Econometrica

Journal Of The Econometric Society

An International Society for the Advancement of Economic
Theory in its Relation to Statistics and Mathematics

Edited by: Guido W. Imbens • Print ISSN: 0012-9682 • Online ISSN: 1468-0262

Econometrica: Jul, 1979, Volume 47, Issue 4

Asymptotic Estimation and Hypothesis Testing Results for Vector Linear Time Series Models

https://www.jstor.org/stable/1914144
p. 1005-1030

R. Kohn

For a general vector linear time series model we prove the strong consistency and asymptotic normality of parameter estimates obtained by maximizing a particular time domain approximation to a Gaussian likelihood, although we do not assume that the observations are necessarily normally distributed. To solve the normal equations we set up a constrained Gauss-Newton iteration and obtain the properties of the iterates when the sample size is large. In particular we show that the iterates are efficient when the iteration begins with a @?N-consistent estimator. We obtain similar results to the above for a frequency domain approximation to a Gaussian likelihood. We use the asymptotic estimation theory to obtain the asymptotic distribution of several familiar test statistics for testing nonlinear equality constraints.


Log In To View Full Content

Journal News

View