Many alternative theories have been proposed to explain violations of expected utility (EU) theory observed in experiments. Several recent studies test some of these alternative theories against each other. Formal tests used to judge the theories usually count the number of responses consistent with the theory, ignoring systematic variation in responses that are inconsistent. We develop a maximum-likelihood estimation method which uses all the information in the data, creates test statistics that can be aggregated across studies, and enables one to judge the predictive utility--the fit and parsimony--of utility theories. Analyses of 23 data sets, using several thousand choices, suggest a menu of theories which sacrifice the least parsimony for the biggest improvement in fit. The menu is: mixed fanning, prospect theory, EU, and expected value. Which theories are best is highly sensitive to whether gambles in a pair have the same support (EU fits better) or not (EU fits poorly). Our method may have application to other domains in which various theories predict different subsets of choices (e.g., refinements of Nash equilibrium in noncooperative games).
MLA
Camerer, Colin F., and David W. Harless. “The Predictive Utility of Generalized Expected Utility Theories.” Econometrica, vol. 62, .no 6, Econometric Society, 1994, pp. 1251-1289, https://www.jstor.org/stable/2951749
Chicago
Camerer, Colin F., and David W. Harless. “The Predictive Utility of Generalized Expected Utility Theories.” Econometrica, 62, .no 6, (Econometric Society: 1994), 1251-1289. https://www.jstor.org/stable/2951749
APA
Camerer, C. F., & Harless, D. W. (1994). The Predictive Utility of Generalized Expected Utility Theories. Econometrica, 62(6), 1251-1289. https://www.jstor.org/stable/2951749
By clicking the "Accept" button or continuing to browse our site, you agree to first-party and session-only cookies being stored on your device. Cookies are used to optimize your experience and anonymously analyze website performance and traffic.