will argue condi-

tionally on �n and show that the average of the conditional expectation is bounded by

a constant. This is enough to prove that the unconditional expectation of the average is

bounded. Letting Ṽik = Viφik, we have that

1
n

n∑
k=1

E

(∣∣∣∣∣
n∑
i=1

Ṽik

∣∣∣∣∣
4∣∣∣�n

)
= 1
n

n∑
k=1

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E(Ṽi1kṼi2kṼi3kṼi4k|�n )

≡ C1 +C2 +C3 +C4,

where adding and subtracting appropriately,

C1 = 1
n

n∑
k=1

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E(Ṽi1kṼi2kṼi3kṼi4k|�n )

−E(Ṽi1kṼi2k|�n )E(Ṽi3kṼi4k|�n )

−E(Ṽi1kṼi3k|�n )E(Ṽi2kṼi4k|�n )

−E(Ṽi1kṼi4k|�n )E(Ṽi2kṼi3k|�n )

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

C2 = 1
n

n∑
k=1

{
n∑

i1=1

n∑
i2=1

E(Ṽi1kṼi2k|�n )

}{
n∑

i3=1

n∑
i4=1

E(Ṽi3kṼi4k|�n )

}
,

C3 = 1
n

n∑
k=1

{
n∑

i1=1

n∑
i3=1

E(Ṽi1kṼi3k|�n )

}{
n∑

i2=1

n∑
i4=1

E(Ṽi2kṼi4k|�n )

}
,

C4 = 1
n

n∑
k=1

{
n∑

i1=1

n∑
i4=1

E(Ṽi1kṼi4k|�n )

}{
n∑

i2=1

n∑
i3=1

E(Ṽi2kṼi3k|�n )

}
.

We will now show that each of the terms C1 through C4 is bounded by a constant given

our assumptions. Recall that Ṽik ≡ Viφik, where Vi = ∑∞
�=1 ri�e� given the linear array

representation of Vi (Assumption 2). We will rely on this assumption as well as on the

orthonormality of the eigenvectors φk = (φik : i = 1, � � � , n) to prove the desired results.

Write

Ṽik = Viφik =
∞∑
l=1

(rilφik )el =
∞∑
l=1

r̃il,kel, where r̃il,k = rilφik.
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Using the fact that el are i.i.d. (0, 1), it follows that

E(Ṽi1kṼi2kṼi3kṼi4k|�n )

=
∞∑
l1=1

∞∑
l2=1

∞∑
l3=1

∞∑
l4=1

r̃i1l1,kr̃i2l2,kr̃i3l3,kr̃i4l4,kE(el1el2el3el4 )

=
∞∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,kE
(
e4
l

)+
∞∑
l1=1

r̃i1l1,kr̃i2l1,k

∞∑
l2=1,l1 
=l2

r̃i3l2,kr̃i4l2,k

+
∞∑
l1=1

r̃i1l1,kr̃i3l1,k

∞∑
l2=1,l1 
=l2

r̃i2l2,kr̃i4l2,k +
∞∑
l1=1

r̃i1l1,kr̃i4l1,k

∞∑
l2=1,l1 
=l2

r̃i2l2,kr̃i3l2,k

≡ d1 + d2 + d3 + d4.

Now, notice that for a given pair (i, j), for example, (i1, i2 ), we have that

E(Ṽi1kṼi2k|�n ) =E
[( ∞∑

l1=1

r̃i1l1,kel1

)( ∞∑
l2=1

r̃i2l2,kel2

)∣∣∣�n
]

=
∞∑
l1=1

∞∑
l2=1

r̃i1l1,kr̃i2l2,k E(el1el2 )︸ ︷︷ ︸
=0 if l1 
=l2 and 1 if l1=l2

=
∞∑
l1=1

r̃i1l1,kr̃i2l1,k.

This implies that

E(Ṽi1kṼi2k|�n )E(Ṽi3kṼi4k|�n )

=
( ∞∑
l1=1

r̃i1l1,kr̃i2l1,k

)( ∞∑
l2=1,l2 
=l1

r̃i3l2,kr̃i4l2,k + r̃i3l1,kr̃i4l1,k︸ ︷︷ ︸
when l1=l2

)

=
( ∞∑
l1=1

r̃i1l1,kr̃i2l1,k

)( ∞∑
l2=1,l2 
=l1

r̃i3l2,kr̃i4l2,k

)
+
( ∞∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k

)
.

Hence,

d2 ≡
( ∞∑
l1=1

r̃i1l1,kr̃i2l1,k

)( ∞∑
l2=1,l2 
=l1

r̃i3l2,kr̃i4l2,k

)

= E(Ṽi1kṼi2k|�n )E(Ṽi3kṼi4k|�n ) −
∞∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k.
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Similarly,

d3 ≡
( ∞∑
l1=1

r̃i1l1,kr̃i3l1,k

)( ∞∑
l2=1,l2 
=l1

r̃i2l2,kr̃i4l2,k

)

=E(Ṽi1kṼi3k|�n )E(Ṽi2kṼi4k|�n ) −
∞∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k

and

d4 ≡
( ∞∑
l1=1

r̃i1l1,kr̃i2l1,k

)( ∞∑
l2=1,l2 
=l1

r̃i3l2,kr̃i4l2,k

)

=E(Ṽi1kṼi4k|�n )E(Ṽi2kṼi3k|�n ) −
∞∑
l1=1

r̃i1l1,kr̃i2l1,kr̃i3l1,kr̃i4l1,k.

Putting everything together yields

E(Ṽi1kṼi2kṼi3kṼi4k|�n ) −E(Ṽi1kṼi2k|�n )E(Ṽi3kṼi4k|�n )

−E(Ṽi1kṼi3k|�n )E(Ṽi2kṼi4k|�n ) −E(Ṽi1kṼi4k|�n )E(Ṽi2kṼi3k|�n )

=
∞∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,kE
(
e4
l

)− 3
∞∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k

=
∞∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k
(
E
(
e4
l

)− 3
)︸ ︷︷ ︸

=κ4

,

which then implies that

C1 = κ4
1
n

n∑
k=1

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

∞∑
l=1

r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k.

To bound this term, note that κ4 <� under our assumptions and, therefore,

C1 ≤ �
1
n

n∑
k=1

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

∞∑
l=1

|r̃i1l,kr̃i2l,kr̃i3l,kr̃i4l,k|

= �
1
n

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

∞∑
l=1

|ri1lri2lri3lri4l|
n∑
k=1

|φi1kφi2kφi3kφi4k|

≤ �
1
n

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

∞∑
l=1

|ri1lri2lri3lri4l|
(

n∑
k=1

(φi1kφi2k )2

)1/2( n∑
k=1

(φi3kφi4k )2

)1/2

≤ �
1
n

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

∞∑
l=1

|ri1lri2lri3lri4l|
(

n∑
k=1

φ4
i1k

)1/4( n∑
k=1

φ4
i2k

)1/4
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×
(

n∑
k=1

φ4
i3k

)1/4( n∑
k=1

φ4
i4k

)1/4

≤ �
1
n

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

∞∑
l=1

|ri1lri2lri3lri4l|
[

sup
i

(
n∑
k=1

φ4
ik

)]
.

We know that 	n is such that 	′
n	n = 	n	

′
n = In, which implies that for each i,∑n

k=1φ
2
ik = 1. Write

n∑
k=1

φ4
ik =

n∑
k=1

φ2
ikφ

2
ik.

Because
∑n
k=1φ

2
ik = 1 for each i, it must be the case that sup1≤k≤n |φ2

ik| ≤ 1. Thus,

n∑
k=1

φ4
ik =

n∑
k=1

φ2
ikφ

2
ik ≤

n∑
k=1

∣∣φ2
ik

∣∣ sup
k

∣∣φ2
ik

∣∣≤ n∑
k=1

∣∣φ2
ik

∣∣= 1,

implying that

C1 ≤ �
1
n

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

∞∑
l=1

|ri1lri2lri3lri4l|

= �
1
n

n∑
i1=1

∞∑
l=1

|ri1l|
(

n∑
i2=1

|ri2l|
)(

n∑
i3=1

|ri3l|
)(

n∑
i4=1

|ri4l|
)

≤ �
1
n

n∑
i1=1

∞∑
l=1

|ri1l|
( ∞∑
i2=1

|ri2l|
)

︸ ︷︷ ︸
≤M by Assumption 2

( ∞∑
i3=1

|ri3l|
)( ∞∑

i4=1

|ri4l|
)

≤ �M3 1
n

n∑
i1=1

∞∑
l=1

|ri1l|︸ ︷︷ ︸
≤M

≤ Const.

To show that C2, C3, C4 are also bounded by some constant that does not depend on�n,
we apply Lemma A.3.

To prove Theorem 4.1, we rely on the following lemma.

Lemma A.4. Suppose Assumptions 1–7 hold. If E∗|vi|4 < M and dn, E�n → ∞ and
d∗
n, E�∗n → ∞ as n → ∞ such that E�n/n = o(1), and E�∗n/n1/2 = o(1), then (i) Ĵ∗

n −
Ĵboot,n →P∗

0, in prob-P when unrestricted residuals are used, and (ii) Ĵ∗
n − Ĵboot,n →P∗

0,
in prob-P , when restricted residuals are used, andH0 is true.

Proof of Lemma A.4. We focus on the proof of (i) since (ii) follows by similar argu-
ments because β̃ − β is

√
n-convergent under H0. Without loss of generality, we take
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p= 1. Let

û∗
i = y∗

i − x′
iβ̂

∗ = y∗
i − x′

iβ̂+ x′
i

(
β̂− β̂∗)= u∗

i + x′
i

(
β̂− β̂∗),

where u∗
i = ûiηi. It follows that

Ĵ∗
n − Ĵboot,n = (

Ĵ∗
n − Ĵn

)+ (Ĵn − Ĵboot,n )

= 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
xixj

(
û∗
i û

∗
j − ûiûj

)+ (Ĵn − Ĵboot,n )

≡A1 +A2 +A3 +A4,

where

A1 = 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
xixj

[
u∗
i u

∗
j − ûiûj

]
and

A2 = 2
1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
xix

2
j u

∗
i

(
β̂− β̂∗),

A3 = 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
x2
i x

2
j

(
β̂− β̂∗)2

, and A4 = Ĵn − J∗
n .

First, note that A4 = oP (1) by Lemma A.2. Next, we show that A2 and A3 are oP∗(1), in
probability. For these terms, we can use the fact that

√
n(β̂− β̂∗ ) =OP∗(1). Starting with

A3, we can write

A3 =
[

1

n2

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
x2
i x

2
j

]
︸ ︷︷ ︸

=A31=oP (1)

(√
n
(
β̂− β̂∗))2︸ ︷︷ ︸

=OP∗ (1)

= oP∗(1),

in probability, since we can show thatA31 = oP (1). Indeed,

E|A31| ≤ 1

n2

n∑
i=1

n∑
j=1

E

∣∣∣∣K
(
d̃ij

dn

)∣∣∣∣E(x2
i x

2
j

)
︸ ︷︷ ︸

≤M

≤M 1

n2

n∑
i=1

n∑
j=1

E

∣∣∣∣K
(
d̃ij

dn

)∣∣∣∣=O
(
E�n

n

)
,

by Lemma A.1. Thus, by Markov’s inequality,A31 =OP ( E�nn ) = oP (1). ForA2,

A2 =
[

1√
n

1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
xix

2
j u

∗
i

]
︸ ︷︷ ︸

A21=oP∗ (1)

× √
n
(
β̂− β̂∗)︸ ︷︷ ︸

=OP∗ (1)

,
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since we can show that the term in square brackets is oP∗(1). To see this, note that

A21 = 1√
n

1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
xi(ûi − ui )ηix2

j + 1√
n

1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
xiuiηix

2
j

≡A(1)
21 +A(2)

21 .

Starting withA(1)
21 , note that

∣∣A(1)
21

∣∣ =
∣∣∣∣∣ 1√
n

1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
x2
i (β− β̂)ηix

2
j

∣∣∣∣∣≤OP (1)
1
n

n∑
j=1

∣∣∣∣∣x2
j

1
n

n∑
i=1

K

(
d̃ij

dn

)
x2
i ηi

∣∣∣∣∣
≤ OP (1)

(
1
n

n∑
j=1

x4
j

)
︸ ︷︷ ︸

=OP (1)

1/2(
1
n

n∑
j=1

(
1
n

n∑
i=1

K

(
d̃ij

dn

)
x2
i ηi

)2)
︸ ︷︷ ︸

=e1=OP∗ (E�n/n) in prob.

1/2

,

where e1 = OP∗(E�n/n) in probability. For this result, it suffices to show that

E(E∗(|e1|2 )) =O(E�n/n). But

E∗(|e1|2
) = 1

n

n∑
j=1

1

n2

n∑
i1=1

n∑
i2=1

K

(
d̃i1j

dn

)
K

(
d̃i2j

dn

)
x2
i1
x2
i2
E∗(ηi1ηi2 )

= 1
n

n∑
j=1

1

n2

n∑
i1=1

n∑
i2=1

(
d̃i1j

dn

)
K

(
d̃i2j

dn

)
x2
i1
x2
i2
K∗

(
d̃i1i2
d∗
n

)

≤ 1
n

n∑
j=1

1

n2

n∑
i1=1

n∑
i2=1

∣∣∣∣K
(
d̃i1j

dn

)∣∣∣∣
∣∣∣∣K
(
d̃i2j

dn

)∣∣∣∣x2
i1
x2
i2

,

implying that

E
(
E∗∣∣e2

1

∣∣) ≤ 1
n

n∑
j=1

1

n2

n∑
i1=1

n∑
i2=1

E

∣∣∣∣K
(
d̃i1j

dn

)∣∣∣∣
∣∣∣∣K
(
d̃i2j

dn

)∣∣∣∣︸ ︷︷ ︸
≤1

E
(
x2
i1
x2
i2

)
︸ ︷︷ ︸

≤M

≤ M

n2

n∑
j=1

n∑
i1=1

E

∣∣∣∣K
(
d̃i1j

dn

)∣∣∣∣=O
(
E�n

n

)

as shown in Lemma A.1. Therefore,A(1)
21 =OP∗(E�n/n) = oP∗(1), in probability. A similar

argument implies thatA(2)
21 =OP∗(

√
E�n
n ) = oP∗(1), in probability. Thus, to end the proof,
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we show thatA1 = oP∗(1) in probability. We can write

A1 = 1
n

n∑
i=1

n∑
j=1

K

(
dij

dn

)
xixj

[
xixj(β− β̂)2 + 2xiuj(β− β̂)

]
ηiηj

− 1
n

n∑
i=1

n∑
j=1

K

(
dij

dn

)
xixj

[
xixj(β− β̂)2 + 2xiuj(β− β̂)

]

+ 1
n

n∑
i=1

n∑
j=1

K

(
dij

dn

)
xixjuiuj(ηiηj − 1) ≡A11 +A12 +A13,

where A12 = −(J∗
n − J∗

0n ) = oP (1), as shown in the proof of Lemma A.2. Thus, it suffices

to show thatA11 andA13 are oP∗(1), in probability.

We can decomposeA11 asA11 =A(1)
11 +A(2)

11 , where

∣∣A(1)
11

∣∣ ≤ 1
n

n∑
i=1

n∑
j=1

∣∣∣∣K
(
dij

dn

)∣∣∣∣∣∣x2
i x

2
j ηiηj

∣∣(β− β̂)2

= OP (1)
1
n

n∑
i=1

∣∣x2
i ηi

∣∣(1
n

n∑
j=1

∣∣∣∣K
(
d̃ij

dn

)∣∣∣∣∣∣x2
j ηj

∣∣)

≤ OP (1)

(
1
n

n∑
i=1

∣∣x2
i ηi

∣∣2)
︸ ︷︷ ︸

=OP∗ (1)

1/2(
1
n

n∑
i=1

(
1
n

n∑
j=1

∣∣∣∣K
(
d̃ij

dn

)∣∣∣∣∣∣x2
j ηj

∣∣)2)
︸ ︷︷ ︸

=e1=oP∗ (1) in prob.

1/2

,

where E(E∗(e1 )) = o(1), as shown before. Thus, A(1)
11 = OP∗( E�nn ) in prob-P . Using ar-

guments similar to those used before, we can show that A(2)
11 = oP∗(1), in probability,

concluding the proof that A11 = oP∗(1), in prob-P . Finally, we show that A13 = oP∗(1).

We have

A13 = 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
ViVj(ηiηj − 1)

= 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
ViVj

(
ηiηj −K∗

(
d̃ij

d∗
n

))

+ 1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
ViVj

(
K∗

(
d̃ij

d∗
n

)
− 1

)

=A(1)
13 +A(2)

13 . (26)
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For A(1)
13 , we prove that Var∗(A(1)

13 ) = oP (1) since E∗(A(1)
13 ) = 0. By Markov’s inequality, it

suffices to show that E(Var∗(A(1)
13 )) = o(1). We have that

E
(
Var∗(A(1)

13

))=E
{
E∗
(

1
n

n∑
i=1

n∑
j=1

K

(
d̃ij

dn

)
ViVj

(
ηiηj −K∗

(
d̃ij

d∗
n

)))2}

= 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E(Vi1Vj1Vi2Vj2 )

×E
[
K

(
d̃i1j1
dn

)
K

(
d̃i2j2
dn

)(
E∗(ηi1ηj1ηi2ηj2 ) −K∗

(
d̃i1j1
d∗
n

)
K∗

(
d̃i2j2
d∗
n

))]
.

Let Lik denote the (i, k)-th element of Ln such that K
∗
n = LnL

′
n. In particular, letting

Ln =	n
1/2
n implies that

ηi =
n∑
k=1

Likvk =
n∑
k=1

(
√
λkφik )︸ ︷︷ ︸
=Lik

vk,

where vk is i.i.d. (0, 1). This decomposition implies that for any pair (i, j),

E∗(ηiηj ) =K∗
(
d̃ij

d∗
n

)
=

n∑
k1=1

n∑
k2=1

Lik1Ljk2E
∗(vk1vk2 ) =

n∑
k=1

LikLjk.

Similarly, it follows that

E∗(ηi1ηj1ηi2ηj2 ) =
n∑

k1=1

n∑
k2=1

n∑
k3=1

n∑
k4=1

Li1k1Lj1k2Li2k3Lj2k4E
∗(vk1vk2vk3vk4 )

=
n∑
k=1

Li1kLj1kLi2kLj2k
(
E∗(v4

k

)− 3
)

+
n∑

k1=1

Li1k1Lj1k1

n∑
k3=1

Li2k3Lj2k3 +
n∑

k1=1

Li1k1Li2k1

n∑
k2=1

Lj1k2Lj2k2

+
n∑

k1=1

Li1k1Lj2k1

n∑
k2=1

Lj1k2Li2k2

=
n∑
k=1

Li1kLj1kLi2kLj2k
(
E∗(v4

k

)− 3
)

+K∗
(
d̃i1j1
d∗
n

)
K∗

(
d̃i2j2
d∗
n

)
+K∗

(
d̃i1i2
d∗
n

)
K∗

(
d̃j1j2
d∗
n

)

+K∗
(
d̃i1j2
d∗
n

)
K∗

(
d̃j1i2
d∗
n

)
.
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Thus,

E∗(ηi1ηj1ηi2ηj2 ) −K∗
(
d̃i1j1
d∗
n

)
K∗

(
d̃i2j2
d∗
n

)

=
n∑
k=1

Li1kLj1kLi2kLj2k
(
E∗(v4

k

)− 3
)+K∗

(
d̃i1i2
d∗
n

)
K∗

(
d̃j1j2
d∗
n

)
+K∗

(
d̃i1j2
d∗
n

)
K∗

(
d̃j1i2
d∗
n

)
.

Given this decomposition, it follows that

E
(
Var∗(A(1)

13

))= B11 +B12 +B13,

where

B11 = 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E(Vi1Vj1Vi2Vj2 )

×E
[
K

(
d̃i1j1
dn

)
K

(
d̃i2j2
dn

)( n∑
k=1

Li1kLj1kLi2kLj2k
(
E∗(v4

k

)− 3
))]

,

B12 = 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E

[
K

(
d̃i1j1
dn

)
K

(
d̃i2j2
dn

)
K∗

(
d̃i1i2
d∗
n

)
K∗

(
d̃j1j2
d∗
n

)]
E(Vi1Vj1Vi2Vj2 ),

B13 = 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E

[
K

(
d̃i1j1
dn

)
K

(
d̃i2j2
dn

)
K∗

(
d̃i1j2
d∗
n

)
K∗

(
d̃j1i2
d∗
n

)]
E(Vi1Vj1Vi2Vj2 ).

Since (E∗(v4
k ) − 3) ≤M by assumption, by adding and subtracting appropriately, we can

bound B11 by

B11 ≤M
1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

∣∣E(Vi1Vj1Vi2Vj2 )
∣∣E
∣∣∣∣∣
n∑
k=1

Li1kLj1kLi2kLj2k

∣∣∣∣∣
≤M

1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

(
E(Vi1Vj1Vi2Vj2 ) −E(Vi1Vj1 )E(Vi2Vj2 )

−E(Vi1Vi2 )E(Vj1Vj2 ) −E(Vi1Vj2 )E(Vj1Vi2 )

)

×E
∣∣∣∣∣
n∑
k=1

Li1kLj1kLi2kLj2k

∣∣∣∣∣
+(∣∣E(Vi1Vj1 )E(Vi2Vj2 )

∣∣+ ∣∣E(Vi1Vi2 )E(Vj1Vj2 )
∣∣+ ∣∣E(Vi1Vj2 )E(Vj1Vi2 )

∣∣)
×E

∣∣∣∣∣
n∑
k=1

Li1kLj1kLi2kLj2k

∣∣∣∣∣
= B(1)

11 +B(2)
11 +B(3)

11 +B(4)
11 .
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To bound B(1)
11 , we rely on Assumption 2 to write

E(Vi1Vj1Vi2Vj2 ) −E(Vi1Vj1 )E(Vi2Vj2 ) −E(Vi1Vi2 )E(Vj1Vj2 ) −E(Vi1Vj2 )E(Vj1Vi2 )

=
∞∑
l=1

ri1lrj1lri2lrj2l
(
E
(
e4
l

)− 3
)
,

by using an argument similar to the one used to study the term C1 in the proof of Theo-
rem 3.1. Also, recall that Lik = √

λkφik. Then∣∣∣∣∣
n∑
k=1

Li1kLj1kLi2kLj2k

∣∣∣∣∣=
∣∣∣∣∣
n∑
k=1

λ2
kφi1kφj1kφi2kφj2k

∣∣∣∣∣.
This implies that

B(1)
11 ≤M 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

∣∣∣∣∣
∞∑
l=1

ri1lrj1lri2lrj2l
(
E
(
e4
l

)− 3
)∣∣∣∣∣E

n∑
k=1

∣∣λ2
kφi1kφj1kφi2kφj2k

∣∣

≤M2 1

n2

n∑
k=1

E

[
λ2
k

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

∞∑
l=1

|ri1lrj1lri2lrj2lφi1kφj1kφi2kφj2k|
]

≤M2 1

n
√
n

n∑
k=1

E

[
λ2
k

1√
n

n∑
i1=1

|φi1k|
∞∑
l=1

|ri1l|
n∑

j1=1

|rj1lφj1k|
n∑

i2=1

|ri2lφi2k|
n∑

j2=1

|rj2lφj2k|
]

.

Note that

1√
n

n∑
i1=1

|φi1k|
∞∑
l=1

|ri1l|
n∑

j1=1

|rj1l||φj1k|
n∑

i2=1

|ri2l||φi2k|
n∑

j2=1

|rj2l||φj2k|︸ ︷︷ ︸
≤1

≤ 1√
n

(
n∑

i1=1

12

)1/2

︸ ︷︷ ︸
=1

(
n∑

i1=1

φ2
i1k

)1/2

︸ ︷︷ ︸
=1

( ∞∑
l=1

|ri1l|
)

︸ ︷︷ ︸
≤M

(
n∑

j1=1

|rj1l|
)(

n∑
i2=1

|ri2l|
)(

n∑
j2=1

|rj2l|
)

≤M4,

which implies

B(1)
11 ≤M6 1

n
√
n
E

(
n∑
k=1

λ2
k

)
. (27)

Since {λk} are eigenvalues of K∗
n, we have

n∑
k=1

λ2
k = tr

(
K

∗
nK

∗
n

)=
n∑
i=1

n∑
j=1

(
K∗

(
d̃ij

d∗
n

))2

. (28)

Plugging (28) into (27) yields

B(1)
11 ≤M6E

(
1

n
√
n

n∑
i=1

n∑
j=1

(
K∗

(
d̃ij

d∗
n

))2
)

≤O(
√
n)

1

n2

n∑
i=1

n∑
j=1

E

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣=O
(
E�∗n√
n

)
.
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For B(2)
11 , we have

B(2)
11 =M

1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
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n2E
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k

(
n∑
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j1=1

∣∣E(Vi1Vj1 )φi1kφj1k
∣∣)

︸ ︷︷ ︸
≤M by Lemma A.3

(
n∑
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n∑
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E(Vi2Vj2 )φi2kφj2k

)

≤M3 1

n2E

(
n∑
k=1
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k

)
=M3 1

n2E

(
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n∑
j=1

(
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(
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)

≤M3 1

n2
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n∑
j=1

E

∣∣∣∣K∗
(
d̃ij

d∗
n

)∣∣∣∣=OP
(
E�∗n
n

)
.

Using the same procedure, we can show that B(3)
11 = B(4)

11 = O(E�∗n/n). Hence, B11 =
O(E�∗n/

√
n) = o(1) given that E�∗n/

√
n= o(1). Since we can also show that the terms B12

and B13 are o(1) by a similar argument, this concludes the proof that A(1)
13 = oP∗(1) in

prob-P .
ForA(2)

13 , the second term in (26), note that

E
(
A(2)

13

)≤ 1
n

n∑
i=1

n∑
j=1

∣∣E(ViVj )
∣∣(1 −K∗

(
d̃ij

d∗
n

))
= o(1),

as d∗
n grows, as proved in the proof of Lemma A.2 (see term b2 in particular). Hence, it is

sufficient to show Var(A(2)
13 ) = o(1). We have
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= 1
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(
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dn
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(
d̃i2j2
dn

)(
K∗

(
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d∗
n

)
− 1

)(
K∗

(
d̃i2j2
d∗
n

)
− 1

)]

× [
E(Vi1Vj1Vi2Vj2 ) −E(Vi1Vj1 )E(Vi2Vj2 )

]
≤ 1

n2

n∑
i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E

∣∣∣∣K
(
d̃i1j1
dn

)
K

(
d̃i2j2
dn

)∣∣∣∣∣∣E(Vi1Vj1Vi2Vj2 ) −E(Vi1Vj1 )E(Vi2Vj2 )
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= o(1),

as shown above. Therefore,A(2)
13 = oP (1), completing the proof.
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Proof of Theorem 3.2. The proof is in the text.

Proof of Theorem 4.1. It follows from Theorem 3.1 and Lemma A.4.
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